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Abstract 12 

 This study assessing the landslide susceptibility using Weight of Evidence (WoE) and 13 

Frequency Ratio (FR) model in Shahpur valley, situated in the eastern Hindu Kush. Here, landslide is 14 

a recurrent phenomenon that disrupts natural environment and cause huge property damages as well 15 

as incurs human losses every year. These damages are expected to increase due to high rate of 16 

deforestation in the region, population growth, agricultural expansion and infrastructural 17 

development on the fragile slopes. Initially, landslide inventory map was prepared from SPOT5 18 

satellite image and were verified from frequent visits in the field. Seven landslide contributing factors 19 

including surface geology, fault lines, slope aspect and gradient, land use, proximity to roads and 20 

stream were selected. To analyze the relationship of landslide occurrence with these causative 21 

factors, WoE and FR models were used. Based on WoE and FR model landslide susceptibility 22 

zonation maps were prepared and were reclassified into very low to very high landslide susceptible 23 

zones. Finally, the resultant maps of landslide susceptibility were authenticated using success rate 24 

curve and prediction rate curve approach to validate the models. 25 

Keywords: Landslide Susceptibility, Weight of Evidence, Frequency Ratio, Success rate curve, 26 

Prediction rate curve 27 

1. Introduction 28 

Globally, the frequency of geological and hydro-meteorological disasters is increased in the 29 

last two decades with devastating consequences (Rahman et al. 2017). Landslide is among the 30 

geological hazards that cause damages to human life, their property and infrastructure (Jehan & 31 

Ahmad 2006). The Hindu Kush-Himalayan (HKH) is young mountain system where landslides, 32 

avalanches, floods and earthquakes are very common (A. Rahman & Shaw, 2014; G. Rahman, 33 

Rahman, Samiullah, et al., 2017). In this region landsliding is a recurrent phenomenon and mostly 34 

been initiated by seismic activity or prolong rainfall (Kamp et al., 2010a; Regmi et al., 2014; G. 35 

Rahman, Rahman, & Collins, 2017). The frequent landslide events have been causing damages to 36 
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property, infrastructure and sometimes led to human losses. Kanungo et al. (2009) repoeted that  the 37 

global share of landslides was five percent  among all the natural hazards during 1990-2005and tend 38 

to increase in future because of seismic activities, increasing rainfall intensities and anthropogenic 39 

activities on the fragile slopes(Pareek et al., 2010; Conforti et al., 2014; G. Rahman, Rahman, & 40 

Collins, 2017). 41 

Landsliding is one of the complex geomorphic process (Nandi & Shakoor, 2010; Allen et al., 42 

2011) mainly triggered by area geology, seismicity, drainage pattern, land cover, gradient and rainfall 43 

(Sudmeier-Rieux et al., 2012; G. Rahman, Rahman, Samiullah, et al., 2017). The occurrence of 44 

landslides has  significant relationship with the slope gradient, aspect, vegetation cover and soil 45 

thickness of the slope(Sengupta et al., 2010); Rahman et al. 2011). Prolong rainfall in mountainous 46 

areas with fragile slope also increases probabilities of the landslide occurrence. The seismic activities 47 

and lithology are other important factors affecting the slope stability (C. Van Westen et al., 2010; A. 48 

Rahman et al., 2011). Similarly anthropogenic activities in terms of road construction, expansion of 49 

human settlement, deforestation and expansion of agricultural activities on fragile slope further 50 

intensifies the landslide susceptibility (Rahman et al. 2017).  51 

The landslides occur throughout the world particularly in certain hotspots (Nadim et al., 2006). Many 52 

studies have been conducted to explore the impacts of landslides on human lives, property and 53 

infrastructure. A diminutive attention has been given to landslide impacts on the natural environment 54 

