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Abstract. Daily polar orbiting satellite thermal detections since 2002 were used as the baseline for quantifying wildfire activity 

in the mixed grass and agricultural lands of southernmost central Canada.  This satellite thermal detection record includes both 

the responsible use of fire (e.g. for clearing crop residues, grassland ecosystem management, and traditional burning), as well 

as wildfires in grasslands and agricultural lands that pose a risk to communities and other values.  A database of known wildfire 10 

evacuations and fires otherwise requiring suppression assistance from provincial forest fire agencies was used to train a model 

that classified satellite fire detections based on weather, seasonality, and other environmental conditions. A separate dataset of 

high-resolution (LANDSAT 8 thermal anomalies) of responsible agricultural fire use (e.g. crop residue burning) was collected 

and used to train the classification model to the converse.  Key common attributes of wildfires in the region included occurrence 

on or before the first week of May with high rates of grass curing, wind speeds over 21 km h-1, relative humidity values 15 

typically below 40% and fires that are detected in the mid-afternoon or evening.  Overall, grassland wildfire is found to be 

restricted to a small number of days per year, allowing for the future development of public awareness and warning systems 

targeted to the identified subset of weather and phenological conditions. 

1 Introduction 

Wildfire is a widespread and commonplace phenomenon in Canada, with contexts ranging from an integral component of 20 

traditional land use (Lewis et al., 2018), a purely natural disturbance (i.e. lightning ignition) process with little human impact 

(Whitman et al., 2018), to a devastating natural hazard to communities (Christianson et al., 2019).  Fire (both human and 

natural ignition) is most common in Canada in its interior, west of the Great Lakes and east of the Rocky Mountains, where a 

belt of high fire frequency extends from the subarctic forests of the Deh Cho (Mackenzie Valley) through to the drier southern 

boreal forest-grassland transition (Boulanger et al., 2014).  Within this broad north-south transect, the density of values at risk 25 

varies greatly, from sparse communities in the northern forest with limited industrial activities to a dense matrix of industry 

with dispersed agriculture and rural habitation (Johnston and Flannigan, 2018).  At the southern limit of the boreal forest in 

western Canada, climatic limitations to widespread forests created a natural ecotone towards a more open deciduous forest and 

grass parkland (Hogg, 1994; Zoltai, 1975), which has been almost entirely converted to intensive agriculture with a steady rate 
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of increasing agricultural conversion (Hobson et al., 2002).  This is in contrast to the United States, where extensive natural 30 

grasslands intermix with dry conifer forests in areas of greater wildfire occurrence (Gartner et al., 2012). In Canada, at the 

southern forest limit and further south, the wildland-urban interface transitions to widespread human agriculture and only 

patches of broadleaf (deciduous) aspen forest (Hogg, 1994). Though smaller, localized grasslands in a larger matrix of forest 

are readily integrated into local wildfire likelihood assessments (Parisien et al., 2013), large-scale assessments of wildfire 

likelihood are often based on modelling that utilizes forest fire management agency records (Parisien et al., 2013; Stockdale 35 

et al., 2019), and therefore exclude wildfires in agricultural areas where no such land management agency records exist.  In 

this primarily agricultural region, controlled agricultural burning is commonly used to burn off excess crop residue (Chen et 

al., 2005).  The use of a purely thermal remote sensing approach to determine the risk of wildfire (Rogers et al., 2015)  (i.e. 

fires being actively suppressed but not under control) can count responsible fire use in agriculture as wildfire occurrence. 

