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Abstract. This study presents a landslide susceptibility map using an artificial intelligence (AI) approach based on standards

set by the INSPIRE framework. INSPIRE is a European Union Spatial Data Infrastructure (SDI) initiative to standardize

spatial data across borders to ensure interoperability for management of cross-border infrastructure and environmental issues.

However, despite the theoretical effectiveness of the SDI, few real-world applications make use of INSPIRE standards. In

this study, we show how INSPIRE standards enhance the interoperability of geospatial data, and enable deeper knowledge5

development for their interpretation and explainability in AI applications. We designed an ontology of landslides, embedded

with INSPIRE vocabularies and then aligned geology, stream network and land cover data sets covering the Veneto region of

Italy to the standards. INSPIRE was formally extended to include an extensive landslide type code list, a landslide size code list

and the concept of landslide susceptibility to describe map application inputs and outputs. Using the terms in the ontology, we

defined conceptual scientific models of areas likely to generate different type of landslides as well as map polygons representing10

the land surface. Both landslide models and map polygons were encoded as semantic networks and, by qualitative probabilistic

comparison between the two, a similarity score was assigned. The score was then used as a proxy for landslide susceptibility

and displayed in web map application. The use of INSPIRE-standardized vocabularies in ontologies that express scientific

models promotes the adoption of the standards across the European Union and globally. Further, this application facilitates

explaining the generated results. We conclude that public and private organisations, within and outside the European Union,15

can enhance the value of their data by bringing them into INSPIRE-compliance for use in AI applications.
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1 Introduction

1.1 INSPIRE20

Data accessibility and interoperability is key for multinational cross-border applications and fundamental for economic de-

velopment (European Parliament and the Council, 2007). Different countries have different languages and data standards,

hindering infrastructure planning, disaster risk reduction initiatives, and effective legislative implementation. To overcome

these challenges, the European Union initiated INSPIRE (Infrastructure for Spatial Information in the European Community -

Directive 2007/2/EC) (European Parliament and the Council, 2007). INSPIRE is structured in 34 spatial data themes organized25

in three annexes. The themes span administrative (e. g. street addresses) and environmental domains (e. g. geology), and all EU

countries are mandated by law to have implemented the data framework by 2021 (European Parliament and the Council, 2014).

Each theme defines a data model and has adopted a set of vocabularies to populate interoperable datasets based on that data

model. EU countries are aligning and serving INSPIRE data at a slow pace, and currently relatively few INSPIRE-compliant

data sets are available across Europe (Cho and Crompvoets, 2019). Conferences and competitions are currently being orga-30

nized to promote its implementation and to show the potential impact of real-world applications built on INSPIRE data sets

(European Commission, 2019). This project was first presented at one of these conferences, the Helsinki 2019 INSPIRE data

challenge under the “Let’s make the most out of INSPIRE!” topic, where the project won first prize.

1.2 Artificial intelligence

Artificial Intelligence (AI) studies "the synthesis and analysis of computational agents that act intelligently” (Poole and Mack-35

worth, 2017). Part of acting intelligently is building models of the world that make predictions. Probabilistic predictions are

the most useful ones for subsequent decision making, and can be learned from data (Pearl, 1988). All models are based on

human knowledge and data (observations of the world). For some problem domains, society has collected an overwhelming

amount of data and still, useful human knowledge of the domain can be very vague. Machine learning has made great progress

recently for such cases, particularly with deep learning (Goodfellow et al., 2016). However, for domains with relatively limited,40

but still very large in volume, data, human knowledge (which may be represented in computer through the use of ontologies)

can complement the data to make useful predictions (Pearl, 1988). Many environmental problems do not have enough data

(e.g. lack of extensive landslide databases) to be solved by deep learning, but do have enough data to generate useful products

when combined with human expertise (expressed in ontologies) (Poole and Mackworth, 2017). The term Artificial Intelligence

is commonly used to indicate only the machine learning part of the field, especially in the landslide literature (e.g., Dieu and45

Gjermundsen, 2020). In this paper we use the term "AI"in its broader connotation, which includes also the ontological method

used in this paper. See below for the description of the method and definition of ontologies.
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1.3 The need for standards, ontologies, and taxonomies

Consistent, well defined vocabularies and data standards are essential in computer science applications, especially in AI. For

data to have meaning, and to combine multiple datasets, vocabularies must be consistent and clearly-defined. Deep learning50

techniques require meanings for the inputs and the outputs, but the internal representations do not have well-defined meanings,

making the models very opaque (Marcus, 2018). Other representations, such as logical and probabilistic representations, sup-

port internal reasoning using symbols with well-defined meanings, which lend themselves to use in explanations (Marcus and

Davis, 2019).

Ontologies are “a specification of the meanings of the symbols in an information system” (Poole and Mackworth, 2017). In55

particular, an ontology defines the vocabulary for individuals and relationships within a knowledge domain. Individuals may be

concrete entities (e.g. a rock), or abstract concepts, (e.g. numbers); relationships are properties that describe how individuals are

connected. Typical examples of relationships include: is-a-kind-of, is-part-of, is-superclass-of, has-some-property; the ontology

also defines axioms controlling the use of the vocabulary for logical and thematic consistency (Poole and Mackworth, 2017).

Given these axioms, the vocabulary can be unambiguously interpreted according to the rules of symbolic logic, and implicit60

relationships between entities or instances of those entities can be inferred.

Vocabularies can be Aristotelian taxonomies, which are logically-consistent and multi-hierarchical. Aristotelian taxonomies

are constructed by defining concepts from their relation to a more general parent concept (genus) and using differentiating

properties (differentia) to distinguish concepts within the same genus (Aristotle, 350BC). For example, "Slides in soil" and

"Slides in rock" share the same parent concept "Slides" and they are differentiated by the property dealing with the material65

type, "Soil" and "Rock", which make them uniquely identifiable. Taxonomies based on Aristotelian definitions support multi-

hierarchical knowledge networks and can be used by computers to make logical inferences (Poole et al., 2009; Smith, 2003).

The term ‘multi-hierarchical’ implies that there is more than one way to move through a taxonomy to arrive at a particular

node or term. For example, the landslide taxonomy can be arranged based on different properties. If the landslide types are

firstly arranged based on the type of movement and then based on the type of material, one path within the taxonomy would70

be: Landslide> slides> slides in rock and slides in soil. Alternatively, if the landslide types are arranged first based on the

material type and then on the movement type, the path of the taxonomy would be: Landslide> landslides in rock> slides in rock

and flows in rock. Both paths are valid, but they reach the same concept in different ways. The Natural Hazard Classification

code list extension for landslides presented in this paper was prepared using the open access Aristotelian Class Editor (ACE)

software (Minerva Intelligence, 2019d). Knowledge stored in a domain-specific ontology (e.g. geohazards) can be accessed75

by computers, allowing for data investigation through various artificial intelligence (AI) techniques, including probabilistic

matching between semantic networks, the technique used in this study.

Significant progress has been made in the development of taxonomies for geoscience information interchange by the IUGS

CGI Geoscience Terminology Working Group which produced the GeoSciML standard along with the OGC (CGI, 2003).

However, ontology applications in Earth Sciences are scarce. Notable exceptions are in economic geology (Smyth et al., 2007),80

geohazards (Jackson Jr et al., 2008), and disaster risk reduction domains (Phengsuwan et al., 2019; Sermet and Demir, 2019).
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The INSPIRE framework, through its standardised vocabularies (code lists), provides a necessary foundation upon which

AI applications with explainable output can be constructed. INSPIRE application examples in landslide studies include the

LAND-deFeND Italian landslide database structure (Napolitano et al., 2018) and a deep learning algorithm to map landslide

susceptibility (Hajimoradlou et al., 2020). In Hajimoradlou et al. (2020)’s implementation of deep learning, training features85

were labelled with INSPIRE-compliant semantics to enable reproducibility of the experiment by other researchers.

In this study, we present an AI-based landslide susceptibility application using a natural hazard ontology. We do so by

building from the ontology created by Jackson Jr et al. (2008), and by embedding INSPIRE code lists wherever possible and

by aligning input and output data to the INSPIRE data standards.

1.4 Landslide susceptibility and hazard90

Landslide susceptibility is defined as the relative spatial probability of occurrence for a landslide based on the intrinsic proper-

ties of a site (SafeLand, 2011). The concept of susceptibility differs from hazard in that the temporal probability of occurrence,

the triggering factors, and the magnitude of the event are not considered in the definition of a susceptibility map (SafeLand,

2011; Van Den Eeckhaut and Hervás, 2012). To produce landslide susceptibility maps, three approaches are usually applied:

statistical, physical, and expert-based (SafeLand, 2011). Statistical methods rely on the analysis of landslide databases and their95

relation to landscape properties (see review by Reichenbach et al., 2018); physical methods calculate the limit equilibrium be-

tween failure-resisting and -driving forces in slopes (e.g., Baum et al., 2008); and expert-based methods rely on expert opinion

and the assumption that influencing factors are known and are specified in the models (Dai et al., 2002). The AI approach used

in this study is an example of the expert-based approach, as the models follow rules that represent the reasoning process of a

landslide-expert, providing semi-quantitative susceptibility maps.100

2 Methods

Figure 1 outlines the methodological workflow followed in this study to produce explainable landslide susceptibility assess-

ments in the Veneto Region of Italy. We extended INSPIRE (Section 2.1), we constructed an ontology (Section 2.2) and we

defined expert-models (Section 2.2.1) and instances, represented by mapping polygons (Section 2.2.2). We then compared

the similarity of models and instances to produce a matching score, which is used as susceptibility indicator (Section 2.2.3).105

Finally, the results are delivered in an interactive webmap (Section 2.2.4).

