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Abstract. This study presents a landslide susceptibility map using an artificial intelligence (AI) approach that is based on stan-

dards set by the INSPIRE framework. We show how INSPIRE standards enhance the interoperability of geospatial data, and

enable deeper knowledge development for their interpretation and explainability in AI applications. INSPIRE
:::::::
INSPIRE

:
is a

European Union Spatial Data Infrastructure (SDI) initiative to standardize spatial data across borders to ensure interoperability

for management of cross-border infrastructure and environmental issues. Despite
::::::::
However,

::::::
despite

:
the theoretical effective-5

ness of the SDI, very few real-world applications make use of INSPIRE standards.
:
In

::::
this

:::::
study,

:::
we

:::::
show

::::
how

:::::::::
INSPIRE

::::::::
standards

:::::::
enhance

:::
the

:::::::::::::
interoperability

::
of

:::::::::
geospatial

::::
data,

::::
and

::::::
enable

::::::
deeper

:::::::::
knowledge

:::::::::::
development

:::
for

::::
their

::::::::::::
interpretation

:::
and

:::::::::::
explainability

::
in
:::
AI

:::::::::::
applications. We designed an ontology of landslides, embedded with INSPIRE vocabularies and then

aligned geology, stream network and land cover data sets covering the Veneto region of Italy to the standards. INSPIRE was

formally extended to include an extensive landslide type code list, a landslide size code list and the concept of landslide sus-10

ceptibility to describe map application inputs and outputs. Using the terms in the ontology, we defined conceptual scientific

models of slopes
::::
areas

:
likely to generate

:::::::
different

::::
type

::
of

:
landslides as well as map polygons representing real slopes

:::
the

::::
land

::::::
surface. Both landslide models and map polygons were encoded as semantic networks and, by qualitative probabilistic com-

parison between the two, a similarity score was assigned. The score was then used as a proxy for landslide susceptibility and

displayed in web map application. The use of INSPIRE-standardized vocabularies in ontologies that express scientific models15

promotes the adoption of the standards across the European Union and beyond
::::::
globally. Further, this application facilitates the

explainability of the
:::::::::
explaining

:::
the generated results. We conclude that public and private organisations, within and outside the

European Union, can enhance the value of their data by bringing them into INSPIRE-compliance for use in AI applications.
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1 Introduction

1.1 INSPIRE

Data accessibility and interoperability is key for multinational cross-border applications and fundamental for economic devel-

opment (European Parliament and the Council, 2007). Different countries have different languages and data standards, hin-

dering infrastructure planning, disaster risk reduction initiatives, and effective legislative implementation. To overcome these25

challenges, the European Union initiated INSPIRE (Infrastructure for Spatial Information in the European Community - Di-

rective 2007/2/EC- (European Parliament and the Council, 2007) )
:
)
:::::::::::::::::::::::::::::::::::::
(European Parliament and the Council, 2007). INSPIRE

is structured in 34 spatial data themes organized in three annexes. The themes span social
::::::::::::
administrative (e. g. street addresses)

and environmental domains (e. g. geology), and all EU countries are mandated by law to have implemented the data framework

by 2021 (European Parliament and the Council, 2014).
::::
Each

::::::
theme

::::::
defines

:
a
::::
data

::::::
model

:::
and

:::
has

:::::::
adopted

:
a
:::
set

::
of

:::::::::::
vocabularies30

::
to

:::::::
populate

:::::::::::
interoperable

:::::::
datasets

:::::
based

:::
on

::::
that

::::
data

::::::
model.

:
EU countries are aligning and serving INSPIRE data at a slow

pace, and currently relatively few INSPIRE-compliant data sets are available across Europe (Cho and Crompvoets, 2019).

Conferences and competitions are currently being organized to promote its implementation and to show the potential impact

of real-world applications built on INSPIRE data sets (European Commission, 2019).
::::
This

::::::
project

::::
was

:::
first

::::::::
presented

::
at

::::
one

::
of

::::
these

:::::::::::
conferences,

:::
the

:::::::
Helsinki

:::::
2019

::::::::
INSPIRE

:::
data

:::::::::
challenge

:::::
under

:::
the

:::::
“Let’s

:::::
make

:::
the

::::
most

:::
out

:::
of

:::::::::
INSPIRE!”

:::::
topic,

::::::
where35

::
the

::::::
project

::::
won

::::
first

:::::
prize.