 40 

In Canada, both forest fire and grass fire likelihood and spread are predicted using a common system, the Canadian Forest Fire 

Danger Rating System (CFFDRS), developed and maintained by the Canadian Forest Service starting in the 1930s.  The system 

allows for the prediction of grass fire rate of spread (metres/minute), fire intensity (equivalent to flame height), and expected 

growth rate (fire size over time).  Fire weather is quantified using daily temperature, humidity, and wind speed, with grass 

curing (the ratio of dead grass to live grass) being a critical variable that controls grass fire behaviour. Under the Canadian Fire 45 

Weather Index System (Van Wagner, 1987), the fire danger classes for public awareness (i.e., Low, High, Extreme, etc.) are 

based on a scaling of the expected head fire intensity of an idealized pine stand with a pine needle surface fuel bed.  In this 

type of forest, wind speed, humidity, and drought will impact fire behaviour, but the lack of deciduous trees or understory 

vegetation negate seasonal phenology beyond needle flush.  When this Fire Weather Index scheme is then applied across 

regions dominated by grasslands, agriculture, or deciduous tree or shrubs, the Fire Weather Index alone and associated Fire 50 

Danger classes need to be adjusted for leaf-on or greenup conditions (Alexander, 2010; Chéret and Denux, 2011). 

 

Recent research in Australia has highlighted the importance of grass fuel loading as a negative influence on fire rate of spread, 

whereby a doubling of grass fuel load from the standard assumption of 0.35 kg of fuel m-2 to 0.70 kg m-2 results in a 10 % 

reduction in spread rate (Cruz et al., 2018).  Conversely, a 50 % reduction in fuel load results in between a 10–30 % increase 55 

in spread rate; flame height (proportional to fireline intensity) increased to the power of 0.60 with increased fuel loading 

however, meaning a doubling of fuel loading results in a 50 % increase in flame height.  Accordingly, under dry conditions, 

light agricultural residues may burn with high rates of spread though lower flame heights, while higher fuel loads in agricultural 

residues would likely burn slower but with substantially larger flames.  In mixed forest and open grass-type fuel landscapes, 

the lower intensity of grass fires despite the higher spread rates typically results in higher rates of successful fire suppression 60 

for grasslands in empirical (Finney et al., 2009) and modelling (Reimer et al., 2019) studies compared to standing forest. Rapid 

fuel moisture gains during typical night-time periods results in limited nocturnal fire activity potential (Kidnie and Wotton, 

2015) except during exceptional periods of sustained wind and very low humidity (Lindley et al., 2019). 

https://doi.org/10.5194/nhess-2020-145
Preprint. Discussion started: 15 May 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

 

 

The overall goal of this study is to examine the differing environmental conditions most common during agricultural fires, and 65 

to contrast that with documented wildfires in the region.  The first specific goal is to apply a classification model to historical 

fire thermal detections (2002–2018) in order to determine the relative densities of agricultural burning and smaller, mostly 

undocumented grassland wildfires.  The second goal is to develop an initial data-driven wildfire occurrence criteria usable for 

public warning specific to grassland and agricultural regions of southern Canada. 

2 Materials and Methods 70 

2.1 Study Area 

The study area encompasses the entire primary agriculture zone of central-western Canada (Prairies) as well as the forest-

agriculture mix that extends north (to 58⁰ N at its furthest point) and east to (as far as 96⁰ W) where the shallow granitic soils 

of the Canadian Shield are found (Fig. 1).  The southern limit of the study area is the United States border at 49⁰ N, and the 

western limit is the continuous forest and protected areas of the Rocky Mountains.  The climate of the region is cool and 75 

continental, with mean annual temperature ranging from 0.6⁰ C in Peace River to 5.9⁰ C at Lethbridge. The number of frost-

free days is as few as 119 in Peace River, and as many as 132 in areas east of Lethbridge.  Foehn winds (locally known as 

Chinooks) on the eastern side of the Rocky Mountains cause periodic temperature increases above freezing during winter, 

allowing for occasional winter grass fires.  Snowmelt typically occurs in March-April in the southern extent, and April- early 

May further north.  Annual precipitation varies from close to 600 mm in the easternmost edge of the study area near Winnipeg 80 

to as little as 316 mm in areas northeast of Lethbridge. Precipitation is heavily weighted to convective precipitation in the 

months of June-August. April and October are typically the two driest snow-free months.  