2.1 INSPIRE extension

Technical guideline documents outline the data structure for each theme within the INSPIRE directive, its encoding rules, its

metadata standards, and some of its use cases. Data structures are formally represented using Unified Modeling Language

(UML), modeling thematic entities as feature types, defining properties for each feature type, and characterizing relationships110

between feature types. Where applicable, standardised vocabularies are adopted for property value ranges. INSPIRE themes

can be understood as an ontology (See Section 2.2 below), by defining various entities and the relationships between them.
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Figure 1. The workflow followed in this study and corresponding method sections. We extended INSPIRE, defined and ontology, expert

models and mapping instances. We compared models and instances to deliver a susceptibility map which is available online

INSPIRE data models are implemented as Geography Markup Language (GML) application schemas and serialized using

Extensible Markup Language (XML). This enables data distribution provided as Open Geospatial Consortium (OGC) - com-

pliant web services. Geospatial features are located using vector-based spatial data. Feature properties have value types (e.g.115

geometry for vector data sets); properties whose value ranges are controlled vocabularies have values implemented as code

lists. Code lists incorporate vocabularies developed outside of INSPIRE (e.g. IUGS CGI rock type taxonomy). Some code

lists within INSPIRE are not extensible, some are extensible with narrower values, and some allow additional values at any

level. Code list values, definitions and hierarchical structures are stored in the INSPIRE registry, making them accessible to

and reusable by anyone. INSPIRE schemas can also be extended to include additional concepts and/or feature types. For this120

project, we worked with four INSPIRE themes: Geology, Land Cover, Hydrography and Natural Risk Zones. The Natural

Risk Zone application schema was not fully adequate for this application as it lacked the ‘landslide susceptibility’ concept and

‘landslide type’ code lists (Tomas et al., 2015). We addressed this issue by formally extending the Natural Risk Zone schema

and the Natural Hazards code list.

2.2 Ontologically-grounded probabilistic matching125

The method used to produce INSPIRE-based landslide susceptibility maps, uses qualitative probabilistic reasoning that incor-

porates expert knowledge, making qualitative predictions based on comparisons between models and instances (e.g., Sharma

et al., 2010; Smyth et al., 2007; Poole and Smyth, 2005; Smyth and Poole, 2004). A model is a set of rules defined a priori by

an expert, based on scientific literature, making use of the entities and properties defined in the ontology. These models aim
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to represent expert conceptualized descriptions of a given phenomenon or entity (e.g. landslide susceptibility). The properties130

used in a model description are concepts stored in the ontology, along with frequency terms (e.g. soil slide – has slope – mod-

erately steep – always). Frequency terms used in this study are: “always”, “usually”, “sometimes”, “rarely” and “never”. These

terms were chosen as they express experience-based judgements that geoscience practitioners may use in field assessments.

The term “never” allows the system to explicitly deal with negation (e.g. soil slide - has surficial material - bedrock - never).

The properties and the frequency terms are encoded in semantic triple format (W3C Working Group, 2014) and the resulting135

model is a semantic network. Semantic networks are a graph representation of knowledge where nodes are concepts and edges

are the semantic relation between concepts (Shapiro, 1992); see Figure 2 for example. Real-world areas on the ground (map

units – more generally referred to as “instances”) are also described by semantic networks using the same properties stored in

the ontology, but triples are accompanied by Boolean qualifiers to represent presence or absence of a specific property (e.g.

polygon – has slope – steep – present). Comparisons, referred to as matches, between instances and models is possible because140

models and instances all use the same structured terminology, as controlled by the ontology.

Similarity scores are awarded based on the type of match between instance and model properties, the semantic distance in

the taxonomy of compared property values and the model property frequency term (Figure 2). Match types include, exact,

a kind Of (AKO) exact, and possible. An exact match indicates that the property value term used in the model is present in

the instance (‘a’ in Figure 2), in which case full score is awarded for this component of the compared semantic networks. An145

AKO exact match indicates that the property value term found in the instance is a kind of the property value term found in the

model (‘b’ in Figure 2), in which case a full score is also awarded. A “Possible” match occurs when the property value term

in the instance is broader than the property value term in the model, based on the defined taxonomies, in which case the score

is divided by the semantic distance between the two terms. For example, ‘forest’ is a more specific type of ‘forest and semi

natural areas’ (‘c’ in Figure 2) and results in the score being divided by two. The score is lower because the instance is only150

possibly the kind of value that the model is looking for.

In this study, an exact match or an AKO exact match of a property with frequency “always” scores 10,000, “usually” scores

9000, “sometimes” scores 1000, “rarely” scores “100” and “never” scores -10,000; unmatched attributes are awarded -10

points. These scores are an arbitrary representation of degree of surprise that uses order of magnitude numbers to distinguish

qualitative measures. For an extensive review of the probabilistic comparison method, see Smyth and Poole (2004) Poole and155

Smyth (2005), Smyth et al. (2007) and Sharma et al. (2010). This approach has been applied in economic geology to generate

mineral deposit exploration targets (Smyth et al., 2007), and in geohazard mapping to produce landslide susceptibility maps

(Jackson Jr et al., 2008).

2.2.1 Landslide models

This paper presents an AI expert-based landslide susceptibility map for three different landslide types: debris flows, slides in160

soil, and slides in rock for the Veneto region of Italy. These three landslide types are conceptualizations of landslide models

defined using knowledge recorded in the scientific literature. These landslide models are intended to be proof-of-concept of

models that can be used in the semantic approach proposed in this paper. In particular, some of the properties used in the
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Figure 2. Graphical representation of the matching process between expert-defined models and map polygon instances. a) is an example

of an exact match between the property value “colluvium”; b) is an example of a kind of (AKO) exact match, because “gully erosion” is a

more specific kind of "erosional process". The model is looking for an "erosional process" and found a "gully erosion"; c) is an example of a

possible exact match because “forest and semi natural areas” is a broader concept of “forest”. The model is looking for "forest" but we do not

know whether the instance is a "forest". We only know that the instance is "forest and semi natural areas". The vocabulary and the hierarchy

are controlled by the ontology. Note that frequency terms for model properties are not shown in this figure.

models are drafted from literature analysis of logging-related landslides in British Columbia, Canada (Jackson Jr, 2019).

Here we briefly summarize the models; detailed explanations of each property-value-frequency combination are provided in165

Appendix C.

The ‘Debris Flow’ model describes the channels that may generate a debris flow. Debris flows are flow-like landslides

generated when saturated sediments move down a steep channel. They can be originated when a slide in soil intersects a

flowing body of water, or when saturated bed sediments are mobilized and begin flowing downstream. Debris flows are usually

triggered by intense and persistent rainfall (Hungr et al., 2014). To visualize the ‘Debris Flow’ see the table in Appendix C or170

navigate to https://italy.minervageo.com/debris-flow-model/.

The ‘Slides in Rock’ model describes slopes that may generate slides in rock. Slides in Rock form when steep rock slopes

and cliffs fail under the influence of gravity, and are commonly triggered by intense rainfall or earthquakes. Slides in rock are

usually very fast, and the failure can occur along planar, curved, and/or multiple surfaces. This model represents the collective

class of landslides that have as material "rock" and movement type "slide", including rotational, planar, compound, wedge175

and irregular slides in rock (Hungr et al., 2014). Given the regional scale of this study, we do not have the data resolution

to determine the possible failure plane geometry. For example, we cannot identify slopes more susceptible to planar rock
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slides rather than rotational rock slides. To visualize the ‘Slides in Rock’ model see the table in Appendix C or navigate to

https://italy.minervageo.com/the-roberti-slides-in-rock-model/

The ‘Slides in Soil’ model describes slopes that may generate slides in soil. Slides in soil are downslope movements of soil180

under the influence of gravity, commonly triggered by intense rainfall or earthquakes. They can be slow or fast, and the failure

can occur along one or many planar or curved surfaces (Hungr et al., 2014). With Slides in Soil, we refer to the collective class

representing all landslides that have as material "soil" and movement type "slide”, including rotational, planar, and compound,

clay, silt, sand, gravel, debris slides. Given the regional scale of this study, we do not have the data resolution to determine the

possible failure plane geometry and the specific kind of soil that is involved in the failure. To visualize the ‘Slides in Soil’ see185

the table in Appendix C or navigate to https://italy.minervageo.com/slides-in-soil/

In the presence of higher resolution information such as rock bedding orientation or shear geometry and stratigraphy in soil

masses, specific kinds of rock slides (e.g. planar vs rotational) or different kinds of slides in soil (e. g. clay compound slide vs

clay planar slide) susceptibility may be mapped.

2.2.2 Map polygon instances190

The definition of the mapping unit is a critical step in any landslide susceptibility mapping application and there are many

different approaches to subdividing the area of interest to identify areas susceptible to slides in soil or rock (see review by

Guzzetti et al., 1999). For this study, we used slope units, which are a geomorphic representation of single slopes bounded by

drainage and divide lines (Guzzetti et al., 1999), as mapping unit. We used the r.slopeunits software to automate the slope unit

delineation (Alvioli et al., 2016, 2020). We used stream line vector shapefiles provided by the Veneto Regional Government,195

buffered by a distance of 5 m as mapping units to map debris flow susceptibility. In total, the region of Veneto was subdivided

into 93,262 polygons, of which 9,302 are stream buffer polygons and 83,960 are slope-unit polygons.

We used a spatial overlay analysis to aggregate data describing the physical properties of the mapping units (Figure 6). The

analysis aggregated the properties from all features that intersect the mapping units. For each property in an input layer, an

aggregation type is specified as either: (a) list, whereby all of the intersecting properties are concatenated into the mapping200

unit (e.g. multiple rock types), or (b) Boolean evaluation, which checks whether or not the mapping unit was intersected by a

specific input feature (e.g. a fault).

The properties describing each mapping unit polygon were converted into semantic networks, one network for each polygon.