(Schuster & Highland, 2007). Similarly, attention has been paid to the role of landslides in 55 

disturbance of ecological system. The environmental effects caused by landslides are changes in 56 

agricultural activities, changes to natural ecosystems, changes in river morphology because of 57 

landslide dams (Nakamura et al., 2000). Other effects included sedimentation in river channels and 58 

flash flood due to breaching of landslide dams. Landslides also disturbs the natural habitat of certain 59 

endanger species in susceptible zone. The landslide events also effects biodiversity of the affected 60 

area, therefore strict forest preservation measures are highly required to reduce environmental 61 

damage (Geertsema & Pojar, 2007). 62 

Landslide susceptibility is basically the geo-spatial probability of slope failure. The landslides 63 

occurrence depends on the presence of some geo-environmental factors(Guzzetti et al., 2005). During 64 

past decade, numerous scientific studies including Lee,(2004), Chen and Wang,(2007), Kavzoglu et 65 

al.,(2014), Bourenane et al.,(2016), Ding et al.,(2017) and G. Rahman, Rahman, Samiullah, et 66 

al.,(2017)have been conducted regarding the fragile mountains and established a wide range of 67 

empirical approaches for analyzing landslide susceptibility to identify the extent of potentially 68 

susceptible landslide areas. Quantitative, semi-quantitative and qualitative techniques including 69 
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statistical and deterministic approaches has been used in various studies to assess landslide 70 

susceptibility or hazard zones(C. J. Van Westen et al., 2008). The landslide indices use the semi-71 

quantitative, quantitative and qualitative methods for identification of areas having similar 72 

characteristics with respect to geological and geomorphological settings of the landslide prone areas 73 

(Kouli et al., 2010). Qualitative methodologies use rating procedure, indigenous knowledge and 74 

weighting procedures forming bases for semi-quantitative methods. However, quantitative methods 75 

used statistical techniques to find out the relationship between causal factors and landslide 76 

events(Ayalew & Yamagishi, 2005). 77 

The spatial probability of landslides can be predicted by applying various quantitative 78 

methodologies like frequency ratio, information value, weight of evidence, fuzzy neural network, 79 

logistic regression and many others. These methods depend on inventory of past landslides and 80 

thematic maps of landslide causative factors(Hussin et al., 2016). In recent years, geospatial 81 

technology is widely applied in studies regarding landslide susceptibility mapping, risk identification 82 

and management (Akbar & Ha, 2011). Geospatial technology provides a framework for mapping the 83 

past landslide events and combine the landslide causative factors for producing landslide 84 

susceptibility map and therefore it has become an integral part of landslide susceptibility zonation 85 

(LSZ). 86 

The HKH is an active seismic region and hence most of the landslides have also been initiated 87 

by seismic activity (Kamp et al., 2010b). Developmental work is usually affected by the frequently 88 

occurring phenomena of landsliding in the HKH region. It is therefore, a dire need of time to identify 89 

the landslide prone areas that will not only minimize the risk of landsliding in future but will also 90 

provide base for the future planning as well. In present study the landslide susceptibility mapping is 91 

based on frequency ratio and weight of evidence model to develop landslide susceptibility maps of 92 

Shahpur valley, HKH region. 93 

2. The Study Area 94 

The study area, Shahpur valley lies in the Hindu Raj Mountains. These mountains are 95 

considered as the offshoot of Hindu Kush mountain system (Dichter, 1967). Moving from north to 96 

south the height of these Hindu Kush Mountains tends to decreases. The latitudinal extent of the 97 

valley is 34° 52′ 31′′ to 35° 9′ 35′′ while longitudinal extent is 72° 40′ 10′′ to 72° 48′ 44′′ as shown in 98 

the Figure 1. The total area of Shahpur valley is approximately 259 square kilometers. Climatically, 99 

Shahpur valley is the part of moist temperate zone. The valley receives heavy rainfall during summer 100 

season from monsoon, while in winter at higher altitudes mostly precipitation occurs in the form of 101 
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heavy snowfall. Climate of the valley remain mild to warm in summer while temperature decrease to 102 

chill cold in winter season throughout the valley (G. Rahman et al., 2019). 103 

 104 

Figure 1: Digital Elevation Map of Shahpur valley 105 

HKH region came into existence due to the collision of Eurasian and Indian plate during the 106 

