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Abstract. Landslides are major hazards that may pose serious threats to mountain communities. Even landslides in remote 10 

mountains could have non-negligible impacts on populous regions by blocking large rivers and forming dam-breached mega 

floods. Usually, there are slope deformations before major landslides occur, and detecting precursors such as slope movement 

before major landslides is important for preventing possible disasters. In this work, we applied multi-temporal optical remote 

sensing images (Landsat 7 and Sentinel-2) and an image correlation method to detect sub-pixel slope deformations of a slope 

near the Mindu town in the Tibet Autonomous Region. This slope is located on the right bank of the Jinsha River, ~80km 15 

downstream the famous Baige landslide. We used a DEM derived aspect to restrain background noises in image correlation 

results. We found the slope remained stable from November 2015 to November 2018 and moved significantly since November 

2018. We used more data to analyse slope movement in 2019 and found retrogressive slope movements with increasingly large 

deformations near the river bank. We also analysed spatial-temporal patterns of the slope deformation from October 2018 to 

February 2020 and found seasonal variations in slope deformations. Only the foot of the slope moved in dry seasons, whereas 20 

the entire slope activated in rainy seasons. Until 24 August 2019, the size of the slope with displacements larger than 3 m is 

similar to that of the Baige landslide. However, the river width at the foot of this slope is much narrower than the river width 

at the foot of the Baige landslide. We speculate it may continue to slide down and threaten the Jinsha River. Further modelling 

works should be done to check if the imminent landslide could dam the Jinsha River and measures be taken to mitigate possible 

dammed breach flood disasters. This work illustrates the potential of using optical remote sensing to monitor slope 25 

deformations over remote mountain regions. 

1 Introduction 

Landslides are major natural hazards in mountain regions and have been causing widespread disasters every year 

around the globe (Petley 2012; Zhang et al. 2020). Major landslides in remote mountain regions may pose serious threats to 

downstream communities by choking channels to increase the risks of landslide-dammed lake outburst floods (Fan et al. 2020; 30 

Liu et al. 2019). For example, a hillslope near the Baige village had two landslides, damming the Jinsha River twice in 2018. 
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The outburst floods caused widespread damage along its route and affected as far as Yunnan Province, > 500km from the 

landslides (Fan et al. 2019). In 2000, a super-large landslide dammed the Yigong River in Tibet and two months later the 

outburst flood caused widespread damages, including 5 main bridges, highways and communication cables in downstream 

areas (Shang et al. 2013). The breach of the 1786 landslide-dammed lake in the Dadu river consumed >100,000 lives along its 35 

route (Dai et al. 2005). Similar cases could occur in many mountain regions in the world and detecting precursors (such as 

slope movement) before major landslides is crucial for preventing such disasters (Intrieri et al. 2018; Carlà et al. 2019). 

Remote sensing techniques have been an efficient way to monitor slope movement over large mountain regions (Du 

et al. 2020; Handwerger et al. 2019). Optical passive and radar remote sensing are most frequently used data to detect slope 

displacements. There are two kinds of mainstream methods to derive slope movement. SAR interferometry processing use the 40 

difference in phase images to derive subtle slope movement of a few millimetres (Intrieri et al. 2018; Samsonov et al. 2020). 

However, large ground displacements (e.g., a few metres), dense vegetation or long time intervals could lead to incoherence 

in phase images in this type of methods (Wasowski and Bovenga 2014). Image correlation methods (also referred as the pixel 

offset tracking used in SAR intensity images) is another type of methods that use SAR amplitude or optical images to correlate 

image patches to measure slope movement, which can derive sub-pixel ground displacements from 1/10 ~ 1/30 of a pixel (Li 45 

et al. 2020). The later type is good at detecting larger slope movements that are visible on images (Bradley et al. 2019; Lacroix 

et al. 2020). In recent years, image correlation methods have been proposed and widely used to detect sub-pixel slope 

displacements in optical images (Bontemps et al. 2018; Lacroix et al. 2019; Lacroix et al. 2018; Yang et al. 2020). 

In this work, using sub-pixel optical image correlation methods we report a landslide along the Jinsha River. Different 

from previous retrospective studies, the landslide in this work did not collapse yet. We used multi-temporal Sentinel-2 images 50 

and found the slope is unstable and could pose a threat to downstream areas by blocking the Jinsha River. 

