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Reviewer 1 

General comments 

The authors present an interesting study that has practical implications for wildfire management in Canada and potentially 

beyond. The authors explore the discrimination of grassland wildfires from agricultural/managed) fires in South Central 

Canada. Using terrestrial datasets and high-resolution Landsat 8 data, the authors carefully construct and classify a dataset of 5 

MODIS fire clusters and explore the relationships between these two classes of fire and various environmental/meteorological 

variables using GAMs and regression tree (RT) models. The work results in a series of parameter thresholds and value ranges 

that appear to be useful for pinpointing periods when wildfires are most likely, and could likely be used to enhance operational 

wildfire management in future.  This manuscript certainly merits publication in NHESS, however there are several areas where 

it could be improved prior to publication: 10 

The narrative and structure could be improved throughout (see specific comments) 

The methods need expanding, particularly with respect to the predictors chosen for inclusion in the models (some of this may 

be suited for inclusion in the supplementary materials). 

3) Some of the results/discussion points could be elaborated on further, and the importance of this work better highlighted. 

>>>  We thank the reviewers for their careful reading of the manuscript, and we document our responses and revisions below. 15 

 

Specific comments 

Abstract I would specifically refer to MODIS in the abstract, so it is immediately clear to readers what your primary RS dataset 

is. 

>>>We revised the abstract to read: ” Daily polar orbiting satellite MODIS thermal detections since 2002 were used as the 20 

baseline for quantifying wildfire…” 

 

1 Introduction 

 

[39] For clarity I would amend to something like “…control) is somewhat limited, and can erroneously count responsible fire 25 

use…” 

>>> Revised as suggested. 

 

[44] also add precipitation here? 

>>>Changed to : “Fire weather is quantified using daily temperature, precipitation, humidity, and wind speed…” 30 

 

[65-70] It would be good to elaborate on the goals slightly here. From reviewing this paper, my understanding is that you are 

particularly trying to use the GAM for goal 1, and then goal 2 is informed by both models, so I would state this more explicitly. 

Also, related to this, I would probably address here (or perhaps in Section 2 somewhere, under the current structure possibly  
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in 2.4) why you are building 2 different models e.g. you use the tree approach primarily for explanation, and the GAM for 35 

both prediction & explanation? I don’t think you clearly state anywhere your motivation for using 2 

different approaches. 

>>>  We’ve added a whole section 2.1 that immediately follows the goals stated at the end of the introduction.  The section 

more explicitly states the workflow.  We explain the rationale for the simplified decision tree at the end of section 2.1: “These 

known agricultural and wildfire hotspot clusters and associated fields were then used to create a Generalized Additive Model 40 

(GAM), which was used to classify the unknown hotspot clusters into agricultural or wildfires and produce maps of their 

relative occurrence (goal 1).  Additionally, a decision   tree model was also built on the confirmed wildfire vs agricultural 

hotspot clusters, to provide simplified classification thresholds (goal 2) for use in fire operations and as the basis for po tential 

public warning criteria.” 

 45 

 

[66] I would say “documented grassland wildfires” here just to make the focus completely clear. 

>>>Changed to: “…to contrast that with documented grassland wildfires in the region.” 

 

2 Materials & Methods General comment on methods: A lot of my questions / comments on Section 2 relate to dataset attributes 50 

that are either not provided or found in different subsections of the text. You use a lot of different datasets from different 

sources in this study, so a concise ‘datasets’ or ‘materials’ subsection that provides a list of each of these with useful basic 

information (data source, spatio/temporal coverage, resolution etc, as relevant) at the beginning of Section 2 would be useful 

– then readers can find all this information in one place without having to move backwards and forwards through different 

sub-sections. 55 

>>>  We now provide Table 1, which summarizes the datasets and their properties. We thank the reviewers for this helpful 

suggestion. 

 

2.1 Study Area 

Figures 1 & 2: These figures are very nicely presented, however it is not immediately obvious which areas are the study area. 60 

At first, I thought it was all of the area for which landcover data are provided, i.e. including the forested regions. From looking  

at later figures, I think the Ecumene delineates the study area? I would suggest you consider changing the name of this to 

‘study area’ for clarity, and change the colour of the boundary to something more obvious that the current grey, then maybe 

emphasise exactly where the study area is in the Figure 1 caption. Also, consider adding some of the info from the main body 

on the LC dataset to Figure 1 caption, and adding lines and/or ticks indicating lat/lon to these maps, as you refer to lat/lon 65 

locations in text – a reader not familiar with the region will have no context for this. 

>>> Map insets have been modified to show only study area, all in black to help clarify study area.  Lat/lon grid lines were 

added to maps.  Caption revised to: “Remotely-sensed land cover data at 30 m resolution (Agriculture and Agri-Food Canada, 
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2018) of our study area as of 2010 compared to the extent of the ecumene.  The study area extends past the ecumene to ensure 

all grass and agriculture are included.  The majority of fires analyzed in this study occurred within the agricultural ecumene.”   70 

 

In figure 2 – What data is shown in this plot exactly? The full MODIS fire record (i.e. contains fires in non-grassland as well 

as grassland fires) or just data after the filtering step described on line 138? The label ‘Grass hotspot clusters’ – makes me 

think the latter? As with Fig 1, I would expand this caption to include this kind of detail for clarity, also probably adding: 

whether this map is post-persistent hotspot filtering; the specific MODIS product it was derived from; the associated MODIS 75 

dataset citation. 

>>>Caption changed to: “Figure 2: Grass fire MODIS(MOD14A1 and MYD14A1)(Giglio, 2015) hotspot clusters in the study 

area from 2002–2018.  These hotspot have been screened for persistent industrial heat sources and clustered as described in 

the methods.” 

 80 

2.2 Fire occurrence records 

[93] I would consider stating the number of fires recorded over the study period from the CNFDB and evacuation dataset 

somewhere in this paragraph. 

>>>Added: “.  Eighty-four hotspot clusters representing wildfires were identified using the CNFDB and 15 additional hotspot 

clusters were identified using the evacuation record and were not otherwise recorded in the CNFDB.”  Added after clustering 85 

description. 

 

[94] I find the logic a bit confusing in the sentence on lines 94-96 (starting ‘in the agricultural zone…’) – perhaps reword it? 

You say that large fires are included in the CNFDB, but also that the CNFDB is ‘only a partial sample’ of fires in the region – 

so maybe you should be highlighting the fires that are not captured in this region by the CNFDB, rather than those which are? 90 

>>> Revised to: “ In the agricultural zone, the CNFDB provides only a partial sample of wildfires in the region.  The 

agricultural zone is not located in the provincial wildfire agencies area of responsibility, therefore, in this zone, only larger 

fires that required a mutual aid response from provincial agencies are documented in the database.”     

 

[106] what is the source of the FWI data? Presumably the official CFFDRS datasets, but worth clarifying here. 95 

>>> We clarify the source of the FWI data as: “A 3-km grid of daily basic surface meteorology at 12:00 local time (air 

temperature, humidity, 10-m wind speed, and precipitation sum over prior 24 h) as well as Canadian Fire Weather Index system 

variables using inverse-distance weighting (Lee et al., 2002) was constructed. The rasters constructed use the same surface 

station data as  McElhinny et al., 2020.” 

 100 

[101-110] I think you should probably state the number of total MODIS fire detections and introduce the clustering concept 

here with detail on the number of fire ‘clusters’ resulting from the clustering process described in the supplement.  
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>>> Revised as suggested.  We rearranged the manuscript so the clustering process was introduced here and included the 

number of clusters. 

 105 

2.3 Satellite grass curing 

[125] I’m confused as to how exactly this metric works. Eq 1 is the widely used min/max scaling (aka normalisation) applied 

to the NDVI climatology, so high values should imply high ‘greenness’ i.e. low curing? As such it is confusing to refer to this 

metric as ‘percent curing’ (also indicated in your GAM figure panel (b) x-axis as ‘per-pixel relative cured grass fraction (%)’). 

Inverting this relationship (or renaming it) might be more intuitive? Moreover, from reading line [188] in the results you say 110 

“high percent curing (i.e. low NDVI…” which seems to be the opposite of Eq. (1), so there seems to be some confusion 

regarding how this metric is calculated somewhere? Did you actually invert this metric but omit this detail from this section? 

>>>  Our mistake.  The equations should have a 1 minus in front of it.  That is a typographical error, and the equation in the 

analysis is correct.  Low NDVI is high curing, and high curing corresponds to high fire potential.  We use this curing fraction 

value to be consistent with the fire behaviour models, which using curing % from 0 to 100, rather than NDVI or greenness. 115 

 

I would also add the comment you make in the Landsat figure (the first Figure 3) caption to the main text somewhere here – 

that extremely high curing values can (somewhat counterintuitively) reflect prior agricultural burning/ploughing activity rather 

than dry veg – as this an important observation. 

>>> In the first paragraph of the results, we now state: “The curing fraction of the grass or agricultural residue is lower for 120 

wildfires compared to agricultural fires (Fig. 4b), which may be due to low NDVI(high curing) artifacts from tillage (Zhang 

et al., 2018) or adjacent previously burned area in the larger MODIS pixels. ”  We did not before add the comment on the 

previously burned area as we did in the figure caption. 

 

[138] I do not think the paragraph starting ‘All hotspot clusters…’ belongs in Section 2.3 as it stands. You don’t really mention 125 

‘fire clusters’ until Section 2.4, so it should go after this point. However, if you altered the MODIS paragraph [lines 100-110] 

in Section 2.2 by briefly describing the clustering process (that you describe in detail in the supp. materials), then this ‘ All 

hotspot clusters…’ paragraph could follow fit in 2.2. Furthermore, it is probably worth explicitly stating how variables were 

aggregated by clusters, rather than your current explanation in the supplement “An attribute was merged by max value, min 

value or mean, for each hotspot cluster, whichever was most appropriate” [line 39], as this not very detailed. 130 

>>> Rearranged as suggested.  Revised to include how variables were merged in supplementary material. 

 

2.4 Classification of thermal detections 

[145] more background information regarding (1) the model predictors and (2) model construction process is definitely 

required in Section 2 (some of which could go in the appendices, if necessary). For clarity purposes, I think you definitely 135 

need to explicitly state and describe all the predictors that were added to the two models, along with their source (information 
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could be in table form, and possibly a ‘datasets’ subsection as mentioned earlier), and where relevant, why those specific 

predictors were chosen over others. For example, FFMC, FWI, ISI often convey similar information -why was 

FFMC and not FWI or ISI chosen as predictors in the GAM, but ISI is used in the RT? 

>>>  We now clarify our choice in model selection inputs.  For the GAM: “Variables included for consideration in the GAM 140 

include surface weather variables, day of year, satellite curing fraction, as well as the fuel moisture codes (FFMC, DMC, DC) 

from the Fire Weather Index system.  Higher-order components of the Fire Weather Index System such as Initial Spread Index 

and Buildup Index were not used due to their derivation from fuel moisture codes and high correlation (Spearman’s ρ > 0.7) 

with those codes.”  And for the classification tree, we clarify: “Additionally, classification trees were constructed using the 

rpart package (Therneau et al., 2019) to classify wildfires from thermal detections using a simple conditional threshold-type 145 

model for use as simplified warning criteria (maximum of two variables).  Inputs directly related to hotspot detection were not 

included (i.e. FRP), as they are only obtained upon fire detection.  Variables that integrate multiple weather factors into a 

single index (i.e. Initial Spread Index or Buildup Index) were considered.” 