:

1.2 Artificial intelligence

Artificial Intelligence (AI) studies "the synthesis and analysis of computational agents that act intelligently” (Poole and Mack-

worth, 2017). Part of acting intelligently is building models of the world that make predictions. Probabilistic predictions are

the most useful ones for subsequent decision making, and can be learned from data (Pearl, 1988). All models are based on40

human knowledge and data (observations of the world). For some problem domains, society has collected an overwhelm-

ing amount of data and still, useful human knowledge of the domain can be very vague. Machine learning has made great

progress recently for such cases, particularly with deep learning (Goodfellow et al., 2016). However, for domains with rel-

atively limited, but still very large in volume, data, human knowledge
::::::
(which

::::
may

::
be

::::::::::
represented

::
in
:::::::::

computer
:::::::
through

:::
the

:::
use

::
of

::::::::::
ontologies) can complement the data to make useful predictions (Pearl, 1988). Many environmental problems do not45

have enough data
::::
(e.g.

::::
lack

::
of

::::::::
extensive

::::::::
landslide

:::::::::
databases) to be solved by deep learning, but do have enough data to gener-

ate useful products when combined with human expertise .
::::::::
(expressed

::
in
::::::::::
ontologies)

::::::::::::::::::::::::
(Poole and Mackworth, 2017)

:
.
::::
The

::::
term

:::::::
Artificial

::::::::::
Intelligence

::
is
::::::::::

commonly
::::
used

::
to

:::::::
indicate

:::::
only

:::
the

:::::::
machine

::::::::
learning

:::
part

:::
of

:::
the

:::::
field,

::::::::
especially

:::
in

:::
the

::::::::
landslide

:::::::
literature

::::::::::::::::::::::::::::::
(e.g., Dieu and Gjermundsen, 2020).

::
In
::::

this
:::::
paper

:::
we

:::
use

::::
the

::::
term

::::::
"AI"in

::
its

:::::::
broader

:::::::::::
connotation,

:::::
which

::::::::
includes

:::
also

:::
the

::::::::::
ontological

::::::
method

::::
used

::
in
::::
this

:::::
paper.

:::
See

::::::
below

:::
for

:::
the

:::::::::
description

::
of

:::
the

:::::::
method

:::
and

::::::::
definition

::
of

::::::::::
ontologies.50
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1.3 The need for standards, ontologies, and taxonomies

Consistent
:
,
::::
well

::::::
defined

:
vocabularies and data standards are essential in computer science applications, especially in AI. For

the data to have any meaning, and for multiple datasetsto be combined, we need consistent vocabulary that is well-defined
::
to

:::::::
combine

:::::::
multiple

::::::::
datasets,

::::::::::
vocabularies

:::::
must

::
be

:::::::::
consistent

::::
and

::::::::::::
clearly-defined. Deep learning techniques require meanings

for the inputs and the outputs(often specified in standards such as JPEG, or WAV), ,
:
but the internal representations do not55

have well-defined meanings, making the models very opaque (Marcus, 2018). For certain other
::::
Other

:
representations, such

as logical and probabilistic representations, the internal reasoning is done on
::::::
support

:::::::
internal

::::::::
reasoning

:::::
using

:
symbols with

well-defined meanings, which lend themselves to use in explanations (Marcus and Davis, 2019).

Ontologies are “a specification of the meanings of the symbols in an information system” (Poole and Mackworth, 2017).

In particular, an ontology stores the vocabulary used to define entities and relationships
:::::
defines

:::
the

:::::::::
vocabulary

:::
for

::::::::::
individuals60

:::
and

:::::::::::
relationships

::::::
within

:
a
::::::::::
knowledge

:::::::
domain.

:::::::::
Individuals

::::
may

:::
be

:::::::
concrete

:::::::
entities

::::
(e.g.

::
a
:::::
rock),

::
or

:::::::
abstract

::::::::
concepts,

:::::
(e.g.

::::::::
numbers);

:::::::::::
relationships

:::
are

::::::::
properties

::::
that

:::::::
describe

::::
how

:::::::::
individuals

:::
are

:::::::::
connected.