2 Methods 

2.1 Study Area 

The reported slope is ~80 km downstream the Baige landslide (Fan et al. 2019) along the Jinsha River near the Mindu 

town, Tibet Autonomous Region, bordering Sichuan Province (Figure 1a). The slope is located on the right bank of the Jinsha 55 

River. Similar to the Baige landslide, the geomorphology of this section of the Jinsha River is at the bottom of V-shaped valley. 

The elevation of the study area ranges from 2660m at the valley bottom to >4500m on the mountain ridge. This rough 

topography indicates strong fluvial incision against the rapid uplift of the Tibetan Plateau. We estimated the mean annual 

precipitation (MAP) by using the GPM v6 monthly precipitation (from 2001 to 2019) and found the MAP of this area is 

~665mm. The region is controlled by monsoon climate with >90% of the rain occurring from May to October.  60 

This area is tectonically active and active faults run through this slope from north to south. To the west of the faults 

are Upper Paleozoic strata, and to the east are Mesoproterozoic metamorphic rocks. Cracks and fissures on the slope is visible 

from the 15 m resolution pan-sharpened false colour Landsat 7 image acquired in 2001 (Figure 1b). These cracks and fissures 
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may be relics of historic earthquakes or precipitations. This part of the slope has a percent slope of 45% and an aspect of the 

southeast, with azimuth between 112.5° and 157.5° (Figure 1c). The slope is mainly covered by grass and sparse shrubs and 65 

less affected by anthropogenic activities. Field reconnaissance is not carried out for this slope due to outbreak of the COVID-

19 pandemic. Instead, we examined the slope via Google Earth images. Fissure cracks is clearly visible on uppermost part of 

the slope, and there are widespread cracks on the lower part of the slope. Evidenced by very high spatial resolution Google 

Earth images, the landslide in this work is a translational type (Highland and Bobrowsky 2013). 

In this work, we mainly relied on Sentinel-2 optical images to derive slope movement. The European Space Agency’s 70 

Sentienl-2 mission has two twin satellites in orbit, with a revisit time of less than 5 days. The Sentinel-2 optical imagery has 

12 optical bands with wavelength ranging from 440nm to 2200nm (Gascon et al. 2017). There are 4 bands with a spatial 

resolution of 10m: blue, green, red and near infrared bands. To derive slope movement, we used the red band because its 

wavelength is longer than other visible bands and is less influenced by the atmosphere. Compared to the near infrared, this 

band is less sensitive to vegetation and is more reliable to measure slope deformation (Yang et al. 2019). We used the Level-75 

1C product, which is already orthorectified before distribution (Gascon et al. 2017). 

2.2 The COSI-Corr method 

This work used the COSI-Corr method, a correlation method for optical images to detect slope displacements 

(Leprince et al. 2007). To derive slope movement, two images in a roll should be used to form an image pair, including the 

base image and the target image. The base image is an earlier image, based on which image correlation algorithm (here we use 80 

the COSI-Corr) is implemented to detect slope displacements in the target image (Leprince, et al. 2007). For detailed 

parameters to use the COSI-Corr method, please refer to Yang, et al. (2019b). 

In this work, we used three steps to detect slope displacements for the studied Mindu slope. For the first step, we used 

two image pairs (#1-#2) to find the stable and moving periods before and after November 2018. For the second step, we used 

19 images in the stable period to estimate cumulative slope displacements in 5 target images in the moving period (image pair 85 

#3-#97). For the third step, we used another nine images to derive displacements for every two adjacent images (image pair 

#98-#105). 

2.2.1 Deriving slope displacements 

In the first step, we used three Sentinel-2 images (on 13 November 2015, 12 November 2018 and 12 November 2019) 

to compose two image pairs (#1 and #2). The first image pair (#1) is composed of a Sentinel-2 image on 13 November 2015 90 

and a Sentinel-2 image on 12 November 2018. Sentinel-2 images of the second pair (#2) are acquired on 12 November 2018 

and on 12 November 2019.  