 

From reading the results section, I see that ‘hour of detection’ is derived from the 150 

MODIS dataset, however conceivably this could be information contained in the NFDB, and this sort of thing should be 

obvious from the methods.  I would indicate any standardisation / scaling of variables used in models here – e.g. DMC and 

DC were presumably scaled, as indicated in Fig 5(d) and detailed in section 3. 

>>  We now clarify that the NFDB does not contain hour of detection data.  We now clarify in section 2.2: “Off-nadir 

collections (Freeborn et al., 2014) were also utilized and the detection-specific detection hour was used.” 155 

 

Did you test for and exclude any variables from the models based on collinearity using e.g. a simple correlation threshold? I 

assume you made some such decision here, as for example, you have omitted ISI & FWI as GLM predictors, and they are 

typically strongly correlated with e.g. FFMC. Similarly, I suspect RH and FFMC could be highly (negatively) correlated. 

Please explain how you addressed this.  160 

>>> We now clarify this in the methods: “Higher-order components of the Fire Weather Index System such as Initial Spread 

Index and Buildup Index were not used due to their derivation from fuel moisture codes and high correlation (Spearman’s ρ > 

0.7) with those codes.  The high correlation (ρ = -0.73) between relative humidity and FFMC is noted, but both were used in 

the GAM.  All other variables in the GAM were correlated ρ < 0.5, and thus suitable  for landscape-level fire weather analysis 

and modelling (Parisien et al., 2012).” 165 

 

[149] what is your reasoning for not including interaction terms? Is this something that was initially explored and found to be 

unimportant, or were they not considered for simplicity reasons? I would be surprised if there were no relevant interactions 

between at least some of the predictors you have chosen to use.] 
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>>>  We’ve added the text to clarify our choice in GAM models: “ The non-linear partial effects terms in GAM models have 170 

been found to be superior to linear models with interactions in the examination of wildfire-environment data (Woolford et al., 

2010).”  

 

[150] re: the argument for excluding curing from the RF model – does this logic not also extend to the GAM? 

>>> That was included in error from a prior version of the manuscript.  It has been deleted. 175 

 

3 Results 

[160-170] if you add a description of the predictor variables/datasets in Section 2, you can omit the ‘background’ info you 

include here: defining the DMC, explaining derivation of the FFMC, explaining the fact that FWI vars are observed at noon 

etc. These type of descriptions probably shouldn’t appear in a results section. 180 

>>> Agreed.  We added a brief and relevant description of the fire weather metrics in the methods section: “A 3-km grid of 

daily basic surface meteorology at 12:00 (noon) local time (air temperature, humidity, 10-m wind speed, and precipitation sum 

over prior 24 h) as well as Canadian Fire Weather Index system variables using inverse-distance weighting (Lee et al., 2002) 

was constructed for every day during 2002-2018. The rasters constructed use the same surface station data as  McElhinny et 

al., 2020. The primary Fire Weather Index variables used include the Fine Fuel Moisture Code, Initial Spread Index, Duff 185 

Moisture Code, and Drought Code (Lawson and Armitage, 2008).  The Fine Fuel Moisture Code (FFMC) is a model of 

moisture content for fine dead vegetation material at the forest floor of a closed-canopy forest.  The FFMC utilizes all of the 

above basic surface meteorology to estimate drying rate with an exponential drying rate (time to loss of 2/3 of moisture content) 

of 18 hours.  It is used here as a proxy for the moisture content of dense matted grass thatch, with relative humidity alone a 

better proxy for the moisture content  (Miller, 2019) and ignition capacity (Beverly and Wotton, 2007) of standing grass.  High 190 

FFMC values indicate drier conditions, up to a maximum of 101.  The Initial Spread Index (ISI) is the product of the FFMCand 

the square of wind speed and is proportional to the forward spread rate potential for grasslands and other open vegetated fuels 

(Hirsch, 1996).  The Duff Moisture represents the moisture content of a forest organic soil layer as estimated by a simple 

precipitation and evaporation model.  It has an exponential drying rate of 12 days, and can be considered a metric of the bi-

weekly soil moisture budget.  Similarly, the Drought Code is a vertical water budget model (Miller, 2020) for a soil column 195 

with a 100 mm soil water capacity (similarly, larger values indicate drier conditions).  In this manner, the Drought Code has  

been shown to represent variations in surface water levels (Turner, 1972); a simple vertical water balance of precipitation and 

evaporation controls surface water extent in the prairies of Canada, where water routing to streamflow and groundwater 

infiltration is limited (Woo and Rowsell, 1993).  As such, the Drought Code is a proxy for the extent of saturated soil areas  

(wetlands and other surface pond water) that when sufficiently dry, increase the continuity of fuels on the landscape.“ 200 
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[176] I would expand slightly here by highlighting what the significant splines show (I don’t think you actually do this 

anywhere in the main body, but you do refer to the DoY criterion in the abstract?) e.g. wildfires are highly likely when: values 

of DoY <   ̴130, WS > 30, curing 65-85%. 

>>> We thank you for that helpful comment, and we add the text in the GAM results section: “Day of Year analysis showed 205 

that wildfires are 75% or more of detections for days prior to early May.  Wind speeds over 25 km h-1 or curing fractions 

between 50 and 85% were also indicators of the likelihood of hotspot cluster being a wildfire over 75%.“ 

 

Figure 5: You should explain panels (a)-(c) in the caption – at the minute you only mention panel (d). e.g. what are the blue 

lines (confidence intervals?) and black ‘dashes’ next to the axes (some kind of rug plot/distribution?). 210 

>> We now clarify in the figure caption that the axis ticks represent the marginal distribution of the data as a rug plot.  

 

Panel (d) of Figure 5 is a table, and so should be presented as such in the main body rather than as a panel of this figure. From 

Section 2.4 you suggest hour of detection was incorporated as a spline not a linear predictor, but in (d) it is a linear pred ictor 

–which is correct? 215 

>>>  We now treat hour of detection as a linear predictor only.  Panel (d) in the GAM plot is now Table 1. 

 

Is there a reason why you didn’t also include a plot of probability vs. FFMC in Figure 5 (as well as hour of day, if it was 

included as a spline?)  

>>> We now treat FFMC as a linear predictor (appropriate for the variable at its high end of 80+ as observed here).  This is 220 

reflected in the new Table 1 which is the GAM results. 

 

As mentioned earlier, DMC and DC are scaled before being used in the model, so this should be stated in the methods. 

>>> DMC and DC are not scaled, but rather we present the odds ratio of these linear predictors. 

 225 

 Why does RH have an asterisk next to it? I would not use this symbol here as you already use asterisks to signify significance 

in the same table, which is confusing. 

>>> We have now switched over to superscript numbers for all footnotes in the Figure. 

 

[184-201] decision tree results: This section is currently a bit confusing - I suggest it is restructured slightly, and some 230 

clarifications added. Firstly, how many fire clusters in total did you analyse here? I was expecting n=143 (113 wildfires + 41 

agricultural fires stated on line 143, minus the 11 DC < 100 fires mentioned later) but adding up the denominators in Figure 6 

it appears that n=95. Assuming I am reading Figure 6 correctly, shouldn’t these two numbers match? After introducing the 

regression tree in Figure 6, It might be worth immediately stating the number of fires analysed, and that you removed the 11 
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low DC wildfires (plus any other filtering you did?) before discussing the specific results shown by the regression tree, so 235 

readers don’t spend time looking for the ‘missing’ fires in figure 6. 

>>> Moved the discussion of the low DC wildfires to just before discussing the results, as suggested. 

 

[185] where is the 92 % accuracy figure from? Should this say 97 %? 92 % is not in Figure 6 or Table 1. 

>>> Fixed that typo, thanks for noticing that. 240 

 

[186] Not sure why you talk about FFMC here – was FFMC actually used in the regression tree model? It doesn’t appear in 

Figure 6. 

>>> Deleted.  Included by accident from an earlier version of the manuscript. 

 245 

[191] similarly, where does the 82 % value come from? not in Figure 6 or Table 1. 

>>> The 82% refers to the model’s sensitivity (which is given fractionally as 0.82) in Table 1.  We’ve revised this to be 

consistent between the text and the table. 

 

[192] I’m not sure about introducing Appendix A here, or actually including it in the paper at all (1) you don’t really highl ight 250 

what it adds to the study and (2) it uses the large fire dataset (>3000 fires) that you haven’t really introduced yet.  

>>> We include Appendix AFigure S2 so the reader less familiar with the Canadian Fire Weather Index System is able to 

visualize the parameter space of surface meteorology past the critical ISI 15 threshold.  The larger database it comes from is 

less important than the visualization of the parameter space shown, hence why we don’t emphasize the larger database here, 

just cite the sample size. 255 

 

[193-195] I would move the sentences comparing the GAM to the tree model, because you go from talking about just the tree 

model on line 192-3, to comparing the two models (193-195], and then back to discussing just the tree model [195-201], which 

is structurally hard to follow. 

>>>  Removed the comparison to the GAM in the text, as that is obvious in Table 1. 260 

 

[203-215] this is interesting. Did you try including FRP & wind speed in the tree model?  Seems like doing so could have 

added to tree classification skill? 

>>>  We did, but neither came out as significant in the model once ISI was introduced. 

 265 

[217-220] this paragraph (GAM applied to all clusters) feels like it might work better following the other paragraph on the 

GAM [lines 175-183] 

>>>  Moved as suggested. 
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[218] should this point to what is labelled as Figure 7 (the one with with two panel plots) rather than Figure 8? 270 

>>>Revised as suggested. 

 

Figures 7, 8 and 9: These are interesting figures, but you do not have much on them in either the results or discussion section 

(and in the case of figure 8, the ‘avg. no. days per year figure’, I don’t think you mention this figure at all!). Some explanation 

is definitely required, otherwise why are they here? 275 

>>>  Explanation of figures 7-9 added to results. 

 

4 Discussion 

General comment on discussion: 

Overall, you make some interesting points here, but several of them feel like they need expanding upon. I feel like you also 280 

don’t draw much from the ‘final’ outputs of the study (Figures 7-9) – surely these results warrant discussion? Also, this paper 

clearly has important implications for operational fire management in grassland/agricultural complexes of Canada (and 

possibly beyond) – while you do mention this, I think you should try to highlight this aspect further in the discussion. 

>>> More discussion on Figs 7-9 was added in the very last paragraph of the discussion. 

 285 

[222] this paragraph might go better in the introduction/datasets sections of the paper, as it is effectively a justification  of why 

you chose to examine MODIS rather than other options 

>>> Moved to methods and material section. 

 

[232] “> 7500 fires” this statistic is from which dataset? 290 

>>> Revised to “In all likelihood, many of the roughly 7 500 wildfire hotspot clusters classified by the GAM over 17 years…” 

 

[244-252] I’m not sure what the key point you are trying to highlight here is, so this probably needs clarifying. I think your 

main point is that FFMC is a reasonable proxy for grassland moisture content/fire occurrence in the study area? If this i s the 

case, it is interesting to me that (1) FFMC is not significant in the GAM and (2) FFMC is not included in the decision tree 295 

model (Fig 6), and this observation might merit further discussion here. 