This conversion allows for semantic reasoning to compare and rank, based on similarity, the mapping units (hereon instances)

against the expert-defined landslide models to evaluate landslide susceptibility.205

2.2.3 Matching, susceptibility and runout

The similarity score between a given model and instance is used as a proxy of landslide susceptibility. A high similarity score

between an instance and a landslide susceptibility model signals a high susceptibility to that type of landslide. We deliver the

similarity score between models and instances as susceptibility on the output maps.
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Table 1. R.avaflow parameters for slides in soil, slides in rock and debris flows runout calculations

Variables (unit) Slides in Soil Slides in Rock Debris Flow

Solid fraction (%) 60 70 60

Fluid fraction (%) 40 30 40

Solid fraction internal friction angle (degree) 18 18 5

Solid fraction basal friction angle (degree) 10 10 4

Fluid fraction internal friction angle (degree) 0 0 0

Fluid fraction basal friction angle (degree) 0 0 0

Solid fraction viscosity (m2 s-1) 30 30 5

Fluid fraction viscosity (m2 s-1) 3 3 3

After the susceptibility assessment, a first-order estimate of hazard is provided by calculating the likely extent of landslide210

runout for the most susceptible (99.9 th percentile score, i. e. top one in a thousand) instances for each model. Various physical

methods have been developed to calculate potential landslide runout, given the physical properties of the material and the

topography (see review by McDougall, 2016). To compute the potential runout extents, we applied the r.avaflow code (Mergili

et al., 2017) which is an open source software package implementing the two-phase debris flow model developed by Pudasaini

(2012). Physical model parameters for ‘Slides in rock’ are inferred from the back-calculations of the recent Mt. Joffre land-215

slide, in British Columbia, Canada (Friele et al., 2020), ‘Slides in soil’ and ‘Debris flow’ parameters use the default r.avaflow

parameters for those landslide types (Table 1).

Various landslide size classes were simulated for each map instance, ranging from class 4 to class 6 (Jakob, 2005). Classes

4 to 6 were chosen to provide a preliminary hazard assessment, where class 4 event may have an approximate return interval

of hundreds of years and class 6 are very unlikely and extreme events with return intervals on the order of thousands of years220

(Jakob, 2005).

2.2.4 Web map

This study’s landslide susceptibility maps and hypothetical landslide runouts for slides in soil, slides in rock and debris flows

are delivered as an interactive web map based on OpenLayers (MetaCarta, 2005) and React (Facebook, 2013). Input layers are

hosted through a Geoserver (The Open Planning Project, 2001) with a PostGIS (Refraction Researtch, 2001) backend database.225

INSPIRE-aligned layers are hosted on Hale Connect (WeTransform, 2014), a platform used to host and serve INSPIRE-

compliant data.
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3 Results

3.1 INSPIRE Natural Risk Zones extension

To develop an INSPIRE-compliant AI application to map landslide susceptibility, we needed to extend the INSPIRE Risk230

Zones theme to include the concept of landslide susceptibility and the specific code list dealing with landslide terminology.

The INSPIRE extensions developed in this project are documented and stored in the Minerva Re3gistry (Minerva Intelligence,

2019a), a version 1.3.1 of the INSPIRE registry based on the Re3gistry software (ISA, 2016). The registry service is packaged

within a collection of Docker (Hykes, 2013) containers and hosted on a local server.

The Natural Risk Zone core (NZ-core) schema extension, which includes the Natural Risk Zone Susceptibility feature type235

was based on SafeLand recommendations (SafeLand, 2011). The Natural Hazard Classification code list was extended (Min-

erva Intelligence, 2019b) to include a classification of various landslide types using the updated Varnes landslide classification

(Hungr et al., 2014), which is a landslide classification widely adopted within the scientific community, and a new code list of

landslide size classes (Minerva Intelligence, 2019c) based on Jakob (2005). The landslide size code list contains ten landslide

size classes based on landslide volume and descriptions of approximate damage potential.240

3.1.1 Code list extension

The Natural Hazard Classification code list extension for landslides considers material type and failure movement, splitting the

tree, first on type of movement, and then on type of material, following Hungr et al. (2014) (Figure 3). Other properties, such as:

water content, depth of failure, rate of movement, loading state, channelized state, and failure plane geometry (see Appendix

B) are used to describe the individual landslide types, as the unique combination of these properties allows for unambiguous245

classification in an Aristotelian taxonomy. We used these properties because, even if not shown in the final taxonomic tree,

they are explicitly applied in the wordy description of landslide types by Hungr et al. (2014).

The formal extension registration process via the INSPIRE Registry software does not enable the representation of such

multi-hierarchical classifications. Because of this we had to work with a single tree hierarchy, and consequently chose to first

divide the classes on type of failure followed by a division based on the type of movement (Figure 3).250
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Figure 3. Natural Hazard Category code list extension for landslides
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3.1.2 Schema extension: susceptibility

The INSPIRE Natural Risk Zone schema includes hazard and risk feature types, but the concept of susceptibility as a feature

type is missing. To overcome this problem, we extended the INSPIRE Natural Risk Zone core XML schema, adding a Nat-

ural Risk Zone Susceptibility schema (Minerva Intelligence, 2019e). The Natural Risk Zone Susceptibility schema includes

Abstract Susceptibility Area and Susceptibility Area feature types (Figure 4). The Susceptibility Area feature type is modelled255

following the structure of the Hazard Area and Risk Zone feature types in the INSPIRE Natural Risk Zone core schema. Sus-

ceptibility Area has three elements: Geometry, Influencing Factor and Relative Spatial Likelihood of Occurrence (Figure 4).

Geometry, as with all INSPIRE vector datasets, is the geometric representation of the extent of the feature on the Earth Surface

as a spatial feature. Influencing factors are defined as the intrinsic, preparatory variables which make an area susceptible to a

hazard (SafeLand, 2011). Influencing factors are unbounded in multiplicity (i.e. can be as many as needed) and can be defined260

qualitatively or quantitatively. Qualitative influencing factors are expressed as a string, while quantitative influencing factors

are expressed as GML:MeasureType (Figure 4). Whether defined quantitatively or qualitatively, the influencing factor can also

define a DataSetType attribute, such as slope or air quality. Influencing factors are used in the calculation of Relative Spatial

Likelihood of Occurrence, which is an element that can be quantitatively or qualitatively defined (Figure 4). The relative spatial

likelihood of occurrence refers to values that represent the spatial probability of occurrence of a specific hazard type, given265

the influencing factors present in the area (SafeLand, 2011). The Influencing Factor element allows end users of Susceptibility

Area datasets to understand which known conditions of the specific area led to the resultant susceptibility.
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class NaturalRiskZonesCore-Suscep�bilityExtension

gml:AbstractFeatureType

«XSDcomplexType»
AbstractSuscep�bilityArea

«XSDelement»
+ beginLifeSpanVersion: beginLifeSpanVersion
+ endLifeSpanVersion: endLifeSpanVersion [0..1]
+ inspireId: base:Iden�fierPropertyType
+ source: source [0..*]
+ validityPeriod: gml:TimePeriodPropertyType [0]

«XSDcomplexType»
Suscep�bilityArea

«XSDelement»
+ geometry: gml:SurfacePropertyType
+ influencingFactor
+ rela�veSpa�alLikelihoodOfOccurence

«XSDcomplexType»
influencingFactor

«XSDa�ribute»
+ nilReason: gml:NilReasonType

«XSDcomplexType»
rela�veSpa�alLikelihoodOfOccurence

«XSDa�ribute»
+ nilReason: gml:NilReasonType

«XSDcomplexType»
InfluencingFactor

«XSDelement»
+ Qualita�veInfluencingFactor: Qualita�veInfluencingFactor [1..*]
+ Quan�ta�veInfluencingFactor: Quan�ta�veInfluencingFactor [1..*]

«XSDcomplexType»
Rela�veSpa�alLikelihoodofOccurence

«XSDelement»
+ Qualita�veSpa�alLikelihood: Qualita�veSpa�alLikelihood
+ Quan�ta�veSpa�alLikelihood: Quan�ta�veSpa�alLikelihood

Legend

1..1

«XSDextension»

1..1

 
Suscep�bilityArea   

+ influencingFactor    

: Associa�on

: Inheritence

: Proper�es

:  Title

[0..1], [0..*], [0] : Mul�plicity

Figure 4. UML diagram showing Natural Risk Zone Susceptibility schema extension of the Natural Risk Zone Core Schema
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3.2 Landslide susceptibility mapping in Veneto

3.2.1 Input data

For this study, we used open access datasets from the Veneto Region Geoportal and other sources (Table 2 and 3). Aligning270

all input datasets was beyond the scope of this project. We did, however, want to show the value of INSPIRE-aligned data and

therefore aligned stream network, CORINE land cover, bedrock geology, and the Italian Landslide Inventory (IFFI) (Table 2)

to INSPIRE using Hale Studio (WeTransform, 2008). Figure 5 shows how different tools in Hale Studio are used to align prop-

erties from the source dataset to the target dataset. For example, the field “eta” –“Age” in Italian, of the original Veneto dataset,

was directly mapped to four different INSPIRE fields: the olderNamedAge.href and title and the youngerNamedAge.href and275

title. Note that olderNamedAge.href youngerNamedAge.href are hyperlinks to the code list value id and the title is the actual

code list term from the GeochronologicEraValue code list. This alignment is done with many classification methods, includ-

ing: Groovy Scripts, formatted strings and assign-alignment tools. For further explanation on term alignments, refer to the

documentation of Hale Studio (WeTransform, 2008). Datasets used that were not compliant with INSPIRE include: lakes,

watersheds, permafrost, fire, slope angle, faults, soil, roads and railways (Table 3).280

Figure 5. Visualization of INSPIRE data alignment within Hale Studio. The left side shows the source Veneto Lithology shape file, the right

side shows the target GeologicUnit feature type within the INSPIRE Geology Schema, and the centre shows the classification method use to

align the data.

14



Table 2. INSPIRE-compliant layers

Layer Description Source URL (last access: January 2020)

Streams Hydrographic network in the Veneto region, including https://idt2.regione.veneto.it

streams, rivers, and other inland flowing water bodies

Land Cover (CORINE) Land cover units in the Veneto region. The CORINE https://land.copernicus.eu/pan-european

Land Cover (CLC) classification which corine-land-cover

includes 44 classes, and was last updated in 2018

Geology Bedrock lithology in the Veneto region. http://www.pcn.minambiente.it/mattm/

en/wfs-service/

IFFI Landslide Landslides that have been identified in the Veneto region http://www.pcn.minambiente.it/mattm/

Points and Areas as part of the IFFI project. The INSPIRE Natural Hazard Category en/wfs-service/

code list was extended to include the updated Varnes landslide

classification (Hungr et al., 2014),

and the data were aligned to this standard

15



Table 3. Layers not compliant with INSPIRE standards

Layer Description Source URL (last access: January 2020)

Lakes Lakes in the Veneto region. https://idt2.regione.veneto.it

Watersheds Watersheds in the Veneto region, derived from a digital http://tinitaly.pi.ingv.it/

elevation model from the TINITALY project made available by

the National Institute of Geophysics and Volcanology (INGV).

