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Abstract. Hydrological extremes affect societies and ecosystems around the world in many ways, stressing the need to make
reliable predictions using hydrological models. However, several different hydrological models can be selected to simulate
extreme events. A difference in hydrological model structure results in a spread in the simulation of extreme runoff events. We
investigated the impact of different model structures on the magnitude and timing of simulated extreme high- and low-flow
events, by combining two state-of-the-art approaches; a modular modelling framework (FUSE) and large ensemble meteoro-
logical simulations. This combination of methods created the opportunity to isolate the impact of specific hydrological process
formulations at long return periods without relying on statistical models. We showed that the impact of hydrological model
structure was larger for the simulation of low-flow compared to high-flow events and varied between the four evaluated climate
zones. In cold and temperate climate zones, the magnitude and timing of extreme runoff events were significantly affected by
different parameter sets and hydrological process formulations, such as evaporation. The-In the arid and tropical climate zones,
the impact of hydrological model structures on extreme runoff events was smallerin-the-arid-and-tropical-chimate-zones. This
novel combination of approaches provided insights into the importance of specific hydrological preeesses-process formulations

in different climate zones, which can support adequate model selection for the simulation of extreme runoff events.

1 Introduction

Extreme high and lew-flow-low-flow events, often referred to as floods and droughts, respectively, have high natural, societal
and economic impacts. On the global scale, fatalities and economic losses related to floed-high-flow events have increased
dramatically over the past decades (Di Baldassarre et al., 2010; Winsemius et al., 2016), among others due to an increase of
settlements in flood prone regions. The impacts of dretght-low-flow events can be recognised in amongst others the water sup-
ply, crop production, and the hydro-power sectors (Van Loon, 2015). To mitigate the societal impact of hydrological extremes,
knowledge of the processes leading to these extreme events is vital. Hydrological modelling is one of the main tools in this
quest for knowledge, but comes with uncertainties. Here we aim to investigate the impact of hydrological model structure on

the magnitude and timing of simulated extreme runoff events.
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Hydrological mitigation efforts often relate to the return period of the extreme event, a measure that describes the ‘extreme-
ness’ of the events. It is a traditional method to relate the magnitude of an event to the probability of occurrence of the event
(Gumbel, 1941; Salas and Obeysekera, 2014), based on which decision makers can define their policy. Frequency analysis
of extremes aims at estimating runoff levels corresponding to certain return periods (Laio et al., 2009). However, the limited
length of available observational hydrological records means we frequently rely on a-statistical models to estimate return peri-
ods (Meigh et al., 1997; Michele and Rosso, 2001; Smith et al., 2015; Sousa et al., 2011), mostly-¢.g. by fitting a Generalised
Generalized Extreme Value (GEV) distribution.

Despite the wide application of GEV analysis to relate runoff to return periods, there are some important caveats to this
method. The statistical models are particularly used for extrapolation - to estimate the probability of yet unobserved ex-
tremes. As such, the projected hydrological extremes are highly sensitive to small changes in the parameters of statistical
distributions that might substantially change when a single data point is added (see e.g. Brauer et al., 2011). Furthermore, the
physical processes leading to extrapolated extreme events can not be investigated. A recent alternative to extreme value statis-
tics models, proposed for example by Van der Wiel et al. (2019), is to use large ensemble model simulations: a climate model
simulates long time series of meteorological conditions, and with a hydrological model this is translated to runoff, resulting in

a long time series that does not require extrapolation for the investigation of events of longer return periods.

In this approach, hydrological models are employed to translate meteorological time series into hydrological time series,
from which relevant events can be selected and investigated. Uncertainty is, however, also inevitable in model simulations
(Oreskes et al., 1994). In hydrological modelling, different sources of uncertainty can be distinguished, for instance data uncer-
tainty, parameter uncertainty and model structural uncertainty (Ajami et al., 2007). Data uncertainty can be related to random
or systematic errors in the model forcing. Parameter uncertainty can be caused by sub-optimal identification of parameter val-
ues or equifinality, and model structural uncertainty relates to incomplete or biased model structures (Butts et al., 2004). It is
important to gain insight in the uncertainty of environmental models and to communicate these insights to decision makers

(Liu and Gupta, 2007), especially in the perspective of extreme events that give rise to policy making.

Data uncertainty and parameter uncertainty can be quantified by a combination of error propagation and sampling (Li et al.,
2010; McMillan et al., 2011a). The quantification of model structural uncertainty is more challenging, since it takes a con-
siderable amount of time and effort to set-up and run several model structures. Furthermore, it is difficult to link intermodel
differences to alterations in certain hydrological process formulations (Clark et al., 2008), because models often differ in sev-
eral process formulations. This is where the use of modular modelling frameworks (MMF), a tool which facilitates switching
between model structures (Addor and Melsen, 2019), might provide ways forward in the evaluation of model structural uncer-
tainty. In an-a MMF it is possible to alter a minor part of the model structure, which allows the researcher to isolate choices in

the model development process (Knoben et al., 2019). The Framework of Understanding Structural Errors (FUSE, Clark et al.,
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2008) is an example of a modular modelling framework, which can be used to diagnose differences in hydrological model

structures.

This study is designed to evaluate the impact of hydrological model structure on the magnitude and timing of simulated
extreme runoff events with different return periods. We combine two state-of-the-art approaches: the hydrological modular
modelling framework FUSE, and large ensemble meteorological simulations. The forcing data-set consists of 2,000 years of
daily meteorological data, representing the present-day climate conditions. This data set will be used to force several hydrolog-
ical models within the FUSE framework. The different model structures will be used to evaluate various hydrological process
formulations, to determine which process formulations have the largest impact on the simulated magnitude and timing of ex-
treme high- and low-flow events in different climate zones. Due to the length of the forcing time series, the extreme runoff
events in the tail of the distribution can be evaluated using simulated values. Hence, we do not rely on statistical models to
extrapolate extreme events. As such, this study contributes to the understanding of the impact of model structural uncertainty

in hydrological models on simulated extreme runoff events.

2 Methods

We assessed the impact of hydrological model structural uncertainty on extreme runoff events by using large ensemble meteo-
rological simulations in combination with the hydrological modular modelling framework FUSE. We examined four different
climate zones, because hydrological processes vary considerably between elimatezonesclimates (Pilgrim, 1983), which leads
to different processes being of importance in controlling the extreme events (Di Baldassarre et al., 2017; Eagleson, 1986). In the
R-version of FUSE (Vitolo et al., 2015), ten different model structures were employed, and to capture the complete parameter
space, 100 parameter sets were used in-for every model structure. The simulated extreme runoff events were compared based

on their magnitude and timing.
2.1 Meteorological forcing data

We employed a 2,000 year time series of meteorological data, generated by the EC-Earth global coupled climate model (v2.3,
Hazeleger et al., 2012). This 2,000 year time series originally consisted of a large ensemble of 400 sets of 5 year runs. In
this study, these 400 sets were assumed to be one long time series, which enables extensive return period analysis. This time
series represents a period with a simulated absolute Global Mean Surface Temperature (GMST) equal to the observed GMST
in the years 2011-2015 based on HadCRUT4 data (Morice et al., 2012). The time series thus represents present-day climatic
conditions. In Van der Wiel et al. (2019), this data-set was used to evaluate the benefits of the large ensemble technique for

hydrology. Further details on the design of the meteorological forcing data are provided in that paper.

For-The 2,000 year meteorological time series as employed by Van der Wiel et al. (2019) has global coverage. However, for
this study we restricted ourselves to four climate zones, represented by one grid cell for each climate zone (Figure 1). The
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Figure 1. Koppen-Geiger Climate-typeclimate map indicating the locations of the selected grid cells for the four different climate zones,

and their corresponding climatology and hydrology (central map taken from Peel et al. (2007), their Figure 10). The climate graphs show

simulated climatological monthly precipitation sums (blue bars) and monthly average temperatures (red lines). The hydrological conditions

are visualised using simulated monthly average runoff levels. The different line colours represent the ten evaluated model structures and the

spread induced by the different parameter sets is shown using grey bands.

