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Response letter 

Dear Editor and reviewer, 

 We would like to show our sincere thanks to your time and efforts devoted to this work. We carefully read and made 

changes to all raised comments. Please find the point-by-point reply to each specific comments below. 

 5 

Comments from the Editor: 

Dear authors, your article needs to be further improved in some sections. Please check carefully the minor-moderate comments 

raised by one reviewer, and provide suggested changes. In addition, I recommend a check on the figures since scale bars in 

some are missed. Quantification of errors seems also missed. 

I will provide a final editorial check after the above-suggested changes. 10 

 

Response: Thanks for this editorial comments. We re-checked all figures and added scale bars in Figure 2b, Figure 3 and 

Figure 5. 

To make quantifications of errors clear, we re-wrote the sub-section “2.2.2 Error Assessment and postprocessing”. 

Uncertainties in this work were quantified in two parts. For every image pair, “…Standard deviations of displacements within 15 

the stable zone shows uncertainties, which can be used an index to show the quality of the derived results for a given image 

pair…” (lines 104-106). In addition, “In this work, we cross-validated measured slope displacements for five target images in 

2019 in the second step. Uncertainties of the slope displacements for a given target image are estimated from all 19 base 

images in the stable periods. Standard deviations of these 19 measurements were used to indicate their reliability” (lines 108-

110). In the results, quantifications of errors were shown in Figure 3, Figure 4 and Table 3. As we have mentioned in sub-20 

section 2.2.2, uncertainties in this work have been shown in two ways: 1) standard deviations of displacements in the stable 

zone is used as uncertainties of a single image pair (such as Table 3), and 2) standard deviations of derived displacements from 

19 image pairs in “the second step” are uncertainties for a given target image by using 19 base images in the stable period 

(Figure 3 a2, b2, c2, d2 and e2 and vertical bars in subpanels p1-p6 of Figure 4).  

 25 

 

Report #2 

 

I have genuinely appreciated the manuscript. I think the text is clear and informative enough in terms of technical details 

(although I should say that a traditional methodological section is not featured in the text and I should leave the judgement 30 

on whether this is appropriate or not to other reviewers). 

The figures are also quite nicely displayed, notations are correct and the content well agrees with the results reported in 

the text. 



 

2 

 

Overall, I have quite a positive feedback on the manuscript. However, I feel there are few things that can still be 

substantially improved. 35 

 

1. For instance, I find the discussions and conclusions to be lacking from the interpretive standpoint. I would definitely 

suggest adding a few subsections in the discussion part (quite short and essential right now). In this sense, you could 

definitely invest more efforts in putting your contribution in context with respect to the current literature. In this way, you 

could emphasize how different is the work you present as well as potential strengths and weaknesses. 40 

 

Response: Thanks for this comments. We added a few paragraphs and subtitles in the discussion part to put this work in 

context with the current literature. We compared the difference of the image correlation method used in this work with InSAR 

in the subsection “4.2 Comparison of image matching and InSAR methods”. In this part, strength and weakness of the method 

is discussed. Please refer to lines 167-195 of the revised manuscript for details. For the first paragraph, we briefed the principles 45 

of both types of methods and pointed out that they are excel at detecting different deformation scales. The influences of 

temporal interval within an image pair, vegetation and mountain terrains are discussed in the following three paragraphs. 

 

2. Also, I find the discussions to be lacking on the operational side of the work you present. You could talk to the NHESS 

readership and mention if you think the procedure you present to be applicable elsewhere. And if yes (which should be 50 

the case), what are the complexity one may face in repeating the same analytical protocol. 

To explain a bit further what I meant above, I have found the text to be mentioning monitoring activities only twice and 

mostly as a minor comment. However, I feel the technique you present to be very well versed for monitoring purposes. 

Assuming this to be true, then you could open up a small discussion on what type of monitoring can actually be done. 

Could you monitor all types of landslides? In the study area section, you could provide a better description of the landslide 55 

you analyzed. Please consider that the NHESS readership, as your manuscript is right now, has to wait until Section 2.3 

to understand what type of landslide you have worked on. And you just use the following sentence: "Evidenced by optical 

images, the landslide in this work is a translational type and could be dealt with in this way (Highland and Bobrowsky 

2013)". By adding more on the landslide description, you could also call again on this topic in the discussion and mention 

what type of landslides would be equally recognizable in your multi-temporal displacement estimation? Also, are every 60 

environment equally good to support this type of analyses? You mentioned that you initially used the red band because it 

is less sensitive to atmospheric effects and vegetation cover. Would it be possible to use the same technique in a less 

vegetated area? Or would you rather use another band in such cases? Also, what if the vegetation would be even denser 

than the study area you chose? Would your approach be equally successful? I think that these are the type of questions 

that the readership of NHESS would appreciate potentially even more than the technical side of the manuscript you 65 

present.  