>>> We’ve modified this section to remove the focus on the FFMC (which underlies the ISI metric used in the decision tree), 

and revised this as: “Both the GAM as well as the classification tree point the combination of critically dry fuel and wind as 

the drivers of wildfire occurrence in the region.  In the GAM model, both low RH (as a proxy for standing grass moisture), 

alongside indicators of bi-weekly (DMC) to monthly (DC) moisture deficit are significant in predicting wildfire occurrence as 300 

linear predictors, with a wind threshold in the range of 30 km h-1.  In the Canadian Fire Weather Index System, fine fuel 

moisture (mostly driven by low RH) is combined with wind speeds to calculate the Initial Spread Index as a single heuristic 
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(Appendix AFigure S2), and thus comes out as the strongest indicator of wildfire. Lindley et al., 2011 found no such moisture 

deficit as a driver of wildfire occurrence, and instead found that RH alone below 25 % and particularly below 20 % as 

responsible for most grassland wildfires in west Texas.  In our study region, RH alone however is not an ideal proxy for fuel  305 

moisture across the wide range of air temperatures found in the region during wildfire, as RH alone does not account for 

variable vapour pressure deficit at different temperatures (Srock et al., 2018) that drives the equilibrium moisture content of 

standing grasses (Miller, 2019).  Moreover, the extensive shallow water bodies in the region may contribute during periods of 

higher moisture surplus (i.e. low DMC and DC) to a fragmentation of fuel continuity, similar to the function of larger lakes to 

the north in Canada (Nielsen et al., 2016). “ 310 

 

[261-266] Interesting observation, and this makes intuitive sense because managed fires that escape and become wildfires are 

probably usually the ones that reach the suppression limit. You should probably expand on this slightly though: (1) you could 

justifiably highlight that this adds to the validity of your work, as you have derived thresholds from a ‘top down’ RS/modelling 

approach that agree well with physical, bottom up observations of fire behaviour. (2) maybe you draw this out further? e.g. 315 

what might this finding have any applied fire management implications? 

>>> We don’t here to to over-extend this analysis, but your point is well taken, and we’ve added the text to the end of that 

paragraph: “This correspondence of our remotely sensed records (confirmed by fire reports solely of date and time, not of 

reported fire behaviour) and the operational models in the Canadian Forest Fire Danger Rating System lends confidence to the 

application of our approach in public safety and awareness messaging.” 320 

 

[268-276] You highlight an important point - that grasslands are increasing, and likely to keep doing so under climate change 

and current agricultural conversion trends. But you do not then use these points to highlight the importance of the work you 

have done here, and that it will be increasingly important in future – I think you should definitely emphasise this! 

>>>  Revised to include: “The expansion of grasslands and agriculture into currently forested areas will substantially change 325 

the fire regime in these areas, highlighting the importance of understanding the current grassland and agriculture area fire 

regime.  Understanding how fire regimes could change with climate change will help fire managers make long term fire 

management decisions.” 

 

5 Conclusion 330 

[283] maybe rephrase to say “a noon ISI threshold of > 15 was the most powerful threshold for discriminating wildfires from 

agricultural fires, while grass curing…” 

>>>Revised as suggested. 

 

Supplementary materials 335 

[8] do you mean UTC rather than UTM date and time? 
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>>>Revised as suggested. 

 

[39] How were each variable aggregated by fire cluster? E.g. FRP average vs max might be important to know… 

>>>  Revised to: “An attribute was merged by max value or mean, for each hotspot cluster.  FFMC, DMC, DC, ISI, BUI, FWI, 340 

precipitation, relative humidity, wind speed, temperature, hour of detection, percent cured and NDVI were merged by mean.  

HFI and FRP were merged by max values.” 

 

[40] the 5% buffer you describe here, is this the same buffer you indicate in eq S2, or is this an additional buffer? 

>>> Revised to: “Five percent was added to the buffer radius to fix this.” 345 

 

[117-122] this paragraph contains useful detail justification on the number of clusters you used. I would integrate at least some 

of this information into the main body, as it is important. 

>>> We appreciate the comment, but feel the details on the clustering methodology is too detailed for the main text, and we 

would like to keep it in the appendix, 350 

 

Technical corrections 

Figures: Figure numbers are often incorrect in captions, and in places throughout the text. Please review and amend. Also 

consider generally expanding figure captions to include more information on the features of the figures or datasets used etc 

(see specific comments on figures where I believe these could be improved). 355 

>>>  Figure captions were expanded and figure numbers corrected. 

 

[60] consider deleting “…despite higher spread rates: : :”. Probably adds to an unnecessarily long sentence 

>>>Revised as suggested 

 360 

[87] “..northern fringe of agriculture..” - not sure if this applies to both areas (i.e. the ‘main’ southern Prairie area and the 

distinct northern agri-forest area?) or just the main southern one, please clarify 

>>>Revised to:  “… At the fringe of agriculture…” 

 

[96] “agencies” should have an apostrophe? 365 

>>>Revised as suggested. 

 

[Figure 4] is labelled as figure 2. You refer to panel letters (a, b etc) in the text but they are missing from the figure. I  think 

this shows results for fire clusters, not MODIS pixel detections – make this clear in the caption and text. Also, the ‘Day of 

year’ panel only extends slightly beyond DoY 300 – is this intentional? 370 
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(maybe there is never fire after this date?) 

>>> This is the default axis limits in the GAM plotting function in R.  The minimum value of the day of year field is 98, and 

the maximum is 298. 

 

[150] is ‘Additionally’ a better word choice here than ‘Alternately’ as you build both models? 375 

>>> Revised as suggested. 

 

[155] I think you are referring to fire clusters here – if so, I would make this obvious by saying ‘distribution of agricultural vs. 

wildfire clusters’ 

>>> Revised to: “…distribution of agricultural vs wildfire hotspot clusters…” 380 

 

[173] I would state the median no. of pixels for agricultural fires here for comparison to the median wildfire pixels 

>>> Revised to : “The median number of thermal detection points per wildfire was 2 but as high as 55, in contrast with 

agricultural fires where the median number of thermal detections is also 2 but  the maximum is 6.” 

 385 

[178] should this say “increased rate of wildfire likelihood per integer increase in predictor value”? 

>>> Revised as suggested 

 

[257] I’m not very familiar with the use of odds ratios, so ignore this comment if it has a different technical interpretation - 

but might this be better phrased as “…results in the increase in the odds of a wildfire over an agricultural fire by 2.45…”? 390 

>>> yes, we’ve revised this to : “Relative humidity and DC were found to be significant in the GAM model as linear predictors, 

with odds ratios (increased likelihood of a fire being classified as a wildfire per integer increase in predictor value) of 0.31 per 

unit increase in RH, and 1.008 per unit of DC.  “  It is important in odds ratios to state the increasing likelihood of a detection 

being a wildfire per unit change of the variable of interest. 

 395 

[273] I think you want ‘exacerbated’ rather than ‘exasperated’ here? 

>>> revised as suggested 

 

Reviewer 2: Overall, I think this paper is trying to advance natural hazards - specifically fire science 

- in using remote sensing and data science to attribute and predict wildland vs. human caused fire. I would recommend the 400 

authors refine the terminology. 

 I look forward to reading a revised version. 

 

General comments: 1. Landsat 8 is not an acronym and should not be capitalised. 
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>>>Fixed as suggested. 405 

 

Referring to all non-wildland fires as agricultural fires becomes confusing later on, 

especially when trying to explain how the curing data set was included in the regression 

tree [much of the agricultural landscape was exempted from the curing assessment 

because < 40% open fuels]. 410 

>>> We now clarify in the methods that the trees are uncommon in the region outside of shelterbelts: “Within the agricultural 

ecumene, the vast majority of the region constitutes open fuels (Figure 1), and little tree cover exists outside of shelter belt 

plantations which exist as single rows of trees (Piwowar et al., 2016). “ 

 

 415 

The term ‘responsible use of fire’ is used to encompass a large amount of human-caused burning. Is this a legal or statute-

based definition? This is not a common term in fire science. Also, burning of crop residues is not necessarily considered an 

appropriate thing for this ecosystem. 

 The Province of Alberta has shifted to no-burn management of crop residues, treating burning as a last resort: 

https://open.alberta.ca/dataset/dd5ca66a-09f6-4aeb-8bb9- 420 

21babed92780/resource/3b67de8e-7377-406c-94d7-25f3efaee710/download/mar2017-unharvested-crops-fs.pdf 

>> We adopt a terminology similar to Lewis et al 2018, where “use of fire” is specific to the low-intensity application of fire 

in an informal context by community members, not in a formal prescribed fire context.  This isn’t a definition based on legal 

statute.  As we discuss later in the paper, burning of post-harvest flax residue may be in part responsible for higher fire activity 

in the eastern portion of our study region. 425 

 

Why was 2002 (Terra only) MODIS active fire product included when the combined 

(Aqua and Terra) MODIS active fire product is available starting in 2003? How were 

these differences in number of detections accounted for when determining the clusters? Was the 2002 Terra-only MODIS 

active fire useful? 430 

>>> Only 3 of 140 hotspot clusters were from 2002, so we did not go to the effort of normalizing the lower detection rate of 

having only one MODIS instrument.  For the density analysis across the landscape, since we had autumn 2002 included and 

the density data in Figure 6 is an average over the 2002-2018 period, we similarly did not normalize for such a small effect. 

 

Paragraph 265: The thesis statement of this paragraph may need to be re-written “ The 435 

thresholds at which agricultural fire detections are overtaken by wildfires occurs at fire 

intensity thresholds that correspond to the limits of ground-based wildfire suppression.” 

Is this a result or a qualitative observation or an assumption that fits into the description 
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of the CFFDRS is the following sentence? Please consider re-phrasing this paragraph. 

>> Rephrased to: “The thresholds shown here in the classification tree and GAM models  correspond to modelled fire intensity 440 

conditions at the upper limits of ground-based wildfire suppression.”   

 

I do not understand how this fits into the study or the findings. Perhaps, again, it is an 

issue with referring to grass fires as agricultural fires. This reads as the CFFDRS for 

native grasslands. Is that correct? 445 

>>>  We now clarify the relationship between agricultural debris and fire behaviour models in Canada: “The grass fire spread 

model in the Canadian Forest Fire Danger Rating System utilizes Australian experimental grass fire data that has been shown 

to approximate fire behaviour in wheat crops, with the matted (or cut) grass model approximating spring (cured) post-harvest 

debris  (Cruz et al., 2020).” 

 450 

Is the last paragraph in the discussion section implying increasing agricultural fires 

with climate change? Did this study find increasing agricultural fires? And if so, in 

grasslands or croplands? 

>>> We now clarify that there has been no observed trends in fire activity in the region, though wildfire activity is expecte d 

to increase in the surrounding forest regions: “In addition to this likely grassland and cropland expansion, projections of 455 

increasingly common critical fire weather conditions (Wang et al., 2015) is likely to shift the fire regime to one of more open 

fuel burning.  However, no change in the rate of fire detections (undifferentiated between wildfires and agricultural burning) 

has been detected between 1981-2000(Riaño et al., 2007) nor 1998-2015 (Andela et al., 2017).” 

 

 460 

A classification scheme to determine wildfires from the satellite record 

in the cool grasslands of southern Canada: considerations for fire 

occurrence modelling and warning criteria 

Dan K. Thompson1, Kimberly Morrison1 

1Canadian Forest Service, Northern Forestry Centre, Natural Resources Canada, Edmonton, Canada 465 

Correspondence to: Dan K. Thompson (Daniel.Thompson@canada.ca) 

Abstract. Daily polar orbiting satellite MODIS  thermal detections since 2002 were used as the baseline for quantifying 

wildfire activity in the mixed grass and agricultural lands of southernmost central Canada.  This satellite thermal detection 

record includes both the responsible use of fire (e.g. for clearing crop residues, grassland ecosystem management, and 
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traditional burning), as well as wildfires in grasslands and agricultural lands that pose a risk to communities and other values.  470 

A database of known wildfire evacuations and fires otherwise requiring suppression assistance from provincial forest fire 

agencies was used to train a model that classified satellite fire detections based on weather, seasonality, and other  

environmental conditions. A separate dataset of high-resolution (LANDSAT Landsat 8 thermal anomalies) of responsible 

agricultural fire use (e.g. crop residue burning) was collected and used to train the classification model to the converse.   Key 

common attributes of wildfires in the region included occurrence on or before the first week of May with high rates of grass 475 

curing, wind speeds over 3021 km h-1, relative humidity values typically below 40% and fires that are detected in the mid-

afternoon or evening.  Overall, grassland wildfire is found to be restricted to a small number of days per year, allowing for the 

future development of public awareness and warning systems targeted to the identified subset of weather and phenological 

conditions. 