:::::::
Typical

::::::::
examples

::
of

:::::::::::
relationships

:::::::
include:

:::::::::
is-a-kind-of, and

::::::::
is-part-of,

::::::::::::::
is-superclass-of,

::::::::::::::::
has-some-property;

:::
the

::::::::
ontology

::::
also defines axioms controlling the use of the

voabulary
:::::::::
vocabulary

:::
for

::::::
logical

:::
and

::::::::
thematic

:::::::::
consistency

:::::::::::::::::::::::::
(Poole and Mackworth, 2017). Given these axioms, the vocabulary

is unambiguously interpreted , and the
:::
can

::
be

:::::::::::::
unambiguously

:::::::::
interpreted

::::::::
according

::
to
:::
the

:::::
rules

::
of

::::::::
symbolic

:::::
logic,

:::
and implicit65

relationships between the entities
::::::
entities

::
or

::::::::
instances

:::
of

::::
those

:::::::
entities can be inferred(?). Vocabularies should be , whenever

possible, Aristotelean taxonomies. Aristotelean

::::::::::
Vocabularies

::::
can

::
be

::::::::::
Aristotelian

::::::::::
taxonomies,

:::::
which

:::
are

::::::::::::::::
logically-consistent

::::
and

:::::::::::::::
multi-hierarchical.

::::::::::
Aristotelian

:
taxonomies

are constructed by defining concepts from their relation to a more general parent concept (genus) and using differentiating

properties (differentia) to distinguish concepts within the same genus (Aristotle, 350BC).
::
For

::::::::
example,

:::::::
"Slides

::
in

::::
soil"

::::
and70

::::::
"Slides

::
in

:::::
rock"

:::::
share

:::
the

::::
same

::::::
parent

:::::::
concept

:::::::
"Slides"

:::
and

::::
they

::::
are

:::::::::::
differentiated

::
by

:::
the

::::::::
property

::::::
dealing

:::::
with

:::
the

:::::::
material

::::
type,

::::::
"Soil"

:::
and

:::::::
"Rock",

::::::
which

:::::
make

:::::
them

:::::::
uniquely

:::::::::::
identifiable. Taxonomies based on Aristotelian definitions tend to be

::::::
support

:
multi-hierarchical

:::::::::
knowledge

::::::::
networks

:
and can be used by computers to make logical inferences (?Smith, 2003)

::::::::::::::::::::::::::
(Poole et al., 2009; Smith, 2003). The term ‘multi-hierarchical’ implies that there is more than one way to move through a

taxonomy to arrive at a particular node or term.
::
For

::::::::
example,

:::
the

::::::::
landslide

:::::::::
taxonomy

::::
can

::
be

::::::::
arranged

:::::
based

:::
on

::::::::
different75

::::::::
properties.

::
If
::::

the
:::::::
landslide

:::::
types

:::
are

::::::
firstly

:::::::
arranged

:::::
based

:::
on

:::
the

::::
type

::
of

:::::::::
movement

::::
and

::::
then

:::::
based

:::
on

:::
the

::::
type

::
of

::::::::
material,

:::
one

::::
path

::::::
within

:::
the

:::::::::
taxonomy

:::::
would

:::
be:

::::::::::
Landslide>

::::::
slides>

::::::
slides

::
in

::::
rock

::::
and

:::::
slides

::
in

::::
soil.

::::::::::::
Alternatively,

::
if

:::
the

::::::::
landslide

::::
types

:::
are

::::::::
arranged

::::
first

:::::
based

:::
on

:::
the

::::::::
material

::::
type

::::
and

::::
then

:::
on

:::
the

:::::::::
movement

:::::
type,

:::
the

::::
path

:::
of

:::
the

:::::::::
taxonomy

:::::
would

::::
be:

:::::::::
Landslide>

:::::::::
landslides

::
in

:::::
rock>

::::::
slides

::
in

::::
rock

::::
and

:::::
flows

::
in

:::::
rock.

:::::
Both

:::::
paths

:::
are

:::::
valid,

:::
but

::::
they

:::::
reach

::::
the

::::
same

:::::::
concept

:::
in

:::::::
different

:::::
ways.

::::
The

:::::::
Natural

::::::
Hazard

::::::::::::
Classification

:::::
code

:::
list

::::::::
extension

::::
for

::::::::
landslides

:::::::::
presented

::
in

::::
this

:::::
paper

::::
was

::::::::
prepared80

::::
using

:::
the

:::::
open

:::::
access

::::::::::
Aristotelian

:::::
Class

:::::
Editor

::::::
(ACE)

:::::::
software

:::::::::::::::::::::::::
(Minerva Intelligence, 2019d).

