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Abstract6

This paper is devoted to benchmarking the Multilayer-HySEA model using lab-7

oratory experimental data for landslide-generated tsunamis. This article deals8

with rigid slides and the second part, in a companion paper, addresses granular9

slides. The US National Tsunami Hazard and Mitigation Program (NTHMP)10

has proposed the experimental data used and established for the NTHMP Land-11

slide Benchmark Workshop, held in January 2017 at Galveston (Texas). The12

first three benchmark problems proposed in this workshop deal with rigid slides.13

Rigid slides must be simulated as a moving bottom topography and, therefore,14

they must be modelled as a prescribed boundary condition. These three bench-15

marks are used here to validate the Multilayer-HySEA model. This new HySEA16

model consists of an efficient hybrid finite-volume/finite-difference implementa-17

tion on GPU architectures of a non-hydrostatic multilayer model. A brief de-18

scription of model equations, dispersive properties, and the numerical scheme19

is included. The benchmarks are described and the numerical results compared20

against the lab-measured data for each of them. The specific aim is to validate21

this new code for tsunamis generated by rigid slides. Nevertheless, the over-22

all objective of the current benchmarking effort is to produce a ready-to-use23

numerical tool for real-world landslide generated tsunami hazard assessment.24

This tool has already been used to reproduce the Port Valdez Alaska 1964 and25

Stromboli Italy 2002 events.26
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1. Introduction30

Model development and benchmarking for earthquake-induced tsunamis is a31

task addressed in the past and to which much effort and time has been dedicated.32

In particular, just to mention a couple of NTHMP efforts, the 2011 Galveston33

benchmarking workshop (Horrillo et al., 2015) and the 2015 Portland workshop34

for tsunami currents (Lynett et al., 2017) both focused on these topics. However,35

both model development and benchmarking efforts have advanced at a slower36

pace for landslide-generated tsunamis. As examples we might mention the 200337

NSF-sponsored landslide tsunami workshop organized in Hawaii and a similar38

follow-up workshop on Catalina Island in 2006 (Liu et al., 2008). Since then, no39

similar large comprehensive benchmarking workshop has been organized (Kirby40

et al., 2018).41

In its 2019 Strategic Plan, the NTHMP required that all numerical tsu-42

nami inundation models to be used in hazard assessment studies in the US43

be verified as accurate and consistent through a model benchmarking process.44

This mandate was fulfilled in 2011, but only for seismic tsunami sources and to45

a limited extent for idealized solid underwater landslides. However, recent work46

by various NTHMP states has shown that landslide tsunami hazard may in fact47

be greater than seismically-induced hazard and may be also the dominant risk48

along significant parts of the US coastline (ten Brink et al., 2014).49

As a result of this demonstrated gap, a set of candidate benchmarks was pro-50

posed to perform the required validation process. The selected benchmarks are51

based on a subset of available laboratory data sets for solid slide experiments52

and deformable slide experiments and include both submarine and subaerial53

slides. In order to complete this list of laboratory data, a benchmark based54

on a historic field event (Valdez, AK, 1964) was also chosen. The EDANYA55

group (www.uma.es/edanya) from the University of Málaga participated in56

the workshop organized at Texas A&M University, Galveston (January 9-11,57
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2017) presenting results for the benchmarking tests with two numerical codes:58

Landslide-HySEA and Multilayer-HySEA models. At Galveston, we presented59

numerical results for six out of the seven benchmark problems proposed, in-60

cluding the field case. The current work presents the numerical results obtained61

for the Multilayer-HySEA model in the framework of the validation effort de-62

scribed above for the case of rigid slide-generated tsunamis, whereas the bench-63

mark problems dealing with granular slides are presented in a companion paper64

Maćıas et al. (2020a). A summary of the results for the field case at Port Valdez65

can be found at Maćıas et al. (2017).66

Twenty years ago, at the beginning of the century, the challenge of solid67

block landslide modelling was taken by a number of researchers (Grilli and68

Watts, 1999, 2005; Grilli et al., 2002; Lynett and Liu, 2002; Watts et al., 2003;69

Wu, 2004; Watts et al., 2005; Liu et al., 2005) and laboratory experiments were70

developed for those cases and for tsunami model benchmarking (Enet and Grilli,71

2007) (see also Ataie-Ashtiani and Najafi-Jilani (2008)). The benchmark prob-72

lems performed in the current work are based on the laboratory experiments73

of Grilli and Watts (2005) for BP1, Enet and Grilli (2007) for BP2, and Wu74

(2004); Liu et al. (2005) for BP3. The basic reference for these three bench-75

marks, as well as for the three benchmarks related to granular slides and the76

Alaska field case (all of them proposed by the NTHMP) is Kirby et al. (2018).77

We highly recommend checking this reference for further details on benchmark78

descriptions, data provided for performing them, required benchmark items, and79

inter-model comparison. Finally, we would like to stress that the ultimate goal80

of our current benchmarking effort is to provide the tsunami community with81

a NTHMP-approved model for landslide-generated tsunami hazard assessment,82

similarly to what we have done with the Tsunami-HySEA model for the case of83

earthquake-generated tsunamis (Maćıas et al., 2017; Maćıas et al., 2020c,d).84
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2. HySEA models for landslide generated tsunamis85

The HySEA (Hyperbolic Systems and Efficient Algorithms) software consists86

of a family of geophysical codes based on either single-layer, two-layer stratified87

systems or multilayer shallow-water models. HySEA codes1 have been under88

development by the EDANYA Group from UMA (the University of Málaga)89

for more than a decade. These codes are in continuous evolution and upgrad-90

ing and they are serving to a wider scientific community every day. The first91

model we developed dealing with landslide-generated tsunamis consisted of a92

stratified two-layer Savage-Hutter shallow-water model -the Landslide-HySEA93

model-. It was implemented based on the model described in Fernández et al.94

(2008) and was incorporated to the HySEA family. An initial validation of this95

code, comparing numerical results with the laboratory experiments of Heller and96