1 Introduction 480 

Wildfire is a widespread and commonplace phenomenon in Canada, with contexts ranging from an integral component of 

traditional land use (Lewis et al., 2018), a purely natural disturbance (i.e. lightning ignition) process with little human impact 

(Whitman et al., 2018), to a devastating natural hazard to communities (Christianson et al., 2019).  Fire (both human and 

natural ignition) is most common in Canada in its interior, west of the Great Lakes and east of the Rocky Mountains, where a 

belt of high fire frequency extends from the subarctic forests of the Deh Cho (Mackenzie Valley) through to the drier southern 485 

boreal forest-grassland transition (Boulanger et al., 2014).  Within this broad north-south transect, the density of values at risk 

varies greatly, from sparse communities in the northern forest with limited industrial activities to a dense matrix of indust ry 

with dispersed agriculture and rural habitation (Johnston and Flannigan, 2018).  At the southern limit of the boreal forest in 

western Canada, climatic limitations to widespread forests created a natural ecotone towards a more open deciduous forest and 

grass parkland (Hogg, 1994; Zoltai, 1975), which has been almost entirely converted to intensive agriculture with a steady rate 490 

of increasing agricultural conversion (Hobson et al., 2002).  This is in contrast to the United States, where extensive natural 

grasslands intermix with dry conifer forests in areas of greater wildfire occurrence (Gartner et al., 2012). In Canada, at the 

southern forest limit and further south, the wildland-urban interface transitions to widespread human agriculture and only 

patches of broadleaf (deciduous) aspen forest (Hogg, 1994). Though smaller, localized grasslands in a larger matrix of forest 

are readily integrated into local wildfire likelihood assessments (Parisien et al., 2013), large-scale assessments of wildfire 495 

likelihood are often based on modelling that utilizes forest fire management agency records (Parisien et al., 2013; Stockdale 

et al., 2019), and therefore exclude wildfires in agricultural areas where no such land management agency records exist.  In 

this primarily agricultural region, controlled agricultural burning is commonly used to burn off excess crop residue (Chen et 

al., 2005).  The use of a purely thermal remote sensing approach to determine the risk of wildfire (Rogers et al., 2015)  (i.e. 

fires being actively suppressed but not under control) is somewhat limited, and can erroneously can count responsible fire use 500 

in agriculture as wildfire occurrence. 
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In Canada, both forest fire and grass fire likelihood and spread are predicted using a common system, the Canadian Forest Fire 

Danger Rating System (CFFDRS), developed and maintained by the Canadian Forest Service starting in the 1930s.  The system 

allows for the prediction of grass fire rate of spread (metres/minute), fire intensity (equivalent to flame height), and expected 505 

growth rate (fire size over time).  Fire weather is quantified using daily temperature, precipitation, humidity, and wind speed, 

with grass curing (the ratio of dead grass to live grass) being a critical variable that controls grass fire behaviour.  Under the 

Canadian Fire Weather Index System (Van Wagner, 1987), the fire danger classes for public awareness (i.e., Low, High, 

Extreme, etc.) are based on a scaling of the expected head fire intensity of an idealized pine stand with a pine needle surface 

fuel bed.  In this type of forest, wind speed, humidity, and drought will impact fire behaviour, but the lack of deciduous trees 510 

or understory vegetation negate seasonal phenology beyond needle flush.  When this Fire Weather Index scheme is then applied 

across regions dominated by grasslands, agriculture, or deciduous tree or shrubs, the Fire Weather Index alone and associated 

Fire Danger classes need to be adjusted for leaf-on or greenup conditions (Alexander, 2010; Chéret and Denux, 2011). 

 

Recent research in Australia has highlighted the importance of grass fuel loading as a negative influence on fire rate of spread, 515 

whereby a doubling of grass fuel load from the standard assumption of 0.35 kg of fuel m-2 to 0.70 kg m-2 results in a 10 % 

reduction in spread rate (Cruz et al., 2018).  Conversely, a 50 % reduction in fuel load results in between a 10–30 % increase 

in spread rate; flame height (proportional to fireline intensity) increased to the power of 0.60 with increased fuel loading 

however, meaning a doubling of fuel loading results in a 50 % increase in flame height.  Accordingly, under dry conditions, 

light agricultural residues may burn with high rates of spread though lower flame heights, while higher fuel loads in agricultural 520 

residues would likely burn slower but with substantially larger flames.  In mixed forest and open grass-type fuel landscapes, 

the lower intensity of grass fires despite the higher spread rates typically results in higher rates of successful fire suppression 

for grasslands in empirical (Finney et al., 2009) and modelling (Reimer et al., 2019) studies compared to standing forest. Rapid 

fuel moisture gains during typical night-time periods results in limited nocturnal fire activity potential (Kidnie and Wotton, 

2015) except during exceptional periods of sustained wind and very low humidity (Lindley et al., 2019). 525 

 

The overall goal of this study is to examine the differing environmental conditions most common during agricultural fires, and 

to contrast that with documented grassland wildfires in the region.  The first specific goal is to apply a classification model to 

historical fire thermal detections (2002–2018) in order to determine the relative densities of agricultural burning and smaller, 

mostly undocumented grassland wildfires.  The second goal is to develop an initial data-driven wildfire occurrence criteria 530 

usable for public warning specific to grassland and agricultural regions of southern Canada. 
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2 Materials and Methods 

2.1 Summary of datasets 

 

MODIS thermal detections were used as a spatially unbiased record of fire activity in the study area.  Each thermal detection 535 

was then associated with gridded data including grass curing (NDVI), as well as surface weather and fire weather variables 

from the Canadian Fire Weather Index (FWI) Ssystem.  These thermal detections were then clustered and classified where 

possible into confirmed agricultural (Landsat 8, (Kato et al., 2018)) or wildfire using a fire occurrence database (Hanes et al., 

2018) or evacuation records largely from media reports (Beverly and Bothwell, 2011).  These known agricultural and wildfire 

hotspot clusters and associated fields were then used to create a Generalized Additive Model (GAM), which was used to 540 

classify the unknown hotspot clusters into agricultural or wildfires and produce maps of their relative occurrence (goal 1).  

Additionally, a decision tree model was also built on the confirmed wildfire vs agricultural hotspot clusters, to provide 

simplified classification thresholds (goal 2) for use in fire operations and as the basis for potential public warning criteria. 

Table 1: Summary of datasets used in study. 

Dataset 
Spatial 

Resolution 

Temporal 

Resolution 
Derived Data 

Product 

Number/Source 

Time 

Frame 

Land cover 30 m As of 2010 Grass cover 

(Agriculture and 

Agri-Food 

Canada, 2018) 

2010 

MODIS thermal 

detections 
1 km Twice daily 

Hotspot 

clusters 

MOD14A1 and 

MYD14A1 

2002-

2018 

MODIS NDVI 250 m 
16 day 

composite 
Grass curing 

MOD13Q1 and 

MYD13Q1 

2002-

2018 

Landsat 8 thermal 

detections 
30 m 16 days 

Confirmed 

agricultural 

fires 

(Kato et al., 2018) 
2013-

2018 

Weather and fire 

weather 
3 km grid 12pm LST daily Model input 

(McElhinny et al., 

2020)† 

2002-

2018 

CNFDB N/A N/A 
Confirmed 

wildfires 

(Hanes et al., 

2018) 

2002-

2017 

Canadian Wildfire 

Evacuation 

Database 

N/A N/A 
Confirmed 

wildfires 

(Beverly and 

Bothwell, 2011)‡ 

2002-

2018 

† The station data used in McElhinny et al (2020) were interpolated on a 3-km grid using an inverse 

distance weighting approach. 

‡ The methodology of Beverly and Bothwell (2011) was applied to search for fires in the Prairie region of 

Canada, which were excluded from this publication.  Evacuations were catalogued from 2002-2018.  See 

supplementary data. 

 545 
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2.21 Study Area 

The study area encompasses the entire primary agriculture zone of central-western Canada (Prairies) as well as the forest-

agriculture mix that extends north (to 58⁰ N at its furthest point) and east to (as far as 96⁰ W) where the shallow granitic soils 

of the Canadian Shield are found (Fig. 1).  The southern limit of the study area is the United States border at 49⁰ N, and the 550 

western limit is the continuous forest and protected areas of the Rocky Mountains.  The climate of the region is cool and 

continental, with mean annual temperature ranging from 0.6⁰ C in Peace River to 5.9⁰ C at Lethbridge. The number of frost-

free days is as few as 119 in Peace River, and as many as 132 in areas east of Lethbridge.  Foehn winds (locally known as 

Chinooks) on the eastern side of the Rocky Mountains cause periodic temperature increases above freezing during winter, 

allowing for occasional winter grass fires in grass and other open, fine fuels.  Snowmelt typically occurs in March-April in the 555 

southern extent, and April- early May further north.  Annual precipitation varies from close to 600 mm in the easternmost edge 

of the study area near Winnipeg to as little as 316 mm in areas northeast of Lethbridge. Precipitation is heavily weighted to  

convective precipitation in the months of June-August. April and October are typically the two driest snow-free months.  

 

Overall, 42 % of the study area is agricultural land or grasslands.  Land ownership in the agricultural area is almost entirely 560 

privately held, with the exception of First Nations reserves (1.6 %), parks and protected areas (2.4 %), and provincial grazing 

reserves (1.8 %).  Wildfire response is primarily volunteer-driven at the local community level (McGee et al., 2015).  At the 

fringe of agriculture, private land is intermixed with provincially (sub-national) owned lands that are managed primarily for 

timber, and wildfire response is entirely the responsibility of provincial fire management agencies outside of settlement 

boundaries.  Remotely-sensed land cover data at 30 m resolution (Agriculture and Agri-Food Canada, 2018)  was used to 565 

distinguish forested areas from open fuels (including permanent croplands, pastures, native grasslands, and treeless wetlands) 

all of which share similar phenology and flammability.  Broadleaf crops vs cereals were not distinguished. 