—Simulated monthly averaged 2 m temperatures and precipitation sums were obtained from the EC-Earth model to classify

grid cells based on the Képpen-Geiger criteria, and allow the selection of appropriate grid cells for this study. We selected four

rid cells to represent the arid (BWh), cold (Dfc), temperate (Cfb) and tropical (Aw) climate. This set of climate zones offers

a comprehensive representation of the global climate zones (Kottek et al., 2006; Peel et al., 2007).

Daily 2 m temperature, precipitation and potential evapotranspiration data for the full 2,000 years were then acquired for the

four selected grid cells. The 2 m temperature and daily precipitation fluxes were directly available from the EC-Earth model.

Potential evapotranspiration fluxes were calculated following the Penman-Monteith preeedure-method (Zotarelli et al., 2015).
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The precipitation and potential evapotranspiration fluxes were used as input in the FUSE models, the 2 m temperature was used

to force the snow module (see Section 2.2).
2.2 Framework of Understanding Structural Errors (FUSE)

FUSE is a modular modelling framework, which can be used to diagnose differences in hydrological model structures (Clark
et al., 2008). FUSE is developed based on four parent models; the U.S. Geological Survey’s Precipitation-Runoff Modelling
System (PRMS, Leavesley, 1984), the NWS Sacramento model (Burnash et al., 1973), TOPMODEL (Beven and Freer, 2001)
and different versions of the Variable Infiltration Capacity (ARNO/VIC) model (Liang et al., 1994). This framework enables
the assessment of intermodel differences in another way compared to other model intercomparison studies (Henderson-Sellers
etal., 1993; Reed et al., 2004). In FUSE, each model component can be adapted in isolation and therefore the effect of specific
hydrological process formulations can be investigated. In the next subsection we further discuss which model structures we

selected and which process formulations were tested.

All model structures used in this study were lumped hydrological models, which were run at a daily time step. We employed
a spin-up period of five years, before forcing the hydrological models with the 2,000 year meteorological time series. The
simulated monthly average runoff varied among the evaluated model structures and parameter sets (Figure 1). Therefore, it is
essential to select an adequate hydrological model for the simulation of runoff levels, and it will likely be of larger importance

when simulating extreme runoff events.

FUSE as implemented in R (Vitolo et al., 2015) does not include a snow module. However, snow storage and snow melt might
be important components in the hydrological cycle of the colder climate zones. Therefore, a snow module was implemented.
First, a threshold temperature was defined at 0 °C, below which precipitation is assumed to fall as snow. Secondly, snow melt

is simulated by using a simple degree-day method (Kustas et al., 1994):
M= a(T, - T), (1)

in which M represents snow melt (mm), a the degree-day factor (mm/°C/day), T, the average daily temperature and 7}, the
base temperature. The degree-day factor was fixed at a value of 0.475 mm/°C/day based on Kustas et al. (1994), and T}, was set
to 0°C. The degree-day method employed daily 2 m temperature data to subdivide the precipitation data into rain and snow and

to determine the melt rate. The different FUSE model structures were subsequently forced by these subdivided precipitation

fluxes. The degree-day parameters were kept constant across the experiments, because we only explore one snow formulation
in contrast to the other processes, for which model formulations were all varied).

2.2.1 Selected model structures

In total, 1248 different model structures can be constructed in FUSE as implemented in R (Vitolo et al., 2015) by combin-

ing different hydrological process formulations from the parent models. The architecture of the upper and lower layer can be
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altered, and the process formulations for simulating base flow, evaporation, percolation, surface runoff, interflow and routing

can be changed. The lower layer architecture is intimately tied to the process formulation of base flow. Therefore, they need

to be changed simultaneously and only a few combinations are possible. In-our-synthetic-experiment,—there-was-no-routing

Table 1. The model structures that were employed in this study. Each letter refers to a specific hydrological process formulation as in Clark
et al. (2008), the model IDs are described by Vitolo et al. (2015). The model abbreviations are related to the alteration in the model structure

and are used throughout this paper.

Model Component Model Number

1 2 3 4 5 6 7 8 9 10
Upper Layer A B C C C C A A A A
Lower Layer A A A C B B B B C C
Base Flow A A A B C C C C B B
Evaporation A A B B A B A A A A
Percolation C C C C C C C B B B
Interflow A A A A A A A A A A
Surface Runoff A A A A B B A A A B
Routing A A A A A A A A A A
Model ID 802 800 642 626 808 652 790 880 874 896
Abbreviation UL1 UL2 LL1 LL2 EV1 EV2 PC1 PC2 SR1 SR2
Alteration Upper Layer Lower Layer Evaporation Percolation Surface Runoff

Ten different model structures were evaluated in this study. Table 1 provides an overview of the selected hydrological model
structures. In the odd model numbers, new model structures were constructed and in the even model numbers, a single hy-
drological process was altered in the model structure relative to the preceding odd model number. By comparing the extreme
runoff events simulated between consecutive odd and even numbered model structures, we analysed the impact of a specific

hydrological process on extreme event simulation, indicated by the alteration in Table 1.

For our synthetic experiment, we decided to apply a fixed routing scheme. The effect of routing parameters on the discharge
signal is delay and attenuation. As such, the main effect of the routing scheme would be to decrease the peak height. Since we
evaluate our model results on (amongst others) peak height, the routing would dominate the results without providing insights
on the underlying runoff-generating processes. Besides routing, the process formulation of interflow was left unchanged
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throughout this study, as it was not explicitly parameterised in TOPMODEL and ARNO/VIC (Clark et al., 2008).

In contrast to other studies that evaluate different model structures (Atkinson et al., 2002), this study evaluated differences
among model structures that are deemed to be equally plausible. Hence, there were no prior expectations of specific models to
outperform other models. This means that the emphasis in FUSE is not on the lacking parts of hydrological models, but on the

intermodel differences that are caused by different representations of the real world (Clark et al., 2008).
2.2.2 Parameters

In this synthetic experiment, the parameters of the hydrological models were not calibrated to real catchment observations.
Instead, the parameters of the models were sampled over their full range. Since in calibrated experiments it is always difficult
to differentiate the effect of parameter values from the effect of model structure, the parameter sampling approach also created

the opportunity to assign the effect on extreme events either to parameter values or to model structure.

To investigate the appropriate and feasible number of parameter sets required to sufficiently capture the-parameter space,
the Kolmogorov-Smirnov test was employed (Massey Jr, 1951). The-With the Kolmogorov-Smirnov testevaluates—whether
the-differences-in-distribution-of-, we compare the difference in the distribution of the hydrological model output between a
different number of parameter sets-is significantsmall parameter sample and a large benchmark sample. Our benchmark sample
had a size of 5000 parameter sets. We applied the Kolmogorov-Smirnov test to assess the annual maximum and minimum daily
runoff from 10 up to 200 parameter sets, each time with 10 samples increment. The model runs were executed for 30 years
to save computation time, because this is considered sufficient to represent the mean climate conditions (McMichael et al.,

2004). The D-statistic describes the largest distance between the Empirical Cumulative Distribution Functions (ECDF), which

indicates that when the D-statistic decreases, the ECDFs are more likely to originate from the same data-set. The-D-statistic

We found that the optimal trade-off between computer time and sufficiently capturing parameter space was at 100 parameter
sets, as the D-statistic stabilised at this value (Figure 2). Since there are different process formulations, the number of sampled
parameters varied between eleven and fifteen for the different model structures. Nevertheless, for justification we used 100
parameter sets for all model structures, independent of the number of parameters. The parameter sets were generated using

Latin Hypercube Sampling, based on the parameter ranges provided in-Clark-et-al-42008)by Vitolo et al. (2015), as given in
Table Al.