 

Overall, 42 % of the study area is agricultural land or grasslands.  Land ownership in the agricultural area is almost entirely 

privately held, with the exception of First Nations reserves (1.6 %), parks and protected areas (2.4 %), and provincial grazing 85 

reserves (1.8 %).  Wildfire response is primarily volunteer-driven at the local community level (McGee et al., 2015).  At the 

northern fringe of agriculture, private land is intermixed with provincially (sub-national) owned lands that are managed 

primarily for timber, and wildfire response is entirely the responsibility of provincial fire management agencies outside of 

settlement boundaries.  Remotely-sensed land cover data at 30 m resolution (Agriculture and Agri-Food Canada, 2018)  was 

used to distinguish forested areas from open fuels (including permanent croplands, pastures, native grasslands, and treeless 90 

wetlands) all of which share similar phenology and flammability.  Broadleaf crops vs cereals were not distinguished. 

2.2 Fire occurrence records 

In the forest-agriculture mix, we used comprehensive fire history records from wildfire management agencies, as compiled in 

the Canadian National Fire Database (CNFDB) (Hanes et al., 2018).  In the agricultural zone, the CNFDB provides only a 
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partial sample of wildfires in the region, as larger fires that required a mutual aid response from provincial agencies are 95 

documented in the database, despite not being located in the provincial wildfire agencies area of responsibility.  Additional 

reporting on wildfire occurrence in the agricultural zone is provided by the Canadian Wildfire Evacuation Database (Beverly 

and Bothwell, 2011), which since 2010 has collected information on wildfire evacuation in grassland areas in addition to forest 

fires dating back to the 1980s. 

 100 

Records from fire management agencies and evacuations provide a partial sample of the true extent of wildfires in the 

agricultural zone, and capture completely the occurrence of wildfire in the provincial forest.  Remotely-sensed thermal 

detection of active wildfire from the polar-orbiting NASA Aqua and Terra satellites that pass over Canada at 1300h local time 

were used as a spatially unbiased (but time-limited) sample of fire activity in the area.  A standard MODIS collection from 

2002-2018 (MOD14A1 and MYD14A1) (Giglio, 2015) with 1 km resolution was screened for persistent industrial heat sources 105 

and combined with a grid of daily Canadian Fire Weather Index system variables (Lee et al., 2002) to produce a database of 

fire thermal detections that spans both the responsible use of fire in land clearing and vegetation management, as well as out 

of control wildfire (Fig. 2).  Thermal detections associated with fire agency records or evacuations (see supplementary 

materials for details) were set aside for later model creation and validation. 

 110 

The responsible use of fire in the region includes traditional burning by First Nations, prescribed burning by fire management 

agencies to reduce fuel loads in grasslands (McGee et al., 2015), burning of crop residues (Chen et al., 2005), and pile burning 

during land clearing operations where residual tree biomass is burned during agricultural land conversion (Hobson et al., 2002).  

Other than prescribed burning, no official documentation exists for this type of fire use, and could otherwise be conflated with 

wildfires as documented by remote sensing.  In order to discriminate between responsible fire use and wildfires, we used the 115 

30 m short-wave infrared thermal detections from the LANDSAT 8 satellite (Kato et al., 2018) in order to classify clusters of 

thermal detections as fire use if they correspond to geometric patterns associated with prescribed burning or other controlled 

fire (Fig. 3).  A total of 41 LANDSAT hotspot clusters were manually classified in this manner; fire weather and landcover 

was associated with these detections similar to the MODIS detections.  These LANDSAT detections are limited in spatial scale 

as the satellite only returns over an area every two weeks, so these records are at best a small sample of the entire fire activity 120 

in the region (approximately 1/14, or 7 %), and only a sample of LANDSAT data was used in this study.  All responsible use 

of fire is referred to as agricultural fire in this paper. 