Permafrost Permafrost derived from the Global Permafrost Zonation http://www.geo.uzh.ch/microsite/cryodata/

Index Map (Gruber, 2012)

Fires Location and date of past forest fires in the Veneto region. https://idt2.regione.veneto.it

Slope The gradient of the slope in the Veneto region, http://tinitaly.pi.ingv.it/

derived from a digital elevation model from the

TINITALY project made available by

the National Institute of Geophysics and Volcanology.

Faults Faults in the Veneto region, published as part of http://diss.rm.ingv.it/diss/index.php/DISS321

the Database of Individual Seismogenic Sources (DISS) provided

by the National Institute of Geophysics and Volcanology (INGV).

Soils Soil map of the Veneto region, including https://idt2.regione.veneto.it

information about surficial deposit genesis,

material, texture, thickness, geomorphic form and process.

Railroads Railroad network in the Veneto region. https://idt2.regione.veneto.it

Roads Road network in the Veneto region. https://idt2.regione.veneto.it
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Figure 6. Web map interface showing susceptibility to slides in soil in Veneto, Italy. Colours range from blue (0-20 score percentile), to dark

green (20-40 score percentile), light green (40-60 score percentile), yellow (60-80 score percentile), red (80-99.9 score percentile) and purple

(99.9-100 score percentile). Base map credit: © OpenTopoMap (CC-BY-SA)

3.2.2 Webmap

The 83,960 slope units and 9,302 stream buffer instances (Figure 6) are encoded with the available data, then transformed

from vector files into semantic network format. Then, each polygon was matched against the expert-based slides in soil, slides

in rock and debris flow models and colour coded on matching score percentile to portray landslide susceptibility (Figure 6).

The left-side panel of the webmap shows the landslide model layers, the reference layers, and different base maps (Figure 7).285

By clicking on a polygon (instance), a popup window opens (Figure 7): this window contains the name and hyperlink to the

INSPIRE registry code list definition of the landslide type investigated, the attributes that are present in the mapping unit (e.g.

bedrock lithology, erosional process, etc.), the instance percentile rank and total match score, the hyperlink to the comparison

of the instance against other landslide models (e.g the slides in rock model), and (only for the 99.9th percentile score, top one in

one thousand) buttons to turn on the display of landslide runout for different landslide classes, and the hyperlink to the match290

report.

The match report is a detailed table showing the results from the model-instance semantic matching, ensuring the explain-

ability of the results. Each line corresponds to a property-value-frequency term (e.g has slope – moderately steep – always)

comparison between the model and the instance, how they match (with a hyperlink to textual explanation on how the score
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Table 4. Simplified match report table showing instance 117309 compared to slides in soil mode. The match report is accessible online by

clicking https://spot.italy.minervageohazards.com/match_results?if_id=34434&t_id=117309

Model Instance Results

Property value freq. Property value freq. match type Score

has Geomorph

Process

ErosionalProcess always has Geomorph

Process

Gully Erosion present AKO match 10000

has Surficial

Material

Colluvium always has Surficial

Material

Colluvium present exact match 10000

Table 5. Simplified match report table showing the comment for the model property "has erosional process" matching the instance property

"Gully erosion". The full match report is accessible online at https://spot.italy.minervageohazards.com/match_results?if_id=34434&t_id=

117309

Model Instnce Comment Original value

Erosional process - Al-

ways

Gully erosion - Present Active erosional processes are

possible indicators of landslide

activity, as landslides occur

where landslides have occurred

before.

Rock fall, gully erosion, ero-

sional process, karst.

was awarded), the numerical score value, (see Table 4 for example) a textual explanation on why that attribute was chosen,295

and the original data value (Table 5). An "advice" button opening a textual advice expressing which of the instance unmatched

attributes may change the score is available. This advice is a sort of data-advice: it invites the user to check in the field or in

some other databases if, for example, a fault is present in that specific instance.
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Figure 7. Screen capture of the web map showing layer list, information popup window, map legend, and landslide runout. Base map credit:

© OpenTopoMap (CC-BY-SA)
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4 Discussion

4.1 INSPIRE as a framework for Explainable AI300

Across society, the use of numerous complex and non-standardized earth science taxonomies results in interoperability limi-

tations, which hinder the widespread implementation of explainable AI solutions to natural hazard-related problems. This is

evident in the landslide domain, where data layers for landslide susceptibility analysis, ranging from landslide databases (Van

Den Eeckhaut et al., 2013) to geomorphology maps, vary across regions and countries. Consequently, despite the wealth of

scientific literature on landslides in general, and landslide susceptibility in particular (Reichenbach et al., 2018), broad-scale op-305

erational landslide hazard management systems are scarce (Guzzetti et al., 2020), resulting in significant human and economic

losses (Froude and Petley, 2018).

INSPIRE partially addresses this problem by providing standardised data structures for data-hosting and standard terminol-

ogy to use within those structures. This study illustrates that, once INSPIRE-compliant, European data can be subjected to

analytical methods that can be applied for practical application to multiple other equivalent INSPIRE-compliant data sets. For310

example, the same landslide-focused ontology that uses terminology and knowledge models based on INSPIRE code lists used

in this project has been applied in South-Western British Columbia, Canada (Minerva Intelligence, 2019f).

By maintaining carefully curated standards, INSPIRE can play a critical role in AI applications that seek to be “explainable”

(Gilpin et al., 2019). Its code lists can be mapped into ontology properties, enabling machines to make inferences of semantic

and hierarchic relations based on data. The explainability in the application presented in this study is provided in the form of315

a comprehensive match report, which can be opened via an information popup for each instance. The match report provides

the user with complete access to the logic that drives the AI reasoning engine, allowing interrogation of the results displayed

on the map. By embedding explanations in a user-friendly interface, ontologically-based AI can improve the understanding of

complex geospatial problems by decision-makers, insurance companies and the general public.

Public and private organisations, within and outside the European Union, can significantly enhance the value of the data320

they collect and publish by using INSPIRE-compliant standards not only in natural hazard mapping but also in other domains.

A comparative study of regional SDI in the context of INSPIRE implementation (Craglia and Campagna, 2010) showed that

inefficient data access and use at the European level results in economic losses in the 100-200 Million Euro annual range. The

same study, shows that the regional SDI of Lombardia, Italy, allowed 3 Million Euro per year savings to companies working

in Environmental Impact Assessments (EIA), and Strategic Environmental Assessments (SEA). Savings in the same order of325

magnitude can be expected by adopting INSPIRE standards in the geological hazard assessment domain.

4.2 INSPIRE extension and limitations

INSPIRE-compliant datasets are still rare across European countries in general, and in Italy in particular (Cetl et al., 2017;

Mijić and Bartha, 2018; Cho and Crompvoets, 2019). Consequently, we were unable to identify a jurisdiction in Europe with

INSPIRE-compliant datasets for all the inputs necessary for this study. Therefore, instead of using already-compliant data, a330

region optimal for demonstrating the inter-relationship between INSPIRE and explainable AI was chosen, and some of the data
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for that region was transformed into INSPIRE compliance. In doing so, the study provides both a case study of dealing with

non-INSPIRE-compliant data, and an illustration of the rewards achievable by bringing a coherent set of data into INSPIRE

compliance.

The code lists and application schemas in the INSPIRE Natural Risk Zone theme lacked the level of detail necessary for this335

application. This is understandable, as given the broad scope of the directive, schemas lack the necessary granularity for specific

applications. INSPIRE is intended to be used as an overarching umbrella under which domain-specific applications can find

their place by extending it where necessary. The Natural Risk Zone theme (Tomas et al., 2015) and the extension presented in

this work is an example of using this extension facility. Within the Natural Risk Zone theme, the Natural Hazard Category Value

code list includes geological/hydrological hazards, including ‘flood’ and ‘landslide’, but the different subclasses of floods and340

landslides are not specified. For this kind of landslide susceptibility assessment, the clear definition of landslide types, landslide

size classes, and susceptibility was fundamental. For example, a debris flow, which moves rapidly (meters per second), and an

earth flow, which may move slowly (meters per year) present entirely different hazards; they can both destroy property but it is

unlikely for an earth flow to result in fatalities while the opposite can be said of debris flows (Hungr et al., 2014). The definition

of landslide sizes is also important: a size class 1 debris flow has a smaller impact area than a size class 6 event, but, by having345

a higher frequency, it may result in greater losses (Jakob, 2005).

From a data structure perspective, INSPIRE code lists cannot currently host multi-hierarchical taxonomies. This limits the

nature of reasoning that can be brought to bear on them. We understand the technical difficulties in handling multi-hierarchical

taxonomies, but hope that future versions of the Registry software will be able to handle these complex knowledge representa-

tions.350

The INSPIRE Natural Risk Zone theme also lacks the definition of susceptibility as a concept and feature type. The term

susceptibility is not implemented as a feature type because for most hazards (e. g floods and earthquakes) the concept is

embedded within the concept of hazard likelihood (Tomas et al., 2015). This does not apply in the landslide domain where

susceptibility and hazard are distinct concepts (e.g. Van Den Eeckhaut and Hervás, 2012). In this study, we implemented the

susceptibility feature type. Although we applied this feature type in the landslide domain, it will be useful for other natural355

hazard applications, when the spatial likelihood of hazard occurrence must be expressed separately from the general concept

of hazard likelihood.