2.3 Magnitude of extreme runoff events

The magnitudes of the simulated extreme events were evaluated by comparing the distribution of runoff values based on four

return periods: 25, 50, 100 and 500 years. The associated runoff levels were determined by sorting the time series of annual
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Figure 2. D-statistics for one model structure (UL1) with twelve parameters, which result from the Kolmogorov-Smirnov test. The other
model structures show a similar trend (not shown). The bands are a result of the different parameter samples, the different colours represent

the four climate zones.

maximum and minimum daily runoff values. This resulted in 2,000 sorted runoff values from which events were selected. For

instance, for the 500-year return period, the 4th most extreme value in the sorted time series was taken.
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Figure 3. Illustration of the conducted procedure for the comparison of the extreme event magnitude. ta)-The different-four lines with

different colors represent the different model structures (theoretical MS 1-4). (a) The simulated runoff can be plotted against return period

for the different models. (b) The uncertainty bounds are due to the 100 different parameter samples per model. (c) The parameter samples
were compared at different return periods. (d) The projected difference between the distributions at a given return period of the various model

structures was tested using a two-sample t-test, an example of a significant and a not-significant difference is shown.

The different model structures yielded different simulated magnitudes for extreme runoff events (Figure 3a). Every model
structure was run using 100 different parameter sets, which led to bands around the projected extreme runoff events (Figure
3b). The runoff values and their bands were subsequently evaluated for 25, 50, 100, and 500 year return periods (Figure 3c).
The different parameter sets resulted in 100 extreme runoff values at a specific return period for every model structure. In order
to test whether the projected difference in the distributions of these runoff values (Figure 3d) was significantly different from

the paired model, a two-sample t-test was applied. This test was used to evaluate related model structures based on a change
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in one single hydrological process formulation (Table 1). By comparing related model structures, the impact of corresponding

hydrological process formulations could be isolated for specific climate zones and return periods.

For the magnitude analysis of low-flow events, we encountered that some combinations of model structures and parameter
sets led to a very low fixed value (in the order of 10~ and less), which we refer to as hard-coded lower limits. These lower
limits varied between model structures, dependent on the configuration of different storage reservoirs. These limits assure
numerical stability, but could obfuscate our analysis, because the difference between distributions simulating lower limits
would be significant if the lower limits between two model structures had different values. Conceptually, the lower limits
represent zero discharge: the river has run dry. As such, no significant different should be found when two models reached this
lower limit. Therefore, in all simulations the lower limit in discharge was set equal to zero.

2.4 Timing of extreme runoff events

An asset from the ensemble approach for return period evaluation compared to GEV statistics, is that it also allows us to
evaluate the timing of the 500-year events based on the entire 2,000 year time series. Extreme hydrological events do not al-
ways result from extreme meteorological conditions, but could also originate from a sequence of moderate weather conditions
(Van der Wiel et al., 2020). By assessing the timing of extreme runoff events, we investigated whether the timing of the extreme

runoff events is controlled by different model structures and parameter sets or mainty-determined by the meteorological forcing,
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Figure 4. Illustration of the conducted procedure for the comparison of the timing of extreme events, equal or greater than 500-year events.
(a) The monthly maximum daily runoff (MMDR) values were sorted and the four most extreme events were selected (green cells), this table
shows an example for one parameter set. (b) All parameter sets of one model structure were concatenated and the sum (red cells) indicated
the variation in timing in one model structure. A score of 100 means that for all different parameter sets, the same event is selected. (c) All
model structures of one climate zone were concatenated and the sum (blue cells) indicated the variation in extreme event timing in all model

structures for one climate zone. The values in the blue cells have a maximum score of 1000 (10 models, with 100 parameter samples each).

A score of 1000 indicates that all models and all parameter sets identify the same event as a 500-year event (100 % model agreement). Given
that we have 2,000 years of simulations and evaluate 500-year events, the ideal case where all models agree would result in four events with

a score of 1000. (d) Stacked bar charts are used to visualise the model agreement of specific runoff events. The coloured bars represent the
values of the blue cells for different model structures as shown in panel (c), and the grey bars indicate the theoretical maximum for 500-year

events: four runoff events with 100 % model agreement.
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The timing of extreme runoff events with 500-year return periods were compared. This was done by-sorting-in four steps, as
depicted in Figure 4.

First, we sorted all the monthly maxima and minima daily runoff values and their corresponding simulation month (Fig-
ure 4a). The four most extreme events in this sorted 2,000-year data-set represent the extreme events equal or greater than

the 500-year events.

strueture; this-would-tead-to-a-high-vatue These four most extreme events were determined for each model simulation, so for

each combination of model structure and parameter sets.

Then, we evaluated to what extent the same events were selected for different parameter sets, but with the same model
structure. If one event was for instance selected for all 100 parameter sets, this particular event would have a score of 100 in
the red row ¢of Figure 4b);-which-. If this event was only selected for half of the parameter sets, it would have a score of 50. If

across all parameter sets the same four events would be identified, this would result in four times a score of 100 in Figure 4b.
This indicates that the influence of hydrological parameters on the timing of extreme-events-the extreme event is negligible. The

This procedure was repeated across all 10 model structures. If the same event was selected for all parameter sets (n=100)
and for all models (n=10), it would result in a score of 1000 in the blue row of Figure 4c. If the same four events were selected
across all models and all parameter sets, four times a score of 1000 would be found. In that case, both model structure and
model parameters have negligible influence of the timing of the extreme events-to-the-modelstructures{(Figure-4e)—event: the
event is mainly triggered by meteorological circumstances.

Finally, the model agreement of the specific extreme runoff events was evaluated in stacked bar charts (Figure 4d). The
colours of the stacked bars represent the different model structures and the height of these bars indicates the model agreement
within a specific model structure for different parameter values. For instance, in Figure 4d, one event is identified by almost all
simulations and it approaches a fully coloured bar chart. The percentage of model agreement was determined by the amount
of model simulations that identify a specific extreme runoff event out of a total of 1000 model simulations, where all model

simulations employed a unique combination of a model structure and a corresponding parameter set.

If all combinations of different model structures and parameter sets agree upon the timing of this extreme event, only four
events would be identified in total. This would lead to the theoretical maximum, where there are four fully filled stacked bar
charts and an x-axis going to a maximum of four. When the simulation do not agree upon the timing, there will be more
bar charts, indicating the variation in the timing, The value of the x-axis thus indicates the number of extreme events with a
different timing. For example, a value of 20 on the x-axis indicates that across all simulations, 20 different 500-year events
with a different timing were identified.

10
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3 Results

3.1 Magnitude of extreme runoff events

This section describes the impact of model structures on extreme event magnitude for different climate zones, hydrological

process formulations and return periods. We compared the distribution of the magnitudes of the extreme high- and low-flow
events for related model structures, based on four different return periods, and for four different climate zones. Alterations
in the hydrological process formulations lead to a difference in the magnitude of extreme runoff events, as depicted in Fig-
ure 3a. Figure 5 shows the same information, but now based on actual simulations of high-flew-high-flows (Figure 5a) and
tow-flow-low-flows (Figure 5b) in the arid-elimatezoneforfour-selected-models-tropical climate zone. We then employed a
Figure 6), which were used to distinguish the statistically significant (p < 0.05) and

two-sample t-test to calculate the p-values

non-significant (p > 0.05) differences in the distribution of extreme event magnitudes as in Figure 3d.