This is exactly the point I am trying to raise here. As the manuscript is structured, it feels more like a technical note rather 

than a research article. My suggestion is to care for the interpretative and story-telling side of your research as much as 
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you did for the technical and method-specific part, which I think you did a good job at describing (although my expertise 

does not really fall into optical remote sensing). 70 

Please try to consider my suggestions and add a more general or generalizable flavor to your article. Then, I think it would 

be a nice and complete contribution to read. 

 

Response: Thanks for this insightful and detailed comments. Changes were made on the discussion and method parts of the 

manuscript. We grouped your comments on two major sides, one related to vegetation and one related with landslide types. 75 

These two sides also cover other related issues such as situations that the audience of the NHESS may face. 

 

To the questions of vegetation’s influence: 

We discussed the impact of vegetation density on the method in lines 181-184. “Both methods works well on bare land 

without vegetation, though dense vegetation could seriously affect InSAR methods (Intrieri et al. 2018). On the contrary, image 80 

correlation methods are less affected by vegetation cover as long as both images in a pair are from the same seasons (Yang 

2020). As image correlation methods use pattern matches within an image pair, we speculate that vegetation density may not 

a major challenge on derived results.”  

 We discussed why we select the red band in the Sentienl-2 images and whether other bands are applicable in lines 

184-189: “The Sentinel-2 images used in this work have four 10-metre resolution optical bands (Gascon et al. 2017). In theory, 85 

any of these four bands may be used to derive slope displacements. But an ideal band should not be sensitive to ground cover 

change unrelated with ground displacements, which could minimize background noises. In general, optical bands with shorter 

wavelength is more prone to be affected by moisture in the atmosphere. Considering that near infrared band is very sensitive 

to vegetation, we used the red band in this work.” 

 90 

To the questions of landslide types: 

 Potential applications to other types of landslides are discussed in the new added subsection “4.4 Potential 

applications of the method in landslide monitoring”. In addition, we added a few sentences in the method part to describe the 

type of this imminent landslide in lines 66-69: “Field reconnaissance is not carried out for this slope due to outbreak of the 

COVID-19 pandemic. Instead, we examined the slope via Google Earth images. Fissure cracks is clearly visible on uppermost 95 

part of the slope, and there are widespread cracks on the lower part of the slope. Evidenced by very high spatial resolution 

Google Earth images, the landslide in this work is a translational type (Highland and Bobrowsky 2013).”  

 To echo on the landslide type, we called again on this topic in the discussion part (lines 219-224): “… Because image 

correlation methods use sliding windows to detect similar patterns between the base and target images, precursors with 

horizontal rather than vertical ground movements can be detected. Landslides that have intact moving surfaces can be 100 

detectable by image correlation methods. For translational and rotational landslides, there are more horizontal than vertical 
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ground movements, which are ideal landslide types to use image correlation methods, whereas precursors of avalanches, rock 

falls may be difficult to detect due to limited horizontal ground movement (Highland and Bobrowsky 2013).” 

 

3. On a minor note, there are two typos I have noticed. 105 

In section 2.2, you write "two twine satellites". Please change twine into twin. 

Similarly, in section 2.3, you write different illuminations, et al. (Stmpf et al. 2016). Please remove et al before the 

parentheses and correct the surname of the first author which should be Stumpf. 

 

Response: Typos in these and other places were checked and corrected carefully. 110 
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Abstract. Landslides are major hazards that may pose serious threats to mountain communities. Even landslides in remote 

mountains could have non-negligible impacts on populous regions by blocking large rivers and forming megafloods.dam-

breached mega floods. Usually, there are slope deformations before major landslides occur, and detecting precursors such as 

slope movement before major landslides occur is important for preventing possible disasters. In this work, we applied multi-125 

temporal optical remote sensing images (Landsat 7 and Sentinel-2) and an image correlation method to detect sub-pixel slope 

deformations of a slope. Near near the Mindu town in the Tibet Autonomous Region, this. This slope is also located alongon 

the right bank of the Jinsha River, ~80km downstream the famous Baige landslide. We used a DEM derived aspect to restrain 

background noises in image correlation results. We found the slope remained stable from November 2015 to November 2018 

and moved significantly fromsince November 2018 to November 2019. We used more data to analyse slope movement in 130 

2019 and found retrogressive slope movements with increasingly large deformations near the river bank. We also analysed 

spatial-temporal patterns of the slope deformation from October 2018 to February 2020 and found seasonal variations in slope 

deformations. Only the foot of the slope foot moved in dry seasons, whereas the entire slope activated in rainy seasons. Until 

24 August 2019, the size of the slope with displacements larger than 3 m is similar to that of the Baige landslide. However, 

the river width at the foot of this slope is much narrower than the river width at the foot of the Baige landslide. We speculate 135 

it may continue to slide down and damthreaten the Jinsha River. Further modelling works should be done to check if the 

imminent landslide could dam the Jinsha River and measures be taken to mitigate possible dammed breach flood disasters. 