The extensibility of INSPIRE allows for domain-specific applications, like the approach presented in this paper, to fit within

the INSPIRE framework. However, problems may also arise from the fact that INSPIRE is extensible. Extensibility allows

greater precision in terminology and schema for a specific application but this allows different public and private institutions360

to implement separate, and eventually, incompatible extensions. For example, another landslide classification may be imple-

mented by another institution: this implementation may not be interoperable with the one presented in this study, but will have

the same INSPIRE compliance, leading to two conflicting standards. Much work remains at the level of thematic clusters to

implement as many standardized vocabularies and schemas as possible. Our extension is open and free, and we hope that other

entities will adopt it for other landslide applications.365

21



4.3 Ontological probabilistic matching for landslide susceptibility mapping

The semantic AI system applied in this study aimed to replicate the reasoning with uncertainties typical of geological as-

sessments, applying the terminology that geological and geotechnical professionals use in their daily practice (Smyth et al.,

2007). Since they are based on expert-defined models, the landslide susceptibility maps produced in this study are comparable

to qualitative heuristic assessments (SafeLand, 2011). The choice of using a qualitative method for landslide susceptibility370

assessment is in contrast with recent recommendations for the application of quantitative methods (Corominas et al., 2014).

However, in current professional geological assessments and geomorphological mapping applications, expert judgment is still

widely applied (e.g., Association of Professional Engineers and Geoscientists of British Columbia, 2010; Guzzetti et al., 2012),

and quantitative (statistically and physically-based) methods rely on data that are not always available or of unknown quality.

For example, landslide databases necessary for statistically-based susceptibility mapping are often incomplete, inaccurate, and375

geographically-limited (Guzzetti et al., 2012). Further, the geotechnical parameters necessary for running physical models are

usually approximated to carry out regional-scale studies (e.g., Mergili et al., 2014).

The semantic AI system applied in this study can be used in cases of data scarcity, and if coupled with numerical methods, can

improve the explainability of predictions. For example, by embedding the ontology concepts related to statistical parameters

(e.g. receiving operating curves, confidence intervals) or physical parameters (e. g. friction angles, viscosity), it will be possible380

for the numerical outputs of quantitative methods to be explained in natural language, helping to reduce the gap between

scientists and decision-makers (Newman et al., 2017).

The main goal of this paper is not to present the semantic matching approach, but to show an example on how to modify

INSPIRE to make it possible to use it for landslide-specific applications. By suggesting these landslide-specific schema and

code list extensions, we set the ground for INSPIRE-compliant landslide susceptibility studies. Other organizations can build on385

top of these extensions and future landslide susceptibility applications can be compared as they formally refer to the same data

structure and semantics. Note that we do not force any specific data and modeling variable selection, nor modeling approach

for landslide susceptibility/hazard/risk method. Such an effort is beyond the scope to this paper and, to some extent, already

addressed by the SafeLand project (e.g., SafeLand, 2011) rather, we provide the data structure and semantics to store and share

whichever method has been chosen by the modeler. For example, data selection for calculation of landslide susceptibility is390

encompassed in the schema structure under “Influencing Factor” which are “unbounded in multiplicity and can be defined

qualitatively or quantitatively”, leaving broad range of possibilities to the modeler. Regarding the data quality, it is discussed

in the Natural Risk Zone schema and they refer to ISO standards (INSPIRE Thematic Working Group Natural Risk Zones,

2013). However, we recognize that specific code list (semantics) dealing with data quality and model uncertainty are missing.

We hope that the INSPIRE thematic group will address this point.395

5 Conclusions

This study presents an AI method, based on semantic network comparison, to produce landslide susceptibility maps using

an ontology and standardized taxonomies within the framework provided by the INSPIRE Natural Risk Zone theme. This
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method does not need an accurate landslides inventory to make predictions, as it uses qualitative probabilistic reasoning that

incorporates expert knowledge. We produced susceptibility maps for debris flow, slides in soil and slides in rock for the province400

of Veneto, Italy. To produce the maps for specific landslide types, we extended the Natural Risk Zone theme to encompass both

the concept of susceptibility and the different types of landslides. In particular, we registered a landslide classification extension

of the Natural Hazard Category code list, a landslide size class code list, and Susceptibility Area and Abstract Susceptibility

Area feature types schema extensions. After defining the extension, we aligned key input layers (geology, streams, and land

cover) to INSPIRE and, by using an ontologically-grounded probabilistic matching algorithm, we produced the landslide405

susceptibility layers. The processing outputs were mapped to the Natural Risk Zone Susceptibility schema extension. Then,

potential impact zones of landslides for multiple landslide-size classes were physically modelled for a subset of the instances

with the highest susceptibility scores. Finally, the results were presented in a user-friendly interface, embedding plain language

explanations on how the score was assign and advises on how to improve the matching.

We have demonstrated the value of INSPIRE-compliance by showing how it enhances information and knowledge interop-410

erability, and allows for explainability in AI applications by standardized interrogation of their inputs and outputs. Ontologies

provide the formal structure for INSPIRE code lists to run algorithms similar to that applied here. The maps can explain the

scientific results that they portray, and consequently improve the understanding of complex geospatial problems not only by

domain experts but also by decision-makers and other non-specialized interested parties.

This study also illustrates that, in their current state of development, the INSPIRE standards are not sufficiently expressive415

to support complex landslide susceptibility mapping. We provided an example of how INSPIRE’s extension capabilities may

be implemented to add the required expressivity. This extension framework ensures, through its Re3gistry register, that the

expressivity extensions are documented and available to all interested parties for re-use. In so doing, it sets the context for the

ongoing refinement of standards by the INSPIRE thematic committees.
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6 Data availability420

– The web application is available at: https://map.italy.minervageohazards.com/

– The schema extension is available at: https://github.com/minervaintelligence/INSPIRE-NZ-Susceptibility

– The code list extension is available at: http://minerva.codes/registry

– Data from the Italian National geoportal is available under “Attribution-NonCommercial-ShareAlike 3.0

Italy (CC BY-NC-SA 3.0 IT)” License, https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en

– Data from the Veneto Geoportal are available under the “Italian Open Data License 2.0”,

https://www.dati.gov.it/content/italian-open-data-license-v20

– CORINE land cover data is available under EEA standard re-use policy: re-use of content on the EEA

website for commercial or non-commercial purposes is permitted free of charge, provided that the source is

acknowledged (http://www.eea.europa.eu/legal/copyright)

– Tinitaly DEM is available upon request by sending an email to simone.tarquini@ingv.it with the subject

of TINITALY DEM. Terms and Conditions of Use: Data is provided for research purposes only. Data is

provided solely to the person named on this application form and should not be given to third parties.

Third parties who might need access to the same dataset are required to fill their own application forms

http://tinitaly.pi.ingv.it/ Data from INGV is available under “Creative Commons Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license http://creativecommons.org/licenses/by-sa/4.0/

– The permafrost data is available under “Attribution 3.0 Unported (CC BY 3.0)” licence.

http://www.geo.uzh.ch/microsite/cryodata/.
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B Appendix A - Dictionary of Terms

Term Description

Code list A dataset specifying terms for populating INSPIRE properties that require controlled vocabulary

CLC CORINE land Cover, a classification system for land cover based on vegetation and land use

Feature type A data type representing a thematic entity in a domain of interest, typically with some geospatial location

specified by vector based spatial data

IFFI Italian Landslide Inventory

Instance A data item that represents an individual, specific real-world entity, for this application an instance is

a spatial feature, either a slope unit polygon or a stream buffer polygon.

Model A conceptualization of the entities, properties and relationships in some domain of interest,

in this case, landslides. Three landslide models were used in this project;

debris flow, slides in soil and slides in rock.

Ontology A formal representation of a conceptualization of the entities, properties, relationships, and rules

describing the relation between the entities in some domain of interest.

Semantic Network A graph network of arcs and nodes that represent concepts in a domain of interest.

Schema A representation of a data model, describes the structure of a data theme

Slope unit A map unit polygon that is derived from the digital elevation model,

defined by hydrologic drainage and divide lines

Taxonomy Hierarchical classification scheme based on shared characteristics between entities

Triple A semantic triple is a subject-object-predicate expression that asserts a fact,

and it is the basic unit of a semantic network.
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D Appendix B - Properties used for the landslide classification

Property Property defi-

nition

Property

value

Property value definition

Type of

movement

Landslide

movement

types (Hungr

et al., 2014)

Fall A fall starts with the detachment of soil or rock

from a steep slope along a surface on which little

or no shear displacement takes place. The material

then descends largely through the air by falling,

saltation or rolling (Cruden and Couture, 2011)

Topple A topple is the forward rotation of material about

a point or axis below the centre of gravity of the

displaced mass. (Cruden and Couture, 2011)

Slide A slide is a downslope movement occurring dom-

inantly on surfaces of rupture or relatively thin

zones of intense shear strain (Cruden and Couture,

2011)

Spread Spread is an extension of mass combined with a

general subsidence of a upper fractured mass of

material into softer underlying material. (Cruden

and Couture, 2011)

Flow A flow is a spatially continuous movement in

which surfaces of shear are short-lived, closely

spaced and not usually preserved (Cruden and

Couture, 2011).

Slope de-

formation

Slow, sometime unmeasurable, deformation of

slopes (Hungr et al., 2014)

Material Landslide-

forming

material types

(Hungr et al.,

2014)

Ice Glacier ice or other solid water on steep slopes

(Hungr et al., 2014)

Rock Intrusive, volcanic, metamorphic, strong sedimen-

tary, (carbonatic or arenaceous) and weak sedi-

mentary (argillaceous) (Hungr et al., 2014)
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Strong Rock broken with hammer (Hungr et al., 2014)

Weak Rock peeled with knife (Hungr et al., 2014)

Soil Residual, colluvial, alluvial, lacustrine, marine, aeolian,

glacial, volcanic, organic, random anthropogenic fills,

engineered anthropogenic fills, mine tailings, and sani-

tary waste (Hungr et al., 2014).

Peat Organic material (Hungr et al., 2014).

Debris Low plasticity, unsorted and mixed material (Hungr

et al., 2014).

Silt, sand,

gravel, and

boulders

Nonplastic (or very low plasticicty), granular, sorted.

Silt particles cannot be seen by eye. (Hungr et al., 2014).