Panel ¢ and d of Figure 5 highlight four models for comparison. The model structures that are related by an alteration in the
process formulation of percolation, simulate an increasing difference in extreme high-flow magnitude for longer return periods

(Figure-Sared lines in Figure Sc¢). Based on the t-test conducted on the distributions of the 500-year return period, this results
in a significant impact of alterations in the process formulation of percolation for this return period (as displayed in Figure 6).
In contrast, the model structures related by an alteration in the process formulation of evaporation, simulate comparable runoff

values across all return periods (Figure-Safor high-flows (blue lines in Figure 5c¢). Therefore, there is no significant impact on
the magnitude of extreme high-flow events caused by this hydrological process formulation (Figure 6).

For the low-flows, alteration in the

ercolation formulation (Figure 5d) does not lead to statistically significant differences in the distribution-of-extreme-event
magnitudes—as-in—Figure-3dlow-flow distribution (Figure 6), whereas an alteration in the evaporation formulation leads to a
difference at the 0.1-significance level.

An alteration in the model structure has significant impact in about a quarter of the model output comparisons during high-
flow events (Figure 6a). The difference between the magnitude distributions of the high-flow events is non-significant for
alterations in the architecture of the upper and lower layer and in the process formulation of surface runoff. This means that
the magnitude of high-flow events for all climate zones and return periods are-not-significantly-is not sensitive to changes in

the formulation of these hydrological processes.

11
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Figure 5. Statisticatlystgnifieant-The ensemble mean of the annual maximum (p—<-6-65a) and nen-signifieant-minimum (p—>6-05b)
differences-between-the-distribution-of-magnitudes—for-extreme-daily runoff events;—assessed-by-a-two-sample-t-test—The-colours-indicate
whether-an-alteration-levels at different return periods in the model-strueture-has-astatisticatty significant-impact-tropical climate zone. The
ensemble mean is obtained based on the magnitude of extreme high—100 parameter sets. In (a) and tow-flow-(b) eventsall model structures
are visualised. Fhis-isshown-for-the-four-elimatezones-In (arid;—cold,—temperate ) and tropieal(d), indieated—at-a selection of only four
model structures is presented to emphasize the top)-and-difference between the model structures. These four differentreturn-periods-model

structures are related by alterations in the evaporation (25EV1, 5949&EV2) and %Gﬁe%sggr/gglgggg\@\cm indicated-at-the-bottomPC2)

—Fhe-red-valuesin-process formulations (bTable 1)indi . The red

bexes-indieate-colours of the magnitude-distributions-that-were-shown-panel labels refer to the boxes in Figure 56.

In the arid climate zone, the impact of alterations in model structures on high-flow events has the least impact. This indicates
that the magnitudes of the high-flow events are mainly controlled by the meteorological forcing. In the cold and temperate
climate zones, the high-flow events are sensitive to alterations in the process formulation of two hydrological processes; evapo-
ration and percolation. This indicates that the magnitudes of the high-flow events are not only determined by the meteorological
forcing, but there is also a notable impact of the hydrological model structure, specifically for the formulation of these two pro-
cesses. Finally, in the tropical climate zone, the high-flow events are only sensitive to alterations in the process formulation of

percolation. The other hydrological process formulations do not significantly affect the magnitude of high-flow events in this
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(a) High-flow Arid Cold Temperate Tropical

P-value

Upper Layer 1
Lower Layer

Evaporation

Percolation
Surface Runoff

(b) Low-flow

Upper Layer 52| 52| 52| 52| 36| 36| 37| 38| 24| 25| 26| 27| 25| 25| 26| 27

LOWEI" Layer 64| 64| 66| 67 51| 52| 52| 53] 33| 35| 36| 38| 32| 34| 34| 37
Evaporation

Percolation 0.10
Surface Runoff 3'05

25 50 100 500 25 50 100 500 25 50 100 500 25 50 100 500
Return period [y]

< 0.05) and non-significant (p > 0.05) differences between the distribution of magnitudes for extreme

Figure 6. Statistically significant

impact on the magnitude of extreme high- (a) and low-flow (b) events. This is shown for the four climate zones (arid, cold, temperate and

climate zone.

For low-flow events, the model structure has a greater impact on the simulation of extreme runeff-events. An alteration in
the model structure has significant impact in half of the model output comparisons during low-flow events (Figure 6b). In the
arid climate zone, the low-flow events are sensitive to alterations in the architecture of the upper and lower layerand-in-the
proeess—formulation-of pereolation. In the cold and temperate climate zones, the low-flow events are also sensitive to alter-
ations in the architecture of the upper and lower layer- . and additionally to changes in the process formulation
of evaporationlead-te-significant-differences. In the tropical climate zone, the low-flow events are less sensitive to alterations
in the architecture of the lower layer and the process formulation of evaporation-—Hewever;-theselow-flow-events-are-, but still
sensitive to alterations in the upper layer architecture. In most climate zones, formulations of multiple hydrological processes
significantly impact the simulation of the magnitude of low-flow events, which implies that the model structure is an important

source of uncertainty. The meteorological forcing is clearly not the only factor controlling the magnitude of simulated low-flow
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1A process that
does play an important role in the evaluation of low-flows is that eventually in some cases, the simulated runoff goes to zero
indicating that no more water is flowing through the river. For instance in the arid climate zone, for the runeff-eutput—which

wo models where percolation is
altered, 100% of the simulations have zero discharge already for the 25-year return period events. Differences in low-flows

as a consequence of changing the percolation formulation can then no longer be traced and thus do not lead to a significant
difference.

Both differences and similarities can be identified between the distributions of runoff values for the high- and low-flow
events. Alterations in hydrological model structures more often result in significant differences in low-flows (5645 %) com-
pared to high-flows (24 %), which implies a larger model structural uncertainty in the magnitude of low-flow events¢altheugh
this-might-be-the result-of-numerical-artefacts). High-flow events mainly depend on precipitation, i.e. meteorological forcing,
while the influence of other runoff generating processes such as soil moisture and base flow is marginal (Zhang et al., 2011).
This is not to say that these processes are not relevant: merely, our results demonstrate that the way these processes are

formulated in the model has limited impact on the model result. The situation during high-flow events is often characterised
by a precipitation surplus. Therefore, there will be more or less continuous groundwater recharge by percolation in the unsatu-

rated zone (Knutsson, 1988), which explains why the formulation of percolation appears as a relevant hydrological process to

estimate the magnitude of high-flow events.

Hydrological models are traditionally designed to simulate the runoff response to rainfall and therefore, it seems to be more
challenging to simulate low-flow events (Staudinger et al., 2011). The low-flow events are mainly sensitive to alterations in
the architecture of the upper and lower layer. Earlier research indicates the importance of the lower layer architecture and the
process formulation of base flow in simulating low-flow events (Staudinger et al., 2011). The architecture of the upper and
lower layer defines the water content in these layers (Clark et al., 2008). This water content is controlling the runoff-generating

processes during low-flow events due to a precipitation deficit and reduces the importance of the percolation process (Andersen
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et al., 1992). Therefore, alterations in the process formulation of percolation mainly affect high-flow events in the wet climate

zones (Figure 6).

Besides these differences, there are also similarities in the simulation of high- and low-flow events. The magnitudes of high-

and low-flow events in the cold and temperate climate zone have a similar response to alterations in all hydrological process
formulations. Furthermore, alterations in the process formulation of surface runoff have no significant impact on the magnitude
of both types of extreme runoff events. This might be due to the lacking implementation of infiltration excess overland flow in
FUSE (Clark et al., 2008). This could be an important factor for surface runoff, especially in arid climate zones (Reaney et al.,
2014). Another factor might be the temporal resolution of the model runs: the models are run at a daily time step, while surface

runoff is especially relevant at shorter time steps (Morin et al., 2001; Melsen et al., 2016).
3.2 Timing of extreme runoff events

The timing of extreme high-flow events is evaluated using stacked bar charts. Figure 7 shows the percentage of model agree-
ment on the timing of extreme high-flow events with a return period equal or greater than 500-years, as earlier depicted in
Figure 4d. For the low-flow events, the timing evaluation a

be-discussed-furthercould not be conducted, because of the nature of low-flow events to persist longer. This will be further
discussed in this section.