Cretaceous and Mio-Pliocene epoch. As a result of this collision these mountains are still 107 

continuously rising   at a rate of 4 to 5 mm/year (Jehan & Ahmad, 2006). There is high altitudinal 108 

variation of 3600 meters in just 259 square km area (Figure 1). The valley has steep slope in the 109 

upper part while it became gentle in the lower reach of the valley. The valley is drained by a stream 110 

known as Khan Khwar. The study area consist of young mountain system that have immature 111 

geology and is prone to landsliding phenomena which often results considerable property damages 112 

and human losses almost every. The probability of these damages is expected to increase further as a 113 

result of anthropogenic activities like deforestation, overgrazing, agricultural activities and 114 
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development of infrastructure in this area. Population growth has posed more pressure on the fragile 115 

slopes and has made it more vulnerable for landsliding.    116 

 117 

3. Methods and Material 118 

In the eastern Hindu Kush region, Shahpur valley was selected for detailed analysis to grasp 119 

the governing landslide causative factors, which frequently trigger landsliding. The data from both 120 

primary and secondary data sources were used to achieve the objectives of the study (Figure 2). The 121 

past landslide sites were identified and mapped on 2.5m resolution SPOT image of April 2013. A 122 

thorough field study was conducted to confirm the landslide sites on the ground and identify the 123 

landslide triggering factors with local community knowledge. Seven triggering factors namely 124 

surface geology, proximity to fault line, slope gradient and aspect, land use/ land cover, nearness to 125 

road and streams were identified.  126 

Data regarding landslide triggering factors were acquired including the surface geology and 127 

tectonics from geological map of North Pakistan. The administrative boundaries and settlement 128 

shape-files was prepared from topographic sheets (RF 1:50,000) obtained from survey of Pakistan. 129 

Spatial features of roads network was acquired from the office of Communication and Works 130 

Department, Peshawar. Land use/land cover map was obtained after applying supervised 131 

classification on SPOT satellite image using ArcGIS 10.2. ASTERGDEM having 30m was used for 132 

extracting slope angle, slope aspect and hydrology of the study area. Furthermore, a detailed field 133 

survey was conducted to validate the sites of already activated and potentially active landslide area. 134 

GIS and Remote Sensing have been used for the preparation of spatial databases and 135 

landslides inventory map. Weight of evidence and frequency ratio model analysis is a bivariate 136 

statistical methodology in which the importance of each factor or combined factors is individually 137 

analyzed with respect to spatial distribution of existing landslides. The assumption in both models is 138 

that the factors which influenced the incidence of landslides in the past will be the same to trigger 139 

new landslides in future. 140 
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 141 
Figure 2: Research Model 142 

 143 

3.1 Weight of Evidence Model 144 

Weight of evidence model (Bonham-Carter et al., 1989; Bonham-Carter, 1994) is based on 145 

Eq. 1 and Eq. 2: 146 

𝑊+ = ln
𝑃(

𝐵

𝐷
)

𝑃(
𝐵

𝐷̅
)
  (1) 147 

𝑊− = ln
𝑃(

𝐵̅

𝐷
)

𝑃(
𝐵̅

𝐷̅
)
  (2) 148 

In the above equations, 𝑃 is the probability while ln is the natural log. 𝐵and𝐵̅respectively 149 

represent the presence and absence of potential landslide evidence factor. Likewise, 𝐷 and 𝐷̅  is the 150 

presence and absence of landslide respectively. For the calculation of weight of each causative 151 
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factors contributing in landslide occurrence Eq.3 and Eq.4 have been used after (C. Van Westen et 152 

al., 2003). 153 

𝑊+ = ln {(
[𝑁𝑝𝑖𝑥1]

[𝑁𝑝𝑖𝑥1]+[𝑁𝑝𝑖𝑥2]
) / (

[𝑁𝑝𝑖𝑥3]

[𝑁𝑝𝑖𝑥3]+[𝑁𝑝𝑖𝑥4]
)} (Eq.3) 154 

𝑊− = ln {(
[𝑁𝑝𝑖𝑥3]

[𝑁𝑝𝑖𝑥1]+[𝑁𝑝𝑖𝑥2]
) / (

[𝑁𝑝𝑖𝑥4]

