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Abstract. Landslides are major hazards that may pose serious threats to mountain communities. Even landslides in remote
mountains could have non-negligible impacts on populous regions by blocking large rivers and forming megafloods. Usually,
there are slope deformations before major landslides occur, and detecting precursors over large mountain regions is
important for screening possible landslide disasters. In this work, we applied multi-temporal optical remote sensing images
(Landsat 7 and Sentinel-2) and an image correlation method to detect sub-pixel slope deformations of a slope. Along the
Jinsha river, this slope is located downstream the famous Baige landslide near the Mindu town, Tibet Autonomous Region.
We used DEM derived aspect to restrain background noises in image correlation results. We found the slope remained stable
from November 2015 to November 2018 and moved significantly from November 2018 to November 2019. We used more
data to analyse slope movement in 2019 and found retrogressive slope movements with increasingly large deformations near
the river bank. We also analysed spatial-temporal patterns of the slope deformation from October 2018 to February 2020 and
found seasonal variations in slope deformations. Only the slope foot moved in dry seasons, whereas the entire slope activated
in rainy seasons. Until 24 August 2019, the size of the slope with displacements larger than 3 m is similar to that of the Baige

landslide. However, the river width at the foot of this slope is much narrower than the river width at the foot of the Baige

landslide. We speculate it may continue to slide down and could threaten the Jinsha river. Further modelling works should bg

done to check if the imminent landslide could dam the Jinsha river and measures be taken to mitigate possible dammed
breach flood disasters. This work illustrates the potential of using optical remote sensing to monitor slope deformations over

large remote mountain regions.

1 Introduction

Landslides are major natural hazards in mountain regions and causing widespread disasters every year around the
globe (Petley 2012; Zhang et al. 2020). Precursors often occur before major landslides (Intrieri et al. 2018). Continuous

monitoring of mountain slopes before major landslides occur is crucial for landslide disaster prevention (Luo et al. 2019).
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On 10 October 2018, the major Baige landslide along the Jinsha River (upstream of the Yangtze River) occurred.
This famous landslide blocked the river twice and caused two megafloods to downstream areas (Fan et al. 2019). Although
the Baige landslide is located in a remote mountain region bordering the Tibet Autonomous Region and the Sichuan
Province, the influence of the floods due to this landslide caused damages of infrastructures hundreds of kilometres
downstream in Yunnan Province. To cope with possible disasters from the breaches of the landslide dammed lake, the
government of Yunnan province initiated a level Il response. Downstream disasters caused by the Baige landslide suggests
that similar landslides on upstream rivers could cause damages to far downstream areas and possibly large scale slope
movement before collapse should be closely monitored.

To monitor slope movement over large mountain regions, remote sensing techniques have been an efficient way
(Du et al. 2020). Optical passive and microwave active radar remote sensing are the two most frequently used methods to
detect slope displacements. Using InNSAR techniques, active radar remote sensing can detect subtle slope movement from
millimetres to a few decimetres (Intrieri et al. 2018; Samsonov et al. 2020). However, larger slope movement up to a few
metres could lead to image incoherence in INSAR techniques (Wasowski and Bovenga 2014). In contrary, optical passive
remote sensing is good at detecting larger slope movements that are visible on images (Bradley et al. 2019; Lacroix et al.
2020). In recent years, image correlation methods have been proposed and widely used to detect sub-pixel slope
displacements in optical images (Bontemps et al. 2018; Lacroix et al. 2019; Lacroix et al. 2018; Yang et al. 2020).

In this work, using sub-pixel optical image correlation methods we report a landslide along the Jinsha River.
Different from previous retrospective studies, the landslide in this.work did not collapse yet. We speculate that the slope is
unstable and could pose a threat to downstream areas by blocking the Jinsha River. To test this hypothesis, we used multi-
temporal Sentinel-2 images to detect possible slope displacements. We first used two Sentinel-2 images to find the relatively
stable period before the flood caused by the upstream Baige landslide (October and November 2018). Then, we further

analysed the movement of the slope after the flood from the Baige landslide in 2019.