2.32 Fire occurrence records 

In the forest-agriculture mix, we used comprehensive fire history records from wildfire management agencies, as compiled in 

the Canadian National Fire Database (CNFDB) (Hanes et al., 2018). In the agricultural zone, the CNFDB provides only a 570 

partial samplesample of wildfires in the region.  The agricultural zone is not located in the provincial wildfire agencies’ area 

of responsibility, therefore in this zone, only larger fires that required a mutual aid response from provincial agencies are 

documented in the database.  In the agricultural zone, the CNFDB provides only a partial sample of wildfires in the region, as 

larger fires that required a mutual aid response from provincial agencies are documented in the database, despite not being 

located in the provincial wildfire agencies area of responsibility.  Additional reporting on wildfire occurrence in the agricultural 575 

zone is provided by the Canadian Wildfire Evacuation Database (Beverly and Bothwell, 2011), which since 2010 has collected 

information on wildfire evacuation in grassland areas in addition to forest fires dating back to the 1980s.   
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Records from fire management agencies and evacuations provide a partial sample of the true extent of wildfires in the 

agricultural zone, and capture completely the occurrence of wildfire in the provincial forest.  Remotely-sensed thermal 580 

detection of active wildfire from the polar-orbiting NASA Aqua and Terra satellites that pass over Canada at nominally 

13:030h local time (with a 01:30 overnight overpass) were used as a spatially unbiased (but time-limited) sample of fire activity 

in the area (Fig. 2).  Off-nadir collections (Freeborn et al., 2014) were also utilized and the detection-specific detection hour 

was used. A standard MODIS collection from 2002-2018 (MOD14A1 and MYD14A1) (Giglio, 2015) with 1 km resolution 

was screened for persistent industrial heat sources.  585 

Thesese MODIS thermal detections were merged into hotspot clusters based on the detection’s track and scan distance, in an 

attempt to group detections from the same fire together (see supplementary material).  

 

 Attributes were merged by max value or mean, for each hotspot cluster. 

 and combined with aA 3-km grid of daily basic surface meteorology at 12:00 (noon) local time (air temperature, humidity, 590 

10-m wind speed, and precipitation sum over prior 24 h) as well as Canadian Fire Weather Index Ssystem variables using 

inverse-distance weighting (Lee et al., 2002) was constructed for every day during 2002-2018. The rasters constructed use the 

same surface station data as  (MMcElhinny et al., (2020)). The primary Fire Weather Index variables used include the Fine 

Fuel Moisture Code, Initial Spread Index, Duff Moisture Code, and Drought Code (Lawson and Armitage, 2008).  The Fine 

Fuel Moisture Code (FFMC) is a model of moisture content for fine dead vegetation material at the forest floor of a closed-595 

canopy forest.  The FFMC utilizes all of the above basic surface meteorology to estimate drying rate with an exponential 

drying rate (time to loss of 2/3 of moisture content) of 18 hours.  It is used here as a proxy for the moisture content of dense 

matted  to produce a database of fire thermal detections that spans both the responsible use of fire in land clearing and 

vegetation management, as well as out of control wildfire (Fig. 2).  Thermal detections associated with fire agency records or 

evacuations (see supplementary materials for details) were set aside for later model creation and validation.grass thatch, with 600 

relative humidity alone a better proxy for the moisture content  (Miller, 2019) and ignition capacity (Beverly and Wotton, 

2007) of standing grass.  High FFMC values indicate drier conditions, up to a maximum of 101.  The Initial Spread Index (ISI) 

is the product of the FFMC and the square of wind speed and is proportional to the forward spread rate potential for grasslands 

and other open vegetated fuels  (Hirsch, 1996).  ISI is calculated daily and represents the peak potential rate of spread typically 

found in the later afternoon at the daily temperature maximum.  The Duff Moisture Code (DMC) represents the moisture 605 

content of a forest organic soil layer as estimated by a simple precipitation and evaporation model.  It has an exponential drying 

rate of 12 days, and can be considered a metric of the bi-weekly soil moisture budget.  Similarly, the Drought Code (DC) is a 

simple vertical water budget model (Miller, 2020) for a soil column with a 100 mm soil water capacity (similarly, larger values 

indicate drier conditions).  In this manner, the Drought CodeDC has been shown to represent variations in surface water levels 

(Turner, 1972); a simple vertical water balance of precipitation and evaporation controls surface water extent in the prairies of 610 

Canada, where water routing to streamflow and groundwater infiltration is limited (Woo and Rowsell, 1993).  As such, the 
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Drought Code DC is a proxy for the extent of saturated soil areas  (wetlands and other surface pond water) that when 

sufficiently dry, increase the continuity of fuels on the landscape. 

 

The dataset used in this studyWe purposely utilized the longer-duration MODIS dataset from 2002 onwards, rather than the 615 

shorter duration VIIRS dataset from 2012 onwards.  Though both sensors are capable of fire detection in the mid-wave infrared, 

VIIRS is in theory capable of detecting smaller or less intense agricultural fires (Johnston et al., 2018; Zhang et al., 2017) 

which offers little advantage when the goal is the detection of larger wildfires in the region.  Moreover, one of the goals of this 

study is to examine broad spatial trends in fire occurrence (Fig. 87), where a longer record is ideal.  Recently launched 

geostationary weather-oriented earth observation platforms such as GOES 16/17, Meteosat, and Himawari offer many 620 

advantages for monitoring short-lived wildfires, with scan rates every 10–15 minutes  (Hall et al., 2019). The northern latitude 

of the study area (49–59° N) causes a severe degradation of the pixel size of GOES geostationary fire detections to 4 km and 

limited FRP resolving capacity in accurately resolving fire radiative power (Hall et al., 2019).  The dataset and classification 

criteria presented here can assist in improving the confidence in real-time wildfire detection in these areas with widespread 

intentional fire use in agriculture on the landscape. 625 

 

These MODIS thermal detections were merged into hotspot clusters based on the detection’s track and scan distance, in an 

attempt to group detections from the same fire together (see supplementary material).  Attributes were merged by max value 

or mean, for each hotspot cluster. 

 630 

All hotspot clusters with less than 40 % open fuels (grasslands, croplands, and treeless wetlands) were too influenced by fire 

behaviour in forests, and were not consideredexcluded from the dataset grass fires and were eliminated from this study.  Within 

the agricultural ecumene, the vast majority of the region constitutes open fuels (Fig.ure 1), and little tree cover exists outside 

of shelter belt plantations which exist as single rows of trees (Piwowar et al., 2016).  It was noted that there were several 

hotspot clusters remaining near Fort McMurray, an area known not to have much grass.  These clusters were alsoArea burned 635 

in forest-shrub-grass mixes typical of post-fire regeneration were eliminated from this study, as they looked to be in a 

previously burned area dominated by shrubs, grass, and aspen, rather than a prairie grassland.their suppression, land ownership, 

and vegetation ecology more closely mirror forests than grasslands (Whitman et al., 2019).  This resulted in a total of 24 297 

MODIS hotspot clusters containing a total of 44 324 thermal detections.  The CNFDB and evacuation database were used to 

classify these hotspot clusters as wildfires where possible.  Eighty-fourfour hotspot clusters representing 65 wildfires were 640 

identified using the CNFDB and 15 additional hotspot clusters were identified using the evacuation records and were not 

otherwise recorded in the CNFDB.. 

 

The responsible use of fire in the region includes traditional burning by First Nations (Lewis et al., 2018), prescribed burning 

by fire management agencies to reduce fuel loads in grasslands (McGee et al., 2015), burning of crop residues (Chen et al., 645 
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2005), and pile burning during land clearing operations where residual tree biomass is burned during agricultural land 

conversion (Hobson et al., 2002).  Other than prescribed burning, no official documentation exists for this type of fire use, and 

could otherwise be conflated with wildfires as documented by remote sensing.  In order to discriminate between responsible 

fire use and wildfires, we used the 30 m short-wave infrared thermal detections from the LANDSAT Landsat 8 satellite (Kato 

et al., 2018) in order to classify clusters of thermal detections as responsible fire use if they correspond to geometric patterns 650 

associated with prescribed burning or other controlled fire (Fig. 3).  A total of 41 LANDSAT Landsat hotspot clusters were 

manually classified in this manner; fire weather and land cover was were associated with these detections similar to the MODIS 

detections.  These LANDSAT Landsat detections are limited in spatial scale as the satellite only returns over an area every 

two weeks, so these records are at best a small sample of the entire fire activity in the region (approximately 1/14, or 7 %), and 

only a small sample of LANDSAT Landsat data was used in this study.  All responsible use of fire is referred to as agricultural 655 

fire in this paper.   

 

2.43 Satellite grass curing 

Grass curing (the fraction of dead grass with moisture content controlled by atmospheric conditions) is the primary control on 

the fire spread potential in grass fuels, overriding all other factors (Cruz et al., 2015).  However, capturing the complexities of 660 

plant phenology in the simple daily weather scheme used by the Fire Weather Index Ssystem or similar scheme is challenging 

(Jolly et al., 2005).  For this retrospective analysis, we leverage satellite greenness as a proxy for grass curing, similar to 

(Pickell et al., 2017).  In this study, we leverage historical 16-day composite NDVI (MOD13Q1 and MYD13Q1) (Didan et al., 

2015) at 250 m resolution.  A simple linear transform was used to convert between NDVI and percent curing: 

 665 

𝑃𝑐𝑢𝑟𝑖𝑛𝑔 = ( 1 −
𝑁𝐷𝑉𝐼𝑡−min (𝑁𝐷𝑉𝐼)

max(𝑁𝐷𝑉𝐼)−min (𝑁𝐷𝑉𝐼)
) × 100 

𝑁𝐷𝑉𝐼𝑡−min (𝑁𝐷𝑉𝐼)

max(𝑁𝐷𝑉𝐼)−min (𝑁𝐷𝑉𝐼)
      (1) 

 

Where NDVIt is the measured NDVI at time t, min(NDVI) represents the per-pixel minimum snow-free NDVI value, and 

max(NDVI) is the per-pixel maximum NDVI climatology.  Both the min and max values are based on the average of the annual 

maxima and minima from 2002 to 2014 (i.e. n = 12 per pixel for both min and max calculations). 670 

 

All hotspot clusters with less than 40 % open fuels (grasslands, croplands, and treeless wetlands) were not considered grass 

fires and were eliminated from this study.  It was noted that there were several hotspot clusters remaining near Fort McMurray, 

an area known not to have much grass.  These clusters were also eliminated from this study, as they looked to be in a previously 

burned area dominated by shrubs, grass, and aspen, rather than a prairie grassland.   675 



22 

 

2.54 Classification of thermal detections 

In total, 99 113 MODIS clusters (representing 386 576 total individual hotspots) were associated with documented wildfire, 

and 41 MODIS clusters (representing 104 total individual hotspots), confirmed to be agricultural controlled burning via 

LANDSAT Landsat imagery, were classified as agriculture fire use.  Variables included for consideration in the GAM include 

surface weather variables, day of year, satellite curing fraction, as well as the fuel moisture codes (FFMC, DMC, DC) from 680 

the Fire Weather Index Ssystem.  Higher-order components of the Fire Weather Index System such as Initial Spread Index and 

Buildup Index were not used due to their derivation from fuel moisture codes and high correlation (Spearman’s ρ > 0.7) with 

those codes.  The high correlation (ρ = -0.73) between relative humidity and FFMC is noted, but both were used in the GAM.  

All other variables in the GAM were correlated ρ < 0.5, and thus suitable  for landscape-level fire weather analysis and 

modelling (Parisien et al., 2012). These data wereThis data was then used to build models to classify the remaining hotspot 685 

clusters as either agriculture fire or wildfire using Generalized Additive Models (GAM) as binomial models (binary of wildfire 

or not) without interaction surfaces were built using the R package mcgv (Wood, 2019), with splines used for variables with 

an expected non-linear response such as ignition dDay of yYear, hour of detection (from MODIS), wind speed, and curing 

(Eq. (1)).  The non-linear partial effects terms in GAM models have been found to be superior to linear models with interactions 

in the examination of wildfire-environment data (Woolford et al., 2010).   This  model was validated using leave-one-out cross 690 

validation. These GAMs account for multiple non-linear responses but not interactions between predictors. 