Hager (2011) and Fritz et al. (2001) can be found at Sánchez-Linares (2011).97

The 2018 numerical simulation of the Lituya Bay 1958 mega-tsunami with real98

topo-bathymetric data and encouraging results (González-Vida et al., 2019),99

represented a milestone in the verification process of this code. This validation100

effort was accomplished under a research contract with PMEL/NOAA. The re-101

sult of this project led the NCTR (NOAA Center for Tsunami Research) to102

adopt Landslide-HySEA as the numerical code of choice to generate the initial103

conditions for the MOST model to be initialized in the case of a landslide-104

generated tsunami scenario to be simulated. Further applications of Landslide-105

HySEA can be found at de la Asunción et al. (2013), Maćıas et al. (2015), and106

Iglesias (2015).107

The waves generated in the laboratory tests proposed in the NTHMP se-108

lected benchmarks are high frequency and dispersive, and the generated flows109

have a complex vertical structure. Therefore, the numerical model used must110

be able to reproduce such effects. This makes the two-layer Landslide-HySEA111

model unsuitable for reproducing these experimental results as non-hydrostatic112

1https://edanya.uma.es/hysea
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effects play an important role and a richer vertical structure is required. To113

address these requirements, the Multilayer-HySEA model was very recently im-114

plemented, considering a stratified structure in the simulated fluid and including115

non-hydrostatic terms. A multilayer model is able to better approximate the116

vertical structure of a complex flow than a standard one-layer depth-averaged117

model. In particular, increasing the number of layers the linear dispersion re-118

lation of the model converges towards the exact dispersion relation from the119

Stokes linear theory (see Fernández-Nieto et al. (2018)).120

3. Model Equations121

The Multilayer-HySEA model implements one of the multilayer non-hydro-122

static models of the family introduced and described in Fernández-Nieto et al.123

(2018) (model LDNH0). The governing equations, that are obtained by a124

process of depth-averaging, correspond to a semi-discretization for the vertical125

variable of the Euler equations following a standard Galerkin approach. The126

total pressure is decomposed into a sum of hydrostatic and non-hydrostatic127

pressures and is assumed to have a linear vertical profile. The horizontal and128

vertical velocities are assumed to have a constant vertical profile. At the discrete129

level on z, the total pressure matches at the interfases and velocities satisfy a130

discrete jump condition (see Fernández et al. (2008) or Escalante et al. (2018a)).131

132

An alternative deduction for this system is performed in Escalante et al.133

(2018a) assuming linear vertical profiles for pressure and vertical velocity and134

a constant vertical profile for the horizontal velocity, as well as some extra135

hypothesis for the case of two layers. The proposed model admits an exact136

energy balance and, when the number of layers increases, the linear dispersion137

relation of the linear model converges to the same of Airy’s theory (Fernández-138

Nieto et al., 2018). The model proposed in Fernández-Nieto et al. (2018) can139
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Figure 1: Schematic diagram describing the multilayer system

be written in a compact form as:140 

∂th+ ∂x (hū) = 0,

∂t (huα) + ∂x

(
hu2α +

1

2
gh2
)
− gh∂xH + uα+1/2Γα+1/2 − uα−1/2Γα−1/2 =

− h (∂xpα + σα∂zpα)− τ,

∂t (hwα) + ∂x (huαwα) + wα+1/2Γα+1/2 − wα−1/2Γα−1/2 = −h∂zpα,

∂xuα−1/2 + σα−1/2∂zuα−1/2 + ∂zwα−1/2 = 0,

(1)

where, for α ∈ {1, 2, . . . , L}, the following notation is used:141

fα+1/2 =
1

2
(fα+1 + fα) , ∂zfα+1/2 =

1

h∆s
(fα+1 − fα) , (2)

where f denotes one of the generic variables of the system, i.e., u, w and p, and,142

finally,143

σα = ∂x (H − h∆s(α− 1/2)) , σα−1/2 = ∂x (H − h∆s(α− 1)) . (3)

Total depth, h, is split along the vertical axis into L ≥ 1 layers and ∆s = 1/L144

(see Figure 1). The variables uα and wα are the depth-averaged velocities in145
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the x and z directions, respectively, t is time and g is gravitational acceleration.146

The non-hydrostatic pressure at the interface zα+1/2 is denoted by pα+1/2. The147

water surface elevation measured from the still-water level is η = h−H, where148

H is the water depth when the water is at rest. Finally, τ is a friction law term,149

and the terms Γα+1/2 account for the mass transfer across interfaces and are150

defined by151

Γα+1/2 =

L∑
β=α+1

∂x (h∆s (uβ − ū)) , ū =

L∑
α=1

∆suα (4)

In order to close the system of equations, the following boundary conditions are152

considered153

pL+1/2 = 0, u0 = 0, w0 = −∂tH. (5)

Note that the motion of the bottom surface can be taken into account as a154

boundary condition, imposing w0 6= 0. Therefore, this model can simulate the155

interaction with a slide in the case that the motion of the bottom is prescribed156

by a function, given by a set of data, or simulated by a numerical model. In the157

present study, we are going to consider tests where the motion of the seafloor is158

given by a known function (the solid moving block).159

3.1. Linear dispersion relation160

Some dispersive properties of the system (1) are presented in this subsection,161

in particular, the phase and group velocities, and the linear shoaling. The first162

two properties are related to the propagation of dispersive wave trains and the163

last one to shoaling processes.164

To obtain such properties, the system (1) is linearised around the water at165

rest steady-state solution. After that, a Stokes-type Fourier analysis is carried166

out looking for first-order planar wave solutions. This method constitutes a167

standard procedure to study systems that model dispersive water waves (see168

Escalante et al. (2018a); Lynett and Liu (2004); Madsen and Sorensen (1992);169

Schäffer and Madsen (1995) and references therein). The phase and group170
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velocities as well as the linear shoaling gradient are, respectively, defined as:171