This work illustrates the potential of using optical remote sensing to monitor slope deformations over large remote mountain 

regions. 

1 Introduction 140 

Landslides are major natural hazards in mountain regions and have been causing widespread disasters every year 

around the globe (Petley 2012; Zhang et al. 2020). Major landslides in remote mountain regions may pose serious threats to 

downstream communities by choking channels to increase the risks of landslide-dammed lake outburst floods (Fan et al. 2020; 
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Liu et al. 2019). For example, a hillslope near the Baige village had two landslides, damming the Jinsha River twice in 2018. 

The outburst floods caused widespread damage along its route and affected as far as Yunnan Province, > 500km from the 145 

landslides (Fan et al. 2019). In 2000, a super-large landslide dammed the Yigong River in Tibet and two months later the 

outburst flood two months later caused widespread damages, including 5 main bridges, highways and communication cables 

in downstream areas (Shang et al. 20132003). The breach of the 1786 landslide-dammed lake in the Dadu river consumed 

>100,000 lives along its route (Dai et al. 2005). Similar cases could occur in many mountain regions in the world and detecting 

precursors (such as slope movement) before major landslides is crucial for preventing such disasters (Intrieri et al. 2018; Carlà 150 

et al. 2019). 

Remote sensing techniques have been an efficient way to monitor slope movement over large mountain regions (Du 

et al. 2020; Handwerger et al. 2019). Optical passive and microwave active radar remote sensing are most frequently used 

toolsdata to detect slope displacements. There are two kinds of mainstream methods to derive slope movement. SAR 

interferometry processing use the difference in phase images to derive subtle slope movement of a few millimetres (Intrieri et 155 

al. 2018; Samsonov et al. 2020). However, large ground displacements (e.g., a few metres), dense vegetation or long time 

intervals could lead to incoherence in phase images in this typestype of methods (Wasowski and Bovenga 2014). Image 

correlation methods (also referred as the pixel offset tracking used in SAR intensity images) is another type of methods that 

use SAR amplitude or optical images to cross-correlatingcorrelate image patches to measure slope movement, which can derive 

sub-pixel ground displacements from 1/10 ~ 1/30 of a pixel (Li et al. 2020). The later type of methods areis good at detecting 160 

larger slope movements that are visible on images (Bradley et al. 2019; Lacroix et al. 2020). In recent years, image correlation 

methods have been proposed and widely used to detect sub-pixel slope displacements in optical images (Bontemps et al. 2018; 

Lacroix et al. 2018, 2019; Lacroix et al. 2018; Yang et al. 2020). 

In this work, using sub-pixel optical image correlation methods we report a landslide along the Jinsha River. Different 

from previous retrospective studies, the landslide in this work did not collapse yet. We speculate thatWe used multi-temporal 165 

Sentinel-2 images and found the slope is unstable and could pose a threat to downstream areas by blocking the Jinsha River. 

To test this hypothesis, we used multi-temporal Sentinel-2 images to detect possible slope displacements. We first used two 

Sentinel-2 images to find the relatively stable period before the flood caused by the upstream Baige landslide (October and 

November 2018). Then, we further analysed the movement of the slope after the flood from the Baige landslide in 2019. 

2 Methods 170 

2.1 Study Area 

The reported slope is ~80 km downstream the Baige landslide (Fan et al. 2019) along the Jinsha River near the Mindu 

town, Tibet Autonomous Region, bordering Sichuan Province (Figure 1a). The slope is located on the right bank of the Jinsha 

River. Similar to the Baige landslide, the geomorphology of this section of the Jinsha River is at the bottom of V-shaped valley. 