Partly

satu-

rated

GW, GP, and GM unified soil classes (Hungr et al.,

2014).

saturated SW, SP, and SM unified soil classes (Hungr et al., 2014).

dry ML unified soil class (Hungr et al., 2014).

Mud Plastic, unsorted, and close to Liquid Limit material.

CL, CH, and CM unified soil classes (Hungr et al.,

2014).

Clay Plastic, can be modeled into standard thread when

moist, has dry strength. GC, SC, CL, MH, CH, OL, and

OH unified soil classes (Hungr et al., 2014).

Sensitive Sensitive or quick clay is a special type of clay prone

to sudden strength loss upon disturbance. From a rela-

tively stiff material in the undisturbed condition, an im-

posed stress can turn such clay into a liquid gel (Geert-

sema, 2013).

soft Easily molded with fingers. Point of geologic pick eas-

ily pushed into shaft of handle. Easily penetrated sev-

eral centimeters by thumb. (Hungr et al., 2014; USDA,

2012).

stiff Indented by thumb with great effort. Point of geologic

pick can be pushed in up to 1 centimeter. Very difficult

to mold with fingers. Just penetrated with hand spade

(Hungr et al., 2014; USDA, 2012).
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E Appendix C - Landslide models

Table E1. Debris flow model https://italy.minervageo.com/debris-flow-model/

Instance Property-Value-Frequency Model Definition Source Comments

has surficial form -Fan(s)-always (Goudie, 2014) Fans are where debris flows deposit.

has surficial form -Terrace(s)-usually (Goudie, 2014) Terraces are formed by downcutting

and lateral erosion of alluvial sediments

by streams. Debris flows can generate

terraces; hence, terraces can be indica-

tor of debris flow activity.

has surficial form -Hummock(s)-always (Howes and Kenk, 1997) Hummocky topography may be indica-

tor of landslide debris

has water -River/Stream-always (Howes and Kenk, 1997) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams

has rainfall - Extreme Rainfall- always (Friele, 2012; Segoni et al., 2018) Debris flows are triggered by intense

rainfall (Segoni et al., 2018). Rainfall

threshold for this study are derived from

Friele (2012).

has rainfall -Severe Rainfall-usually (Friele, 2012; Segoni et al., 2018) Debris flows are triggered by intense

rainfall (Segoni et al., 2018). Rainfall

threshold for this study are derived from

Friele (2012).

has rainfall -Moderate Rainfall-

sometimes

(Friele, 2012; Segoni et al., 2018) Debris flows are triggered by intense

rainfall (Segoni et al., 2018). Rainfall

threshold for this study are derived from

Friele (2012).

has rainfall -Mild Rainfall-rarely (Friele, 2012; Segoni et al., 2018) Debris flows are triggered by intense

rainfall (Segoni et al., 2018). Rainfall

threshold for this study are derived from

Friele (2012).

has geomorph process -

ErosionalProcess-always

(Bovis and Jakob, 1999)) Streams with active erosional processes

are more likely to experience debris

flows than streams with less active ero-

sional.
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has geomorph process -

MassMovement-always

(Guzzetti et al., 2012) Landslides are more likely to occur on

slopes or valleys that have experienced

landslides before

has been logged within years -5-10

years-always

(Jackson Jr, 2019) Landslides are extremely likely by 5 to

10 years after tree harvesting. Most of

tree roots have died, and new trees are

too small to provide anchoring effect

with their roots on the slope.

has been logged within years -10-20

years-usually

(Jackson Jr, 2019) Landslides are likely by 10 to 20 years

after tree harvesting as new trees are

starting to provide anchoring effect with

their roots on the slope.

has been logged within years -0-5

years-usually

(Jackson Jr, 2019) Landslides are likely by 0 to 5 years af-

ter tree harvesting as the trees are dead

but some roots are still providing an-

choring effect on the slope.

has fire within years -0-2 years-always (Jackson Jr, 2019) Debris flows are very likely for 2 years

after a wildfire. Water cannot infiltrate,

runoff and erosion increase as the soil

becomes water repellent and loses co-

hesion because of the fire heat.

has fire within years -3-5 years-usually (Jackson Jr, 2019) Debris flows are likely between 3 to

5 years after a wildfire. The water-

repellent soil horizon degrades but the

roots of dead trees are starting to rot and

they do not support the slope with their

anchoring effect anymore.

has fire within years -5-10 years-always (Jackson Jr, 2019) Debris flows are very likely between 5

to 10 years after a wildfire. Roots of

dead trees decay, and they are not sup-

porting the soil anymore as for the case

of tree harvesting logging.

has fire within years - 10-20 years- usu-

ally

(Jackson Jr, 2019) Debris flows are likely between 10 to

20 years after a wildfire. The roots have

lost anchoring effect and the new trees

are still too small to support the slope.
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has transport line -Road Resource-

always

(Jackson Jr, 2019) Logging roads are the greatest aggravat-

ing factor for landslide activity as com-

pared to undisturbed slopes.

has transport line -Road Resource

Demographic-always

(Jackson Jr, 2019) Logging roads are the greatest aggravat-

ing factor for landslide activity as com-

pared to undisturbed slopes.

has transport line -Road Unclassified Or

Unknown-always

(Jackson Jr, 2019) The ’Road Unclassified Or Unknown’

in this area of BC are mostly old inac-

tive logging roads. This assessment has

been done by visual evaluation of the

data. Logging roads are the greatest ag-

gravating factor for landslide activity as

compared to undisturbed slopes.

has bed rock -volcanic igneous rock-

always

(Bovis and Jakob, 1999)) Quaternary volcanic rocks in BC have

usually weak geotechnical properties.

Basin underlain by these weak rocks are

likely to experience frequent and large

debris flow events.

has fire within years ->20 years-

sometimes

(Jackson Jr, 2019) After 20 year since a wildfire, trees

have regrown and the wildfire effects on

slope stability have diminished.

has surficial material -Colluvium-

Usually

(Bovis and Jakob, 1999) Debris flows are common is areas with

easily erodible material.

has surficial material -Morainal Mate-

rial (Till)-Always

(Bovis and Jakob, 1999) Debris flows are common is areas with

easily erodible material.

has stream order -1-Always (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams.

has stream order -2-Always (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams.
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has stream order -3-rarely (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams.

has stream order -4-rarely (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams

has stream order -5-rarely (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams

has been logged within years ->20

years-sometimes

(Jackson Jr, 2019) By 20 year since logging, trees have re-

grown and the roots are anchoring the

soil again.

has geomorph process -Debris Flow-

always

(Bovis and Jakob, 1999; Wilford et al.,

2004)

Melton ratio (number that takes into ac-

count relief and area of a watershed)

and watershed length allows discrimi-

nation of debris flow, debris flood, and

flood prone fans.

has landslide type-debris flow-Always (Hungr et al., 2014) Debris flows occur periodically on es-

tablished path. Determining the fre-

quency of event is a non-trivial task, but

the fact that someone mapped a debris

flow in a specific channel, indicates the

channel as prone to debris flows events.

has landslide type-Fall -usually (Bovis and Jakob, 1999) Any landslide types may accumulate

debris in a channel that can be then mo-

bilized into a debris flow

has landslide type-Flow-usually (Bovis and Jakob, 1999) Any landslide types may accumulate

debris in a channel that can be then mo-

bilized into a debris flow

has landslide type-Slide-usually (Bovis and Jakob, 1999) Any landslide types may accumulate

debris in a channel that can be then mo-

bilized into a debris flow

has landslide type-Spread-usually (Bovis and Jakob, 1999) Any landslide types may accumulate

debris in a channel that can be then mo-

bilized into a debris flow

has landslide type-Topple-usually (Bovis and Jakob, 1999) Any landslide types may accumulate

debris in a channel that can be then mo-

bilized into a debris flow
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has landslide type-Slope deformation-

usually

(Bovis and Jakob, 1999) Any landslide types may accumulate

debris in a channel that can be then mo-

bilized into a debris flow

has slope -Very steep-always (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams

has slope -Steep-always (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams

has slope -moderately steep-usually (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams

has slope -moderate-usually (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams

has slope -gentle-rarely (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams

has slope -plain-never (Hungr et al., 2014) Debris flows occur periodically on es-

tablished paths, usually gullies and

first- or second- order streams

has surficial form -cliff-always (Howes and Kenk, 1997) Cliffs indicate steep terrains where sed-

iments may be mobilized as debris

flows.

has surficial form -cones-always (Howes and Kenk, 1997) Cones store sediments that may be re-

mobilized into debris flow.

has water -permafrost-always (Hungr et al., 2014) Permafrost degradation can destabilize

sediments

has texture -blocks-always (Howes and Kenk, 1997) The presence of blocks can be indicator

of landslide processes

has texture -rubble-always (Howes and Kenk, 1997) The presence of rubble is an indicator

of landslide processes.
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Table E2. Slides in rock model https://italy.minervageo.com/the-roberti-slides-in-rock-model/

Instance Property-Value-Frequency Model Definition Source Comments

has geomorph process -

GeneralPeriglacialProcesses-always

(Evans and Clague, 1994) Landslides are common in periglacial

environment, especially under changing

climatic conditions.

has geomorph process -

ErosionalProcess-always

(Guzzetti et al., 2012) Active erosional processes are possible

indicator of landslide activity, as land-

slides occur where landslides have oc-

curred before.

has geomorph process -

MassMovement-always

(Guzzetti et al., 2012) Active mass movement processes are

possible indicator of landslide activ-

ity, as landslides occur where landslides

have occurred before.

has slope -Very Steep-always (Hungr et al., 2014) Very Steep slopes are prone to slides

has slope -Steep-always (Hungr et al., 2014) Steep slopes are prone to slides

has slope -Moderately Steep-usually (Hungr et al., 2014) Moderately steep slopes are prone to

slides

has slope -Moderate-sometimes (Hungr et al., 2014) Moderate slopes may be prone to slides

has slope -Gentle-never (Hungr et al., 2014) Gentle slopes are rarely prone to slides

has slope -Plain-never (Hungr et al., 2014) Plain slopes are rarely prone to slides.