 

2.3 Satellite grass curing 

Grass curing (the fraction of dead grass with moisture content controlled by atmospheric conditions) is the primary control on 125 

the fire spread potential in grass fuels, overriding all other factors (Cruz et al., 2015).  However, capturing the complexities of 

plant phenology in the simple daily weather scheme used by the Fire Weather Index system or similar scheme is challenging 
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(Jolly et al., 2005).  For this retrospective analysis, we leverage satellite greenness as a proxy for grass curing, similar to 

(Pickell et al., 2017).  In this study, we leverage historical 16-day composite NDVI (MOD13Q1 and MYD13Q1) (Didan et al., 

2015) at 250 m resolution.  A simple linear transform was used to convert between NDVI and percent curing: 130 

 

𝑃𝑐𝑢𝑟𝑖𝑛𝑔 =  
𝑁𝐷𝑉𝐼𝑡−min (𝑁𝐷𝑉𝐼)

max(𝑁𝐷𝑉𝐼)−min (𝑁𝐷𝑉𝐼)
      (1) 

 

Where NDVIt is the measured NDVI at time t, min(NDVI) represents the per-pixel minimum snow-free NDVI value, and 

max(NDVI) is the per-pixel maximum NDVI climatology.  Both the min and max values are based on the average of the annual 135 

maxima and minima from 2002 to 2014 (i.e. n = 12 per pixel for both min and max calculations). 

 

All hotspot clusters with less than 40 % open fuels (grasslands, croplands, and treeless wetlands) were not considered grass 

fires and were eliminated from this study.  It was noted that there were several hotspot clusters remaining near Fort McMurray, 

an area known not to have much grass.  These clusters were also eliminated from this study, as they looked to be in a previously 140 

burned area dominated by shrubs, grass, and aspen, rather than a prairie grassland.   

2.4 Classification of thermal detections 

In total, 113 MODIS clusters (representing 576 total individual hotspots) were associated with documented wildfire, and 41 

MODIS clusters, confirmed to be agricultural controlled burning via LANDSAT imagery, were classified as agriculture fire 

use.  These data were then used to build models to classify the hotspot clusters as either agriculture fire or wildfire using 145 

Generalized Additive Models (GAM) as binomial models (binary of wildfire or not) were built using the R package mcgv 

(Wood, 2019), with splines used for variables with an expected non-linear response such as Day of Year, hour of detection, 

wind speed, and curing (Eq. (1)).  This model was validated using leave-one-out cross validation. These GAMs account for 

multiple non-linear responses but not interactions between predictors. Alternately, regression trees were constructed using the 

rpart package (Therneau et al., 2019) to classify wildfires from thermal detections using a simple conditional threshold-type 150 

model. Percent grass curing was not used in the model, as it is highly site-specific compared to the weather variables that vary 

only regionally on a given day.  As a result, only wildfires and agricultural fires with moderate to high curing (>40 %) were 

used to build the regression tree. 

3. Results 

Environmental, remotely sensed, and weather variables related to the distribution of agricultural vs wildfires are shown in Fig. 155 

4.  Both fire types (agricultural vs wildfires) show a strong peak in the spring period after snow melt (Day of Year, Fig. 4a), 

centred on late April and early May, with a slightly earlier peak for wildfires.  The curing fraction of the grass or agricultural 

residue is lower for wildfires compared to agricultural fires (Fig. 4b), which may be due to NDVI artifacts from tillage (Zhang 

https://doi.org/10.5194/nhess-2020-145
Preprint. Discussion started: 15 May 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

et al., 2018).  The hour of first detection (Fig. 4c) is largely limited by the 1300h local time overpass at nadir for MODIS.  

Night-time fire detections at the (0100 h) local 1am overpass are rare even for the wildfires.  Pre-fire drying conditions as 160 

parameterized in the Fire Weather Index (Duff Moisture Code (DMC) and Drought Code (DC)) show much larger right skews 

for wildfires.  In the case of the DMC (Fig. 4d), which represents the moisture content of the forest floor beyond 2 cm depth, 

26% of the wildfire data have DMC values beyond the maximum DMC for agricultural burning of 67 (approx. 17 days without 

rain exceeding 1.5 mm).  DC (Fig. 4e) shows a similar trend: 5% of agricultural fires have a DC of 470 or greater compared 

to 27% of wildfires.  Observed fire weather values (noon local standard time measurements of surface weather on the day of 165 

first fire detection) showed a meaningfully larger number of wildfires when relative humidity (Fig. 4f) was below 20 %, more 

agricultural fires when noon air temperatures are below 10°C (Fig. 4g), and far more wildfires when noon 10-m wind speeds 

exceed 25 km h-1 (Fig. 4h).  The noon temperature, relative humidity, and wind speed form the basis of the calculation of the 