C = ω/k, G = C + k∂kC,
∂xη

η
= −γ ∂xH

H
, (6)

where ω denotes the angular frequency, k the local wave-number and H the172

typical depth.173

The measured quantities C, G and γ are solely functions of the local wave-174

number and the typical depth H. Thus, one can obtain the so-called linear175

dispersion relation of the three measured quantities. From the Airy wave theory,176

one can also obtain the corresponding linear dispersion relations that state the177

linear theory for the considered quantities (see Schäffer and Madsen (1995) for178

the Airy reference formulae). For example, the expression for the phase velocity179

from the Airy’s theory is180

CAiry = gH
tanh(kH)

kH
. (7)

181

The expressions of the phase velocity for the system (1) are given in Table 1182

for the non-linear hydrostatic shallow water system (SWE) and the Multilayer-183

HySEA (non-hydrostatic) system with j ≥ 1 layers (NH–jL). The last two184

columns contain ErC(s) for s = 5 and s = 15, where ErC(s) represents the185

maximum relative error of the phase velocity with respect to the Airy in a186

range kH ∈ [0, s] in percent, i.e.:187

ErC(s) = 100 · max
kH∈[0,s]

(
|C(kH)− C(kH)Airy|

|C(kH)Airy|

)
. (8)

The main goal when deriving dispersive shallow water systems is to get the188

most accurate dispersive relations as possible, compared with the Airy wave189

theory, without highly increasing the complexity of the system. See Schäffer190

and Madsen (1995) for a review on state-of-the-art or a two-layer with improved191

dispersive relations in Lynett and Liu (2004), and an enhanced two-layer non-192

hydrostatic pressure system in Escalante et al. (2018a). It has been shown193

(Fernández-Nieto et al., 2018) that increasing the number of layers leads to the194

convergence of the linear dispersion relation of the linear model to the same of195
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Multilayer System – Phase velocity – Errors for kH up to 5 and 15

Model Phase velocity ErC(5) ErC(15)

(SWE) gH 73.63 % 123.61 %

(NH-1L) gH
1

1 + 1
4 (kH)2

3.02 % 16.95 %

(NH-2L) gH
1 + (kH)2

16

1 + 3(kH)2

8 + (kH)4

256

0.71 % 10.67 %

(NH-3L)
1 + 5(kH)2

54 + (kH)4

1296

1 + 5(kH)2

12 + 5(kH)4

432 + 1(kH)6

46656

0.31 % 0.62 %

(NH-5L)
1+

3(kH)2

25 +
63(kH)4

25103
+

3(kH)6

25104
+

(kH)8

10107

1+
9(kH)2

20 +
21(kH)4

10102
+

21(kH)6

10104
+

9(kH)8

20106
+

(kH)10

10109

0.11 % 0.11 %

Table 1: Phase velocity expressions and maximum of the relative error ErC(s) compared

with the Airy’s theory for different ranges of kH ∈ [0, s] for the non-linear hydrostatic shallow

water system (SWE) and the Multilayer-HySEA (non-hydrostatic) system with j ≥ 1 layers

(NH–jL).

Airy’s theory. Figure 2 shows this behavior and highlights the huge discrepancies196

between the Airy’s theory and the systems (SWE) and (NH-1L). It is well known197

that waves generated by landslides, might present high characteristic values for198

kH. For the (SWE) system, it is well known that it has an accurate phase199

velocity in a small range of kH, and that this system is appropriate for long200

waves as tsunami waves, but not for dispersive waves with higher values of kH.201

In the same vein, the one layer non-hydrostatic pressure system (NH-1L) can202
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improve these results, but again, poor linear dispersive results are achieved in203

a range of kH between 5 and 15. However, when the number of layers, L, is set204

to 3 (still a small value) the system (1) is in an excellent agreement with the205

Airy theory for kH up to 15. For the phase celerity, the percentage error is less206

than 0.62%, and for the group velocity is less than 1% for kH smaller than 10207

(see Figure 2). Linear shoaling is also well reproduced in this same range.208

The Multilayer-HySEA model presents enhanced dispersive properties. In209

order to have similar dispersive results as the ones obtained here using a three-210

layer system, at least five layers are required for other similar multilayer models211

as the one presented in Bai and Cheung (2018). Furthermore, the results pre-212

sented for the phase velocity with two layers in Table 1 show that the system213

proposed here produces smaller relative error for kH up to 15 compared with the214

two-layer system in Cui et al. (2014). That means that the Multilayer-HySEA215

model can achieve better dispersive properties than models having similar or216

even more computational complexity.217

3.2. Modeling of breaking waves and wetting and drying treatment218

3.2.1. Modeling of breaking waves219

In shallow areas the breaking of waves can be observed near the coast. As220

pointed out in Escalante et al. (2018a,b, 2019); Roeber et al. (2010) among221

others, non-hydrostatic PDE systems such as the one considered in this paper222

cannot describe this process without the inclusion of an additional term that223

accounts for the dissipation of the amount of energy required when breaking224

phenomena occur. In this work, we have implemented a simplified generalization225

of the breaking mechanism that was introduced in Escalante et al. (2018a) for226

the case of two layers. To do so, the vertical component of the stress-tensor is227

depth-averaged on the vertical variable. Thus, adding the proposed integrated228

viscosity term to system (1), only the vertical momentum equation changes and229

reads for each α ∈ {1, 2, . . . , L} as:230

∂t (hwα)+∂x (huαwα)+wα+1/2Γα+1/2−wα−1/2Γα−1/2 = −h∂zpα+2ςwα, (9)
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Figure 2: Relative error for the phase velocities (A), the group velocities (B), and comparison

with the reference shoaling gradient (C), with respect to the Airy theory for the described

multilayer systems (2L, 3L, and 5L), the one-layer non-hydrostatic, and the shallow-water

system.