[𝑁𝑝𝑖𝑥3]+[𝑁𝑝𝑖𝑥4]
)} (Eq.4) 155 

Where the𝑁𝑝𝑖𝑥1 is the number of pixels express the existence of both landslide contributing 156 

factor and landslides; 𝑁𝑝𝑖𝑥2represent the presence of landslide and absence of landslide contributing 157 

factor. While 𝑁𝑝𝑖𝑥3 represent the presence of landslide contributing factor and absence of landslide. 158 

Similarly, 𝑁𝑝𝑖𝑥4 represent the absence of both landslide and landslide contributing factors. Final 159 

weight expressed with  𝑊𝑐 was calculated using Eq.5: 160 

𝑊𝑐 = (𝑊+) − (𝑊−)  (Eq.5) 161 

Where, 𝑊𝑐 is the difference of 𝑊+and 𝑊−. This elucidates the spatial relationship of all 162 

landslide contributing factors and landslide. 163 

3.2 Frequency Ratio Model 164 

To analyze the effect of landslide contributing factors on the occurrence of landsliding was also 165 

examined through frequency ratio model. It is a ratio of landslides occurred area with respect to the 166 

total study area, and is also the proportion of the landslide occurrence probabilities to a non-167 

occurrence  for a given attribute (Bonham-Carter, 1994; Lee & Talib, 2005). In frequency ratio 168 

model, a statistical value for each class of a factor map using the Eq.6: 169 

𝐹𝑅 =
𝑁𝑝𝑖𝑥(𝑆𝑖)/𝑁𝑝𝑖𝑥(𝑁𝑖)

∑ 𝑁𝑝𝑖𝑥(𝑆𝑖)/ ∑ 𝑁𝑝𝑖𝑥(𝑁𝑖)
 (Eq.6) 170 

Where, 𝑁𝑝𝑖𝑥(𝑆𝑖) is the number of landslide pixels containing class 𝑖, 𝑁𝑝𝑖𝑥(𝑁𝑖) is the total number of 171 

pixels of class 𝑖, ∑ 𝑁𝑝𝑖𝑥(𝑆𝑖) is total number of landslide pixels in the entire study area, whereas 172 

∑ 𝑁𝑝𝑖𝑥(𝑁𝑖) is the total number of pixels of the entire study area. 173 

3.3 Landslide Susceptibility Index (LSI) 174 

LSI for both, frequency ratio andweight of evidence model was generated by combining the landslide 175 

causative/ contributing factors in GIS based on the 𝑊𝑐 and 𝐹𝑅 values for overlay analysis using the 176 

Eq.7: 177 

𝐿𝑆𝐼 = ∑ 𝑊𝑐 , 𝐿𝑆𝐼 = ∑ 𝐹𝑅 (Eq.7) 178 
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Where ∑ 𝑊𝑐 is the total derived weight of weight of evidence model and ∑ 𝐹𝑅 is the total derived 179 

weight of frequency ratio model. 180 

4. Results and Discussion 181 

In this paper frequency ratio and weight of evidence models are used with aim to determine 182 

and geo-visualize the landslide susceptibility with resultant map is susceptibility zonation that has 183 

been extensively applied in many parts of the world for landslides risk reduction(Shahabi et al., 184 

2015). 185 

4.1 Inventory of Landslides in Shahpur Valley 186 

The past landslides sites were marked on multi-spectral SPOT satellite image of April 2013. These 187 

sites were verified in through series of field visits. About three hundred landslides of varying sizes 188 

were marked on the satellite image and verified from field investigation in the study area (G. Rahman 189 

et al., 2019) (Figure 3). This landslide inventory was randomly divided into two groups, group one 190 

was taken as training landslides (80%) and the second group was taken as validation landslides 191 

(20%). These landslides were then rasterized to find out the number of pixels in every class of a 192 

factor map for calculation of frequency ratio and weight of evidence model values. 193 

4.2 Landslide Contributing/ causative factors 194 

Landsliding is a natural phenomenon and its occurrence is determined by variety of causative factors. 195 