has surficial material -Bedrock-ususally (Hungr et al., 2014) ’bedrock’ mapped as surficial mate-

rial indicates the presence of cliffs and

bluffs, possibility prone to rock slides.

has surficial material -Weathered

Bedrock-always

(Hungr et al., 2014) Weather bedrock is more likely to fail

than fresh bedrock.

has weather threshold -Extreme

Weather-always

(Friele, 2012; Segoni et al., 2018) Landslides can be triggered by in-

tense rainfall (Segoni et al., 2018) or

snowmelt. Rainfall threshold for this

study are derived from (Friele, 2012).
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has weather threshold -Severe Weather-

usually

(Friele, 2012; Segoni et al., 2018) Landslides can be triggered by in-

tense rainfall (Segoni et al., 2018) or

snowmelt. Rainfall threshold for this

study are derived from (Friele, 2012).

has weather threshold -Mild Weather-

rarely

(Friele, 2012; Segoni et al., 2018) Landslides can be triggered by in-

tense rainfall (Segoni et al., 2018) or

snowmelt. Rainfall threshold for this

study are derived from (Friele, 2012).

has weather threshold -Moderate

Weather-sometimes

(Friele, 2012; Segoni et al., 2018) Landslides can be triggered by in-

tense rainfall (Segoni et al., 2018) or

snowmelt. Rainfall threshold for this

study are derived from (Friele, 2012).

has land use -Alpine-always (Evans and Clague, 1994) Landslides are common in the Alpine

zone, especially under changing cli-

matic conditions

has land use -

SubAlpineAvalancheChutes-always

(Hungr et al., 2014) Rock slides can occur in gullies that are

also avalanche tracks

has stream order -1-always (Strahler, 1957) Stream erosion can affect slope stability

has stream order -2-always (Strahler, 1957) Stream erosion can affect slope stability

has stream order -3-always (Strahler, 1957) Stream erosion can affect slope stability

has stream order -4-usually (Strahler, 1957) Stream erosion can affect slope stability

has stream order -5-sometimes (Strahler, 1957) Stream erosion can affect slope stability

has transport line -Road Resource-

usually

(Jackson Jr, 2019) Logging roads are the greatest aggravat-

ing factor for landslide activity as com-

pared to undisturbed slopes.

has transport line -Road Unclassified Or

Unknown-usually

(Jackson Jr, 2019) Roads are an aggravating factor for

landslide activity as compared to undis-

turbed slopes.

has transport line -Trail-usually (Jackson Jr, 2019) Roads are an aggravating factor for

landslide activity as compared to undis-

turbed slopes.
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has transport line -Road Recreation

Demographic-sometimes

(Jackson Jr, 2019) Roads are an aggravating factor for

landslide activity as compared to undis-

turbed slopes.

has water -Permafrost-always (Jackson Jr, 2019) Landslides are common in periglacial

environment, especially under changing

climatic conditions.

has bed rock -metamorphic rock-always (Hungr et al., 2014) Foliated metamorphic rocks are usually

weak and prone to failure.

Has CORINE land cover-Glacier and

perpetual snow-always

(Evans and Clague, 1994) Landslides are common in the Alpine

zone, especially under changing cli-

matic conditions.

has CORINE land cover-Bare rocks-

always

(Hungr et al., 2014) Rock outcrops can be steep and prone

to landslides

has CORINE land cover-Road and rail

networks and associated lands-always

(Jackson Jr, 2019) Roads and rail increase landslide activ-

ity as they are a break in slope where

water can accumulate

has fault -Any Fault-always (Reichenbach et al., 2018) Faults are indicator of weak rocks, and

the presence of faults is one of the main

parameters considered in landslide sus-

ceptibility mapping.

has landslide type-Rock Fall-usually (Guzzetti et al., 2012) Landslides are more likely to occur on

slopes or valleys that have experienced

landslides before.
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has landslide type-Rock Slope Spread-

usually

(Guzzetti et al., 2012) Landslides are more likely to occur on

slopes or valleys that have experienced

landslides before

has landslide type-Rock topples-usually (Guzzetti et al., 2012) Landslides are more likely to occur on

slopes or valleys that have experienced

landslides before

has landslide type-Slides in Rock-

always

(Guzzetti et al., 2012) Landslides are more likely to occur on

slopes or valleys that have experienced

landslides before

has landslide type-Slides in soil-

sometimes

(Guzzetti et al., 2012) Note that location must also be consid-

ered. In essence, where there is soil, it

is less likely that there will be steep

slopes, but soil slides are a sign of an

unstable slope, and therefore are not

explicitly negatively correlated to rock

slides

has landslide type-Slope deformation in

rock-usually

(Guzzetti et al., 2012) Landslides are more likely to occur on

slopes or valleys that have experienced

landslides before

has landslide type-Flows in soil-

sometimes

(Guzzetti et al., 2012) Where there is soil, it is less likely

that there will be steep slopes, and rock

slides. But soil slides are a sign of an

unstable slope, and therefore are not

explicitly negatively correlated to rock

slides

has landslide type-Soil Fall-sometimes (Guzzetti et al., 2012) Where there is soil, it is less likely

that there will be steep slopes, and rock

slides. But soil slides are a sign of an

unstable slope, and therefore are not

explicitly negatively correlated to rock

slides
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has landslide type-Slope deformation in

soil-sometimes

(Guzzetti et al., 2012) Where there is soil, it is less likely

that there will be steep slopes, and rock

slides. But soil slides are a sign of an

unstable slope, and therefore are not

explicitly negatively correlated to rock

slides

has landslide type-Soil Topple-

sometimes

(Guzzetti et al., 2012) Where there is soil, it is less likely

that there will be steep slopes, and rock

slides. But soil slides are a sign of an

unstable slope, and therefore are not

explicitly negatively correlated to rock

slides

has surficial form -cliff-always (Hungr et al., 2014) Cliffs can generate rock slides

has texture-rubble-Always (Howes and Kenk, 1997) The presence of blocks can be indicator

of landslide processes

has texture-blocks-Always (Howes and Kenk, 1997) The presence of rubble is an indicator

of landslide processes.

has surficial form -Cones-Always (Howes and Kenk, 1997) Cones may be formed by rock slide de-

bris, hence they can be considered an

indicator of rockslide activity
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Table E3. Slides in soil model https://italy.minervageo.com/slides-in-soil/

Instance Property-Value-Frequency Model Definition Source Comments

has surficial material -Morainal Mate-

rial (Till)-always

(Jackson Jr et al., 2008) Soil slides can be generated when

morainal material fails from a slope

has surficial material -Bedrock-

sometimes

(Jackson Jr et al., 2008) There may be some soil even when

’bedrock’ has been mapped as principal

surficial material

has surficial material -Colluvium-

always

(Jackson Jr et al., 2008) Soil slides can be generated when collu-

vium has been mapped as principal sur-

ficial material

has geomorph process -

ErosionalProcess-always

(Guzzetti et al., 2012) Active erosional processes are possible

indicator of landslide activity, as land-

slides occur where landslides have oc-

curred before.

has geomorph process -

MassMovement-always

(Guzzetti et al., 2012) Active mass movement processes are

possible indicator of landslide activ-

ity, as landslides occur where landslides

have occurred before.

has slope -Plain-rarely (Hungr et al., 2014) Soil slides rarely occur on plain slopes.

has slope -Gentle-rarely (Hungr et al., 2014) Soil slides rarely occur on plain slopes.

has slope -Moderate-usually (Hungr et al., 2014) Soil slides usually occur on moderate

slopes.

has slope -Moderately Steep-usually (Hungr et al., 2014) Soil slides usually occur on moderate

steep slopes.

has slope -Steep-rarely (Hungr et al., 2014) Soil slides rarely occur on moderate

steep slopes, because usually there is

not much soil on steep slopes.

has slope -Very Steep-never (Hungr et al., 2014) Soil slides rarely occur on steep slopes,

because usually there is not much soil

on steep slopes.

has land use -Alpine-never (Hungr et al., 2014) Soil slides rarely occur in the Alpine

zone, because usually there is not much

soil there.
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has land use -

SubAlpineAvalancheChutes-usually

(Hungr et al., 2014) Soil slides can occur in the gullies that

are also avalanche tracks.

has stream order -1-always (Strahler, 1957) Stream erosion can cause soil slides

has stream order -2-always (Strahler, 1957) Stream erosion can cause soil slides

has stream order -3-usually (Strahler, 1957) Stream erosion can cause soil slides

has stream order -4-usually (Strahler, 1957) Stream erosion can cause soil slides

has stream order -5-sometimes (Strahler, 1957) Large stream erosion may cause soil

slides

has transport line -Trail Skid-always (Jackson Jr, 2019) Trail skid are aggravating factor for

landslide activity as compared to undis-

turbed slopes

has transport line -Trail-sometimes (Jackson Jr, 2019) Trails are an aggravating factor for

landslide activity as compared to undis-

turbed slopes

has transport line -Road Resource-

always

(Jackson Jr, 2019) Logging roads are the greatest aggravat-

ing factor for landslide activity as com-

pared to undisturbed slopes.

has transport line -Road Unclassified Or

Unknown-always

(Jackson Jr, 2019) Roads are an aggravating factor for

landslide activity as compared to undis-

turbed slopes.

has transport line -Highway-rarely (Jackson Jr, 2019) Roads are an aggravating factor for

landslide activity as compared to undis-

turbed slopes.

has transport line -Road Recreation

Demographic-sometimes

(Jackson Jr, 2019) Roads are an aggravating factor for

landslide activity as compared to undis-

turbed slopes.

has thickness -Blanket-always (Jackson Jr et al., 2008) Soil Slides can occur when there is

enough soil that can be mobilized on a

slope.

has thickness -Mantle of Variable

Thickness-usually

(Jackson Jr et al., 2008) Soil Slides can occur when there is

enough soil that can be mobilized on a

slope.

has thickness -Veneer-sometimes (Jackson Jr et al., 2008) Soil Slides can occur when there is

enough soil that can be mobilized on a

slope.
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has thickness -Thin Veneer-rarely (Jackson Jr et al., 2008) Soil Slides can occur when there is

enough soil that can be mobilized on a

slope.

has rainfall -Extreme Rainfall-always (Friele, 2012; Segoni et al., 2018) Landslides can be triggered by in-

tense rainfall (Segoni et al., 2018) or

snowmelt. Rainfall threshold for this

study are derived from (Friele, 2012)..

has rainfall -Severe Rainfall-usually (Friele, 2012; Segoni et al., 2018) Landslides can be triggered by in-

tense rainfall (Segoni et al., 2018) or

snowmelt. Rainfall threshold for this

study are derived from (Friele, 2012).

has rainfall -Moderate Rainfall-

sometimes

(Friele, 2012; Segoni et al., 2018) Landslides can be triggered by in-

tense rainfall (Segoni et al., 2018) or

snowmelt. Rainfall threshold for this

study are derived from (Friele, 2012).

has rainfall -Mild Rainfall-rarely (Friele, 2012; Segoni et al., 2018) Landslides can be triggered by in-

tense rainfall (Segoni et al., 2018) or

snowmelt. Rainfall threshold for this

study are derived from (Friele, 2012).

has bed rock -metamorphic rock-always (Bovis and Jakob, 1999) Metamorphic foliated rocks have

usually weak geotechnical properties.