where ς =
∫ zα−1/2

zα−1/2
∂zν is the eddy viscosity. In this work, as in Escalante et al.231

(2018a); Roeber et al. (2010) we choose ς to be232

ς = −KBh |∂x(hū)| , (10)

where B is an empirical parameter related to a breaking criteria to switch on233

and off this extra dissipation term. The definition of this empirical parameter234

is based on a quasi-heuristic strategy to determine when the breaking occurs235

(see Escalante et al. (2018b); Roeber et al. (2010) and references therein).236

Finally, a natural and simple extension of the criterion proposed by Roeber237
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et al. (2010) is adopted238

B = max

(
1− ∂x(hū)

U1
, 0)

)
for |∂x(hū)| ≥ U2, (11)

where239

U1 = B1

√
gh, U2 = B2

√
gh (12)

denote the flow speed at the onset and termination of the wave-breaking process240

and B1, B2 are calibration coefficients. In this work, we use B1 = 0.6 and241

B2 = 0.15 for all the test cases studied. Finally, depending on the benchmark242

problem, we use K ∈ {2, 10}.243

3.2.2. Wetting and drying treatment244

For the computation of variables in areas of small water depth, a wet-dry245

treatment adapting the ideas described in Castro et al. (2005) is applied. The246

key elements for the numerical treatment of wet-dry fronts with emerging bot-247

tom topographies are based on:248

• The hydrostatic pressure terms ∂x

(
1

2
gh2
)
−gh∂xH = gh∂xη at the hori-249

zontal velocity equations are modified for emerging bottoms to avoid spu-250

rious pressure forces (see Castro et al. (2005)).251

• To overcome the difficulties due to large round-off errors in computing252

the velocities uα, wα from discharges for small values of h, we define the253

velocities analogously as in Kurganov and Petrova (2007) applying the254

desingularization formula255

uα =

√
2hhuα√

h4 + max(h4, ε4)
, wα =

√
2hhwα√

h4 + max(h4, ε4)
, α ∈ {1, 2, . . . , L}

(13)

which gives the exact value of uα and wα for h ≥ ε, and gives a smooth256

transition of uα and wα to zero when h tends to zero without truncation.257

In this work we set ε = 10−3 for the numerical tests. A more detailed258

discussion about the desingularization formula can be seen in Kurganov259

and Petrova (2007).260
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4. Numerical Solution Method261

We describe now the discretization of system (1) that follows the natural ex-262

tension of the procedure described in Escalante et al. (2018a,b) for the one and263

two layer non-hydrostatic system. The numerical scheme employed is based on264

a two-step projection-correction method, similar to the standard Chorin’s pro-265

jection method for Navier-Stokes equations (Chorin (1968)). This is a standard266

procedure when dealing with dispersive systems (see Escalante et al. (2018b,a);267

Ma et al. (2012); Kazolea and Delis (2013); Ricchiuto and Filippini (2014) and268

references therein).269

First, we shall solve the non-conservative hyperbolic underlying system (1)270

given by the compact equation271

∂tU + ∂xFSW (U) + BSW (U)∂xU = GSW (U)∂xH, (14)

where the following compact notation has been used:272

U =



h

hu1
...

huL

hw1

...

hwL


, FSW (U) =



hu

hu21
h

+
1

2
gh2

...

hu2L
h

+
1

2
gh2

hu1w1

...

huLwL



, GSW (U) =



0

gh
...

gh

0
...

0


, (15)

and BSW is a matrix such BSW∂xU contains the non-conservative products273

related to the mass transfer across interfaces appearing at the momentum equa-274

tions.275

Then, in a second step, non-hydrostatic terms given by the pressure vector276
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correction term277

TNH(h, ∂xh,H, ∂xH,P, ∂xP) = −



0

h (∂xp1 + σ1∂zp1)
...

h (∂xpL + σL∂zpL)

h∂zp1
...

h∂zpL


, P =


p1

p2
...

pL

 ,

(16)

as well as the divergence constraints at each layer278

B(U, ∂xU, H, ∂xH) =


∂xu1/2 + σ1/2∂zu1/2 + ∂zw1/2

...

∂xuL−1/2 + σL−1/2∂zuL−1/2 + ∂zwL−1/2

 , (17)

will be taken into account.279

System (14) is discretized using a second order finite volume PVM positive-280

preserving well-balanced path-conservative method (Castro and Fernández-Nieto,281

2012). As usual, we consider a set of N finite volume cells Ii = [xi−1/2, xi+1/2]282

with constant lengths ∆x and define283

Ui(t) =
1

∆x

∫
Ii

U(x, t) dx, (18)

the cell average of the function U(x, t) on cell Ii at time t. Concerning non-284

hydrostatic terms, we consider mid-points xi of each cell Ii and denote the285

point values of the function P at time t by286

Pi(t) =


p1(xi, t)

p2(xi, t)
...

pL(xi, t).