The elevation of the study area ranges from 2660m at the valley bottom to >4500m on the mountain ridge. This rough 175 
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topography indicates strong fluvial incision against the rapid uplift of the Tibetan Plateau. We estimated the mean annual 

precipitation (MAP) by using the GPM v6 monthly precipitation (from 2001 to 2019) and found the MAP of this area is 

~665mm. The region is controlled by monsoon climate with >90% of the rain occurring from May to October. In addition, this 

This area is tectonically active and active faults run through this slope from north to south. To the west of the faults 

are Upper Paleozoic strata, and to the east are Mesoproterozoic metamorphic rocks. Cracks and fissures on the slope is visible 180 

from the 15 m resolution pan-sharpened false colour Landsat 7 image acquired in 2001 (Figure 1b). These cracks and fissures 

may be relics of historic earthquakes or precipitations. This part of the slope has a percent slope of 45% and an aspect of the 

southeast, with azimuth between 112.5° and 157.5° (Figure 1c). ThisThe slope is mainly covered by grass and sparse shrubs 

and less affected by anthropogenic activities. Field reconnaissance is not carried out for this slope due to outbreak of the 

COVID-19 pandemic. Instead, we examined the slope via Google Earth images. Fissure cracks is clearly visible on uppermost 185 

part of the slope, and there are widespread cracks on the lower part of the slope. Evidenced by very high spatial resolution 

Google Earth images, the landslide in this work is a translational type (Highland and Bobrowsky 2013). 

In this work, 2.2 The COSI-Corr method 

We mainly relied on Sentinel-2 optical images to derive slope movement. The European Space Agency’s Sentienl-2 

mission has two twinetwin satellites in orbit, with a revisit time of less than 5 days. The Sentinel-2 optical imagery has 12 190 

optical bands with wavelength ranging from 440nm to 2200nm. (Gascon et al. 2017). There are 4 bands with a spatial resolution 

of 10m: blue, green, red and near infrared bands. To derive slope movement, we used the red band because its wavelength is 

longer than other visible bands and is less influenced by the atmosphere. Compared to the near infrared, this band is less 

sensitive to vegetation and is more reliable to measure slope deformation (Yang et al. 2019). We used the Level-1C product, 

which is already orthorectified before distribution (Gascon et al. 2017). 195 

2.2 The COSI-Corr method 

This work used the COSI-Corr method, a correlation method for optical images, to detect slope displacements 

(Leprince et al. 2007). To derive slope movement, two imageimages in a roll should be used to form an image pair, including 

the base image and the target image. The base image is an earlier image, based on which image correlation algorithm (here we 

use the COSI-Corr) is implemented to detect slope displacements in the target image (Leprince, et al. 2007). For detailed 200 

parameters to use the COSI-Corr method, please refer to Yang, et al. (2019b2020). 

In this work, twowe used three steps were taken to detect slope displacements. First for the studied Mindu slope. For 

the first step, we used two image pairs (#1-#2) to detect slope movementfind the stable and moving periods before and after 

November 2018. For thisFor the second step, we used 19 images in the stable period to estimate cumulative slope displacements 

in 5 images in the moving period (image pair #3-#97). For the third step, we used another nine images to derive displacements 205 

for every two adjacent images (image pair #98-#105). 
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2.2.1 Deriving slope displacements 

In the first step, we used three Sentinel-2 images on 13 November 2015, 12 November 2018 and 12 November 2019 

to compose two image pairs. (#1 and #2). The first image pair (#1) is composed of a Sentinel-2 image on 13 November 2015 

and a Sentinel-2 image on 12 November 2018. Sentinel-2 images of the second pair (#2) are acquired on 12 November 2018 210 

and on 12 November 2019. Both image pairs are composed of Sentinel-2 images of similar dates of different years to minimize 

the influence of solar elevation angles (Yang et al. 2020).  

WeBy using the first two image pairs, we found the slope was stable from 13 November 2015 to 12 November 2018 and 

moved significantly from 12 November 2018 to 12 November 2019. Therefore, in the second step, we further used two image 

groups, a base image group and a target image group, to detect cumulative slope displacements and estimate uncertainties 215 

(Table 1). For the base image group, there are 19 images, all of which are acquired in early 2018. These selected 19 base 

images are clear images without clouds in 2018. Although Sentinel-2 images have very short revisit time, most images are 

contaminated by clouds on the Mindu slope before September 2018.the stable period. For the target image group, we selected 

five images in 2019 (13 April, 17 July, 24 August, 5 October and 12 November) to detect slope displacements. For each target 

image in 2019, average slope displacements and uncertainties are estimated from all 19 base images by forming 19 image pairs 220 

in the COSI-Corr method, separately. cumulative displacements. In all, there are 19×5 image pairs are(#3-#97) calculated in 

the second step. In the third step, we use nine images from 28 September 2018 to 7 February 2020 (Table 2) to form another 

eight image pairs (#98-#105) to derive slope displacements.  