:
Knowledge stored in a domain-

specific ontology (e.g. geohazards) can be accessed by computers, allowing for data investigation through various artificial

intelligence (AI) techniques, including probabilistic matching as for
:::::::
between

::::::::
semantic

::::::::
networks,

:::
the

:::::::::
technique

::::
used

::
in

:
this

study.

3



Significant progress has been made in the development of taxonomies for geoscience information interchange by the IUGS85

CGI Geoscience Terminology Working Group which produced the GeoSciML standard along with the OGC (CGI, 2003).

However, ontology applications in Earth Sciences are scarce. Notable exceptions are in economic geology (Smyth et al., 2007),

geohazards (Jackson Jr et al., 2008), and disaster risk reduction domains (Phengsuwan et al., 2019; Sermet and Demir, 2019).

The INSPIRE framework, through its standardised vocabularies (“Code Lists”
::::
code

:::
lists), provides the

:
a
:
necessary foundation

upon which AI applications with explainable output can be constructed. INSPIRE application examples in landslide studies90

include the LAND-deFeND Italian landslide database structure (Napolitano et al., 2018) and a deep learning algorithm to

map landslide susceptibility (Hajimoradlou et al., 2019). In this
:::::::::::::::::::::
(Hajimoradlou et al., 2020)

:
.
::
In

::::::::::::::::::::::
Hajimoradlou et al. (2020)

::
’s

implementation of deep learning, training features were labelled with INSPIRE-compliant semantics to enable reproducibility

of the experiment by other researchers.

In this study, we present an AI-based landslide susceptibility application using a natural hazard ontology. We do so by95

building from the ontology created by Jackson Jr et al. (2008), and by embedding INSPIRE code lists wherever possible and

by alligning input and outpud
:::::::
aligning

::::
input

::::
and

:::::
output

:
data to the INSPIRE data standards.

1.4 Landslide susceptibility and hazard

Landslide susceptibility is defined as the relative spatial probability of occurrence for a landslide based on the intrinsic prop-

erties of a site (SafeLand, 2011). The concept of susceptibility differs from hazard in that the temporal probability of occur-100

rence, the triggering factors, and the magnitude of the event are not considered in the definition of a susceptibility map (Safe-

Land, 2011; Van Den Eeckhaut and Hervás, 2012). Statistical methods, physical methods
::
To

:::::::
produce

:::::::
landslide

::::::::::::
susceptibility

:::::
maps,

::::
three

::::::::::
approaches

:::
are

::::::
usually

:::::::
applied:

::::::::
statistical,

:::::::
physical, and expert-based methods can be applied to produce landslide

susceptibility maps (SafeLand, 2011). Statistical methods rely on the analysis of landslide databases and their relation to land-

scape properties (see review by Reichenbach et al., 2018); physical methods calculate the limit equilibrium between failure105

resisting forces and driving
:::::::::::::
failure-resisting

::::
and

::::::
-driving

:
forces in slopes (e.g., Baum et al., 2008); and expert-based methods

rely on expert opinion and the assumption that influencing factors are known and are specified in the models (Dai et al., 2002).

The AI approach used in this study mimics the domain-expert reasoning , providing qualitative landslide
:
is
:::

an
:::::::
example

:::
of

::
the

:::::::::::
expert-based

:::::::::
approach,

::
as

:::
the

:::::::
models

::::::
follow

::::
rules

::::
that

::::::::
represent

:::
the

:::::::::
reasoning

::::::
process

:::
of

:
a
::::::::::::::
landslide-expert,

:::::::::
providing

::::::::::::::
semi-quantitative susceptibility maps.110

2 Methods

:::::
Figure

::
1

::::::
outlines

:::
the

:::::::::::::
methodological

::::::::
workflow

:::::::
followed

::
in

::::
this

::::
study

::
to

:::::::
produce

::::::::::
explainable

:::::::
landslide

:::::::::::
susceptibility

::::::::::
assessments

::
in

:::
the

::::::
Veneto

::::::
Region

::
of

:::::
Italy.

:::
We

::::::::
extended

::::::::
INSPIRE

:::::::
(Section

::::
2.1),

:::
we

::::::::::
constructed

::
an

::::::::
ontology

:::::::
(Section

::::
2.2)

:::
and

:::
we

:::::::
defined

:::::::::::
expert-models

:::::::
(Section

::::::
2.2.1)

:::
and

::::::::
instances,

::::::::::
represented

::
by

:::::::
mapping

::::::::
polygons

:::::::
(Section

::::::
2.2.2).