 (19)

Non-hydrostatic terms will be approximated by second order compact finite-287

differences.288
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Let us detail de time stepping procedure followed. Assume given time steps

∆tn, and denote tn =
∑
k≤n ∆tk. To obtain second order accuracy in time, the

two-stage second-order TVD Runge-Kutta scheme is adopted. At the kth stage,

k ∈ {1, 2}, the two-step projection-correction method is given by

U(k̃) −U(k−1)

∆t
+ ∂xF(U(k−1)) + B(U(k−1))∂xU

(k−1)

= G(U(k−1))∂xH,

U(k) −U(k̃)

∆t
= T (h(k), ∂xh

(k), H, ∂xH,P
(k), ∂xP

(k))

B(U(k), ∂xU
(k), H, ∂xH) = 0

(20a)

(20b)

(20c)

where U(0) is U at the time level tn, U(k̃) is an intermediate value in the two-289

step projection-correction method that contains the numerical solution of the290

hyperbolic system (14) at the corresponding kth stage of the Runge-Kutta, and291

U(k) is the kth stage estimate. After that, a final value of the solution at the292

tn+1 time level is obtained:293

Un+1 =
1

2
Un +

1

2
U(2). (21)

Observe that, equations (20b-20c) requires, at each stage of the calculation294

respectively, to solve a Poisson-like equation for each one of the variables con-295

tained in P(k). The resulting linear system is solved using an iterative Jacobi296

method combined with a scheduled relaxation (see Adsuara et al. (2016); Es-297

calante et al. (2018a,b)). Note that the usual CFL restriction must be imposed298

for the computation of the time step ∆t.299

With respect to the breaking mechanism introduced in Subsection 3.2, these300

terms are semi-implicitly discretized at the end of the second step of the pro-301

posed numerical scheme, at each Runge-Kutta stage. The resulting numerical302

scheme is well-balanced for the water at rest solution and is linearly L∞-stable303

under the usual CFL condition related to the hydrostatic system. It is also304

worth mentioning that the numerical scheme is positive preserving and can deal305

with emerging topographies. Finally, its extension to 2D is straightforward. In306
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this case, the computational domain is decomposed into subsets with a simple307

geometry, called cells or finite volumes. The numerical algorithm is well suited308

for its implementation in GPU architectures, as is shown in Castro et al. (2011).309

Furthermore, the compactness of the numerical stencil and the natural and the310

massively parallelization of the Jacobi method makes it possible that the second311

step can also be implemented in GPUs (see Escalante et al. (2018b,a)). That re-312

sults in a high efficiency of the numerical code and much shorter computational313

times.314

5. Benchmark Problem Comparisons315

In this Section, the numerical results obtained with the Multilayer-HySEA316

model and the comparison with the measured lab data for waves generated by317

the movement of a rigid bottom surface or of a solid block are presented. In318

particular, BP1 deals with a 2D submarine solid slide, BP2 with a 3D subma-319

rine slide and, finally, BP3 consists of two 3D slides, one partially submerged320

and a second one representing a completely submarine slide. In all these cases,321

a moving bottom condition has been used to model the solid block movement.322

Regarding the wave breaking model, the breaking mechanism described in Sub-323

section 3.2 was implemented, adopting B1 = 0.6, B2 = 0.15 for all the bench-324

mark problems, and K = 10 for the third benchmark and K = 2 for the rest.325

The description of all these benchmarks can be found at LTMBW (2017) and326

Kirby et al. (2018).327

5.1. Benchmark Problem 1: Two-dimensional submarine solid block328

This benchmark problem is based on the 2D laboratory experiments of Grilli329

and Watts (2005) which were performed at the University of Rhode Island.330

Refer to the above-mentioned work to get a detailed description of the present331

benchmark. Figure 3 depicts the sketch of the laboratory experiment design.332

The 2D slide model is semi-elliptical, lead-loaded, and rolling down a smooth333

slope with a slope angle θ = 15◦ (2 mm above the slope), in between two vertical334
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Figure 3: BP1. Sketch of main parameters and variables for wave generation by 2D rigid slide.

[Modified from Grilli and Watts, 2005].

side walls, 20 cm apart. The water depth is h0 = 1.05 m over the flat bottom335

part. The slide dimensions were, length B = 1 m, maximum thickness T = Tref336

= 0.052 m, and width w = 0.2 m. The model initial submergence d was varied337

in experiments and the free surface elevation recorded at 4 capacitance wave338

gauges installed at locations: x′ = 1.175, 1.475, 1.775, and 2.075 m, the first339

location being nearly identical to x′g = 1.168 m (where de tilde variables, as x′,340

mean than non-dimensional units are used -see Table 3-).

x′g T ′ d′ θ B b(ε)

1.168 0.052 0.259 15 1 1.225

Table 2: Values for variables defining setup configuration.

g0 g1 g2 g3

x 1.234 1.549 1.864 2.179

x′ = x/h0 1.175 1.475 1.775 2.075

Table 3: Gauge positions in dimensional and non-dimensional units.

341

In this benchmark, two items remained not completely determined in the342

original description provided: the first one is related with the initialization of343

the numerical experiment, the second one is related with how and where the344

solid moving block must stop. Other small issues related to the description of345

the benchmark were put forward in Maćıas et al. (2017) at our NTHMP report.346
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The motion of the rigid slide was prescribed as a function of time as347

S(t) = S0 log(cosh(t/t0)), (22)

where S0 = u2t/a0 = 2.110 m, t0 = ut/a0 = 1.677 s, a0 = 0.75 m/s2 and ut =348

1.258 m/s is the terminal velocity. Figure 4 shows the prescribed acceleration,349

velocity and rigid slide displacement. In the laboratory experiment, the block350

is stopped at time t = t0 = 1.667 s. and we replicate this behaviour in the351

numerical model. We also performed numerical experiments (not presented352

here) where the block continued moving at constant speed.353

0 0.5 1 1.5
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0

0.2

0.4
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Figure 4: BP1. Prescribed acceleration, velocity and displacement of the solid slide.