AdditionallyAlternately, classificationregression trees were constructed using the rpart package (Therneau et al., 2019) to 

classify wildfires from thermal detections using a simple conditional threshold-type model for use as simplified warning 

criteria (maximum of two variables).  Inputs directly related to hotspot detection were not included (i.e. FRP), as they are only 

obtained upon fire detection.  Variables that integrate multiple weather factors into a single index (i.e. Initial Spread Index or 695 

Buildup Index) were considered.. Percent grass curing was not used in the model, as it is highly site-specific compared to the 

weather variables that vary only regionally on a given day.  As a result, only wildfires and agricultural fires with moderate to 

high curing (>40 %) were used to build the regression tree. 

2.65 Analysis of classified clusters 

The large dataset of hotspot clusters classified by the GAM were separated back into their individual hotspots (44 324), and 700 

used as a proxy for total fire on the landscape (a combination of fire size and fire occurrence).  These classified hotspots were 

used to explore spatial and temporal patterns of agricultural and wildfires in the study area (Fig. 7 and 9).   

 

The thresholds determined by both thethe decision tree model and GAM were used to produce a burn days rastermap 

representing the number of potential grassland wildfire days per year. Every 3 km grid cell, from April through October, 2002-705 

2015, within the ecumene was classified into whether it was conducive to wildfire or not.   To be considered conducive to 
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wildfire, a day needed an ISI >= 15 and percent curing >= 75 %.  This was done for everyday within the mentioned time frame, 

summed and averaged by year (Fig. 8).  

 

3. Results 710 

Environmental, remotely sensed, and weather variables related to the distribution of agricultural vs wildfire hotspot clusters 

are shown in Fig. 4.  Both fire types (agricultural vs wildfires) show a strong peak in the spring period after snow melt (Day 

of Year, Fig. 4a), centred on late April and early May, with a slightly earlier peak for wildfires.  The curing fraction of the 

grass or agricultural residue is lower for wildfires compared to agricultural fires (Fig. 4b), which may be due to low NDVI(high 

curing) artifacts from tillage (Zhang et al., 2018) or adjacent previously burned area in the larger MODIS pixels.  The hour of 715 

first detection (Fig. 4c) is largely limited by the 13:00h local time overpass at nadir for MODIS.  Night-time fire detections at 

1am local (01:00) overpass are rare even for the wildfires.  Pre-fire drying conditions as parameterized in the Fire Weather 

Index System (Duff Moisture Code (DMC) and Drought Code (DC)) show much larger right skews for wildfires.  In the case 

of the DMC (Fig. 4d), which represents the moisture content of the forest floor beyond 2 cm depth, 26% of the wildfire data 

have DMC values beyond the maximum DMC for agricultural burning of 67 (approx. 17 days without rain exceeding 1.5 mm).  720 

DC (Fig. 4e) shows a similar trend: 5% of agricultural fires have a DC of 470 or greater compared to 27% of wildfires.  

Observed fire weather values (noon local standard time measurements of surface weather on the day of first fire detection)  

showed a meaningfully larger number of wildfires when relative humidity (Fig. 4f) was below 20 %, more agricultural fires 

when noon air temperatures are below 10°C (Fig. 4g), and far more wildfires when noon 10-m wind speeds exceed 25 km h-1 

(Fig. 4h).  The noon temperature, relative humidity, and wind speed form the basis of the calculation of the Fine Fuel Moisture 725 

Code (Fig. 4i) which showeds a peak for agricultural burning at FFMC 90 versus 92 for wildfires.  Finally, the natural logarithm 

of the Fire Radiative Power (FRP) of the MODIS detection (Fig. 4j) showed far more variance in wildfires compared to 

agricultural fires. No agricultural fires exceeded 400 MW in the sample of confirmed agricultural fires. The median number 

of thermal detection points per wildfire was 2 but as high as 55, in contrast with agricultural fires where the median number 

of thermal detections is also 2 but e the maximum number of thermal detections in a cluster is 6. Only 16 % of wildfires 730 

contained more than 6 hotspots in a cluster. 

 

The above variables were assessed in a binomial generalized additive model, shown in Fig. 5.  The GAM model was able to 

explain 684 % of the variance in the data, with strong non-linear predictors in Day of Year, curing, and wind speed.  Day of 

Year analysis showed that wildfires are 75 % or more of detections for days prior to early May.  Wind speeds over 25 km h-1 735 

or curing fractions between 50 and 85 % were also indicators of the likelihood of hotspot cluster being a wildfire .  Hour of 

detection, rRelative humidity and DC were found to be significant in the GAM model as linear predictors, with odds ratios 

(increased likelihood rate of a of wildfire being classified as a wildfire likelihood per integer increase in predictor value) of 
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1.32x per hour , 0.311.17x per unit decrease increase in RH, and 21.45x 008 per hundred unit ofs of DC.  Essentially, a single 

integer percentage increase in relative humidity, keeping all other measures constant, makes the odds of a hotspots detection 740 

being a wildfire drop by one third.  Similarly, a 100 unit increase in Drought Code DC (on a scale roughly from 0 to 700) 

makes the odds of a thermal detection being a wildfire increase by 80%.   Despite the lack of interactions between predictors 

in all GAM models, the model had a high overall predictive power when tested using a leave-one-out framework, with 

sensitivity of 0.862 % (true positive rate), specificity (true negative rate) of 0.9087 %, an area under receiver operating 

characteristic curve (AUC) of 0.8988, and a Critical Success Index of 0.8778 (Table 31).  The cutoff of the overall GAM 745 

model binomial output of 0.66730 provided the optimal model performance. When the GAM model is applied to the 24 297 

hotspots clusters in the entire MODIS dataset, 30 % of hotspot clusters were detected under conditions that are most similar to 

documented wildfires.  These hotspots have a strong regional gradient with more wildfires in the eastern portion of the study 

area (Fig. 6).   

 2978The seasonal and spatial patterns along lines of equal longitude are portrayed in a Hovmoller time-longitude diagram in 750 

Fig. 99.  For both agricultural and wildfires there is a concentration of fires in the spring (around weeks 17 to 21, late March 

to late April) and between longitudes 100-105° W.  Agricultural fires have an additional concentration of hotspots in week 43 

(late September).  

 

 755 

A simple decision tree was constructed from the same 140 classified hotspots dataset to look at simple threshold-based 

classification schemes. (Fig. 7). An Initial Spread Index (ISI) (proportional to the fire’s potential or modelled rate of spread 

based on weather alone) was found to be the strongest predictor, with 53 of 54 hotspot clusters being wildfires when ISI is 

greater than or equal to 17.  For fires with ISI <17, high curing (i.e. low NDVI, indicative of plowed fields in the vicinity or 

recent adjacent agricultural burning) over 87 % was a strong indicator of controlled agricultural burning, with 21 of 25 hotspot 760 

clusters being agricultural burning.  Detection hour during or after 14:00 local time (indicating an intense fire detected in a 

later off-nadir satellite overpass) was also a meaningful indicator of a wildfire event, with 15 of 16 clusters being confirmed 

wildfires.  For detections prior to 14:00 local time, an Initial Spread IndexISI of 11 or greater provided a moderately strong 

indicator of a wildfire, with 18 of 22 hotspot clusters detected being wildfires.  For hotspots clusters with an ISI below 11, 

there was no meaningful discrimination between agricultural fires and wildfires.  Overall, this decision tree model had an AUC 765 

of 0.7585, and a favourable True Positive Rate of 0.7781 andwith a lower True Negative Rate of 0.7190 (Table 3).  The Critical 

Success Index of this particular classification model 0.6882 and overall Accuracy of 0.7586. 

 

The decision tree model was used to analyze the number of potential wildfire days per year given the criteria laid out in Fig 7.  

Geographic patterns of potential wildfire days (Fig. 8) is the opposite of observed densities of both agricultural and wildfire 770 

(Fig. 6), with more days conducive to wildfires in the west of the study area.   The seasonal and spatial patterns along lines of 

equal longitude are portrayed in a Hovmoller time-longitude diagram in Fig. 9.  For both agricultural and wildfires there is a 
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concentration of fires in the spring (around weeks 17 to 21, late March to late April) and between longitudes 100-105° W.  

Agricultural fires have an additional concentration of hotspots in week 43 (late September).  

 775 

A simple decision tree was constructed from the same dataset to look at simple threshold-based classification schemes. (Fig. 

69).  A total of 9 out of 99 wildfire hotspot clusters (primarily from early May of 2009) occurred at reportedly low values of 

DC (<50).  A DC of 50 is below the minimum DC recorded for agricultural fires (which generally have DC that is lower that 

wildfires), inclusion of DC in classification tree would have resulted in a terminal node of wildfires at a very low DC with no 

regard for ISI.  This would lead to the false conclusion that all detections with a low (wet) DC are wildfires.  These observations 780 

were included in the classification tree, but DC was not included in the classification model construction.  Therefore, the 

classification tree should be used with caution at very low DC levels (<50).  An Initial Spread Index (ISI) (proportional to the 

fire’s rate of spread) was found to be the strongest predictor, with 972 % accuracy in predicting wildfires vs agricultural fires.  

Next, the Fine Fuel Moisture Code was also found to correctly classify 98 % of fire detections when wildfires are classified 

ISI >=15.  For fires with ISI <15, high percent curing (i.e. low NDVI, indicative of plowed fields in the vicinity or recent 785 

adjacent agricultural burning) over 86 % was a strong indicator of controlled agricultural burning, with 84 % accuracy.  In 

areas with lower NDVI/curing values, ISI values >= 11 (but under 15) were wildfires 90 % of the time, and lower ISI values 

showed no meaningful pattern, with 58 % being agricultural burns.  Overall, the single threshold of ISI >= 15 appears to be 

the best balance between simplicity and accuracy, as it correctly identifies 82 % of all the fires with little commission of only 

one agricultural fire.  The complete range of meteorological conditions resulting in an ISI >= 15 are shown in Appendix A.  790 

Overall, this decision tree model had an lower AUC of 0.78 compared to the GAM, where as the decision tree hadand a higher 

favourable True Positive Rate of 0.95 and a far lowerthough a less favourable True Negative Rate of 0.60 (Table 13).  However, 

tThe Critical Success Index of of this particular classification model 0.82 and overall Accuracy of 0.85 is slightly better than 

the GAM. A total of 11 wildfires in early May of 2009 occurred at reportedly low values of DC (<100).  A DC of 100 is far 

below the minimum DC recorded for agricultural fires (which generally have DC that is lower that wildfires), and resulted in 795 

a terminal node of wildfires at a very low DC with no regard for ISI.  This would lead to the false conclusion that all detections 

with a low (wet) DC are wildfires.  These observations were not included in the decision tree.  Therefore, the decision tree 

should be considered applicable when DCs exceed 100, a moisture condition range at which overwinter precipitation 

measurements can induce uncertainty into spring DC values (Chavardès et al., 2019)(Hanes et al., 2020). 