Basin underlain by these weak rocks

are likely to experience more land-

slides compared to basin underlain by

stronger lithologies.

has texture -blocks-always (Howes and Kenk, 1997) The presence of block can be indicator

of mass movement processes

has texture -rubble-always (Howes and Kenk, 1997) The presence of rubble is an indicator

of mass movement processes.

has been logged within years ->20

years-sometimes

(Jackson Jr, 2019) By 20 year since logging, trees have re-

grown and the roots are anchoring the

soil again

has been logged within years -10-20

years-usually

(Jackson Jr, 2019) Landslides are likely by 10 to 20 years

after tree harvesting as new trees are

starting to provide anchoring effect with

their roots on the slope.

has been logged within years -5-10

years-always

(Jackson Jr, 2019) Landslides are extremely likely by 5 to

10 years after tree harvesting. Most of

tree roots have died, and new trees are

too small to provide anchoring effect

with their roots on the slope.
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has been logged within years -0-5

years-usually

(Jackson Jr, 2019) Landslides are likely by 0 to 5 years af-

ter tree harvesting as the trees are dead

but some roots are still providing an-

choring effect on the slope.

has fire within years ->20 years-

sometimes

(Jackson Jr, 2019) After 20 year since a wildfire, trees

have regrown and the wildfire effects on

slope stability have diminished.

has fire within years -10-20 years-

sometimes

(Jackson Jr, 2019) Landslides are likely between 10 to 20

years after a wildfire. The roots have

lost anchoring effect and the new trees

are still too small to support the slope.

has fire within years -0-2 years-always (Jackson Jr, 2019) Landslides are very likely for 2 years

after a wildfire. Water cannot infiltrate,

runoff and erosion increase as the soil

becomes water repellent and loses co-

hesion because of the fire heat

has fire within years -3-5 years-usually (Jackson Jr, 2019) Landslides are likely between 3 to

5 years after a wildfire. The water-

repellent soil horizon degrades but the

roots of dead trees are starting to rot and

they do not support the slope with their

anchoring effect anymore.

has fault -Any Fault-always (Reichenbach et al., 2018) The presence of fault is an important

factor to determine landslide suscepti-

bility

has fire within years -5-10 years-always (Jackson Jr, 2019) Landslides are very likely between 5 to

10 years after a wildfire. Roots of dead

trees decay, and they are not supporting

the soil anymore as for the case of tree

harvesting logging.
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has landslide type-Slides in soil-always (Guzzetti et al., 2012) Landslides are more likely to occur on

slopes or valleys that have experienced

landslides before.

has landslide type-Fall in rock-

sometimes

(Guzzetti et al., 2012) Where there is rock, it is less likely that

there will be soil slides rather than land-

slides in rock. But landslides in rock are

a sign of an unstable slope, and there-

fore are not explicitly negatively corre-

lated to soil slides

has landslide type-Rock topples-

sometimes

(Guzzetti et al., 2012) Where there is rock, it is less likely that

there will be soil slides rather than land-

slides in rock. But landslides in rock are

a sign of an unstable slope, and there-

fore are not explicitly negatively corre-

lated to soil slides

has landslide type-Flows in rock-

sometimes

(Guzzetti et al., 2012) Where there is rock, it is less likely that

there will be soil slides rather than land-

slides in rock. But landslides in rock are

a sign of an unstable slope, and there-

fore are not explicitly negatively corre-

lated to soil slides

has landslide type-slides in rock-

sometimes

(Guzzetti et al., 2012) Where there is rock, it is less likely that

there will be soil slides rather than land-

slides in rock. But landslides in rock are

a sign of an unstable slope, and there-

fore are not explicitly negatively corre-

lated to soil slides
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has landslide type-Slope deformation in

rock -sometimes

(Guzzetti et al., 2012) Where there is rock, it is less likely that

there will be soil slides rather than land-

slides in rock. But landslides in rock are

a sign of an unstable slope, and there-

fore are not explicitly negatively corre-

lated to soil slides

has landslide type-Spread in rock-

sometimes

(Guzzetti et al., 2012) Where there is rock, it is less likely that

there will be soil slides rather than land-

slides in rock. But landslides in rock are

a sign of an unstable slope, and there-

fore are not explicitly negatively corre-

lated to soil slides
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framework for natural hazards and disaster risk reduction information, Natural Hazards, 78, 1545–1563, https://doi.org/10.1007/s11069-585

015-1786-7, 2015.

USDA: Chapter 3 Engineering Classification of Earth Materials, Part 631 National Engineering Handbook, p. 35, 2012.

Van Den Eeckhaut, M. and Hervás, J.: State of the art of national landslide databases in Europe and their potential for assessing landslide

susceptibility, hazard and risk, Geomorphology, 139-140, 545–558, https://doi.org/10.1016/j.geomorph.2011.12.006, http://dx.doi.org/10.

1016/j.geomorph.2011.12.006, 2012.590

Van Den Eeckhaut, M., Hervas, J., and Montanarella, L.: Landslide Databases in Europe: Analysis and Recommendations for In-

teroperability and Harmonisation, in: Landslide Science and Practice: Landslide Inventory and Susceptibility and Hazard Zoning,

48

https://doi.org/10.1029/2011JF002186
https://postgis.net/
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.3389/feart.2018.00085
https://www.frontiersin.org/article/10.3389/feart.2018.00085/full
https://www.frontiersin.org/article/10.3389/feart.2018.00085/full
https://www.frontiersin.org/article/10.3389/feart.2018.00085/full
https://doi.org/10.1007/s12145-019-00398-9
https://doi.org/10.1007/s12145-019-00398-9
https://doi.org/10.1016/j.ijar.2009.05.007
http://dx.doi.org/10.1016/j.ijar.2009.05.007
http://geoserver.org/
https://doi.org/10.1007/s11069-015-1786-7
https://doi.org/10.1007/s11069-015-1786-7
https://doi.org/10.1007/s11069-015-1786-7
https://doi.org/10.1016/j.geomorph.2011.12.006
http://dx.doi.org/10.1016/j.geomorph.2011.12.006
http://dx.doi.org/10.1016/j.geomorph.2011.12.006
http://dx.doi.org/10.1016/j.geomorph.2011.12.006


vol. 1, pp. 243–247, https://doi.org/10.1007/978-3-642-31325-7, http://link.springer.com/10.1007/978-3-642-31325-7{%}0Ahttp:

//www.springer.com/earth+sciences+and+geography/natural+hazards/book/978-3-642-31324-0{%}0Ahttp://grass-italia.como.polimi.it/

meeting2012/09marchesini.pdf, 2013.595

W3C Working Group: RDF 1.1 Primer, https://www.w3.org/TR/rdf11-primer, 2014.

WeTransform: Hale Studio, https://www.wetransform.to/products/halestudio/, 2008.

WeTransform: Hale Connect, https://www.wetransform.to/products/haleconnect/, 2014.

Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., and Bergerud, W. A.: Recognition of debris flow, debris flood and flood hazard through

watershed morphometrics, Landslides, 1, 61–66, https://doi.org/10.1007/s10346-003-0002-0, 2004.600

49

https://doi.org/10.1007/978-3-642-31325-7
http://link.springer.com/10.1007/978-3-642-31325-7{%}0Ahttp://www.springer.com/earth+sciences+and+geography/natural+hazards/book/978-3-642-31324-0{%}0Ahttp://grass-italia.como.polimi.it/meeting2012/09marchesini.pdf
http://link.springer.com/10.1007/978-3-642-31325-7{%}0Ahttp://www.springer.com/earth+sciences+and+geography/natural+hazards/book/978-3-642-31324-0{%}0Ahttp://grass-italia.como.polimi.it/meeting2012/09marchesini.pdf
http://link.springer.com/10.1007/978-3-642-31325-7{%}0Ahttp://www.springer.com/earth+sciences+and+geography/natural+hazards/book/978-3-642-31324-0{%}0Ahttp://grass-italia.como.polimi.it/meeting2012/09marchesini.pdf
http://link.springer.com/10.1007/978-3-642-31325-7{%}0Ahttp://www.springer.com/earth+sciences+and+geography/natural+hazards/book/978-3-642-31324-0{%}0Ahttp://grass-italia.como.polimi.it/meeting2012/09marchesini.pdf
http://link.springer.com/10.1007/978-3-642-31325-7{%}0Ahttp://www.springer.com/earth+sciences+and+geography/natural+hazards/book/978-3-642-31324-0{%}0Ahttp://grass-italia.como.polimi.it/meeting2012/09marchesini.pdf
https://www.w3.org/TR/rdf11-primer
https://www.wetransform.to/products/halestudio/
https://www.wetransform.to/products/haleconnect/
https://doi.org/10.1007/s10346-003-0002-0