2 Methodology

The reported slope is ~80 km downstream the Baige landslide along the Jinsha River near Mindu town, Tibet
Autonomous Region, bordering Sichuan Province (Figure 1a). The slope is located on the right bank of the Jinsha river.
Similar to the Baige landslide, the geomorphology of this section of the Jinsha river is at the bottom of V-shaped valley.

The landslide is visible in the 15 m resolution pan-sharpened false colour Landsat 7 image acquired in 2001 (Figure
1b). From the image, we can see the cracked slope and signs of the mass movement, characterized by a bare surface. This
part of the slope has an aspect of the southeast, with azimuth between 112.5<and 157.5°(Figure 1c). This downstream
landslide around the Mindu town has a similar monsoon climate with the Baige landslide and most of the rain occurs from
May to October (Yang et al. 2019).
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This work used the COSI-Corr method, a correlation method for optical images, to detect slope displacements
(Leprince et al. 2007). To derive slope movement, two image in a roll should be used to form an image pair, including the
base image and the target image. The base image is an earlier image, based on which image correlation algorithm (here we
use the COSI-Corr) is implemented to detect slope displacements in the target image (Leprince, et al. 2007). For detailed
parameters to use the COSI-Corr method, please refer to Yang, et al. (2019b).

In this work, two steps were taken to detect slope displacements. First, we used two image pairs to detect slope
movement before November 2018. For this step, we used three Sentinel-2 images on 13 November 2015, 12 November 2018
and 12 November 2019 to compose two image pairs. The first image pair is composed of a Sentinel-2 image on 13
November 2015 and a Sentinel-2 image on 12 November 2018. Sentinel-2 images of the second pair are on 12 November
2018 and on 12 November 2019. Both image pairs are composed of Sentinel-2 images of similar dates of different years to

minimize the influence of solar elevation angles (Yang et al. 2020). System errors caused by image registration were

estimated in the stable zone (red rectangular in Fig 1b and 1c). Both image pairs are composed by two images of very similar

acquire dates of different years. Images of similar dates have similar zenith/elevation angles, which could minimize the
influence of mountain shadows (Yang et al. 2020). To use image correlation methods, two types of errors should be
considered: Type | system error, which is usually caused by monolithic image shifts; Type Il image distortion, which is
caused by orthorectification or shadow changes in different images. Type | error can be corrected by selecting a stable zone.
Accurately orthorectified images acquired at a similar solar zenith/elevation angle should be used to reduce Type Il error.

We further used two image groups, a base image group-and a target image group, to detect slope displacements and
estimate uncertainties (Table 1). For the base image group, there are 19.images, all of which are acquired in early 2018.
These selected 19 base images are clear images without clouds in 2018. Although Sentinel-2 images have very short revisit
time, most images are contaminated by clouds on the Mindu slope before September 2018. For the target image group, we
selected five images in 2019 (13 April, 17 July, 24 August, 5 October and 12 November) to detect slope displacements. For
each target image in 2019, average slope displacements and uncertainties are estimated from all 19 base images by forming
19 image pairs in the COSI-Corr method, separately. In all, there are 19>6 image pairs are calculated in the second step.

To derive spatial-temporal slope deformation patterns, we used nine images from 28 September 2018 to 7 February
2020 (Table 2) to form eight image pairs (periods) to derive slope displacements in different periods. All slope
displacements were corrected by using the stable zone (the rectangular with red boundary in Figure 1b&1c). We further used
the SRTM DEM derived aspect to filter out derived slope movement that does not agree with the aspect. If there are 15°
deviations between the derived slope movement and the aspect, the derived slope movement is defined as not valid and will
not be used for further analysis. This is reasonable for translational landslides as the mass moves downhill driven by gravity.
Evidenced by optical images, the landslide in this work is a translational type and could be dealt with in this way (Highland
and Bobrowsky 2013).
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3 Results
3.1 Detected stable and unstable periods

In Table 3, The EW-mean and NS-mean indicate the Type | error or the shifts of images in both image pairs
calculated from the stable zone. The EW-std and NS-std show part of the Type Il error, which measures image distortions in
the stable zone. Low EW-std and NS-std values indicates little Type Il error and good performances during image
orthorectifications. The derived EW-mean and NS-mean were then used to correct type | errors.