:::
We

::::
then

::::::::
compared

:::
the

::::::::
similarity

::
of

::::::
models

::::
and

::::::::
instances

::
to

:::::::
produce

::
a

::::::::
matching

:::::
score,

::::::
which

::
is

::::
used

:::
as

:::::::::::
susceptibility

::::::::
indicator

:::::::
(Section

::::::
2.2.3).

:::::::
Finally,

:::
the115

:::::
results

:::
are

::::::::
delivered

::
in

::
an

:::::::::
interactive

::::::::
webmap

:::::::
(Section

:::::
2.2.4).

:
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Figure 1.
::
The

::::::::
workflow

:::::::
followed

::
in

:::
this

::::
study

::::
and

:::::::::::
corresponding

::::::
method

::::::
sections.

:::
We

:::::::
extended

::::::::
INSPIRE,

::::::
defined

:::
and

::::::::
ontology,

:::::
expert

:::::
models

:::
and

:::::::
mapping

:::::::
instances.

:::
We

::::::::
compared

::::::
models

:::
and

:::::::
instances

:
to
::::::
deliver

:
a
::::::::::
susceptibility

::::
map

:::::
which

:
is
:::::::
available

:::::
online

2.1 INSPIRE extension

Technical guideline documents outline the data structure for each theme within the INSPIRE directive, its encoding rules, its

metadata standards, and some of its use cases. Data structures are formalized as
:::::::
formally

::::::::::
represented

:::::
using Unified Modeling

Language (UML)and Extensible Markup Language (XML) application schemas. These application schemas model spatial120

objects
:
,
::::::::
modeling

:::::::
thematic

:::::::
entities as feature types(vector-based spatial data), describe properties of ,

:::::::
defining

:::::::::
properties

:::
for

each feature type(often with standardised vocabularies) and characterize the relationships between different
:
,
:::
and

::::::::::::
characterizing

::::::::::
relationships

:::::::
between

:
feature types. As such, each one of these data structures

::::::
Where

:::::::::
applicable,

::::::::::
standardised

:::::::::::
vocabularies

:::
are

::::::
adopted

:::
for

::::::::
property

:::::
value

::::::
ranges.

::::::::
INSPIRE

::::::
themes

:
can be understood as an ontology (See Section 2.2 below), by defining

various entities and the relationships between them.125

INSPIRE data is generally encoded
::::::
models

:::
are

:::::::::::
implemented

:
as Geography Markup Language (GML) and can also be

application schemas
:::
and

::::::::
serialized

::::::
using

:::::::::
Extensible

:::::::
Markup

::::::::
Language

:::::::
(XML).

:::::
This

::::::
enables

:::::
data

:::::::::
distribution

:
provided as

Open Geospatial Consortium (OGC) - compliant web services. Feature-type
::::::::
Geospatial

:::::::
features

:::
are

::::::
located

:::::
using

:::::::::::
vector-based

:::::
spatial

:::::
data.

::::::
Feature

:
properties have value types (e.g. geometry for vector data sets)and ;

:::::::::
properties

::::::
whose

:::::
value

::::::
ranges

:::
are

::::::::
controlled

:::::::::::
vocabularies

::::
have

::::::
values

:::::::::::
implemented

:::
as

:
code lists. Code lists store the terminology that can be used in each130

domain to specify the value attribute, and may incorporate vocabularies developed outside of INSPIRE (e.g. IUGS CGI rock

type taxonomy, Natura 2000 And Emerald Bio-geographical Region Classification). Some code lists within INSPIRE are not

extensible, some are extensible with narrower values, and some allow additional values at any level. Code list values, definitions

5
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and hierarchical structures are stored in the INSPIRE registryINSPIRE registry, making them accessible to and reusable by

anyone. INSPIRE schemas can also be extended to include additional concepts and/or feature types. For this project, we worked135

with four INSPIRE themes: Geology, Land Cover, Hydrography and Natural Risk Zones. The Natural Risk Zone application

schema was not fully adequate for this application as it lacked the ‘landslide susceptibility’ concept and ‘landslide type’ code

lists (Tomas et al., 2015). We addressed this issue by formally extending the Natural Risk Zone schema and the Natural Hazards

code list.