Fine Fuel Moisture Code (Fig. 4i) which shows a peak for agricultural burning at FFMC 90 versus 92 for wildfires.  Finally, 

the natural logarithm of the Fire Radiative Power (FRP) of the MODIS detection (Fig. 4j) showed far more variance in wildfires 170 

compared to agricultural fires. No agricultural fires exceeded 400 MW in the sample of confirmed agricultural fires. The 

median number of thermal detection points per wildfire was 2 but as high as 55, in contrast with agricultural fires where the 

maximum number of thermal detections in a cluster is 6. Only 16 % of wildfires contained more than 6 hotspots in a cluster. 

 

The above variables were assessed in a binomial generalized additive model, shown in Fig. 5.  The GAM model was able to 175 

explain 68 % of the variance in the data, with strong non-linear predictors in Day of Year, curing, and wind speed.  Hour of 

detection, relative humidity and DC were found to be significant in the GAM model as linear predictors, with odds ratios 

(increased rate of wildfire per integer increase in predictor value) of 1.32x per hour, 1.17x per unit decrease in RH, and 2.45x 

per hundred units of DC.    Despite the lack of interactions between predictors in all GAM models, the model had a high overall 

predictive power when tested using a leave-one-out framework, with sensitivity of 82 % (true positive rate), specificity (true 180 

negative rate) of 87 %, an area under receiver operating characteristic curve (AUC) of 0.88, and a Critical Success Index of 

0.78 (Table 1).  The cutoff of the overall GAM model binomial output of 0.70 provided the optimal model performance. 

 

A simple decision tree was constructed from the same dataset to look at simple threshold-based classification schemes. (Fig. 

6).  An Initial Spread Index (ISI) (proportional to the fire’s rate of spread) was found to be the strongest predictor, with 92 % 185 

accuracy in predicting wildfires vs agricultural fires.  Next, the Fine Fuel Moisture Code was also found to correctly classify 

98 % of fire detections when wildfires are classified ISI >=15.  For fires with ISI <15, high percent curing (i.e. low NDVI, 

indicative of plowed fields in the vicinity or recent adjacent agricultural burning) over 86 % was a strong indicator of controlled 

agricultural burning, with 84 % accuracy.  In areas with lower NDVI/curing values, ISI values >= 11 (but under 15) were 

wildfires 90 % of the time, and lower ISI values showed no meaningful pattern, with 58 % being agricultural burns.  Overall, 190 

the single threshold of ISI >= 15 appears to be the best balance between simplicity and accuracy, as it correctly identifies 82 

% of all the fires with little commission of only one agricultural fire.  The meteorological conditions resulting in an ISI >= 15 
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are shown in Appendix A.  Overall, this decision tree model had a lower AUC of 0.78 compared to the GAM, where as the 

decision tree had a higher True Positive Rate of 0.95 and a far lower True Negative Rate of 0.60 (Table 1).  However, the 

Critical Success Index of 0.82 and overall Accuracy of 0.85 is slightly better than the GAM. A total of 11 wildfires in early 195 

May of 2009 occurred at reportedly low values of DC (<100).  A DC of 100 is far below the minimum DC recorded for 

agricultural fires (which generally have DC that is lower that wildfires), and resulted in a terminal node of wildfires at a very 

low DC with no regard for ISI.  This would lead to the false conclusion that all detections with a low (wet) DC are wildfires.  

These observations were not included in the decision tree.  Therefore, the decision tree should be considered applicable when 

DCs exceed 100, a moisture condition range at which overwinter precipitation measurements can induce uncertainty into spring 200 

DC values (Chavardès et al., 2019). 