For image pair #1, the base image is acquired on 13 November 2015 and the second image is acquired on 12
November 2018. The slope remains stable in the first image pair, whereas detectable slope displacements can be found in the
second image pair (Figure 2). The duration of the first image pair spans 3 years and the second image pair lasts one year. In
Figure 2a, we can see that the slope displacement from 13 November 2015 to 12 November 2018 was less than 2 m, whereas
there was more than 6 m slope displacement from 12 November 2018 to 12 November 2019 (Figure 2b). In image pair #2,
larger displacements were observed near the Jinsha river and smaller displacements were farther away from the river. This

increasing displacement magnitude may indicate the slope may start to move from its foot.

3.2 Slope displacements in 2019

As in Figure 2, we can see that the slope remains stable from November 2015 to November 2018 and is moving
after November 2018. To derive time series of the Mindu slope displacements after November 2018, we used 19 base images
in the stable period and 5 target images in 2019. All 19 base images are from early 2018, during which the slope was stable.
Five selected target images are acquired on 13 April 2019, 17 July 2019, 24 August 2019, 5 October 2019 and 12 November
2019. For each target image in 2019, we calculated slope movement by using all base images. Therefore, there are 19
estimated slope displacements for each target image. We calculated the means and standard deviations of slope
displacements for each target image representing slope movement from early 2018 and six periods in 2019 (Figure 3).

From Figure 3, we can see that the mean displacements are a magnitude larger than standard deviations, which
indicate that the displacements derived between each target image and their base images agree with each other quite well.
Minor slope displacements were detected until April 2019 (maximum 3~4m), whereas larger slope displacements can be
observed in the later four target images (>5 m). All displacements in five target images show a similar pattern with results in
image pair 2 (Figure 2b), demonstrated by larger displacements near the river and less movement further from the river.
However, the third target image (24 August 2019) has more displacement of large values than other target images. As seen
from Figure 3, it is quite possible that the slope moved significantly during 2019.

We further selected six points on the slope to analyse time series of the slope displacements in 2019 (Figure 4). For
most target images in the first five points (p1-p5), most base images could derive >10 valid displacements (2-D columns).
For all six points, accumulated displacements show similar growing trends from April 2019 to November 2019. Maximum

displacements in all six points occurred on 24 August 2019. These unreasonably large values may be caused by difference of
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solar elevation/zenith angles in target images. For example, compared to the August image there are more mountain shadows
in the November images in northern hemisphere. Despite abnormal displacements in August 2019, we can still see that
displacements from July to November 2019 are still larger than displacements in April 2019. Therefore, from time series of

these six points, we can see that major slope displacements occurred before 13 April 2019 and from April to August 2019.

3.3 Slope displacements in eight selected periods after November 2018

To analyse spatial deformation patterns in different periods, we selected 9 Sentinel-2 images forming eight image
pairs (corresponding to eight periods in ~2 months). The first two image pairs (Figure 5a-b) shows that the middle and lower
parts of the slope deformed significantly and 4-6 meters of displacement occurred at multiple locations. The study area has a
monsoonal climate with most precipitation occurs from May to September (Figure 6). There are seasonal differences in
deformation of this landslide. In dry seasons of winter and spring, deformation occurs at the foot of the slope near the Jinsha
river and deformation rate is generally less than 1 m/month (from January to May, Figure 5c&d and periods 3-4 in Figure 6).
In rainy seasons of summer and autumn, deformation affects the entire slope with some parts at a rate of more than 3
meters/month (from May to September, Figure 5e&f and periods 5-6 in Figure 6).

4 Discussion

By using multi-temporal Sentinel-2 images, our work found the Mindu landslide remained relatively stable between
November 2015 and November 2018 but significant slope movement occurred after November 2018. In the August 2019
target image, there are 387,200 m? of the Mindu slope with displacements larger than 5 m and 715,577 m? of the slope with
displacements larger than 3 m. The Baige landslide has an area of 830,624 m? on the slope. River sections along both slopes
are V-shape valleys. Measured in Google Earth, the width of the river at the foot of the Baige slope is more than 100 m,
whereas the river width at the foot of this studied slope is ~ 50 m (Figure 7). The area of the Baige slope and the Mindu slope
is similar, but the width of the river near Mindu slope is half-width of the Baige. If the Mindu landslide releases a similar
volume with that of the Baige landslide, it will probably block the Jinsha river. To determine whether the landslide dam the
river, landslide dam formation models should be performed in future studies (Liao et al. 2019).