By using the first two image pairs, we found the slope was stable from 13 November 2015 to 12 November 2018 and 

moved significantly from 12 November 2018 to 12 November 2019. Therefore, in the second step, we used two image groups, 

a base image group in the stable period and a target image group in the moving period, to detect cumulative slope displacements 95 
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(Table 1). For the base image group, there are 19 clear images without clouds in 2018. For the target image group, we selected 

five images in 2019 (13 April, 17 July, 24 August, 5 October and 12 November) to detect cumulative displacements. In all, 

there are 19×5 image pairs (#3-#97) calculated in the second step. In the third step, we used nine images from 28 September 

2018 to 7 February 2020 (Table 2) to form another eight image pairs (#98-#105) to derive slope displacements.  

2.2.2 Error Assessment and postprocessing 100 

Misalignments between images can be estimated by selecting a stable zone (Bontemps et al. 2018; Lacroix et al. 2018; 

Yang et al. 2019). In this work, the stable zone was selected on the upper part of the landslide (red rectangular in Fig 1b and 

1c). Mean displacements estimated within the stable zone were used to correct image shifts. Standard deviations of the 

displacements within the stable zone represents uncertainties, indicating the quality of the derived results for a given image 

pair. We selected this area because this stable zone is on the same slope as the landslide, which can minimize the influence of 105 

illumination and orthorectification errors. 

In this work, we cross-validated measured slope displacements for five target images in 2019 in the second step. 

Uncertainties of the slope displacements for a given target image were estimated from all 19 base images in the stable periods. 

Standard deviations of these 19 measurements were used to indicate their reliability. We further filtered out displacements 

with moving directions that does not agree with the SRTM DEM derived aspects. If there are 15° deviations between the 110 

derived slope movement and the aspect, the derived slope movement is defined as invalid and will not be used for further 

analysis.  

3 Results 

3.1 Detected stable and unstable periods 

In Table 3, the EW-mean and NS-mean indicate the east-west (EW) and north-south (NS) shifts of images in both 115 

image pairs calculated from the stable zone. The EW-std and NS-std are standard deviations of displacements in the stable 

zone to indicate image distortions. Low EW-std and NS-std values indicates good performances during image 

orthorectifications. The derived EW-mean and NS-mean were used to correct misalignments in image pairs. 

The base and target images for image pair #1 are on 13 November 2015 and 12 November 2018, respectively. The 

base and target images for image pair #2 are on 12 November 2018 and 12 November 2019, respectively. The slope remains 120 

stable in the first image pair, whereas detectable slope displacements can be found in the second image pair (Figure 2). The 

durations of image pair #1 and pair #2 span 3 years and one year, respectively. In Figure 2a, we can see that the slope 

displacement from 2015 to 2018 was less than 2 m, whereas there was >6 m slope displacement from 2018 to 2019 (Figure 

2b). In image pair #2, larger displacements were observed near the Jinsha River and smaller displacements were farther away 

from the river. This increasing displacement magnitude indicate the slope may start to move from its toe. 125 
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3.2 Cumulative slope displacements in 2019 

As in Figure 2, we can see that this slope remained stable from November 2015 to November 2018 and moved after 

November 2018. To derive time series of the Mindu slope displacements after November 2018, we used 19 base images in the 

stable period and 5 target images in 2019. All 19 base images are from early 2018, during which the slope was stable. Five 

selected target images are acquired on 13 April 2019, 17 July 2019, 24 August 2019, 5 October 2019 and 12 November 2019. 130 

For each target image in 2019, we calculated slope movement by using all base images. Therefore, there are 19 estimated slope 

displacements for each target image. We calculated the means and standard deviations of slope displacements for all target 

images (Figure 3). 

From Figure 3, we can see that the mean displacements are a magnitude larger than standard deviations, which 

indicate that the displacements derived between each target image and their base images agree with each other quite well. 135 

Minor slope displacements were detected until April 2019 (maximum 3~4m), whereas larger slope displacements can be 

observed in the later four target images (>5 m). All displacements in five target images show a similar pattern with results in 

image pair 2 (Figure 2b), demonstrated by larger displacements near the river and less movement further from the river.  