2.2 Ontological-grounded
::::::::::::::::::::
Ontologically-grounded

:
probabilistic matching140

The method used to produce INSPIRE-based landslide susceptibility maps, is a probabilistic comparison system that mimics

human expert reasoning
::::
uses

::::::::
qualitative

:::::::::::
probabilistic

::::::::
reasoning

::::
that

::::::::::
incorporates

::::::
expert

:::::::::
knowledge, making qualitative predic-

tions based on comparisons between models and instances (e.g., Sharma et al., 2010; Smyth et al., 2007; ?; Smyth and Poole, 2004)

. Models are expert-based
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Sharma et al., 2010; Smyth et al., 2007; Poole and Smyth, 2005; Smyth and Poole, 2004)

:
.
::
A

:::::
model

::
is

::
a

::
set

:::
of

::::
rules

:::::::
defined

:
a
:::::
priori

:::
by

:::
an

::::::
expert,

:::::
based

:::
on

:::::::
scientific

:::::::::
literature,

::::::
making

::::
use

::
of

:::
the

:::::::
entities

:::
and

:::::::::
properties145

::::::
defined

::
in

:::
the

::::::::
ontology.

::::::
These

::::::
models

::::
aim

::
to

::::::::
represent

::::::
expert conceptualized descriptions of a given phenomenon or entity

(e.g. landslide susceptibility). The properties used in a model description are concepts stored in the ontology(e.g. soil slide –

has slope – steep), along with frequency terms (e.g. soil slide – has slope –
:::::::::
moderately

:
steep – always). Frequency terms used

in this study included
:::
are: “always”, “usually”, “sometimes”, “rarely” and “never”. These terms were chosen as they express

experience-based judgements that geoscience practitioners
:::
may

:
use in field assessments. The term “never” allows the system150

to explicitly deal with negation (e.g. soil slide - has surficial material - bedrock - never). The properties and the frequency terms

are encoded in semantic triple format
::::::::::::::::::::::::
(W3C Working Group, 2014) and the resulting model is a semantic network.

::::::::
Semantic

:::::::
networks

:::
are

::
a
:::::
graph

::::::::::::
representation

:::
of

:::::::::
knowledge

::::::
where

:::::
nodes

::::
are

:::::::
concepts

::::
and

:::::
edges

:::
are

::::
the

:::::::
semantic

:::::::
relation

::::::::
between

:::::::
concepts

:::::::::::::
(Shapiro, 1992)

:
;
:::
see

::::::
Figure

::
2
:::
for

::::::::
example.

:
Real-world areas on the ground (map units – more generally revered

::::::
referred

:
to as “instances”) are also described by semantic networks using the same properties stored in the ontology, but they155

:::::
triples

:
are accompanied by true-or-false qualifiers

:::::::
Boolean

::::::::
qualifiers

::
to

::::::::
represent

::::::::
presence

::
or

:::::::
absence

::
of

::
a

::::::
specific

::::::::
property

(e.g. polygon – has slope – steep – true
::::::
present). Comparisons, referred to as matches, between instances and models is possible

because models and instances all use the same structured terminology, as controlled by the ontology.

Similarity scores are awarded based on the type of match between instance and model properties, the semantic distance in

the taxonomy of compared property values and the model property frequency term (Figure 2). Match types include, Exact, A160

Kind
::::
exact,

::
a
::::
kind

:
Of (AKO) exact, and Possible. An Exact

:::::::
possible.

:::
An

:::::
exact

:
match indicates that the

:::::::
property

::::
value

:
term

used in the model is present in the instance (‘a’ in Figure 2), in which case full score is awarded for this component of the

compared semantic networks. An AKO exact match indicates that the attribute
:::::::
property

:::::
value

::::
term found in the instance is a

kind of the attribute
:::::::
property

::::
value

:::::
term found in the model (‘b’ in Figure 2), in which case a full score is also awarded. A

“Possible” match occurs when the concept
::::::
property

:::::
value

::::
term

:
in the instance is broader than the concept

:::::::
property

:::::
value

::::
term165

in the model, based on the defined taxonomies, in which case the score is divided by the semantic distance between the two

concepts
::::
terms. For example, ‘forest’ is a more specific type of ‘forest and semi natural areas’ (‘c’ in Figure 2)

:::
and results in
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the score being divided by two. The score is lower because the instance is only possibly the kind of value that the model is

looking for.

In this study, an Exact
::::
exact match or an AKO exact match of a property with frequency “always” scores 10000,

::::::
10,000, “usu-170

ally” scores 9000, “sometimes” scores 1000, “rarely” scores “100” and “never” scores -10000.
::::::
-10,000;

::::::::::
unmatched

::::::::
attributes

::
are

::::::::
awarded

:::
-10

::::::
points.