2.32.2 Error Assessment and postprocessing 

There are some uncertainties in using image correlation methods, which may be caused by different viewing angles 225 

of images, different illuminations, et al. (Stmpf et al. 2016). The first two image pairs we mentioned above are composed by 

two images of very similar acquire dates of different years. Images of similar dates have similar zenith/elevation angles, which 

could minimize the influence of mountain shadows (Yang et al. 2020). In addition, misalignmentMisalignments between 

images can be estimated by selecting a stable zone (Bontemps et al. 2018; Lacroix et al. 2018; Yang et al. 2019). Mean 

displacements estimated within the stable zone will be used to correct image shifts. The stable zone inIn this work , the stable 230 

zone was selected on the upper part of the landslide (red rectangular in Fig 1b and 1c). Mean displacements estimated within 

the stable zone were used to correct image shifts. Standard deviations of the displacements within the stable zone represents 

uncertainties, indicating the quality of the derived results for a given image pair. We select this area because this stable zone 

is on the same slope as the landslide, which can minimize the influence of illumination and errors during orthorectification.  

To derive spatial-temporal slope deformation patternsIn this work, we used nine images from 28 September 2018 to 235 

7 February 2020 (Table 2) to form eight image pairs (periods) to derivecross-validated measured slope displacements for five 

target images in different periods. All2019 in the second step. Uncertainties of the slope displacements were corrected by 

usingfor a given target image are estimated from all 19 base images in the stable zone (the rectangular with red boundary in 
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Figure 1b&1c).periods. Standard deviations of these 19 measurements were used to indicate their reliability. We further used 

the SRTM DEM derived aspect to filter out derived slope movementdisplacements with moving directions that does not agree 240 

with the aspect.SRTM DEM derived aspects. If there are 15° deviations between the derived slope movement and the aspect, 

the derived slope movement is defined as not validinvalid and will not be used for further analysis. This is reasonable for 

translational landslides as the mass moves downhill driven by gravity. Evidenced by optical images, the landslide in this work 

is a translational type and could be dealt with in this way (Highland and Bobrowsky 2013). 

3 Results 245 

3.1 Detected stable and unstable periods 

In Table 3, Thethe EW-mean and NS-mean indicate the east-west (EW) and north-south (NS) shifts of images in both 

image pairs calculated from the stable zone. The EW-std and NS-std measures image distortionsare standard deviations of 

displacements in the stable zone to indicate image distortions. Low EW-std and NS-std values indicates good performances 

during image orthorectifications. The derived EW-mean and NS-mean were then used to correct  misalignmentmisalignments 250 

in imagesimage pairs. 

ForThe base and target images for image pair #1, the base image is acquired are on 13 November 2015 and the second 

image is acquired12 November 2018, respectively. The base and target images for image pair #2 are on 12 November 2018 

and 12 November 2019, respectively. The slope remains stable in the first image pair, whereas detectable slope displacements 

can be found in the second image pair (Figure 2). The durationdurations of the first image pair spans#1 and pair #2 span 3 255 

years and the second image pair lasts one year., respectively. In Figure 2a, we can see that the slope displacement from 13 

November 2015 to 12 November 2018 was less than 2 m, whereas there was more than >6 m slope displacement from 12 

November 2018 to 12 November 2019 (Figure 2b). In image pair #2, larger displacements were observed near the Jinsha River 

and smaller displacements were farther away from the river. This increasing displacement magnitude may indicate the slope 

may start to move sincefrom its toe. 260 

3.2 Slope Cumulative slope displacements in 2019 

As in Figure 2, we can see that thethis slope remainsremained stable from November 2015 to November 2018 and is 

movingmoved after November 2018. To derive time series of the Mindu slope displacements after November 2018, we used 

19 base images in the stable period and 5 target images in 2019. All 19 base images are from early 2018, during which the 

slope was stable. Five selected target images are acquired on 13 April 2019, 17 July 2019, 24 August 2019, 5 October 2019 265 

and 12 November 2019. For each target image in 2019, we calculated slope movement by using all base images. Therefore, 

there are 19 estimated slope displacements for each target image. We calculated the means and standard deviations of slope 

displacements for each target image representing slope movement from early 2018 and six periods in 2019all target images 

(Figure 3). 
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From Figure 3, we can see that the mean displacements are a magnitude larger than standard deviations, which 270 

indicate that the displacements derived between each target image and their base images agree with each other quite well. 

Minor slope displacements were detected until April 2019 (maximum 3~4m), whereas larger slope displacements can be 

observed in the later four target images (>5 m). All displacements in five target images show a similar pattern with results in 

image pair 2 (Figure 2b), demonstrated by larger displacements near the river and less movement further from the river. 

However, the third target image (24 August 2019) has more displacement of large values than other target images. As seen 275 

from Figure 3, it is quite possible that the slope moved significantly during 2019. 