We further selected six points on the slope to analyse time series of the slope displacements in 2019 (Figure 4). For 

most target images in the first five points (p1-p5), most base images could derive >10 valid displacements (2-D columns). For 140 

all six points, accumulated displacements show similar growing trends from April 2019 to November 2019. Maximum 

displacements in all six points occurred on 24 August 2019. These unreasonably large values may be caused by difference of 

solar elevation/zenith angles in target images. For example, compared to the August image there are more mountain shadows 

in the November images in northern hemisphere. Despite abnormal displacements in August 2019, we can still see that 

displacements from July to November 2019 are still larger than displacements in April 2019. Therefore, from time series of 145 

these six points, we can see that major slope displacements occurred from April to August 2019. 

3.3 Slope displacements in eight selected periods after November 2018 

To analyse spatial deformation patterns in different periods, we selected 9 Sentinel-2 images forming eight image 

pairs (image pair #98-#105 in Table 2, corresponding to eight periods in ~2 months). The first two image pairs (Figure 5a-b, 

#98 and #99) shows that the middle and lower parts of the slope deformed significantly and 4-6 meters of displacement 150 

occurred at multiple locations. The study area has a monsoonal climate with most precipitation occurs from May to September 

(Figure 6). There are seasonal differences in deformation of this landslide. In dry seasons of winter and spring, deformation 

occurs at the foot of the slope near the Jinsha River and deformation rate is generally less than 1 m/month (from January to 

May, Figure 5c&d and periods 3-4 in Figure 6, image pairs #100-#101). In rainy seasons of summer and autumn, deformation 

affects the entire slope with some parts at a rate of more than 3 meters/month (from May to September, Figure 5e&f and 155 

periods 5-6 in Figure 6, image pair #102-#103). 



6 

 

4 Discussion 

4.1 Possible impacts of this imminent landslide 

Major landslides in mountains may dam river channels forming transient lakes, the breach of which can result in 

catastrophic floods to downstream communities (Dai et al. 2005; Fan et al. 2019; Liu et al. 2019). In this work, we examined 160 

a hillslope near the Mindu town along the Jinsha River. We found the slope had significant movement from November 2018 

to November 2019. Despite the area of the detected moving slope (715,577 m2 for displacements larger than 3 m) is similar 

with the area of the Biage landslide (830,624 m2), the width of the Jinsha River channel below the Mindu slope (~ 50) is half 

that of the Baige (>100 m, in Figure 7). Considering the similar morphology of both river sections, the collapse of the Mindu 

slope could pose a threat to downstream communities by blocking the Jinsha River. We call for further frequent monitoring of 165 

the hillslope in combination with other tools, such as InSAR (Intrieri et al. 2018; Samsonov et al. 2020). 

4.2 Comparison of image matching and InSAR methods 

In this work, we used the COSI-Corr method to derive slope displacements for the Mindu slope along the Jinsha River. 

The principle of this method is to use a sliding window to find pattern matches to derive displacements in image pairs (Leprince 

et al. 2007). Compared to the InSAR methods, this method is easier to understand and implement. In addition, image correlation 170 

methods favour larger displacements than InSAR methods. Limited by the wavelength of SAR image, InSAR methods are 

versed in monitoring ground deformation of millimetre to centimetre scale (Intrieri et al. 2018), whereas the capability of 

image correlation methods depends on spatial resolution of images. In general, image correlation methods are more reliable 

for deriving large ground displacements of metre scale (Bradley et al. 2019; Lacroix et al. 2020). In this work, it might be quite 

challenging for InSAR methods to detect such large displacements. 175 

 Long temporal intervals of a few months could lead to incoherence in SAR images (Li et al. 2019), whereas images 

(taken on the same season) with long temporal intervals of a few years can be used to derive reliable displacements given a 

stable land cover (Yang 2020). Both methods can be affected by the atmosphere. Clear optical images without clouds should 

be used in image correlation methods. Although SAR images could penetrate thin clouds, atmosphere could cause phase delay 

and lead to uncertainties in derived results (Li et al. 2019). 180 

Both methods works well on bare land without vegetation, though dense vegetation could seriously affect InSAR 

methods (Intrieri et al. 2018). On the contrary, image correlation methods are less affected by vegetation cover as long as 

images in the pair are from the same season (Yang 2020). As image correlation methods use pattern matches within an image 

pair, we speculate that vegetation density may not be a major challenge for the method. The Sentinel-2 images used in this 

work have four 10-metre resolution optical bands (Gascon et al. 2017). In theory, any of these four bands may be used to 185 

derive slope displacements. But, an ideal band should not be sensitive to ground cover change unrelated with ground 

displacements, which could minimize background noises. In general, optical bands with shorter wavelength is more prone to 
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be affected by moisture in the atmosphere. Considering that near infrared band is very sensitive to vegetation, we used the red 

band in this work.  