The benchmark here consists of using the above information on slide shape,354

submergence, and kinematics, together with reproducing the experimental set-355

up to simulate surface elevations measured at the four wave gauges (average of356

2 replicates of experiments provided).357

Then, in order to reproduce the lab experiment, the interval [−1, 10] dis-358

cretized with ∆x = 0.02 m, is the computational domain considered. In the359

vertical, taking three layers seems to produce optimal results. Increasing the360

number of layers gives similar results increasing the computational cost. The361

stability CFL number was set to 0.9 and g = 9.81. The numerical simulation362

performed was 4 s long in real time. As boundary conditions, outflow conditions363

were imposed at x = −1, x = 10.364

In Figure 5 the comparison of the numerical results with the filtered lab365

measured data is presented. A good overall agreement between them can be366

observed. Some discrepancies can be seen after draw-down in all the gauges.367
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This behavior could also be observed, except for the last gauge, at Grilli and368

Watts (2005) results. These authors explained that this behavior could be due369

to unwanted surface tension effects. Given this comparison, and considering370

the experimental variations and errors inherent to laboratory work and data371

processing, it can be concluded that the Multilayer-HySEA model performs372

optimally the present benchmark test.373

Figure 5: BP1. Filtered data (in red) and numerically simulated (in blue) time series at wave

gauges (A) g0, (B) g1, (C) g2, and (D) g3.
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5.2. Benchmark Problem 2: Three-dimensional submarine solid block374

This second benchmark consists of a 3D extension of BP1. The longitudinal375

sketch of the experiment is the same as in Figure 3. In the horizontal plane,376

cross-sections are elliptic, the plan view of the rigid slide, for the case d = 61mm,377

is presented in Figure 6. It is based on the 3D laboratory experiments of Enet378

and Grilli (2007). The experiments were also performed at the University of379

Rhode Island in a water wave tank of width 3.6 m and length 30 m, with a still380

water depth of 1.5 m over the flat bottom portion. As in the previous benchmark,381

the angle of the plane slope where the slide slid down is θ = 15◦. The submarine382

slide model was built as a streamline Gaussian-shaped aluminum body with383

elliptical footprint (see Figure 6), with down-slope length b = 0.395 m, cross-384

slope width w = 0.680 m, and maximum thickness T = 0.082 m. Complete385

details about the analytic definition of the slide shape and the experimental386

setting can be found at Kirby et al. (2018) and at LTMBW (2017).387

* *

*

*

Figure 6: BP2. Sketch of the plan view (case 61mm). [From Kirby et al. (2018)].

For the numerical simulations, the two-dimensional computational domain388

[−1, 10]× [−1.8, 1.8] is considered and discretized with ∆x = ∆y = 0.02m. The389

number of layers was set to 3. Numerical tests were performed using more layers390
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and similar results were obtained. The CFL number was set to 0.9 and g = 9.81.391

The simulated time was 6 s. As boundary conditions, rigid wall conditions were392

imposed at y = −1.8, y = 1.8 and outflow conditions at x = −1, x = 10.393

The benchmark test proposed consists in reproducing the slide shape and394

complete experimental set-up in and using the information about submergence395

and kinematics to replicate numerically Enet and Grilli’s experiments for d =396

61 and d = 120 mm. It is required to simulate surface elevations measured397

at the four wave gauges (average of 2 replicates of experiments) and present398

comparisons of the model with the experimental results.399

Enet and Grilli (2007) performed experiments for 7 initial submergence400

depths d. They are listed in Table 4, together with values of related slide401

parameters and some measured tsunami wave characteristics. Here, the numer-402

ical results corresponding to the two NTHMP required experiments (for d = 61403

and d = 120 mm) will be presented first, then, as data for the seven experi-404

ments were provided, the comparison for the remaining five cases will also be405

presented.406

d (mm) 61 80 100 120 140 149 189

xg (mm) (measured) 551 617 696 763 846 877 1017

xg (mm) (theoretical) 560 630 705 780 854 888 1037

η0 (mm) 13.0 9.2 7.8 5.1 4.4 4.2 3.1

a0 (m/s) 1.20 1.21 1.19 1.17 1.14 1.20 1.21

ut (m/s) 1.70 1.64 1.93 2.03 2.13 1.94 1.97

t0 (s) 1.42 1.36 1.62 1.74 1.87 1.62 1.63

S0 (m) 2.408 2.223 3.130 3.522 3.980 3.136 3.207

Table 4: Measured and curve-fitted slide and wave parameters for the 7 experiments performed

by Enet and Grilli (2007). Nomenclature: Measured characteristic amplitude η0 (at x = x0).

Slide kinematics parameters a0, ut and t0.

In Figure 7 the comparison of the Multilayer-HySEA model numerical re-407

sults with measured data for the first case, d = 61mm, in the four gauges, is408

21



g1 g2 g3 g4

(x0,0) (1469,350) (1929,0) (1929,500)

Table 5: Wave gauge locations (x, y) in mm, as shown in Figure 6.

presented. An excellent agreement can be observed between these time series.409

The comparisons for the second required case (d = 120mm) in the 3 gauges410

with data provided (gauge g3 was not available) are shown in Figure 8. Good411

agreement can also be observed in this case. Finally, Figure 9 shows the com-412

parison for the five remaining cases provided by Enet and Grilli. In all cases (for413

all submergences), a good agreement between simulated results and measured414

lab data can be observed.415
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Figure 7: Test case d = 61 mm. Numerically computed (in blue) time time series at wave

gauges (A) g1, (B) g2, (C) g3, and (D) g4 compared with the lab measured data (in red).
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Figure 8: Test case d = 120 mm. Numerically computed (in blue) time time series at wave

gauges (A) g1, (B) g2, and (C) g4 for compared with the lab measured data (in red).
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Figure 9: Comparison of data time series and numerical at wave gauges (dashed) for the cases

(A) d = 80 mm, (B) d = 100 mm, (C) d = 140 mm, (D) d = 149 mm, and (E) d = 189 mm.
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In Table 6, the execution times for simulations performed on a NVIDIA Tesla416

P100 GPU are presented. It can be observed that including non-hydrostatic417

terms in the NLSW equations results in an increase of the computational time in418

2.65 times. If a richer vertical structure is considered, then larger computational419

times are required. As examples for the two and three-layer systems, 3.3 and420

4.45 times increase in the computational effort.421

Runtime (s) Ratio

SWE 23.08 1

1L-NH 61.20 2.65

2L-NH 76.35 3.30

3L-NH 102.93 4.45

Table 6: Execution times in seconds for SWE and non-hydrostatic GPU implementations.