In this study, surface lithology/geology, stream buffer for assessing impacts of stream proximity, land 196 

cover, slope aspect, slope gradient, fault line impacts and impacts of road network were selected as 197 

landslides contributing factors (Figure 4). WoE and FRM statistical models based on correlation of 198 

past landslide and causative factors were used to define the weight of each class of every factor map. 199 

In WoE model the positive weight (𝑊+), negative weight (𝑊−) and contrast weight (𝑊𝑐) while for 200 

FR model the frequency ratio were calculated for each class of a contributing factor map (Table 1). 201 

 202 
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 203 
Figure 3: Shahpur valley, Landslide inventory and distribution of past landslides 204 

4.2.1 Surface Geology 205 

To assess the relationship of surface geology and landslide occurrence in Shahpur valley, 206 

surface geology was taken as a causative factor and its relationship were assessed using WoE and 207 

FRM. Surface geology types are shown in Figure 4g. The highest positive 𝑊𝑐 weight was found in 208 

Darwaza Sar Potassic Granite Gneiss (0.71) and Alluvium (0.59). These both classes have very 209 

positive correlation with landslides using WoE model. Alluvium in this region is of quaternary period 210 

and is brought by Indus river and its tributaries derived from the Kohistan island arc terrane (Baig, 211 

1990). Similar results were found in FR values. The highest negative correlation was in geology class 212 

Jijal Ultramafics having 𝑊𝑐 value -3.64 and FR 0.03 (Table 1). 213 

4.2.2 Fault Line 214 

The occurrence of landslides has a strong correlation with fault lines (Korup, 2004; G. 215 

Rahman, Rahman, & Collins, 2017). Fault lines existence at high slope gradient provides favorable 216 
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settings for slope failure. There is a complex tectonic structure in the study area and is considered as 217 

causal factor in slope instability. It is evident form the analysis that the tectonic structures have strong 218 

correlation with landslide occurrence. The highest positive 𝑊𝑐 value (1.56) was found in the area of 219 

buffer zone 0-250 meters followed by 251-500 meters buffer zone and the lowest 𝑊𝑐 was in area of 220 

greater than 1000 meters according to WoE model. Similar results was found in frequency ratio 221 

model, the highest FR value (2.87) was in the buffer zone of 0-250 meters and the lowest was in area 222 

of greater than 1000 meters area. 223 

Table 1. Shahpur valley, calculated weight of each class of causative factors 224 

Classes Npix (Si) 
%age of 

Npix (Si) 
Npix (Ni) 

%age of 

Npix (Ni) 
𝑾+ 𝑾− 𝑾𝒄 FR 

Surface Geology                 

Alluvium 1499 18.52 290137 11.20 0.51 -0.09 0.59 1.65 

Greenschist Melange 806 9.96 165892 6.40 0.44 -0.04 0.48 1.56 

Jabrai Granite Gneiss 903 11.16 497979 19.22 -0.54 0.10 -0.64 0.58 

Alpuraicalc-mica-

garnet schist 
990 12.23 235014 9.07 0.30 -0.04 0.34 1.35 

Karora Group 967 11.95 501955 19.37 -0.48 0.09 -0.57 0.62 

Besham Group 1436 17.74 441986 17.06 0.04 -0.01 0.05 1.04 

Manglaur Formation 1218 15.05 378895 14.62 0.03 -0.01 0.03 1.03 

Darwaza Sar Potassic 

Granite Gneiss 
271 3.35 43693 1.69 0.69 -0.02 0.71 1.99 

Jijal Ultramafics 3 0.04 35939 1.39 -3.63 0.01 -3.64 0.03 

Fault Line Buffer (m)                 