 Both InSAR and image correlation methods can be impacted by complex terrains in mountain regions. Layover and 190 

shadow areas in SAR images should not be used in InSAR methods (Li et al. 2019). Similarly, shadows in optical images also 

influence derived results (Yang et al. 2020). To derive reliable results, optical images acquired during larger solar angles should 

be prioritized to minimize the influence of mountain shadows. Fortunately, there are algorithms developed to restore 

information in mountain shadows in optical images (Shahtahmassebi et al. 2013), which may promote the efficacy of optical 

image correlation methods.  195 

4.3 Measures taken to reduce uncertainties 

Many other factors may also influence the accuracy of slope deformation from image correlation methods, which 

includes image orthorectification errors, different viewing angles during image acquisition, different illuminations in images, 

et al. (Stumpf et al. 2016; Yang et al. 2020). This work used the Sentinel-2 L1C product, which is already orthorectified before 

distribution (Gascon et al. 2017). To correct for possible mis-registration between the base and target images, we used a stable 200 

zone to calculate and correct image shifts. To reduce errors caused by different illuminations, all images used for the first two 

Sentinel-2 image pairs are from similar dates of different years. 

The first two image pairs (#1 and #2) we mentioned above are composed of images of very similar acquire dates in 

different years. Images of similar dates have similar zenith/elevation angles, which could minimize the influence of mountain 

shadows (Yang et al. 2020). To assess and reduce uncertainties in the second step, we first identified a stable period. Then, we 205 

used 19 base images in this stable period to derive cumulative displacements for a given target image in the moving period. 

The mean displacements from these 19 image pairs are expected to be more reliable than results from a single image pair. In 

addition, these 19 measurements can cross-validate each other and be used to estimate uncertainties by standard deviations 

(Figure 3 and Figure 4). 

There are a few strategies to suppress background noises in derived results, including selecting results with high 210 

signal/noise ratios (Lacroix et al. 2018; Yang et al. 2020), integrating redundant information in time series of images (Bontemps 

et al. 2018). This work introduced a simple and efficient way by using slope aspect to filter out slope movement that is different 

from the aspect. This is reasonable for this translational landslide as the mass moves downhill driven by gravity. This procedure 

could eliminate false slope movements and reserve true slope movement of the Mindu landslide. By integrating topographic 

information, this new procedure is expected to work well for ground movement in other regions that is consistent with slope 215 

configurations.  

4.4 Potential applications of the method in landslide monitoring 

As we used orthorectified images, slope displacements derived in this work are horizontal movements. To derive 

ground movement along the slope, we need to consider local slope configurations. Because image correlation methods use 
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sliding windows to detect similar patterns between the base and target images, precursors with horizontal rather than vertical 220 

ground movements can be detected. Landslides that have intact moving surfaces can be detectable by image correlation 

methods. For translational and rotational landslides, there are more horizontal than vertical ground movements, which are ideal 

landslide types to use image correlation methods, whereas precursors of avalanches, rock falls may be difficult to detect due 

to limited horizontal ground movement (Highland and Bobrowsky 2013). 

In addition, the smallest displacements that can be detected depends on the spatial resolution of optical images (Li et 225 

al. 2020, Stumpf et al. 2016). Although image correlation methods can detect sub-pixel ground movement, it is very 

challenging to detect moving surfaces that cover an area of a few pixels, as smaller window sizes could result in more 

background noises (Yang et al. 2020).  