The impact of different hydrological process formulations and parameter sets on the timing of extreme high-flow events
varies between the selected climate zones. In the arid and tropical climate zones, there are multiple events with a model agree-
ment exceeding 99 %. In these cases, almost all model simulations agree on the timing of these extreme events. Just ten and
eight runoff events were selected (out of a total of 24,000 potential events) as extreme high-flow events in the arid and tropical
climate zones, respectively (Figure 7). This means that there are only a few model simulations that shew-deviant-behaviour
deviate by simulating the most extreme runoff events at a different point in the time series. For these climate zones, this implies
that the timing is mainly prescribed by the meteorological forcing. This might be explained by the precipitation climatology in
these climate zones. On average, in the arid climate zone the daily precipitation sum exceeds 1 mm only during eleven days a
year. Precipitation is therefore scarce and characterised by short events of high-intensity (Goodrich et al., 1995), which prop-
agate into extreme runoff events. In the tropical climate zone, there is a high precipitation rate throughout the complete time
series. However, there is a pronounced wet season from October until April (Figure 1). There are multiple extreme precipitation

events larger than 150 mm/d. The 500-year extreme runoff events are initiated by these extreme precipitation events.

In both the cold and temperate climate zone, there is only one event with a model agreement exceeding 99 % (Figure 7).

In the cold and temperate climate zones, there are 20 and 38 different events selected as extreme events, respectively. The
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Figure 7. Stacked bar charts that visualise the percentage of model agreement for extreme high-flow events. Four different climate zones are
evaluated in the different subplots. Extreme runoff events are identified when they are equal or greater than the 500-year return level. The
linked model structures (Table 1) are related to each other by comparable colours. The grey bars indicate the theoretical maximum of four

events with 100 % model agreement, which would imply a negligible impact of model structure and parameters on high-flow event timing.

selected runoff events with the highest model agreement are initiated by the most extreme precipitation events, whereas the
selected extreme runoff events with a low model agreement are most likely initiated by compound events (Van der Wiel et al.,
2020; Zscheischler et al., 2018). Hence, the timing of extreme high-flow events may depend more on hydrological processes,
and consequently vary ever-across hydrological model structure and parameter values in these climate zones. The stacked bar
charts indicate which model structures lead to the selection of events with low agreement. Some model structures seem to show
deviant behaviour, but there is no convincing pattern visible; most model structures seem to be represented in low-agreement
events. Therefore, there is no clear relationship between the extreme runoff events with a low model agreement and specific

model structures. We hypothesise that this uncertainty can be assigned to the difference in parameter sets.

To evaluate the timing of extreme low-flow events, a similar approach was applied compared to the high-flow events. How-

ever, for several combinations of model structures and parameter sets, the-simulations-touched-upon-the-hard-coded-lowertimit
in-the-runoff-levels-as-discussed-in-the-previeus—seetion—zero runoff was simulated (Figure 5b). For-these-simulations;itis
These periods of zero runoff often persisted for longer time periods, and therefore, it was not possible to select the four most

extreme events;-which-. This invalidates our method to investigate the impact of different model structures on the timing of

low-flow events—The-simulated-hard-codeddowertimit, at least with the definition of low-flow events as we employ it (directl
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evaluating the runoff). Zero runoff, representing a dry river, is mostly occurring in the drier climate zones. In general;—dry

the arid climate zone, the runoff levels drop to a-hard-codedHower-timitzero in 69 % of all the model simulations. In the cold
climate zone, 53 % of the model combinations simulate a-hard-coded-tower-timitzero runoff. In this climate zone, the temper-
ature regularly drops to-belew-zere-below zero degrees C (Figure 1), which indicates that precipitation falls as snow instead of
rain. This transition affects the runoff-generating processes (Immerzeel et al., 2009), which results in lower runoff levels dur-
ing colder periods (Figure 1). In the temperate and tropical climate zones, 39 % and 36 %, respectively, of all combinations of

model structures and parameter sets simulate a

4 Discussion

4.1 SynthesisClimate synthesis

This study evaluates the spread introduced by different hydrological model structures and parameters on the magnitude and

timing of simulated extreme runoff events. Ourresultsreveal-that-the-spread-in-magnitude-and-timing-is-very-much-related

eventsBelow, we synthesize the results per climate.

The magnitude and timing of the extreme high-flow events in the arid climate zone are mainly controlled by the meteorolog-
ical forcing. This is contrary to previous studies in which the runoff in dry catchments was more sensitive to different hydrolog-
ical models (Jones et al., 2006; Lidén and Harlin, 2000), but here we specifically refer to high-flow events in arid climates. In
this climate zone, precipitation is scarce and often characterised by extremely variable, high-intensity and short-duration events
(Goodrich et al., 1995). Consequently, runoff in arid climate zones is characterised by a dominance of Hortonian overland flow
(Segond et al., 2007). This runoff-generating process is not included in the implementation of FUSE, which might reduce the
impact of different model structures (Clark et al., 2008). There-is-Also the temporal resolution at which we ran the model and

evaluate the high-flow events might be relevant. The extremely flashy precipitation patterns can cause flash floods that occur
over the course of a few hours. We evaluate the model results at the daily time step, which can cover up the occurrence of flash
flood events. For the low-flow events, we found more spread in the magnitudes-of fow-flow-eventsmagnitude as a consequence

In the cold and temperate climate zones, there is more spread in the simulations regarding the magnitude and timing of ex-

treme runoff events. The magnitudes of extreme high- and low-flow events are sensitive to alterations in multiple hydrological
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process formulations, which implies that several hydrological processes are important in the runoff-generating processes in
these climate zones, as also discussed by Scherrer and Naef (2003). In different model simulations different high-flow events
are identified as most extreme runoff events, which leads to a spread in the timing of these events. This spread is partly assigned

to the difference in parameter sets.

We only tested a limited amount of processes and process formulations. However, especially in the cold and temperature
climate zones, extreme events related to snow melt can potentially occur. Therefore, the process formulation of snow melt
could have significant impact on the simulations. This was, however, not tested because we only used a single degree-day snow.
formulation. The results are therefore conditional on the processes that we altered, and that were available within the FUSE

framework.

In the tropical climate zone, the spread in the magnitude and timing of extreme runoff events is small, which indicates that
the extreme events are mainly controlled by the meteorological forcing. There is only one process formulation that simulates a
significant impact on the magnitude; percolation for the high-flows and the upper layer architecture for the high—and-low-flow
events;respeetively. The formulation of the percolation process controls the high-flow events in the tropical climate zone, as
there are months with large amounts of precipitation (Figure 1). Due to these large amounts of precipitation, water is subjected
to percolation through the succeeding layer (Bethune et al., 2008; Savabi and Williams, 1989). The role of the upper layer
architecture in the simulation of low-flow events might be related to evaporation dynamics - although the evaporation formula-

tion has less significant impact (0.05<p<0.1).

We found no distinct relationship between the length of return periods and the degree of uncertainty in the magnitude of
extreme runoff events. There are situations in which the difference between related distributions of high-flow events become
significant when the length of the return period increases, e.g. the percolation process formulation in the arid climate zone.
On-the-other-hand;-there-are-There are also distributions of related model structures that are significantly different at shorter
return periods, e.g. the evaporation process formulation in the temperate climate zone. This contrast might be explained by the

difference in importance of specific hydrological processes or parameters for events at different return periods.