0 – 250 4018 49.65 448304 17.30 1.06 -0.50 1.56 2.87 

251 – 500 2325 28.73 409420 15.80 0.60 -0.17 0.77 1.82 

501 – 1000 760 9.39 676634 26.11 -1.02 0.20 -1.23 0.36 

> 1000 990 12.23 1057133 40.79 -1.21 0.40 -1.60 0.30 

Slope Gradient                 

0-50 91 1.12 67722 2.61 -0.85 0.02 -0.86 0.43 

6-150 514 6.35 261492 10.09 -0.46 0.04 -0.50 0.63 

16-300 2138 26.42 668931 25.81 0.02 -0.01 0.03 1.02 

31-450 4847 59.89 1366442 52.73 0.13 -0.16 0.29 1.14 

> 460 503 6.22 226903 8.76 -0.34 0.03 -0.37 0.71 

Slope Aspect                 

Flat 1 0.01 1004 0.04 -1.14 0.00 -1.14 0.32 

North 503 6.22 214667 8.28 -0.29 0.02 -0.31 0.75 

Northeast 531 6.56 284530 10.98 -0.52 0.05 -0.56 0.60 

East 1444 17.84 387999 14.97 0.18 -0.03 0.21 1.19 

Southeast 881 10.89 395492 15.26 -0.34 0.05 -0.39 0.71 

South 1775 21.93 366954 14.16 0.44 -0.10 0.53 1.55 

Southwest 1135 14.02 356943 13.77 0.02 0.00 0.02 1.02 

West 819 10.12 317383 12.25 -0.19 0.02 -0.22 0.83 

Northwest 1004 12.41 266520 10.28 0.19 -0.02 0.21 1.21 
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Land Cover                 

Range Land 2762 34.13 847632 32.71 0.04 -0.02 0.06 1.04 

Forest 2621 32.39 1036194 39.98 -0.21 0.12 -0.33 0.81 

Glacier and Snow 108 1.33 111086 4.29 -1.17 0.03 -1.20 0.31 

Agriculture Land 2100 25.95 416925 16.09 0.48 -0.13 0.61 1.61 

Settlement 48 0.59 37521 1.45 -0.89 0.01 -0.90 0.41 

Barren Land 87 1.08 87880 3.39 -1.15 0.02 -1.17 0.32 

Stream/torrent 367 4.53 54252 2.09 0.78 -0.03 0.80 2.17 

Road Buffer (m)                 

0-100 769 9.50 130869 5.05 0.63 -0.05 0.68 1.88 

101-200  541 6.68 103117 3.98 0.52 -0.03 0.55 1.68 

201-300  591 7.30 92441 3.57 0.72 -0.04 0.76 2.05 

301-400  141 1.74 85731 3.31 -0.64 0.02 -0.66 0.53 

> 400  6051 74.77 2179333 84.10 -0.12 0.46 -0.58 0.89 

Stream Buffer (m)                 

0-100  1918 23.70 294902 11.38 0.74 -0.15 0.89 2.08 

101-200  1555 19.21 265711 10.25 0.63 -0.11 0.74 1.87 

201-300  1021 12.62 255277 9.85 0.25 -0.03 0.28 1.28 

301-400  799 9.87 247979 9.57 0.03 0.00 0.03 1.03 

401-500  395 4.88 238952 9.22 -0.64 0.05 -0.68 0.53 

>500  2405 29.72 1288669 49.73 -0.52 0.34 -0.85 0.60 

 225 

 226 

4.2.3 Slope Gradient  227 

Slope gradient affects the population distribution, their activities and distribution of natural 228 

resources. Likewise, landslide distribution also has a close association with slope gradient and act as 229 

a controlling factor in slope failure. Slope gradient has direct relation with slope failure and the 230 

chances of landslide incidence escalate with increase in slope gradient. It was observed during field 231 

visits that the high landslide density areas were on the slope along the road and stream where lateral 232 

cutting was dominant factor. Map of the slope gradient for the study area was generated from 233 

AsterGDEM having 30 meters spatial resolution in GIS (Figure 4c). The analysis of both WoE and 234 

FRM shows that the role of 31-45 degree slope is higher in slope failure as the highest 𝑊𝑐 value 235 

(0.29) and FR value (1.14) was found in this class of slope gradient (Table 1). While the slope 236 

gradient 0-5 and 6-15 degree class has negative correlation with landslide. 237 

4.2.4 Slope Aspect 238 

Slope aspect does not have a direct impact on landslide occurrence, but indirectly accelerate 239 

the landslide process. The sunlight intensity and duration, amount of rainfall and moisture holding 240 

capacity and distribution of vegetation all are affected by slope direction. The analysis reveals that 241 

the south facing slope has very strong positive correlation with landslide as the value of 𝑊𝑐(0.53) 242 
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and FR (1.55) is higher in this class followed by northwest 𝑊𝑐(0.21) and FR (1.21) facing slope 243 