 800 

In addition to the classification tree s presented in Fig. 697, some properties of wildfires show meaningful extreme 

valuesbreakpoints beyond which all agricultural fires values with or without meaningful differences to overall distribution 

(Fig. 4) or as a linear predictor in the GAM (Fig. 5).  Median FRP between all agricultural burns (39 MW) and all wildfires 

(59 MW) are similar, and a non-parametric Mann-Whitney U test on the two samples did not differ significantly (Mann–

Whitney U = 1860, n1 = 113, n2 = 41, p < 0.44 two-tailed).  However, on the higher end of FRP, wildfires showed a much 805 

larger right skew to the FRP values, with the 99th percentile of agricultural fire FRP of 233 MW, while this corresponded to 
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the 86th percentile of wildfire FRP (or the largest 14% of the wildfire data).  With the maximum observed wildfire FRP being 

1174 MW, this allows for an additional logical scheme to discriminate wildfires from agricultural burning not captured in the  

above decision tree, where MODIS hotspot FRP values > 233 MW can be confidently classified as wildfires.  Similarly, median 

noon wind speeds between agricultural fires (15.5 km h-1) and wildfires (21.2 km h-1) were similar, though distributions differed 810 

significantly (Mann–Whitney U = 1387, n1 = 113 n2 = 41, p = 0.0001 two-tailed).  Some 30% of wildfire wind speeds exceeded 

the 90th percentile of agricultural fire wind speeds (22 km h-1), allowing for an additional simple classification consideration 

for fire thermal detections during periods of high wind speed. 

 

When the GAM model is applied to the 24,316 hotspots clusters in the entire MODIS dataset, 30 % of hotspot clusterss were 815 

detected under conditions that are most similar to documented wildfires.  These hotspots (Fig. 8), these have a strong regional 

gradient with more wildfires in the eastern portion of the study area (Fig. 7).  The trend is reversed for burn days, with more 

days conducive to wildfires in the west of the study area (Fig. 8).     

 

The seasonal and spatial patterns along lines of equal longitude are portrayed in a Hovmoller diagram in Fig. 9.  For both 820 

agricultural and wildfires there is a concentration of fires in the spring (around weeks 17 to 21, late March to late April) and 

between longitudes 100-105° W.  Agricultural fires have an additional concentration of hotspots in week 43 (late September).  

4. Discussion 

The dataset used in this study purposely utilized the longer-duration MODIS dataset from 2002 onwards, rather than the shorter 

duration VIIRS dataset from 2012 onwards.  Though both sensors are capable of fire detection in the midwave infrared, VIIRS 825 

is in theory capable of detecting smaller or less intense agricultural fires (Johnston et al., 2018; Zhang et al., 2017) which offers 

little advantage when the goal is the detection of larger wildfires in the region.  Moreover, one of the goals of this study is to 

examine broad spatial trends in fire occurrence (Fig. 8), where a longer record is ideal.  Recently launched geostationary 

weather-oriented earth observation platforms such as GOES, Meteosat, and Himawari offer many advantages for monitoring 

short-lived wildfires, with scan rates every 10–15 minutes (Hall et al., 2019). The northern latitude of the study area (49–59° 830 

N) causes a severe degradation of the pixel size of GOES geostationary fire detections to 4 km and limited FRP resolving 

capacity (Hall et al., 2019).  The dataset and classification criteria presented here can assist in improving the confidence in 

real-time wildfire detection in these areas with widespread fire use on the landscape. 

. 

In all likelihood, many of these roughly >7 500 wildfire s hotspot clusters classified by the GAM identified over 17 years (or 835 

441 fires per year over a 115 Mha study area) are smaller, briefly out of control fires where agricultural burning gets beyond 

direct suppression and burns over a number of adjacent agricultural fields until the wildfire encounters a roadway (typically 

over 10 m of fuel-free width), which readily stops most wildfires in grass and agricultural residue fuels (Cheney, and Sullivan, 
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2008).  Given the generally widespread dispersed population density of the area, the vast majority of wildfires in the region 

are detected and reported by the public (McGee et al., 2015), such that satellites as the first mode of wildfire detection is of 840 

limited utility in the region, compared to more northerly and remote areas (Johnston et al., 2018).  However, satellites provide 

a consistent technique for medium-resolution fire extent reporting and mapping that can prove useful for emergency managers 

(Lindley et al., 2019).  Moreover, wildfire growth modelling (Sá et al., 2017) and smoke dispersion forecasts (Chen et al., 

2019) require  real-time analysis and forecasting initialized using remotely-sensed fire detections. 

 845 

Both the GAM as well as the classification tree point to the combination of critically dry fuel and wind as the drivers of wildfire 

occurrence in the region.  In the GAM model, both low RH (as a proxy for standing grass moisture), alongside indicators of 

bi-weekly (DMC) to monthly (DC) moisture deficit are significant in predicting wildfire occurrence as linear predictors, with 

a wind threshold in the range of 30 km h-1.  In the Canadian Fire Weather Index System, fine fuel moisture (mostly driven by 

low RH) is combined with wind speeds to calculate the Initial Spread Index as a single heuristic (Figure S2), and thus comes 850 

out as the strongest indicator of wildfireThis is in contrast with. (Lindley et al., 2011) who found no such moisture deficit as a 

driver of wildfire occurrence, and instead found that RH alone thresholds below 25 % and particularly below 20 % asre 

responsible for most grassland wildfires in west Texas.  In our study region, RH alone however is not an ideal proxy for fuel 

moisture across the wide range of air temperatures found in the region during wildfire, as RH alone does not account for 

variable vapour pressure deficit at different temperatures (Srock et al., 2018) that drives the equilibrium moisture content of 855 

standing grasses (Miller, 2019).  Moreover, the extensive shallow water bodies in the region may contribute during periods of 

higher moisture surplus (i.e. low DMC and DC) to a fragmentation of fuel continuity, similar to the function of larger lakes to 

the north in Canada (Nielsen et al., 2016).The interaction of temperature and vapour pressure is parameterized to some extent 

in the FFMC (Van Wagner, 1987).   

 860 

While more complex classification models with additional predictors were easily built using the rpart package, the goal in the 

classification tree model is to create a parsimonious model with simple application in short range (same day to 3 day outlook) 

guidance whether environmental conditions (grass curing, humidity, and wind speed) are sufficiently similar to historical 

wildfire occurrence.  The classification tree presented in Fig.ure 79 is by no means the sole model that meets objectives for 

Critical Success Index and model accuracy.  A high False Alarm Rate as present in the classification tree shown in Fig.ure 79 865 

would be far more problematic in natural hazards such as tornadoes that require a sheltering response upon a false alarm 

(Ripberger et al., 2015).  In this particular regional context, the criteria established to differentiate between agricultural fires 

and wildfires is more akin to the threshold beyond which responsible fire use activities should not occur due to dry and windy 

conditions, rather than triggering a sheltering response. The adoption of any formal warning criteria requires a robust 

consultation process with regional stakeholders and is not within scope here.  Rather, the data acquired and analyzed here 870 

provides for the efficient creation of future warning products in the region. 
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Grass dries much quicker than the forest floor, meaning the largest discrepancy between forest floor (FFMC) and open grass 

moisture content lies within 2–3 days after rainfall where grass is drier, after which the moisture content in the FFMC and a 

Grass Fuel Moisture Content model are similar (Kidnie and Wotton, 2015).  In the decision tree model (Fig. 6), RH is not 

directly included, though FFMC values over 93 are found only during periods of low RH and multiple days since rainfall.  This 875 

is in contrast with (Lindley et al., 2011) who found that RH thresholds below 25 % and particularly below 20 % are responsible 

for most grassland wildfires in west Texas.  RH however is not an ideal proxy for fuel moisture across the wide range of air 

temperatures found in the region, as RH alone does not account for variable vapour pressure deficit at different temperatures 

(Srock et al., 2018).  The interaction of temperature and vapour pressure is parameterized to some extent in the FFMC (Van 

Wagner, 1987).   880 

 

The study region is often impacted by prolonged dry periods.  The study region experienced profound drought in the 1999–

2005 period (Hanesiak et al., 2011) that corresponds to the start of the study period.  Drought Code (representing a simple 

water balance of precipitation minus evaporation) itself was a weak linear (p = 0.084)minor first-order predictor of grassland 

wildfire in this dataset, and may be considered mechanistically similar to the Palmer Drought Severity Index widely used in 885 

grassland and agricultural water availability studies (Hanesiak et al., 2011), as an increase of 100 DC units (DC is wettest at 

zero and reaches ~700 in late summer droughts) results in the odds of a wildfire over an agricultural fire increase by 2.45 

times..  Similarly, Duff Moisture Code as another weak linear indicator of wildfire detection, though a model as the drying of 

a forest floor organic soil, is still a metric of rainfall deficit relative to evaporation over the prior two weeks.  In addition to the 

absolute value of the DC, dDrought itself in the grasslands and agricultural areas of North America results in significant 890 

reductions in NDVI (Gu et al., 2007) that therefore directly increases grass curing as estimated in this study (Eq. (1)) and hence 

lengthens the seasonal window of grassland wildfire susceptibility.   

 

The thresholds at which agricultural fire detections are overtaken by wildfiresThe thresholds shown here in the classification 

tree and GAM models   occurs acorrespond to modelledt fire intensity thresholds thatconditions at the upper correspond to the 895 

limits of ground-based wildfire suppression.  The grass fire spread model in the Canadian Forest Fire Danger Rating System 

utilizes Australian experimental grass fire data that has been shown to approximate fire behaviour in wheat crops, with the 

matted (or cut) grass model approximating spring (cured) post-harvest debris  (Cruz et al., 2020). Following the Canadian 

Forest Fire Danger Rating System (Forestry Canada Fire Danger Rating Group, 1992) for an O-1a (matted grass) fuel type, 

Initial Spread IndexISI values of 157 (Fig. 7) with grass curing betweenof 75–80 80 % (Fig. 65), the resultant spread rate isof 900 

3824 m min-1 (12.43 km h-1). and This intensity of approximately 40002 500 kW m-1 (flames 2 m long) is near the upper limit 

of suppression, particularly when fire sizes exceed 2–3 ha at the time of initial suppression action (Hirsch et al., 1998).  This 

correspondence of our remotely sensed records (confirmed by fire reports solely of date and time, not of reported fire 

behaviour) and the operational models in the Canadian Forest Fire Danger Rating System lends confidence to the application 

of our approach in public safety and awareness messaging. 905 
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Under climate change, the agricultural and grassland region of Canada is anticipated to move northward (Schneider et al., 

2009), though this rate of transition will be dampened in wetlandpeatland areas  (Schneider et al., 2016) and those not disturbed 

by wildfire (Stralberg et al., 2018).  Natural grasslands are expected to increase particularly in areas of rapidly accelerating 

fire occurrence, where younger forests disturbed by severe wildfire are prone to large increases in grass cover (Whitman et al., 910 

2019).  Moreover,  a dense grass cover is problematic in recently planted forests north of the study region, as it can outcompete 

tree seedlings (Lieffers et al., 1993), and is likely to be exacerbated exasperated by the expected lower overall canopy density 

(Lieffers and Stadt, 1994) brought about by a drier future climate (McDowell and Allen, 2015). Active conversion of forest to 

agricultural lands is likely to continue (Hobson et al., 2002),  as is the natural expansion of grasslands on drier, south-facing 

(solar-exposed) slopes in the boreal forest where their range is currently limited to at high latitudes (Sanborn, 2010).  In addition 915 

to this likely grassland and cropland expansion, projections of increasingly common critical fire weather conditions (Wang et 

al., 2015) is likely to shift the fire regime to one of more open fuel burning.  However, no change in the rate of fire detections 

(undifferentiated between wildfires and agricultural burning) has been detected between 1981-2000 (Riaño et al., 2007) nor 

1998-2015 (Andela et al., 2017) in the region. 