We further selected six points on the slope to analyse time series of the slope displacements in 2019 (Figure 4). For 

most target images in the first five points (p1-p5), most base images could derive >10 valid displacements (2-D columns). For 

all six points, accumulated displacements show similar growing trends from April 2019 to November 2019. Maximum 

displacements in all six points occurred on 24 August 2019. These unreasonably large values may be caused by difference of 280 

solar elevation/zenith angles in target images. For example, compared to the August image there are more mountain shadows 

in the November images in northern hemisphere. Despite abnormal displacements in August 2019, we can still see that 

displacements from July to November 2019 are still larger than displacements in April 2019. Therefore, from time series of 

these six points, we can see that major slope displacements occurred from April to August 2019. 

3.3 Slope displacements in eight selected periods after November 2018 285 

To analyse spatial deformation patterns in different periods, we selected 9 Sentinel-2 images forming eight image 

pairs (image pairs #98-#105 in Table 2, corresponding to eight periods in ~2 months). The first two image pairs (Figure 5a-b, 

#98 and #99) shows that the middle and lower parts of the slope deformed significantly and 4-6 meters of displacement 

occurred at multiple locations. The study area has a monsoonal climate with most precipitation occurs from May to September 

(Figure 6). There are seasonal differences in deformation of this landslide. In dry seasons of winter and spring, deformation 290 

occurs at the foot of the slope near the Jinsha River and deformation rate is generally less than 1 m/month (from January to 

May, Figure 5c&d and periods 3-4 in Figure 6)., image pairs #100-#101). In rainy seasons of summer and autumn, deformation 

affects the entire slope with some parts at a rate of more than 3 meters/month (from May to September, Figure 5e&f and 

periods 5-6 in Figure 6, image pairs #102-#103). 

4 Discussion 295 

4.1 Possible impacts of this imminent landslide 

Major landslides in mountains may dam river channels forming transient lakes, the breach of which can result in 

catastrophic floods to downstream communities (Dai et al. 2005; Fan et al. 2019; Liu et al. 2019). In this work, we examined 

a hillslope near the Mindu town along the Jinsha River. We found the slope had significant movement from November 2018 

to November 2019. Despite the area of the detected moving slope (715,577 m2 for displacements larger than 3 m) is similar 300 



 

11 

 

with the area of the Biage landslide (830,624 m2), the width of the Jinsha River channel below the Mindu slope (~ 50) is half 

that of the Baige (>100 m, in Figure 7). Considering the similar morphology of both river sections, the collapse of the Mindu 

slope maycould pose a threat to downstream communities by blocking the Jinsha River. We call for further frequent monitoring 

of the hillslope in combination with other tools, such as InSAR (Intrieri et al. 2018; Samsonov et al. 2020). 

There are a few strategies to suppress background noises in derived results, including selecting results with high 305 

signal/noise ratios (Lacroix et al. 2018; Yang et al. 2020), integrating redundant information in time series of images (Bontemps 

et al. 2018). This work introduced a new method to use slope aspect to filter out slope movement that is different from the 

aspect. This procedure could eliminate false slope movements and reserves true slope movement of the Mindu landslide.  

4.2 Comparison of image matching and InSAR methods 

In this work, we used the COSI-Corr method to derive slope displacements for the Mindu slope along the Jinsha River. 310 

The principle of this method is to use a sliding window to find pattern matches to derive displacements in image pairs (Leprince 

et al. 2007). Compared to the InSAR methods, this method is easier to understand and implement. In addition, image correlation 

methods favour larger displacements than InSAR methods. Limited by the wavelength of SAR image, InSAR methods are 

versed in monitoring ground deformation of millimetre to centimetre scale (Intrieri et al. 2018), whereas the capability of 

image correlation methods depends on spatial resolution of images. In general, image correlation methods are more reliable 315 

for deriving large ground displacements of metre scale (Bradley et al. 2019; Lacroix et al. 2020). In this work, it might be quite 

challenging for InSAR methods to detect such large displacements. 

 Long temporal intervals of a few months could lead to incoherence in SAR images (Li et al. 2019), whereas images 

(taken on the same season) with long temporal intervals of a few years can be used to derive reliable displacements given 

stable land cover (Yang 2020). Both type of methods can be affected by the atmosphere. Clear optical images without clouds 320 

should be used in image correlation methods. Although SAR images could penetrate thin clouds, atmosphere could cause 

phase delay and lead to uncertainties in derived results (Li et al. 2019). 