Ratios compared with SWE.

Figure 10 shows the comparison, for the four models considered, of the422

numerical results obtained with the measured data at gauge g4 for the case423

d = 189 mm. It can be observed that a model vertical structure considering424

only one layer is not enough to reproduce the observed data, and that consid-425

ering 2 and 3 layers in the model produce much better numerical results.426

Moreover, Table 7 shows the period times, T , of the time series data in427

Figures 7, 8, and 9 for all the wave gauges. To obtain the vales for the periods,428

we have computed the elapsed time between the first two wave troughs in each429

time series. We have omitted the measurement for wave gauge g1 because it430

was not clear how to measure the period in this case. Once the period from431

each time series has been measured, we have computed the wave number from432

the dispersion relation given from the Airy theory:433

2π

T
=
√
gk tanh(kH). (23)

Table 8 shows the computed values kH by solving the dispersion relation (23).434

On the view of the computed kH values it can be stated that kH ∈ [2.815, 4.528].435

Since multilayer models have good dispersion relation errors within this range436
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of kH (see Table 1 and Figure 2), this explains the aforementioned excellent437

agreement between the computed time series and the measured lab data.438

Finally, although the phase velocity for the one-layer system shows an error439

bounded by only 3.02 % for kH ∈ [0, 5] (see Table 1), it can be seen in Figure 10440

that the one-layer non-hydrostatic pressure system cannot represent the waves441

correctly. In contrast, the one-layer system tends to amplify waves. This be-442

haviour can be explained by observing the shoaling gradient for this model (see443

Figure 2). The shoaling gradient verifies the ODE444

A′ = −A · γ(kH) · ∂xH
H

, (24)

where A denotes the amplitude. Then, it can be stated by inspecting the so-445

lutions of the ODE (24) that if the shoaling gradient of the model γ(kH) is446

underestimated with respect to the Airy theory (γ < γAiry), then the solutions447

of the system tend to amplify waves, in this case, for offshore wave propagation.448

The poor behavior shown by the one-layer system in some cases justifies the449

need to incorporate the improved multilayer model considered here.

d (mm) 61 80 100 120 140 149 189

g2 0.69 0.686 0.704 0.69 0.676 0.692 0.8

g3 0.66 0.716 – – 0.702 – 0.694

g4 0.84 0.8 0.784 0.75 0.794 0.784 0.751

Table 7: Measured wave period T (s) for test cases d = 61, 120 (Figures 7 and 8) and

d = 80, 100, 140, 149, 189 (Figure 9).

450

5.3. Benchmark Problem 3: Three-dimensional submarine/subaerial triangular451

solid block452

This benchmark problem is based on the 3D laboratory experiment of Wu453

(2004) and Liu et al. (2005), for a series of triangular blocks of several aspect454

ratios moving down a plane slope into the water from a dry (subaerial) or wet455

(submarine) location. Figure 11 shows the schematic description of the set-up456

for this benchmark in the case of a partially submerged block. Further details457
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d (mm) 61 80 100 120 140 149 189

g2 3.114 3.15 2.995 3.114 3.242 3.097 2.35

g3 4.528 3.85 – – 4.004 – 4.097

g4 2.815 3.093 3.218 3.512 3.14 3.218 3.512

Table 8: Computed kH values from the measured wave period (see Table 7) and the Airy

dispersion relation 2π/T =
√
gk tanh(kH) for test cases d = 61, 80, 100, 120, 140, 149 and

189.

Figure 10: Test case d = 189 mm. Lab measured data (red) and numerically computed time

series at wave gauge g4 using different numerical models.

can be found at Kirby et al. (2018) and at LTMBW (2017). The laboratory458

experiments were conducted in a wave tank at Oregon State University of length459

104 m, width 3.7 m, and depth 4.6 m.460

A plane slope 1:2 (as the one shown in Figure 11 upper panel) with θ = 26.6◦461

was located near one end of the tank and a dissipating beach in the other. In all462

the experiments, the water depth was h0 = 2.44 m. The experiments retained463

for the present benchmark were all performed with a triangular block of length464

b = 0.91 m, width w = 0.61 m, and vertical front face a = b/2 = 0.455 m.465

The block movement was provided by means of a polynomial fitting to mea-466

sured data, giving the horizontal distance as:467

x0,t = x(0,t=0) + (a t3 + b t2 + c t) cosβ, (25)

with β = arctan(1/2) and x(0,t=0) = −2∆. The polynomial coefficients for the468

two cases proposed are given in Table 9.469
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∆ a b c

0.10 m -0.097588 0.759361 0.078776

-0.25 m -0.085808 0.734798 -0.034346

Table 9: Polynomial coefficients defining slide motion.