5 Diseussion
4.1 Study design

We designed a synthetic experiment to conduct controlled experiments on the role of model structure on the simulation of
extreme runoff events. There are, however, a few implications when using a synthetic approach. In this study, the models were

not calibrated in order to isolate the impact of different model structures. Heweveritis-It is however common practice to use
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a pre-defined model structure, which is fitted to the local circumstances via parameter calibration (McMillan et al., 2011b). In
this study the complete parameter range was sampled: all combinations of parameter values were considered equally plausible
and interdependence of parameters was not considered since we used the Latin Hypercube Sampling approach (Clarke, 1973;
Helton and Davis, 2003). By-implementing-more-detailed-information-based-on-the tocalcireumstances-of the-different-clima

zones; the-width-of these Tuning the parameters to a specific location could reduce the parameter range, and smaller parameter
ranges could

v-lead to more realistic runoff values (Cooper et al.,
2007), and-which might have revealed a relatively higher impact of model process formulation on model results. However;
This, however, comes at a loss of generality, Also, when calibrating hydrological models to simulate extreme runoff events,
other challenges remain. Especially the limited availability of historical observations can create a problem for the reliable cal-
ibration of extreme events (Wagener et al., 2010); since many observation records do not exceed a length of 50 years, models
are forced to simulate outside of their calibration range. This will negatively influences model performance, as for instance

demonstrated by Imrie et al. (2000).

Meteorologicalforeing-data-The 2,000-year meteorological time series used in this study originally consists of a simulated
large ensemble of 400 sets of 5-year runs. These 400 sets were concatenated artificially. This concatenation might lead to
strange transitions of meteorological conditions once every 5 years, as the December month is followed by the next January
month of a new 5-year set. Nevertheless, we decided to treat this large ensemble as a single time series, in order to allow for
extensive return period analysis. We consider the effect of the concatenation limited since we only evaluate the annual and
monthly maximum and minimum daily runoff levels. The employed time series does not allow for the evaluation of multi-

year droughtslow-flow events, despite these events being extremely relevant considering their societal impact. However-the

Besides choices in the sampling strategy and choices in the treatment of the meteorological forcing, we also made choices
in_the characteristics of high and low flow events that we evaluated. Because this is a first extensive exploration of the role
of model structure on the simulation of extreme events with long return periods, we evaluate high- and low-flows for their
most straight forward characteristic: the maximum and the minimum runoff. There are, however, ample other characteristics
that could be of relevance in the context of hydrological extremes. For high-flow events, besides peak height and timing,
also volume is a frequently evaluated characteristic (Lobligeois et al., 2014), while for low-flow anatyses;would-also-pose-a

deficit are other frequently applied characteristics (Tallaksen et al., 1997). Our approach, being a combination of long-term

meteorological simulations and a modular modelling framework, can easily be extended to these characteristics.

Medelselection-Modelseleetion-Model selection is a crucial step in hydrological modelling. Different hydrological models
might lead to substantially different outcomes (Melsen et al., 2018). When hydrologists are familiar with a certain model, they

tend to stick to this model, even though other models might be more adequate for a specific objective (Addor and Melsen,
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2019). Model intercomparison studies can provide guidance for model selection and improve model adequacy in the future.
This study evaluates the impact of alterations in model structures on extreme runoff events. Some alterations in the model
structure lead to significant impacts in the simulation. For example, in the tropical climate zone, the formulation of the perco-
lation process is important. This information can be regarded in model selection of future studies, which will result in more
adequate model selection. On-the-other-hand;it-sheuldlt should, however, be noted that the framework employed in this study
+HFUSE~(FUSE) is only representative for a particular suit of bucket-based models. Whereas these models are suitable for long
term simulations due to their low data demand and high computational efficiency, results might look different when a more

process-based framework, such as SUMMA (Clark et al., 2015a, b), would have been employed.

4.2 Societal impact

This study evaluated the translation of meteorology to hydrological extreme impact events. Return periods were used to sort
runoff events based on their extremeness, as return periods are frequently used in policy design (Marco, 1994; Read and Vogel,
2015). However, this study does not translate hydrological impact events to the societal impact, which implies that fatalities
and economic losses are not examined. This relationship might be affected by non-linear effects, similar to the meteorology-
hydrology relationship (Van der Wiel et al., 2020). Therefore, a direction for future research is to link societal impact to return
periods of extreme runoff events. The accurate assessment of vulnerability and societal impact requires information related to

exposure and sensitivity (Cardona et al., 2012).

5 Conclusions

Hydrological extremes are natural hazards that affect a large number of people on a global scale. Several hydrological mod-
els were employed to simulate these extremes, with the aim to investigate the impact of hydrological model structure on the
simulation of extreme runoff events. The combination of two state-of-the-art approaches, the hydrological modular modelling
framework FUSE and large ensemble meteorological simulations to study extreme events, provided insights into uncertainties
of the simulations. Parameters of the hydrological models were sampled in a synthetic experiment, which enabled the exami-
nation of the impact of different hydrological process formulations on the magnitude and timing of extreme high- and low-flow

events, independent of calibration.

The impact of hydrological process formulations on magnitude and timing of extreme runoff events varies among different
climate zones (Figure 8). In the arid climate zone, the magnitude and timing of the extreme high-flow events are not affected

by changing process formulations or parameter sets. The magnitudes of the low-flow events are significantly affected by al-

terations in the architecture of the upper and lower layerand-the-process-formulation-of pereolation. In the cold and temperate
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Figure 8. Summary of the results: indicated are the process formulations that significantly affect the distributions of the extreme runoff
events in the different climate zones. The process implementations refer to the formulation of hydrological processes in different model
structures. "No hydro. impact" indicates that the effect of the hydrological model was limited, which implies that neither alterations in the

model structure, nor in the parameter sets significantly affected the simulated extreme runoff events.

climate zones, we found a larger spread in the simulations of the extreme runoff events. Multiple hydrological processes sig-
nificantly affect the magnitude of the high- and low-flow events, which implies that the model structure is an important source
of uncertainty. Therefore, it is essential to select an adequate hydrological model when simulating extreme events in cold
and temperate climate zones. Besides that, there is a spread in the timing of high-flow events, caused by different parameter
sets in these climate zones. The magnitudes of the high- and low-flow events in the tropical climate zone are affected by the
formulation of percolation and upper layer, respectively. The timing of these events is hardly affected by hydrological model

structure or parameter sets, which implies that the timing of these events is dictated by the meteorological forcing. The timing

of low-flow events is not evaluated in this study, as the-analysis-was-hampered-by-hard-coded-towertimitsmany simulations
resulted in zero runoff for extended periods.

The results revealed a spread in the simulation of extreme runoff events as a consequence of different hydrological model
structures. The impact of different model structures is larger for the simulation of low-flow events compared to high-flow
events. For the low-flow events, hard-coded lower limits were found, implemented for numerical stability. This revealed the
numerical challenge that comes with simulating extremely low values. In this study, we interpreted these hard-coded lower
limits as zero runoff. The extreme events were assessed at different return periods. However, no clear relationship was found

between the model structural uncertainty in the magnitude of extreme runoff events and the return period length.
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Insights provided by this study contribute to a better understanding of the importance of the hydrological model formulation
of specific processes in different climate zones. These insights can be used in future studies, which will result in more adequate

model selection leading to improved understanding and more reliable predictions of extreme runoff events.
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Table A1. Description and range of the parameters that were sampled, based on Vitolo et al. (2015