(Table 1). In the study area, high landslides in south facing slopes may be due to its high exposition 244 

to sunlight and receiving ample amount of rainfall as of windward side. 245 

246 

 247 
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 248 

Fig. 4. Shahpur valley: (a) Land use map; (b) Slope aspect; (c) Slope gradient; (d) proximity to road; 249 

(e) Proximity to stream; (f) Proximity to fault lines; (g) Surface geology 250 

 251 

4.2.5 Land Use/ Land Cover 252 

The forest cover protect the mountainous slope from weathering and mass wasting processes 253 

as the roots hold the underneath soil and keep the slope stable. Increasing population growth has 254 

increase the demand of wood and land for food has disturbed the slope of almost all the mountainous 255 

region of the world and have led to slope instability. Land cover of Shahpur valley was developed 256 

from the SPOT satellite of image (Figure 4a). Analyzing the influence of land use/ land cover on 257 

landslide, statistical weight for each class of the land use was calculated using WoE and frequency 258 

ratio model. The highest weight of both WoE (𝑊𝑐 = 0.80) and FR (2.17) was found for 259 

stream/torrent class. This was because in the study area the stream/torrent has high lateral erosion and 260 

thus initiates new slides. The second high positive correlation was of agriculture land with landslide. 261 

In the study area forest cover are mostly cleared for agriculture activities. Agriculture practice is on 262 

terrace field which also make the slope susceptible to landslide. It was found from the analysis that 263 

barren land has negative correlation with landslide as in the study area the land was barren because of 264 

presence of hard rock masses which does not support any vegetation in the higher slopes.   265 
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4.2.6 Proximity to Road 266 

The road constructions often disturb the slope and expedite the weathering and mass wasting process 267 

thus increase the probability of landslide occurrence. It also provides means of accessibility and 268 

accelerates the process of deforestation. In the current study, proximity to road is used as a causative 269 

factor of landslide. The results show high positive correlation with road proximity up to 300 meter. 270 

The highest 𝑊𝑐 value (0.68) and FR (1.88) was found in 0-100 meters road proximity. This elucidate 271 

that the slope near to road have more probability to slope failure.  272 

4.2.7 Proximity to Stream/torrent 273 

In order to examine the relationship of stream/torrent on landslide, WoE and frequency ratio 274 

statistical models were applied. It was found from the analysis that both WoE and FRM have higher 275 

value near the stream that indicates high probability in this region. The highest 𝑊𝑐 (0.89) and FR 276 

value (2.08) were found in the proximity of 0-100 meters (Table 1). The results show that the region 277 

up to 400 meters of proximity to stream shows the positive correlation toward the landslide 278 

probability. The highest negative correlation was found in the region of greater than greater than 500 279 

meters of stream. 280 

4.3 Landslide Susceptibility Zonation  281 

 Landslide is the common menace to the property, human lives and infrastructure in Shahpur 282 

valley. For its mitigation the first utmost important step is to identify high susceptible landslide areas. 283 

LSZ map divide the region into very low to very high susceptible zone according to their 284 

susceptibility based on integration of landslide causal factors. GIS provides framework for 285 

integration of different landslide causal factors to produce LSZ map. To minimize subjectivity, 286 

quantitative weight to each class of factor maps was applied based WoE and FR models for 287 

generation of LSZ map of Shahpur valley. The LSZ map was created based on both WoE and FR 288 

models by summing all the relative weight of each class of factor maps using following expressions: 289 

𝐿𝑆𝐼 = ∑ 𝑊𝑐  (8) 290 

𝐿𝑆𝐼 = ∑ 𝐹𝑅  (9) 291 

Where ∑ 𝑊𝑐 isthe total derived weight of each class of the factor maps for WoE model, while 292 

∑ 𝐹𝑅 is the sum of the derived weight of each class of the factor map of frequency ratio model. In 293 

both cases the higher the value of LSI, greater would be the probability of landslides incident. Based 294 

on LSI, the study area was divided into zones of Very high to very low Susceptibility.  295 
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 296 