For each case, measured free surface elevations for two wave gauges placed470

at (x, y) = (1.83, 0) (in m) and (x, y) = (1.2446, 0.635), where x is the distance471

to the initial coastline and y is the distance to the central cross-section (see472

location at Fig. 11 lower panel). Also measured runup for each case is given at473

runup gauges 2 and 3 in Figure 11 lower panel, lying on the slope at a distance474

0.305 m and 0.611 m from the central cross-section, respectively.475

The two-dimensional computational domain [−2, 6] × [−2, 2] is discretised476

with ∆x = ∆ y = 0.025 m and the number of layers was set up to 3. Numerical477

experiments using more number of layers were performed, obtaining similar478

results. The stability CFL number was set to 0.9 and g = 9.81. The simulated479

time was 4 s. The same boundary conditions, as in the previous case, were480

imposed.481

The numerical results obtained for the subaerial test case are presented in482

Figures 12 and 13. Figure 12 depicts the comparison for the time series at the483

wave gauges and Figure 13 at the runup gauges. The same comparison has been484

performed for the submerged test case, and it is presented in Figures 14 and485

15. The agreement for the wave gauges is quite good for WG1 in both cases.486

For WG2, just in front of the block, an overshoot after the first depression wave487

is observed in both cases related to the turbulent nature of the experiment.488

Note that although a turbulent model is not considered here, we have noted489

that the breaking criteria helps to dissipate energy associated to this turbulent490

process. For the run-up, the qualitative agreement is quite good, with the larger491

discrepancies in RG3 for the submarine test case.492
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Figure 11: Definition sketch for BP3 laboratory experiments. Here for a submerged (∆ < 0)

slide. Upper panel vertical cross section, lower panel plan view. All units are in meters.

Figure 12: Subaerial test case. Lab measured water height (red) and numerical time series

(blue) at wave gauges (A) WG1 and (B) WG2 .
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Figure 13: Subaerial test case. Lab measured runup (red) and numerical time series (blue) at

runup gauges (A) RG2 and (B) RG3.

Figure 14: Submerged test case. Lab measured water height (red) and numerical time series

(blue) at wave gauges (A) WG1 and (B) WG2.
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Figure 15: Submerged test case. Lab measured runup (red) and numerical time series (blue)

at runup gauges (A) RG2 and (B) RG3.
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6. Concluding Remarks493

Validation of numerical models is a first unavoidable step before their use494

as predictive tools. This requirement is even more necessary when the devel-495

oped models are going to be used for risk assessment in natural events where496

human lives are involved. The present work is the first step in this task for the497

Multilayer-HySEA model, a novel dispersive multilayer model of the HySEA498

suite developed at the University of Malaga. This model considers a stratified499

vertical structure and includes non-hydrostatic terms, this is done in order to500

include the dispersive effects in the propagation of the waves in a homogeneous,501

inviscid, and incompressible fluid. The numerical scheme implemented, com-502

bines a highly robust and efficient finite volume path-conservative scheme for503

the underlying hyperbolic system and finite differences for the discretization of504

the non-hydrostatic terms. In order to increase numerical efficiency, the numeri-505

cal model is implemented to run in GPU architectures. In particular in NVIDIA506

graphics cards and using CUDA language. In the case of the traditional SW507

non-dispersive model, this kind of implementations produces an extremely ef-508

ficient and fast code (Maćıas et al., 2020d). Increasing the number of layers509

in SW models provides an enhanced vertical resolution and, at the same time,510

increases the computational cost. Despite this, from a computational point of511

view, the two-layer non-hydrostatic code presents a good computational effi-512

ciency, and computing times with respect to the one layer SWE GPU code are513

absolutely reasonable, being only from 2 to 2.5 larger that for the one layer case.514

In the numerical simulations performed in the present work, the non-hydrostatic515

wall-clock times are always below 4.45 times those for the traditional SWE Hy-516

SEA model, for a number of vertical layers up to three. The numerical scheme517

presented here and the corresponding multilayer SW water model proposed, is518

highly efficient and is able to model dispersive effects with a low computational519

cost.520

Regarding model results, they show a good agreement with the experimental521

data for the three benchmark problems studied in the present work. In partic-522
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ular, for BP2, but this also occurs for the other two benchmark problems, we523

have shown that a one layer, hydrostatic or non-hydrostatic, model is not able524

to reproduce the complexity in the observed lab data considered in the pro-525

posed benchmarks. The waves to be modeled in the test cases proposed here526

are high-frequency and dispersive. Hence, it is at least necessary a two-layer527

structure and non-hydrostatic terms in the model to be used in order to capture528

the dynamics of the generated waves. As noted in Kirby et al. (2018) and in529

view of the results presented, the non-hydrostatic multilayer model discussed530

here can adequately represent the physics and behavior of the waves generated531

with a reasonable low computational cost.532

7. Code and data availability533

The numerical code used to perform the numerical simulations in this paper534

is available at HySEA codes web page at https://edanya.uma.es/hysea/index.php/535

download.536

All the data used in the present work and necessary to reproduce the exper-537

iments set-up of the numerical experiments and the laboratory measured data538

to compared with, can be downloaded from LTMBW (2017) at the web site539

http://www1.udel.edu/kirby/landslide/. Finally, the NetCDF files containing540

the numerical results obtained with the Multilayer-HySEA code can be found541

and download from Maćıas et al. (2020b).542

8. Authors’ contributions543

JM is leading the HySEA codes benchmarking effort undertaken by the544

EDANYA group, he wrote most of the paper, reviewed and edited it, assisted in545

the numerical experiments and in their set up. CE implemented the numerical546

code and performed all the numerical experiments, he also contributed to writing547

the manuscript. JM and CE did all the figures. MC strongly contributed to the548

design and implementation of the numerical code.549

34



9. Competing interest550

The authors declare that they have no conflict of interest.551

10. Acknowledgements552

This research has been partially supported by the Spanish Government-553

FEDER funded project MEGAFLOW (RTI2018-096064-B-C21), the Junta de554
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Performance benchmarking of Tsunami-HySEA model for NTHMP’s in-675

undation mapping activities. Pure and Applied Geophysics doi:10.1007/676

s00024-017-1583-1.677
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