There are several error sources to use optical remote sensing images to derive slope displacements. In this work, we
used a stable zone to correct system errors caused by image shifts. All standard deviations of the stable zone are within 1/20
of a Sentinel-2 pixel length (0.5 m), indicating minor random errors within the stable zone. For complex mountain terrains,
different solar zenith angles of two different images may also lead to false displacements (Yang et al. 2020). To reduce this
type of errors, we used two Sentinel-2 images of the same date in two different years (the first image is on 12 November
2018 and the second image is on 12 November 2019). We used 19 base images in early 2018 to detect slope displacements
in five target images in 2019. Our results show that standard deviations of the derived slope displacements from 19 base

images are less than 1 m, indicating the robustness of using optical images to derive slope movements. The largest
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displacements did not occur in the last target image of 2019 confirmed that different solar zenith angles may lead to errors in
estimating slope displacements. Despite the influence of different solar zenith angles in different target images in 2019, the
overall trend of the accumulated slope displacements in our selected points is increasing, leading to our confidence to claim
the movement of the Mindu slope.

The remote sensing estimation accuracy of slope deformation needs to be improved. The currently used Sentinel 2
image has a spatial resolution of 10 meters, and the accuracy of the sub-pixel analysis results is about 2 meters. There is a
certain uncertainty in the continuous monitoring of the deformation rate of different slope parts. By using high-resolution
(such as sub-meter high-scoring remote sensing data) image analysis, the accuracy of spatiotemporal estimation of the
deformation rate of Mindu slope can be further improved.

This work used slope aspect to filter out slope movement that is different from the aspect. This procedure could
eliminate many false slope movements and reserves the true slope movement of the Mindu landslide. This method may also
falsely leave out other true slope movements that have a complex structure. For example, it may fail to detect movement of
the head scarp of large rotational landslides, because the moving direction of the head scarp usually has a reverse direction

with the slope aspect. Therefore, cautions should be taken when using slope aspect to constrain derived slope displacements.

5 Conclusions

By using image correlation technique, we can track sub-pixel slope movement-in optical remote sensing images.
We adopted an aspect constraint to automatically pick out downslope movement and significantly depressed much of the
background noise. We applied these techniques on multi-temporal Sentinel-2 images to detect slope movement near the
Mindu town along the Jinsha River. We found the Mindu landslide probably existed before 2001 and the slope remains
relatively stable between November 2015 and November 2018. Significant slope displacements were observed from
November 2018 to August 2019.

We found the size of the Mindu slope that activated is similar to that of the Baige landslide, whereas the river width
under the Mindu slope is half of the Baige section. If the Mindu landslide continues to slide down and occur, it may block
the Jinsha river leading to similar social-economic consequences as the 2018 Baige landslide. However, optical images, such
as the Sentinel-2 images, can only detect slope movements up to a few metres. To derive minor slope displacements, INSAR
techniques should be implemented for this remote slope. We also call for continuous monitoring of this slope and modelling

of landslides caused river blocking and subsequent flooding.

Data availability. All Sentinel-2 images and the Landsat 8 image in this work were downloaded from the GEE. The SRTM
DEM and its derivative were downloaded from the Geospatial Data Cloud website (http://www.gscloud.cn/sources).

Supplement. There is no related supplement for this paper.
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Figure 1: Topographic maps of the study area. (a) Geographic locations of the Baige landslide and the downstream landslide
around the Mindu town, Tibet Autonomous Region. (b) A 15 m resolution pan-sharpened Landsat 7 false colour image on 18
February 2001 and aspect of the study area around the Mindu landslide (The elevation data in a is a product of the NASA's
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245  Shuttle Radar Topography Mission (SRTM) and the aspect in ¢ is a derivative of the DEM. Both the SRTM DEM in a and its
derivative ¢ are downloaded from the Geospatial Data Cloud website (http://www.gscloud.cn/sources). The Landsat image in b il IR
joint product of the USGS and NASA and was downloaded via the Google Earth Engine (GEE)).