Both methods work well on bare land without vegetation, though dense vegetation could seriously affect InSAR 

methods (Intrieri et al. 2018). On the contrary, image correlation methods are less affected by vegetation cover as long as both 

images in a pair are from the same season (Yang 2020). As image correlation methods use pattern matches within an image 325 

pair, we speculate that vegetation density may not be a major challenge on derived results. The Sentinel-2 images used in this 

work have four 10-metre resolution optical bands (Gascon et al. 2017). In theory, any of these four bands may be used to 

derive slope displacements. But, an ideal band should not be sensitive to ground cover change unrelated with ground 

displacements, which could minimize background noises. In general, optical bands with shorter wavelength is more prone to 

be affected by moisture in the atmosphere. Considering that near infrared band is very sensitive to vegetation, we used the red 330 

band in this work.  

 Both InSAR and image correlation methods can be impacted by complex terrains in mountain regions. Layover and 

shadow areas in SAR images should not be used in InSAR methods (Li et al. 2019). Similarly, shadows in optical images also 
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influence derived results (Yang et al. 2020). To derive reliable results, optical images acquired during larger solar angles should 

be prioritized to minimize the influence of mountain shadows. Fortunately, there are algorithms developed to restore 335 

information in mountain shadows in optical images (Shahtahmassebi et al. 2013), which may promote the efficacy of optical 

image correlation methods.  

4.3 Measures taken to reduce uncertainties 

Many other factors canmay also influence the accuracy of slope deformation derivations by usingfrom image 

correlation methods, which includes errors during image orthorectification errors, different viewing angles of imagesduring 340 

image acquisition, different illuminations in images, et al. (StmpfStumpf et al. 2016; Yang et al. 2020). This work used 

Sentinel-2 L1C product, which is already orthorectified before distribution (Gascon et al. 2017). To correct for possible mis-

registration between the base and mastertarget images, we used a stable zone to calculate and correct image shifts. To reduce 

errors caused by different illuminations and viewing angles of images during acquisition, all images used for the first two 

Sentinel-2 image pairs are from similar dates of different years. To derive cumulative displacements, we used 19 base images 345 

in early 2018 to detect slope displacements in five target images in 2019. 

The first two image pairs (#1 and #2) we mentioned above are composed of images of very similar acquire dates in 

different years. Images of similar dates have similar zenith/elevation angles, which could minimize the influence of mountain 

shadows (Yang et al. 2020). To assess and reduce uncertainties in the second step, we first identified a stable period. Then, we 

used 19 base images in this stable period to derive cumulative displacements for a given target image in the moving period. 350 

The mean displacements from these 19 image pairs are expected to be more reliable than results from a single image pair. In 

addition, these 19 measurements can cross-validate each other and be used to estimate uncertainties by standard deviations 

(Figure 3 and Figure 4). 

There are a few strategies to suppress background noises in derived results, including selecting results with high 

signal/noise ratios (Lacroix et al. 2018; Yang et al. 2020), integrating redundant information in time series of images (Bontemps 355 

et al. 2018). This work introduced a simple and efficient way by using slope aspect to filter out slope movement that is different 

from the aspect. This is reasonable for this translational landslide as the mass moves downhill driven by gravity. This procedure 

could eliminate false slope movements and reserves true slope movement of the Mindu landslide. By integrating topographic 

information, this new procedure is expected to work well for ground movement in other regions that is consistent with slope 

configurations.  360 

4.4 Potential applications of the method in landslide monitoring 

As we used orthorectified images, slope displacements derived in this work are horizontal movements. To derive 

ground movement along the slope, we need to consider local slope configurations. Because image correlation methods use 

sliding windows to detect similar patterns between the base and target images, precursors with horizontal rather than vertical 

ground movements can be detected. Landslides that have intact moving surfaces can be detectable by image correlation 365 



 

13 

 

methods. For translational and rotational landslides, there are more horizontal than vertical ground movements, which are ideal 

landslide types to use image correlation methods, whereas precursors of avalanches, rock falls may be difficult to detect due 

to limited horizontal ground movement (Highland and Bobrowsky 2013). 

In addition, the smallest displacements that can be detected depends on the spatial resolution of optical images (Li et 

al. 2020, Stumpf et al. 2016). Although image correlation methods can detect sub-pixel ground movement, it is very 370 

challenging to detect moving surfaces that cover an area of a few pixels, as smaller window sizes could result in more 

background noises (Yang et al. 2020).  

5 Conclusions 

In this work, by using the COSI-Corr method and multi-temporal Sentinel-2 images, we found precursors of a major 

landslide along the Jinsha River in southwest China. Fissures on the slope probably existed before 2001 but the slope remained 375 

stable between November 2015 and November 2018. From November 2018 to August 2019, we detected significant slope 

displacements. The size of the activated part on the Mindu slope is similar to that of the 2018 Baige landslide, whereas the 

river width under the Mindu slope is half width of the Baige section. If this landslide continues to slide down and fails 

completely, it may block the Jinsha River leading to similar consequences as the Baige landslide. 