Parameter  Description. Unit Values
Min,  Max

tfetragq  additive rainfall error mm o 0
fetryy. multiplicative rainfall error ~ 1
frchzne  fraction tension storage in recharge zone ; 005 095
maxwatry  depth of the upper soil layer mm 23 30
fprimgb  fraction storage in 1°" baseflow reservoir = 005 095
gbrates,  baseflow depletion rate 1°" reservoir day”! 0001 025
gbrateyy,  the baseflow depletion rate 2" reservoir day_’ 0001 023
9berms.  baseflow depletion rate day ! 0001 025
Maxwatrs  depth of the lower soil layer mm 30 5000
baserte baseflow rate mmday”' 0001 1000
tfracl fraction of roots in the upper layer ~ 005 095
pererte percolation rate_ mmday”' 00l 1000
percexp  percolation exponent . 2
sacpmlt  SAC model percolation multiplier for dry soil layer ~ 120
sacpexp  SAC model percolation exponent for dry soil layer . L S
AVpexp  ARNO/NVICD exponent ~ 0.0001 3
sareamax  maximum saturated area . 005 095
loglamb ~ mean value of the topographic index m . 10
tishape  shape parameter for the topographic index Gamma distribution ~ 23
9bpowsr. baseflow exponent ; 10
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The impact of hydrological model structure on the simulation of extreme runoff events
Response to Reviewers

Dear editor,

Thank you for organising the review process. Both reviewers consider this study relevant and interesting,
but also provided useful suggestions for further improvements. The main adaptations to the manuscript are:

e A different treatment of the hard-coded lower limits that our low-flow simulations touched upon. This
was not a direct suggestion from the reviewers, but it was inspired by the feedback from the reviewers
and relates to several points raised by the reviewers.

e Further clarified the procedure of the timing analysis

e Important considerations were added to the discussion, related to flash flood events, snow melt pro-
cesses, and the evaluated extreme event characteristics.

Please find below a point-by-point discussion, where our answers to the reviewers are indicated in blue.

Yours sincerely,

Gijs van Kempen
Lieke Melsen
Karin van der Wiel



Reviewer 1
Summary

In this study the FUSE framework to unserstand model structural error is used to investigate the effects
of model structure on extreme events in different climate zones. The authors do not use real catchments
to investigate the model structural effects but a synthetic approach with a given range of parameter sets
(the same for each all climate zones). The topic of investigating structural errors is very relevant and the
application in different climatic regions is interesting. The manuscript is written clearly and follows a logical
structure, even though not quite the classic one. While I generally like the methodological approach I am
not fully convinced in every aspect , which the authors might explain in more detail.

We would like to thank the reviewer for the careful evaluation of our manuscript.
Main points

The parameter ranges are taken from the original FUSE paper and applied in different climate zones. I
am not convinced that the parameter space is fully (or sufficiently) sampled using theses ranges. For very
different regions than the ones where the models were intended and developed for the ranges might be quite
different and a stop in increase of change using the Kolmogorov-Smirnoff test might not indicate that the
space as sufficiently sampled, but could also be that there is a region of the parameter space that is not
considered at all by the study set up.

We are not quite sure if we understand the point of the reviewer in this aspect. The upper and lower pa-
rameter boundaries are generally based on physical and conceptual understanding, and should in principle
capture all values that these parameters could reasonably take, independent of climate or catchment type.
As such, we do not doubt that the parameter ranges as provided by the FUSE paper are the right starting
point for the sampling.

Concerning the sampling itself; yes, given the high-dimensionality of the parameters and the relatively limited
parameter sample size, there will be regions in parameter space that are unexplored. That is, there will be
quite some space in between the samples. The Latin Hypercube Sampling (LHS) strategy, however, ensures
that we sampled over the full parameter range and that there are no ‘overlooked’ regions or corners - in other
words, with our sample size of 100 using an LHS sampling strategy, for each parameter 100 different values
are tested. Besides, in response to the feedback of Reviewer 2, we have increased the benchmark against
which the sample is tested to 5000 samples. There is still convergence around 100 samples, which implies
that most of the variability is already captured when 100 samples are taken, and only marginal increases in
variability can be expected when the sample size is further increased - at the expense of a lot of computer
power. As such, we believe that we took a valid approach.

T am also not fully convinced that the very same parameter range should be applied for the catchments that
can be found in different zones, hence I cannot understand why in the synthetic test these ranges should be
the same and not a plausible range known from or tested in real catchments from these zones.

We believe that applying the same parameter range to different climates is well-justified. Most of the hydro-
logic model parameters are determined by catchment properties such as landscape, geology, and land use,
that determine for instance storage capacity. There can be a large variation of different catchment properties
within the same climate zone, and therefore one can not beforehand limit or stretch the parameter range
based on climate only.

Of course, there are some relations between catchment properties and climate; elevation and/or slope can
for instance influence climate but also catchment storage properties, vice-versa climate can influence the
catchment through rain-induced erosion or through vegetation processes. However, this is difficult to predict
or translate to generalities and depends on long soil formation processes and historical climate conditions.
It is as such not straight forward to substantially limit the parameter range of hydrological models given a
certain climate. We are also not aware of any such endeavours or methods in the scientific literature.

How much do the additional snow routine parameters potentially influence the plausible parameter ranges
of the other parameters? I would argue that that could change quite a bit and again would expect some
kind of evaluation for instance by using real catchments from the respective regions.

From a conceptual point of view, there is no reason to assume that snow routine parameters influence the
parameter ranges of the other parameters. These ranges are determined independent of the snow process.
Of course, when one would calibrate a model, it would make a difference for the final parameter values
coming out of the calibration if snow parameters were included or not, but the parameter ranges of the other
parameters would not be adapted for the calibration procedure.

How much could using the same parameters in the snow routine effect the results? The very same degree-day
was used despite the different climate zones. for snow influenced catchments the snow routine is crucial and
varying for instance the degree day will have large differences in the simulations. Please discuss



Since we only use one snow formulation (the degree day method), the snow processes are not a central part
of this study; for all other processes, we use several formulations. For a fair comparison, we think it is
cleanest to keep the snow parameters fixed and consider this a pre-processing part. Also sampling the snow
parameters would probably further broaden the uncertainty bands around the simulations.

It is true that in some climates, extreme events might be influenced by snow, and we currently do not account
for that. We have added and clarified this point in the discussion (line numbers 378-382).

One of the objectives of the study is to link extreme event via their return periods to their sensitivity to model
structure if the extreme events are simulated. The authors use daily data and daily simulation, however,
often very large events occur at shorter time scales. How could the approach be extended to these or would
that shift the return periods very much? I assume that might be particularly relevant for arid zones.

Indeed in arid zones, extreme events are often related to flash floods which last for a few hours only. It would
require higher temporal-resolution climate model output in order to be able to simulate such events. This
would be computationally quite challenging, given also the localized and convective nature of the rainfall
that triggers such flash floods. Our return-period method does allow for relatively easy translation from
daily to hourly, but we are limited here by the possibilities on the climate modelling side. Currently, we
implicitly assume that the 24h mean would also be among the highest if a flash flood occurred within those
24 hours. This is of course not necessarily the case. We thank the reviewer for this valuable suggestion and
added a discussion on short extreme events, as being particularly relevant in arid climates (line numbers
365-368).

The extreme events were selected by using the minimum and maximum, for many studies on extreme values
(particularly low flows) a moving average is used to avoid effects of oscillations etc. in these ranges. Maybe
that would also solve some of the problems with the hard-coded threshold?

We would like to thank the reviewer for this valuable suggestion. Indeed, using a moving average is not
uncommon for evaluating low flows. We have checked our results and evaluated the impact of using moving
averages of up to 7 days for the minimum flow. However, since we are looking at quite extreme events, in
all cases the lowest low flows persisted longer than 7 days, indicating that using a moving average did not
make any difference to the results.

We have, however, decided to interpret the hard-coded lower limits in a different manner. The lower limits
themselves might be numerical artefacts, but conceptually, these lower limits indicate that the river has run
dry. For every model run, we have evaluated what the hard-coded lower limit was (this differed per model
structure), and set this equal to 0. As such, we no longer find significant differences between two models if
both models reach their hard-coded lower limit, since they were both set to 0 and both indicate that the
river falls dry. We think this is conceptually much stronger and it puts less emphasis on numerical artefacts.