 920 

The expansion of grasslands and agriculture into currently forested areas will substantially change the fire regime in these 

areas, highlighting the importance of understanding the current grassland and agriculture area fire regime. With grassland 

expansion into forest, forest fire suppression will have to incorporate elements of the grass fire regime.  A key feature of the 

temporal nature of the grassland fire regime shown (Fig. 98) is the prevalence of wildfire in the month of April, far before 

traditional forest fire suppression crews are trained and active (Tymstra et al., 2019).  The occurrence of autumnal wildfire is 925 

much smaller than that in the spring (Fig. 98), but similarly requires resources for wildfire suppression in a region where the 

fire season has traditionally ended in early September (Hanes et al., 2018).  

 

.  Understanding how fire regimes could change with climate change will help fire managers make long term fire management 

decisions. 930 

 

To further understand the fire regimes of our study area we looked at east west gradients in both grass fire weather and the 

amount of fire on the landscape.Regional contrasts in this grassland-agricultural fire landscape are revealed in the spatial 

analysis.   Larger amounts of both agricultural and wildfire in the east of the study area (Fig. 6), despite fewer burn days (Figs. 

87and 8), maycould be due to differences in burning cultureagricultural practices or more flax agriculture..  Farmers are more 935 

likely to burn flax crop residue as it can be difficult to remove by other methods (Y. Chen et al., 2005).  This increase inHigher 

rates of agricultural burning may also lead to increased wildfires as there are more ignitions on the landscape, which could 

escapewildfires via escaped fires from crop burning.  Further work is required to better understand the contributions of 

vegetation and fire ignition that results in east-west gradients in both wildfire and agricultural activity observed here that 
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contrasts directly with the number of potential wildfire activity days.Additionally, since there are more days conducive to 940 

wildfire in the western portion of our study area, any ignition is more likely to lead to a wildfire. 

 

5. Conclusions 

A classification scheme was developed to discriminate remotely sensed agricultural fires vs wildfires in the southern grasslands 

of continental Canada through an analysis of historical wildfires and documented agricultural fires.  Effective schemes for 945 

discriminating fire types were produced using continuous data (Generalized Additive Models) as well as threshold-based 

classification trees.  A combination of weather, vegetation condition, and temporal variables provided the best predictors.    A 

noon Initial Spread Index threshold of >= 175 was the most powerful threshold from the decision tree model for discriminating 

wildfires from agricultural fires, while grass curing values Initial Spread Index values exceeding 15 at noon on the day of the 

fire was the most powerful threshold for identifying wildfires, grass curing values between 60–85 % waere s the best non-950 

linear spline predictor in the GAM.  Fire Radiative Power was effective in discriminating wildfires only in the 14 % of wildfires 

with very high FRP values that exceeded the highest documented FRP in the agricultural fire dataset.  SimilarMinor 

discrimination utility was seen in the Drought Code and Duff Moisture Code precipitation deficit metrics. Classification of a 

large dataset of historical wildfire detections revealed a strong regional contrast in fire activity that is the inverse of the number 

of days with wildfire-conducive weather.  Overall, the majority of the most power predictors of grassland wildfire stem from 955 

weather observations and remotely sensed metrics of the pre-fire environment, and are thus available for forecasting and real-

time classification of satellite thermal detections.  This work provides a foundation from which future public warning products 

can be derived. 
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Figure 1. Landcover Remotely-sensed land cover data at 30 m resolution (Agriculture and Agri-Food Canada, 2018) of our study 1155 

area as of 2010 compared to the extent of the ecumene.  The study area extends past the ecumene to ensure all minor area of 

grass and agriculture are included.   and study area extent. 
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Figure 2: Grass fire MODIS(MOD14A1 and MYD14A1)(Giglio, 2015) hotspots clusters in the study area from 2002–2018.  

These hotspot have been screened for persistent industrial heat sources and clustered as described in the methods. The study 

area extends past the ecumene to ensure all minor areas of grass and agriculture are included. However, the vast majority of 

hotspot clusters are present within the ecumene.  1165 

 

 

 

Figure 3. Examples of processed Landsat 8 images indicating fire detections considered agriculture burns.  Note the regular 

geometric patterns of the fires, specifically the line ignitions patterns and the burning of specific fields.  The presence of 1170 

previously burned fields is shown north of the active fire in the centre panel, which is registered in this study as low NDVI and 

very high rates of curing. 
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Figure 4.  Distribution of hotspot cluster properties between wildfires (purple) and agricultural fires (blue). Fire Radiative 1175 

Power is given in MW and transformed by the natural logarithm.Figure 4: Distribution of fire detection properties between 

wildfires (purple) and agricultural fires (blue). 
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Figure 5: Generalized Additive Model outputs for a binomial model of agricultural fire vs wildfire.  The ticks along each plot 

axis show the marginal distribution of the data. The linear portions of the GAM coefficients (logit-transformed) are shown 

with Z values in panel (d), and the spline portions of the GAM are shown with Χ2 (Chi-square) estimates in (d).  Predictors 

significant at p < 0.01 are shown with **, p < 0.05 with *, and 0.1 > p > 0.05 shown in italics. Logit-transformed parameter estimates of the 1185 

GAM and Odds Ratios shown in panel (d). FRP = Fire Radiative Power; RH* = noon relative humidity, odds ratio shown as (estimate×−1), 

or odds ratio per unit decrease in RH; DMC† = Duff Moisture Code per 10 units; DC‡ = Drought Code per 100 units; FFMC 

= Fine Fuel Moisture Code. 
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Figure 6. Simple decision tree scheme for the classification of agricultural vs wildfires, valid only for a subset of the dataset 

with Drought Codes exceeding 100.  The first set of numbers in each terminal node is the number of correctly classified records 1195 

divided by the total number of records in that node.  The accuracy of each node is also given.  Note that high rates of curing > 

86% is associated with plowed fields or those previously burned in agricultural fires in the days prior (see Fig. 3). 
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Figure 76. (a) Cumulative occurrence of wildfire hotspot detections perr 625 km2 pixel)25km square cell  in the study region 1200 

from 2002–2018.  A wildfire may contain one or more hotspots.  Panel (b) Cumulative occurrence of agricultural fire hotspot  

detections in the study region from 2002–2018.  Discrimination between wildfire and agricultural fire hotspots conducted 

using the Generalized Additive Model (GAM). 
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 1205 

 

Figure 7. Simple decision tree scheme for the classification of agricultural vs wildfires.  The first set of numbers in each 

terminal node is the number of correctly classified records divided by the total number of records in that node.  The accuracy 

of each node is also given.  Note that high rates of curing is associated with plowed fields or those previously burned in 

agricultural fires in the days prior (see Fig. 5). 1210 
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Figure 878. Average number of days per year (2002–2015, April–September8) where the fire weather and environmental 1215 

conditions meet or exceed an Initial Spread Index of 17 or greater as well as grass curing between 60 and 850 % the criteria in 

Fig. 6 for a grassland wildfire. 
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 1220 

Figure 989.  Hovmoller diagram showing seasonal patterns of wildfire vs agricultural fire.  In this diagram, the number of 

hotspot detections is summed across all latitudes within a longitude bin (x-axis), and is shown over time (y-axis).  Values are 

the cumulative sum of detections from 2002–2018. 

 

 1225 

Figure 69. Simple decision tree scheme for the classification of agricultural vs wildfires, valid only for a subset of the dataset 

with Drought Codes exceeding 100.  The first set of numbers in each terminal node is the number of correctly classified records 

Formatted: Highlight
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divided by the total number of records in that node.  The accuracy of each node is also given.  Note that high rates of curing > 

86% is associated with plowed fields or those previously burned in agricultural fires in the days prior (see Fig. 3). 

 1230 

Table 1: Summary of datasets used in study. 

Dataset 
Spatial 

Resolution 

Temporal 

Resolution 
Derived Data 

Product 

Number/Source 

Time 

Frame 

Land cover 30 m As of 2010 Grass cover 

(Agriculture and 

Agri-Food 

Canada, 2018) 

2010 

MODIS thermal 

detections 
1 km Twice daily 

Hotspot 

clusters 

MOD14A1 and 

MYD14A1 

2002-

2018 

MODIS NDVI 250 m 
16 day 

composite 
Grass curing 

MOD13Q1 and 

MYD13Q1 

2002-

2018 

Landsat 8 thermal 

detections 
30 m 16 days 

Confirmed 

agricultural 

fires 

(Kato et al., 2018) 
2013-

2018 

Weather and fire 

weather 
3 km grid 12pm LST daily Model input 

(McElhinny et al., 

2020)† 

2002-

2018 

Canadian National 

Fire Database 
N/A N/A 

Confirmed 

wildfires 

(Hanes et al., 

2018) 

2002-

2017 

Canadian Wildfire 

Evacuation 

Database 

N/A N/A 
Confirmed 

wildfires 

(Beverly and 

Bothwell, 2011)‡ 

2002-

2018 

† The station data used in McElhinny et al (2020) were interpolated on a 3-km grid using an inverse 

distance weighting approach. 

‡ The methodology of Beverly and Bothwell (2011) was applied to search for fires in the Prairie region of 

Canada, which were excluded from this publication.  Evacuations were catalogued from 2002-2018.  See 

supplementary data. 

 

 

 

Table 2.   The linear predictors of the GAM predicting if a hotspot cluster is a wildfire (coefficients given in logit space) 1235 

alongside their odds ratios for predictors with p < 0.10. Smooth of the GAM are shown with Χ2 (Chi-square).  1FRP = maximum 

Fire Radiative Power of a cluster (natural log-transformed); 2RH = noon relative humidity (%),y, odds ratio shown as 

(estimate×−1), or odds ratio per unit indecrease in RH; 3FFMC = Fine Fuel Moisture Code; 4DMC = Duff Moisture Code.   

 

Linear Predictor Estimate SE Odds Ratio p 

Intercept 14.52.4 11.46  0.217 

Detection hour 0.2629 0.1441 1.29 0.0610 

1FRPln(FRP) -0.300.003 0.00230  0.2332 

Air Temperature 0.0504 0.0780  0.4853 

2RH -0.16346 0.061 0.311.15 0.0167 
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3FFMC -0.14837 0.1187  0.213 

4DMC 0.0391 0.0221 1.04 0.08014 

Drought Code 0.008 0.0045 1.008 0.08395 

Smooth Terms edf Ref df Χ2 p 

Day of Year 3.12.9 3.68 143.84 0.0054 

Curing 4.16 5.06 17.720.1 0.0041 

Wind Speed 2.0 2.1 9.48.1 0.0364 

 1240 

 

Table 13.  Generalized Additive Model (cutoff 0.6670) and Decision Tree model performance metrics (n = 140 in both models).  

Sensitivity, Specificity, and AUC (Area Under receiver operating characteristic Curve) were calculated using a leave-one-out 

cross validation.  Miss Rate through to Accuracy Statistics were calculated using all data to train the model tested against itself. 

Metric GAM Decision 

Tree 

True Positive Rate –- Sensitivity 0.8782 0.7798 

True Negative Rate – Specificity 0.8587 0.7148 

AUC 0.8988 0.7474 

False Negative Rate 0.1417 0.2301 

False Positive Rate 0.152 0.2951 

False Discovery Rate 0.065 0.1315 

False Omission 0.2832 0.4409 

Critical Success Index 0.8178 0.6882 

Accuracy 0.8684 0.7585 
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Appendix A.  Observation density biplots of the fire weather associated with thermal detections (n = 3036) where the Initial 

Spread Index of the Canadian Fire Weather Index System is 15 or higher (3036 of 24316 total observations, or 12%).  Panel 

A: noon vapour pressure deficit vs wind speed (both local noon standard time) for all observations of ISI 15 or higher.  Panel 1250 

B: relative humidity vs wind speed for the same subset.  Panel C: Fine Fuel Moisture Code vs wind speed. 

 