 

In addition to the classification trees presented in Fig. 6, some properties of wildfires show meaningful extreme values beyond 

all agricultural fires values with or without meaningful differences to overall distribution (Fig. 4) or as a linear predictor in the 

GAM (Fig. 5).  Median FRP between all agricultural burns (39 MW) and all wildfires (59 MW) are similar, and a non-205 

parametric Mann-Whitney U test on the two samples did not differ significantly (Mann–Whitney U = 1860, n1 = 113, n2 = 41, 

p < 0.44 two-tailed).  However, on the higher end of FRP, wildfires showed a much larger right skew to the FRP values, with 

the 99th percentile of agricultural fire FRP of 233 MW, while this corresponded to the 86th percentile of wildfire FRP (or the 

largest 14% of the wildfire data).  With the maximum observed wildfire FRP being 1174 MW, this allows for an additional 

logical scheme to discriminate wildfires from agricultural burning not captured in the above decision tree, where MODIS 210 

hotspot FRP values > 233 MW can be confidently classified as wildfires.  Similarly, median noon wind speeds between 

agricultural fires (15.5 km h-1) and wildfires (21.2 km h-1) were similar, though distributions differed significantly (Mann–

Whitney U = 1387, n1 = 113 n2 = 41, p = 0.0001 two-tailed).  Some 30% of wildfire wind speeds exceeded the 90th percentile 

of agricultural fire wind speeds (22 km h-1), allowing for an additional simple classification consideration for fire thermal 

detections during periods of high wind speed. 215 

 

When the GAM model is applied to the 24,316 hotspots clusters in the entire MODIS dataset, 30 % of hotspots were detected 

under conditions that are most similar to documented wildfires (Fig. 8), these have a strong regional gradient with more 

wildfires in the eastern portion of the study area.    The seasonal and spatial patterns along lines of equal longitude are portrayed 

in a Hovmoller diagram in Fig. 9. 220 

4. Discussion 

The dataset used in this study purposely utilized the longer-duration MODIS dataset from 2002 onwards, rather than the shorter 

duration VIIRS dataset from 2012 onwards.  Though both sensors are capable of fire detection in the midwave infrared, VIIRS 

is in theory capable of detecting smaller or less intense agricultural fires (Johnston et al., 2018; Zhang et al., 2017) which offers 
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little advantage when the goal is the detection of larger wildfires in the region.  Moreover, one of the goals of this study is to 225 

examine broad spatial trends in fire occurrence (Fig. 8), where a longer record is ideal.  Recently launched geostationary 

weather-oriented earth observation platforms such as GOES, Meteosat, and Himawari offer many advantages for monitoring 

short-lived wildfires, with scan rates every 10–15 minutes (Hall et al., 2019). The northern latitude of the study area (49–59° 

N) causes a severe degradation of the pixel size of GOES geostationary fire detections to 4 km and limited FRP resolving 

capacity (Hall et al., 2019).  The dataset and classification criteria presented here can assist in improving the confidence in 230 

real-time wildfire detection in these areas with widespread fire use on the landscape. 

. 

In all likelihood, many of these >7 500 wildfires identified over 17 years (or 441 fires per year over a 115 Mha study area) are 

smaller, briefly out of control fires where agricultural burning gets beyond direct suppression and burns over a number of 

adjacent agricultural fields until the wildfire encounters a roadway (typically over 10 m of fuel-free width), which readily stops 235 

most wildfires in grass and agricultural residue fuels (Cheney, and Sullivan, 2008).  Given the generally widespread dispersed 

population density of the area, the vast majority of wildfires in the region are detected and reported by the public (McGee et 

al., 2015), such that satellites as the first mode of wildfire detection is of limited utility in the region, compared to more 

northerly and remote areas (Johnston et al., 2018).  However, satellites provide a consistent technique for medium-resolution 

fire extent reporting and mapping that can prove useful for emergency managers (Lindley et al., 2019).  Moreover, wildfire 240 

growth modelling (Sá et al., 2017) and smoke dispersion forecasts (Chen et al., 2019) require  real-time analysis and forecasting 

initialized using remotely-sensed fire detections. 