Extreme values are looked at only in terms of timing and maximum/minimum simulated streamflow. Other
parts of the events might be interesting as well (event volume, deficit, duration etc.), while I see that that
is not the focus of this study, I would appreciate a couple of words on these and how easy or difficult the
proposed method could be extended to these characteristics.

We agree with the reviewer that max and min flow are only two of many relevant signatures of hydrological
extremes. We have added a section to the discussion, where we discuss several other signatures that could
be investigated in the same fashion (line numbers 422-430).

Minor comments

The terms ”drought” and ”low flow” are not clearly distinguished. While one (drought) can lead to the
other, low flow is a seasonal characteristic of the flow regime. Maybe use instead of simply drought the
term ”hydrological drought” but since the study is really about low flows, why not fully leave out the term
drought?

We agree with the reviewer that the terms were used interchangeably and that this could cause unnecessary
confusion. We have replaced all instances of ‘drought’ to low flows (expect for the first sentence).

Form: the results part is slightly mixed with discussion parts (referring to other studies). Then a synthesis
follows and then, when the reader would expect conclusions, a new discussion part starts. While it is
interesting in a way, I would propose to change the order. A reader that is looking only at specific parts
can easily find them without having to go through the full paper. The discussion bits in the result part
could together with the synthesis become the first part of a discussion before going into the discussion about
limitations of the study setup.

We thank the reviewer for this suggestion. We have restructured the manuscript by moving the synthesis
part to the discussion section.

All minor textual suggestions have been implemented and addressed.



Reviewer 2

The manuscript of Van Kempen et al. deals with the influence of model structures on the magnitude
and timing of extreme events. To do so, the FUSE framework was used with ten model structures and
100 parameter sets. The models were applied for four different climate zones and forced with a simulated
timeseries of 2000 years. The authors show that alterations in percolation and evaporation affect mostly the
magnitude of high flow events, especially for the cold and temperate climate zones. For low flows, especially
the lower and upper formulation mattered. Generally, the model structural uncertainty was found to be
higher for the low flow situations. In the arid and tropical climate zones, almost all model simulations
agreed on the timing of the events, which showed a reduced influence of the model structure.

Generally, I like how the authors approach the problem and believe the article is clearly written and to-
the-point. It is relatively short, but concise. Nevertheless, there are several issues that the authors may need
to address.

We would like to thank the reviewer for taking the time to review our manuscript. We are happy to read
that the reviewer appreciates our approach.

Main points

First, I am not sure if the parameter sampling strategy is sufficient. A sample size of 100 parameters is, in my
view, extremely low. I like how the authors use a K-S-test to assess whether the sampled distribution differs
from a benchmark set, and believe also that this could be a good approach to determine the appropriate
number of samples. However, the benchmark sample size is also just 500 samples, which is also still relatively
low. With eleven parameters, this means that the sampling density (defined as Nfl /p), with p the number
of dimensions and N the sample size), is just around 1.76. In other words, on average, there are less than two
samples per parameter. I think this sample size should be increased to at least a couple of thousand, then
the KS-test makes more sense and can be used to select a lower, proper number of samples for the rest of
the analysis. Of course, I fully understand that there will be a computational burden to it, but the authors
could do this also for a shorter time period as the 34 years used now in order to save resources.

We agree that the parameter sampling is rather coarse, indeed because of computational constraints. Testing
for shorter time periods however, has the disadvantage that we then cannot test the effect of parameters on
the kind of events we are interested in (extreme events with long return periods, 34 years is already relatively
short for that). Furthermore, we would like to emphasize that we used a Latin Hypercube Sampling Strategy,
this means that for a sample size of 100, each parameter has 100 different values because the parameters are
all sampled at the same time (this can be done under the assumption that the parameters are independent).

Based on the feedback of the reviewer, we have increased our benchmark sample size to 5000 where this used
to be 500 (see Figure 2 of the revised manuscript). We still observe that the D-statistic starts to stabilize
at around 100 parameter samples, therefore we do think we can safely assume that a sample size of 100 is
a reasonable size to capture variability introduced by parameters. This number seems smaller than found
in many other studies, and probably relates to our variable of interest - only the maximum and minimum
discharge.

The authors are also quite critical on their own results regarding the low flow events, which is a very good
thing in itself. However, if there are indeed so many numerical artefacts here, and we can not fully trust the
results, it may just be better to completely leave this analysis out and focus on the high flow analysis.

As indicated in our earlier response on this review, we have considered focusing only on high flows based on
the results, but in the end made a deliberate choice to include the low flow results as well, to overcome the
so-called “publication bias” where only positive results are published.

We did, however, re-evaluate the way we treat low flows and the numerical problems, and decided to take a
different approach. The lower limits themselves might be numerical artefacts, but conceptually, these lower
limits indicate that the river has run dry. For every model run, we have evaluated what the hard-coded lower
limit was (this differed per model structure), and set this equal to 0. As such, we no longer find significant
differences between two models if both models reach their hard-coded lower limit, since they were both set
to 0 and both indicate that the river falls dry. We think this is conceptually much stronger and it puts less
emphasis on numerical artefacts. As such, we feel more confident in presenting the low flow results.

I also wonder how much the cell-based approach matters. Especially regarding floods, the size of the catch-
ments matters, as the flood-wave will be routed through the river-network. There was no routing model
included, so how much will this make a difference in the results? Or, in other words, are the cell sizes small
enough to ignore the routing effects?

Our text was confusing considering the routing. We did apply a simple routing scheme, but kept the scheme
and the parameters fixed. Indeed when applied to a specific catchment, the catchment size and the temporal
resolution will determine whether routing can be ignored or not. The effect of the routing parameters on
the peak are known, namely delay and attenuation, and consistent among the different model structures if



the same routing procedure is applied. The routing has no effect on the generated runoff itself. Therefore,
we decided to not to sample the routing parameters.

This can most clearly be explained for the high flows which we evaluate at max peak discharge: the routing
parameter that decreases the peak height (by increasing diffusion) would dominate the results. Therefore,
all other signals related to the underlying processes get lost, while all that the routing does is redistributing
the runoff over time.

In the non-synthetic case, the routing parameters can be calibrated to a discharge outlet, but this is not the
case for our synthetic study. Sampling the routing would lead to a result already known beforehand; the
parameter that leads to lowest diffusion leads to highest peaks, but this does not provide any insights in the
underlying processes. We have added an explanation to the main text (line numbers 141-145).

Lastly, it is not fully clear to me how the analysis on the timing of the extreme events works. Why do the
resulting bar charts in Figure 7 have a varying number of events on the x-axis? Do these correspond with
different parameters, model structures or different return periods?

The timing analysis is indeed rather complex. To explain the numbers on the x-axis: Since we evaluate
the timing of events with a 500-year return period and we have a simulation period of 2000 years, each
simulation will have 4 of these extreme events. If all the different simulations (with combinations of different
parameters and different model structures) agreed upon the timing of this extreme event, indeed only 4
events would be identified in total, and the x-axis would go to a max of 4 with 4 fully filled stacked bar
charts (indicated as the “theoretical max”). The number on the x-axis indicates the number of extreme
events with a different timing. So, if the x-axis goes up to 20, it means that across all the simulations,
20 different 500-yr return period events with a different timing can be found. The higher the number on
the x-axis, the more variation there is among the different simulations in the timing of 500yr-return period
events. The height of the bar chart indicates how many simulations identified a particular event. In the
temperate climate, for instance, 1 event is identified by all simulations because it has a fully coloured bar
chart. However, there is large disagreement about the timing of the other 3 events given that 38 events
with different timing were identified. We have elaborated on the explanation of this procedure (line numbers
200-232). We hope the explanation is now clear.

To conclude, the manuscript is very promising and interesting. I really like the methodology, and think
the article is well written. I hope the authors find my comments useful and I look forward to an improved
version of the manuscript.

Thank you!

All minor textual suggestions and required clarifications have been implemented.
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