By using image correlation technique, we can track sub-pixel slope movement in optical remote sensing images. We 380 

also adopted an aspect constraint to automatically pick out downslope movement and significantly depressed much of the 

background noise. We applied these techniques on multi-temporal Sentinel-2 images to detect slope movement near the Mindu 

town along the Jinsha River. We found the Mindu landslide probably existed before 2001 and the slope remains relatively 

stable between November 2015 and November 2018. Significant slope displacements were observed from November 2018 to 

August 2019.  385 

We found the size of the Mindu slope that activated is similar to that of the Baige landslide, whereas the river width 

under the Mindu slope is half of the Baige section. If the Mindu landslide continues to slide down and occur, it may block the 

Jinsha River leading to similar social-economic consequences as the 2018 Baige landslidenoises. However, optical images, 

such as the Sentinel-2 images, can only detect slope movements up to a few metres. To derive minor continuously monitor 

this slope displacements,, other data and methods (such as higher spatial resolution images or InSAR techniques) should be 390 

implemented for this remote slope.used. We also call for continuousintensive monitoring of this slope and modelling of 

landslides caused river blocking and subsequent floodingthe landslide’s impacts. 
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Figure 1: Topographic maps of the study area. (a) Geographic locations of the Baige landslide and the downstream landslide around 

the Mindu town, Tibet Autonomous Region. (b) A 15 m resolution pan-sharpened Landsat 7 false colour image on 18 February 2001 

and (c) aspect of the study area around the Mindu landslide (The elevation data in a is a product of the NASA's Shuttle Radar 

Topography Mission (SRTM) and the aspect in c is a derivative of the DEM. The red polygons in b and c are the selected stable zone. 485 
Both the SRTM DEM in (a) and its derivative (c) are downloaded from the Geospatial Data Cloud website 
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(http://www.gscloud.cn/sources). The Landsat image in b is a joint product of the USGS and NASA and was downloaded via the 

Google Earth Engine (GEE)). 
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Figure 2: Detected slope displacements in image pairs #1 and #2 (Background Sentinel-2 images are acquired on 13 November 2015 

and 12 November 2018, respectively. Both images were produced by the ESA's Sentinel-2 satellites and downloaded via the GEE). 
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Figure 4: Time series of slope displacements for the six target images. Image to the left shows slope displacements shown above the 

Sentinel-2 image on 12 November 2019 and map colour is shown in minimum-maximum linear stretch type. Sub-panels p1-p6 show 

means (points), standard deviations (vertical bars) and valid numbers (histograms) of cumulative displacements between 19 base 

and 5 target images for the six selected points (stars) in the left image. 500 
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Figure 6: Daily precipitation of the Baiyu Meteorology station from October 2018 to February 2020. 

 505 
Figure 7: High spatial resolution images from the ©Google Earth. The image to the left is acquired on 30 March 2015 for the Mindu 

slope (a) and the right image is acquired on 18 July 2017 for the Baige slope (b). 
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Table 1. List of 19 base images in early 2018 and 9 targeted images. Base images were used to detect slope displacements in targeted 510 
images. Image pairs used in this step are #3-#97. 

19 base images in the stable period 

(in early 2018) 

5 target images in the moving period 

(in 2019) 

January: 11, 13, 16, 23, 28 

February: 5, 12, 17, 25 

March: 4, 9, 14, 19, 29 

April: 3, 16, 23 

May: 21 

June: 5 

 

 

2019: 13-Apr., 17-Jul., 24-Aug., 5-

Oct., 12-Nov. 

 

Table 2. Eight periods (image pairspair #98-#105) were used to derive the Mindu slope movement. 

Image pairs Base image Target image 

#198 28 Oct. 2018 24 Nov. 2018 

#299 24 Nov. 2018 23 Jan. 2019 

#3100 23 Jan. 2019 14 Mar. 2019 

#4101 14 Mar. 2019 18 May 2019 

#5102 18 May 2019 17 Jul. 2019 

#6103 17 Jul. 2019 28 Sep. 2019 

#7104 28 Sep. 2019 29 Nov. 2019 

#8105 29 Nov. 2019 07 Feb. 2020 

 
Table 3. Detected image shifts (system error) in the “stable zone”. The EW-std and NS-std indicates uncertainties of the method and 515 
the EW-mean and NS-mean were used to derive the final displacements in image pairspair #1 and #2. 

Image pairs Dates EW-mean EW-std NS-mean NS-std snr-mean snr-std 

#1 2015.11.13 -0.495077 0.181026 -7.275188 0.253885 0.989819 0.001601 

2018.11.12 

#2 2018.11.12 4.115833 0.056559 9.914275 0.136149 0.989803 0.001434 

2019.11.12 
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