5 Conclusions 

In this work, by using the COSI-Corr method and multi-temporal Sentinel-2 images, we found precursors of a major 230 

landslide along the Jinsha River in southwest China. Fissures on the slope probably existed before 2001 but the slope remained 

stable between November 2015 and November 2018. From November 2018 to August 2019, we detected significant slope 

displacements. The size of the activated part on the Mindu slope is similar to that of the 2018 Baige landslide, whereas the 

river width under the Mindu slope is half of the Baige section. If this landslide continues to slide down and fails completely, 

it may block the Jinsha River leading to similar consequences as the Baige landslide. 235 

By using image correlation technique, we can track sub-pixel slope movement in optical remote sensing images. We 

also adopted an aspect constraint to pick out downslope movement and significantly depressed background noises. However, 

optical images, such as the Sentinel-2 images, can only detect slope movements up to a few metres. To continuously minor 

this slope, other data and methods (such as higher spatial resolution data or InSAR techniques) should be used. We also call 

for intensive monitoring of this slope and modelling of landslides caused river blocking and subsequent flooding. 240 
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Figure 1: Topographic maps of the study area. (a) Geographic locations of the Baige landslide and the downstream landslide around 

the Mindu town, Tibet Autonomous Region. (b) A 15 m resolution pan-sharpened Landsat 7 false colour image on 18 February 2001 

and (c) aspect of the study area around the Mindu landslide. The elevation data in a is a product of the NASA's Shuttle Radar 330 
Topography Mission (SRTM) and the aspect in c is a derivative of the DEM. The red polygons in b and c are the selected stable zone. 

Both the SRTM DEM in (a) and its derivative (c) are downloaded from the Geospatial Data Cloud website 

(http://www.gscloud.cn/sources). The Landsat image in b is a joint product of the USGS and NASA and was downloaded via the 

Google Earth Engine (GEE). 
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 335 

 

Figure 2: Detected slope displacements in image pair #1 and #2. Background Sentinel-2 images are acquired on 13 November 2015 

and 12 November 2018, respectively. Both images were produced by the ESA's Sentinel-2 satellites and downloaded via the GEE. 
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 340 

Figure 4: Time series of the slope displacements. Image to the left shows the slope displacements on 12 November 2019 and map 

colour is shown in minimum-maximum linear stretch type. Sub-panels p1-p6 to the right show means (points), standard deviations 

(vertical bars) and valid numbers (histograms) of cumulative displacements between the 19 base and 5 target images for the six 

selected points (stars) in the left image. 
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Figure 6: Daily precipitation of the Baiyu Meteorology station from October 2018 to February 2020. 

 
Figure 7: High spatial resolution images from the ©Google Earth. The image to the left is acquired on 30 March 2015 for the Mindu 

slope (a) and the right image is acquired on 18 July 2017 for the Baige slope (b). 350 
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Table 1. List of the 19 base images in early 2018 and 9 targeted images in 2019. Base images were used to detect cumulative slope 

displacements in targeted images. Image pairs used in this step are #3-#97. 

19 base images in the stable period 

(in early 2018) 

5 target images in the moving period 

(in 2019) 

January: 11, 13, 16, 23, 28 

February: 5, 12, 17, 25 

March: 4, 9, 14, 19, 29 

April: 3, 16, 23 

May: 21 

June: 5 

 

 

2019: 13-Apr., 17-Jul., 24-Aug., 5-

Oct., 12-Nov. 

 355 

Table 2. Eight periods (image pair #98-#105) were used to derive the Mindu slope movement. 

Image pairs Base image Target image 

#98 28 Oct. 2018 24 Nov. 2018 

#99 24 Nov. 2018 23 Jan. 2019 

#100 23 Jan. 2019 14 Mar. 2019 

#101 14 Mar. 2019 18 May 2019 

#102 18 May 2019 17 Jul. 2019 

#103 17 Jul. 2019 28 Sep. 2019 

#104 28 Sep. 2019 29 Nov. 2019 

#105 29 Nov. 2019 07 Feb. 2020 

 
Table 3. Detected image shifts (system error) in the “stable zone”. The EW-std and NS-std indicates uncertainties of the method and 

the EW-mean and NS-mean were used to derive the final displacements in image pair #1 and #2. 

Image pairs Dates EW-mean EW-std NS-mean NS-std snr-mean snr-std 

#1 2015.11.13 -0.495077 0.181026 -7.275188 0.253885 0.989819 0.001601 

2018.11.12 

#2 2018.11.12 4.115833 0.056559 9.914275 0.136149 0.989803 0.001434 

2019.11.12 
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