Figure 2: Detected slope displacements in image pairs #1, #2 and #3 (Background Sentinel-2 images are acquired on 13 November
250 2015, 12 November 2018 and 23 October 2018, respectively. Both images were produced by the ESA's Sentinel-2 satellites and
downloaded via the GEE).
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Figure 4: Time series of slope displacements for the six target images. Image to the left shows slope displacements shown above the

G

il

4

(e

5m '
| | |

81p1 2 %p3 2 81 p5
- P 16 §> - P . 16 §, - P ; 5o
Es { { E Es . : . E Es 1 } £
=3 . 1220 € L4 ?! 1202 T . 120

0 3 23
2, i i g, g2, i, 2
§ } 8 %5 § i 8 %5 : s 5
= % a S a 3 ]
g2 s £ 82 s+ £82 s
-} - >
4 = ¢ 4
0 0 0 0 0 0
A S A S 1 B S

N"_\'b WA ps? 06\5“0\,_\'1— N)‘_\'B WA s 045“@,_\7- N"'\‘b w7 e? 045“0‘,_\’1—

8 1’3 8 7] 8 3
= p2 %5 _ p4 %5 _ p6 185
Es N EEs EEs E
g = + [ 12 z E i 12 z = 12 z
Eg . 8 Eg o Eg o
8 : ¢ 8 (e ! c 2
g 53 ' 3 . B P,
52 i 4 g E2 4 g B 2 S 4 §

- i -4 z

0 0 0 0 0-—— 0

& s
a0 oS

[
N‘A’ﬁ )“\.\1 o oo ﬂO"A’L

A 5
N’(A% )\’\'\1 p\\)‘!")’ 0"’6“0"‘\?'

Sentinel-2 image on 12 November 2019 and map colour is shown in minimum-maximum linear stretch type.

11

Remove Watermark Now




2018.10.28-2018.11.24 b 2018.11.24-2019.01.23

Figure 5: Slope displacements in different periods after the Baige floods (Background images are Sentinel-2 data
produced by the ESA's Sentinel-2 satellites and downloaded via the GEE).
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Figure 6: Daily precipitation of the Baiyu Meteorology station from October 2018 to February 2020.

Mindu slope (a) and the right image is acquired on 18 July 2017 for the Baige slope (b).
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Table 1. List of 19 base images in early 2018 and 9 targeted images. Base images were used to detect slope displacements in

targeted images.

19 base images in early 2018

5 target images in 2019

January: 11, 13, 16, 23, 28
February: 5,12, 17, 25
March: 4, 9, 14, 19, 29
April: 3, 16, 23

May: 21

2019: 13-Apr., 17-Jul., 24-Aug., 5-

Oct., 12-Nov.
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265

270

275

June: 5

Table 2. Eight periods (image pairs) were used to derive the Mindu slope movement.

Table 3. Detected image shifts (system error) in the “stable zone”. The EW-std and NS-std indicates uncertainties of the method

Image pairs Base image Target image
#1 28 Oct. 2018 24 Nov. 2018
#2 24 Nov. 2018 23 Jan. 2019
#3 23 Jan. 2019 14 Mar. 2019
#4 14 Mar. 2019 18 May 2019
#5 18 May 2019 17 Jul. 2019
#6 17 Jul. 2019 28 Sep. 2019
#7 28 Sep. 2019 29 Nov. 2019
#8 29 Nov. 2019 07 Feb. 2020

and the EW-mean and NS-mean were used to derive the final displacements in image pairs.

Image pairs Dates EW-mean EW-std NS-mean NS-std snr-mean snr-std
#1 2015.11.13  -0.495077 0.181026  -7.275188  0.253885  0.989819  0.001601
2018.11.12
#2 2018.11.12  4.115833  0.056559  9.914275  0.136149  0.989803  0.001434
2019.11.12
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