 

Grass dries much quicker than the forest floor, meaning the largest discrepancy between forest floor (FFMC) and open grass 

moisture content lies within 2–3 days after rainfall where grass is drier, after which the moisture content in the FFMC and a 245 

Grass Fuel Moisture Content model are similar (Kidnie and Wotton, 2015).  In the decision tree model (Fig. 6), RH is not 

directly included, though FFMC values over 93 are found only during periods of low RH and multiple days since rainfall.  This 

is in contrast with (Lindley et al., 2011) who found that RH thresholds below 25 % and particularly below 20 % are responsible 

for most grassland wildfires in west Texas.  RH however is not an ideal proxy for fuel moisture across the wide range of air 

temperatures found in the region, as RH alone does not account for variable vapour pressure deficit at different temperatures 250 

(Srock et al., 2018).  The interaction of temperature and vapour pressure is parameterized to some extent in the FFMC (Van 

Wagner, 1987).   

 

The study region is often impacted by prolonged dry periods.  The study region experienced profound drought in the 1999–

2005 period (Hanesiak et al., 2011) that corresponds to the start of the study period.  Drought itself was a minor first-order 255 

predictor of grassland wildfire in this dataset, as an increase of 100 DC units (DC is wettest at zero and reaches ~700 in late 

summer droughts) results in the odds of a wildfire over an agricultural fire increase by 2.45 times.  In addition to the absolute 

value of the DC, drought itself in the grasslands and agricultural areas of North America results in significant reductions in 
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NDVI (Gu et al., 2007) that therefore directly increases grass curing as estimated in this study (Eq. (1)) and hence the window 

of grassland wildfire susceptibility.   260 

 

The thresholds at which agricultural fire detections are overtaken by wildfires occurs at fire intensity thresholds that correspond 

to the limits of ground-based wildfire suppression.  Following the Canadian Forest Fire Danger Rating System (Forestry 

Canada, 1992) for an O-1a (matted grass) fuel type, Initial Spread Index values of 15 with grass curing between 75–80 % (Fig. 

5), the resultant spread rate of 24 m min-1 (1.4 km h-1) and intensity of approximately 2 500 kW m-1 (flames 2 m long) is near 265 

the upper limit of suppression, particularly when fire sizes exceed 2–3 ha (Hirsch et al., 1998). 

 

Under climate change, the agricultural and grassland region of Canada is anticipated to move northward (Schneider et al., 

2009), though this rate of transition will be dampened in peatland areas  (Schneider et al., 2016) and those not disturbed by 

wildfire (Stralberg et al., 2018).  Natural grasslands are expected to increase particularly in areas of rapidly accelerating fire 270 

occurrence, where younger forests disturbed by severe wildfire are prone to large increases in grass cover (Whitman et al., 

2019).  Moreover,  a dense grass cover is problematic in recently planted forests north of the study region, as it can outcompete 

tree seedlings (Lieffers et al., 1993), and is likely to be exasperated by the expected lower overall canopy density (Lieffers and 

Stadt, 1994) brought about by a drier future climate (McDowell and Allen, 2015). Active conversion of forest to agricultural 

lands is likely to continue (Hobson et al., 2002),  as is the natural expansion of grasslands on drier, south-facing slopes in the 275 

boreal forest where their range is currently limited to at high latitudes (Sanborn, 2010).   

 

5. Conclusions 

A classification scheme was developed to discriminate remotely sensed agricultural fires vs wildfires in the southern grasslands 

of continental Canada through an analysis of historical wildfires and documented agricultural fires.  Effective schemes for 280 

discriminating fire types were produced using continuous data (Generalized Additive Models) as well as threshold-based 

classification trees.  A combination of weather, vegetation condition, and temporal variables provided the best predictors.  

Initial Spread Index values exceeding 15 at noon on the day of the fire was the most powerful threshold for identifying 

wildfires, grass curing values between 60–85 % was the best non-linear spline predictor in the GAM.  Fire Radiative Power 

was effective in discriminating wildfires only in the 14 % of wildfires with very high FRP values that exceeded the highest 285 

documented FRP in the agricultural fire dataset.  Similar discrimination utility was seen in the Drought Code.  Overall, the 

majority of the most power predictors of grassland wildfire stem from weather observations and remotely sensed metrics of 

the pre-fire environment, and are thus available for forecasting and real-time classification of satellite thermal detections.  This 

work provides a foundation from which future public warning products can be derived. 
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Figure 1. Landcover and study area extent. 
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 440 

 

Figure 2: MODIS hotspots in the study area from 2002–2018. 