Fig. 5. Shahpur valley, (a) landslide susceptibility zones based on WoE; (b) landslide susceptibility 297 

zones based on FR 298 

 299 

4.4 Validation of Landslide Susceptibility Map 300 

 The landslide susceptibility map was validated using success rate curve based on training 301 

landslide that were 80% of the total landslide inventory and prediction rate curve using validation 302 

landslides that were 20% of the total landslide inventory. The success rate curve and prediction rate 303 

curve elucidates the accuracy of WoE and FRM for selected causative factors to landslide 304 

occurrences. Success rate curve and prediction rate curve was calculated using the LSI values ranging 305 

from highly susceptible to very low susceptible class and overlaid with the existing layer of landslide 306 

area through geo-statistical tool in GIS. Cumulative percentages for both susceptibility class and 307 

landslide area were calculated and susceptibility class was plot on x-axis and landslide area on y-axis 308 

to generate both success rate curve and prediction rate curve. Both success rate curve and prediction 309 
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rate curve have steep curve which indicates significant result for both WoE and FR models. Both the 310 

susceptibility maps prepared based on WoE and FR models were validated using area under (AUC) 311 

technique. It is a quantitative measurement of success rate and predictive rates of the landslide 312 

susceptibility map. The AUC for WoE model was 87.92% for success rate curve and 79.19% for 313 

prediction rate curve. Likewise, the FR model result shows that the AUC was 90.92% for success rate 314 

curve and 84.38% for prediction rate curve. In the current study, both the models are having high 315 

accuracy and both model are suitable for landslide susceptibility studies in the Hindu Kush region.  316 

 317 

 318 

Fig. 6. Shahpur valley, (a) Success rate curve, (b) Prediction rate curve; showing the prediction 319 

capability of WoE and FR models 320 

 321 

 322 

 323 

C
u
m

u
la

ti
v
e 

%
ag

e 
o

f 
L

an
d

sl
id

e 

O
cc

u
rr

en
ce

Landslide Susceptibility Index Area (%age)

FR (AUC = 90.92%)

WoE (AUC = 87.92%)

C
u
m

u
la

ti
v
e 

%
ag

e 
o

f 
L

an
d

sl
id

e 

O
cc

u
rr

en
ce

Landslide Susceptibility Index Area (%age)

FR (AUC = 84.38%)

WoE (AUC = 79.19%)

(a) 

(b) 

https://doi.org/10.5194/nhess-2020-167
Preprint. Discussion started: 8 July 2020
c© Author(s) 2020. CC BY 4.0 License.



17 
 

5 Conclusion 324 

In the current study frequency ratio and weight of evidence models were applied to develop 325 

landslide susceptibility map. Initially, past landslides were identified from SPOT satellite image 326 

and consecutive field visits and plotted on map. Landslide causative factors that were identified 327 

from literature review including surface lithology, fault lines, land cover, slope gradient and 328 

aspect, distance from streams and roads. The maps of these factors were prepared for 329 

susceptibility analysis.  The roles of each class of these factor maps in landslide occurrence were 330 

analyzed and assigned weights were calculated by implementing Bayesian probability models 331 

i.e. weight of evidence and frequency ratio. The required susceptibility maps were generated 332 

using ∑ 𝑊𝑐 and ∑ 𝐹𝑅 values through overlay analysis in GIS.  333 

The maps of landslide susceptibility were prepared based on both models and then validated 334 

using success rate curve and prediction rate curve. It is further concluded that in Shahpur valley, 335 

the results of frequency ratio model proved better than the weight of evidence model for 336 

landslide susceptibility studies in the Hindu Kush region. This study can assist the disaster 337 

management authorities to develop location specific mitigation measures for landslide hazards 338 

to avoid loss of life and damages to infrastructure in future. The study conclude that landslide 339 

hazard in the region may have negative impacts on agricultural activities, natural ecosystem, on 340 

river morphology, human lives and infrastructure in the study area. In this regard proper land 341 

use planning and strict forest preservation measures are highly required to reduce environmental 342 

dama upges. 343 
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