 

 

Figure 3. Examples of processed Landsat images indicating fire detections considered agriculture burns.  Note the regular 445 

geometric patterns of the fires, specifically the line ignitions patterns and the burning of specific fields.  The presence of 

previously burned fields is shown north of the active fire in the centre panel, which is registered in this study as low NDVI and 

very high rates of curing. 
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 450 
Figure 4: Distribution of fire detection properties between wildfires (purple) and agricultural fires (blue). 
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Figure 5: Generalized Additive Model outputs for a binomial model of agricultural fire vs wildfire. The linear portions of the 

GAM coefficients (logit-transformed) are shown with Z values in panel (d), and the spline portions of the GAM are shown 455 

with Χ2 (Chi-square) estimates in (d).  Predictors significant at p < 0.01 are shown with **, p < 0.05 with *, and 0.1 > p > 0.05 

shown in italics. Logit-transformed parameter estimates of the GAM and Odds Ratios shown in panel (d). FRP = Fire Radiative 

Power; RH* = noon relative humidity, odds ratio shown as (estimate×−1), or odds ratio per unit decrease in RH; DMC† = 

Duff Moisture Code per 10 units; DC‡ = Drought Code per 100 units; FFMC = Fine Fuel Moisture Code. 

 460 

 

 

 

https://doi.org/10.5194/nhess-2020-145
Preprint. Discussion started: 15 May 2020
c© Author(s) 2020. CC BY 4.0 License.



18 

 

 

Figure 6. Simple decision tree scheme for the classification of agricultural vs wildfires, valid only for a subset of the dataset 465 

with Drought Codes exceeding 100.  The first set of numbers in each terminal node is the number of correctly classified records 

divided by the total number of records in that node.  The accuracy of each node is also given.  Note that high rates of curing > 

86% is associated with plowed fields or those previously burned in agricultural fires in the days prior (see Fig. 3). 

 

Figure 7. (a) Cumulative occurrence of wildfire hotspot detections r 625 km2 pixel) in the study region from 2002–2018.  A 470 

wildfire may contain one or more hotspots.  Panel (b) Cumulative occurrence of agricultural fire detections in the study region 

from 2002–2018. 
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Figure 8. Average number of days per year (2002–2018) where the fire weather and environmental conditions meet or exceed 475 

the criteria in Fig. 6 for a grassland wildfire. 
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Figure 9.  Hovmoller diagram showing seasonal patterns of wildfire vs agricultural fire.  In this diagram, the number of hotspot 480 

detections is summed across all latitudes within a longitude bin (x-axis), and is shown over time (y-axis).  Values are the 

cumulative sum of detections from 2002–2018. 

 

Table 1.  Generalized Additive Model (cutoff 0.70) and Decision Tree model performance metrics 

Metric GAM Decision 

Tree 

True Positive Rate - Sensitivity 0.82 0.98 

True Negative Rate – Specificity 0.87 0.48 

AUC 0.88 0.74 

Miss Rate 0.17 0.01 

False Positive Rate 0.12 0.51 

False Discovery Rate 0.05 0.15 

False Omission 0.32 0.09 

Critical Success Index 0.78 0.82 

Accuracy 0.84 0.85 

 485 

https://doi.org/10.5194/nhess-2020-145
Preprint. Discussion started: 15 May 2020
c© Author(s) 2020. CC BY 4.0 License.



 

Appendix A.  Observation density biplots of the fire weather associated with thermal detections (n = 3036) where the Initial 

Spread Index of the Canadian Fire Weather Index System is 15 or higher (3036 of 24316 total observations, or 12%).  Panel 

A: noon vapour pressure deficit vs wind speed (both local noon standard time) for all observations of ISI 15 or higher.  Panel 490 

B: relative humidity vs wind speed for the same subset.  Panel C: Fine Fuel Moisture Code vs wind speed. 
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