:::::
These

:::::
scores

:::
are

::
an

::::::::
arbitrary

::::::::::::
representation

::
of

:::::
degree

:::
of

::::::
surprise

::::
that

::::
uses

::::
order

::
of
:::::::::
magnitude

::::::::
numbers

::
to

:::::::::
distinguish

:::::::::
qualitative

::::::::
measures. For an extensive review of the probabilistic comparison method, see ?, Sharma et al. (2010)

, Smyth et al. (2007) , and Smyth and Poole (2004)
::::::::::::::::::::
Smyth and Poole (2004)

::::::::::::::::::::
Poole and Smyth (2005),

:::::::::::::::::
Smyth et al. (2007)

:::
and

::::::::::::::::
Sharma et al. (2010). This approach has been successfully applied in economic geology to generate mineral deposit exploration175

targets (Smyth et al., 2007), and in geohazard mapping to produce landslide susceptibility maps (Jackson Jr et al., 2008).

Figure 2. Graphical representation of the matching process between expert-defined models and map polygon instances. a) is an example of

an Exact
::::
exact match between the property value “Colluvium

::::::::
colluvium”; b) is an example of a kind of (AKO) exact match, because “gully

erosion” is a more specific kind of "erosional process
:
".
::::
The

:::::
model

:
is
::::::
looking

:::
for

::
an

::::::::
"erosional

:::::::
process"

:::
and

:::::
found

:
a
:::::
"gully

:::::::
erosion"; c) is

an example of a possible exact match because “Forest
::::
forest

:
and semi natural areas” is a broader concept of “Forest

::::
forest”. The

:::::
model

::
is

::::::
looking

::
for

::::::
"forest"

:::
but

::
we

:::
do

::
not

:::::
know

::::::
whether

:::
the

::::::
instance

::
is

:
a
::::::
"forest".

:::
We

::::
only

::::
know

:::
that

:::
the

::::::
instance

::
is

:::::
"forest

:::
and

::::
semi

:::::
natural

::::::
areas".

:::
The vocabulary and the hierarchy are controlled by the ontology. Note that frequency terms for model properties are not shown in this figure.

2.2.1 Landslide models

This paper presents an AI expert-based landslide susceptibility map for three different landslide types: debris flows, slides in

soil, and slides in rock (Hungr et al., 2014) for the Veneto region of Italy. These three landslide types are conceptualizations

of landslide models defined using knowledge recorded in the scientific literatureand the data available for the Veneto region
:
.180

:::::
These

:::::::
landslide

:::::::
models

::
are

::::::::
intended

::
to

::
be

::::::::::::::
proof-of-concept

::
of

::::::
models

:::
that

::::
can

::
be

::::
used

::
in

:::
the

:::::::
semantic

::::::::
approach

::::::::
proposed

:
in
::::
this
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:::::
paper.

::
In

::::::::
particular,

:::::
some

::
of

:::
the

::::::::
properties

::::
used

::
in

:::
the

::::::
models

:::
are

::::::
drafted

::::
from

::::::::
literature

:::::::
analysis

::
of

::::::::::::
logging-related

:::::::::
landslides

::
in

:::::
British

:::::::::
Columbia,

:::::::
Canada

:::::::::::::::
(Jackson Jr, 2019). Here we briefly summarize the models, see Appendix C for a detailed explanation

of each property-property value-frequency combination
:
;
::::::
detailed

:::::::::::
explanations

::
of

::::
each

:::::::::::::::::::::
property-value-frequency

:::::::::::
combination

::
are

::::::::
provided

::
in

::::::::
Appendix

::
C.185

The ‘Debris Flow’ model describes the streams
:::::::
channels

:
that may generate a debris flow. Debris flows are flow-like land-

slides generated when saturated sediments move down a stream
::::
steep

:::::::
channel. They can be originated when a slide in soil

intersects a flowing body of water, or when saturated bed sediments are mobilized and begin flowing downstream. Debris flows

are usually triggered by intense and persistent rainfall (Hungr et al., 2014).
:::
To

:::::::
visualize

:::
the

:::::::
‘Debris

::::::
Flow’

:::
see

:::
the

::::
table

:::
in

::::::::
Appendix

::
C

::
or

:::::::
navigate

::
to

:
https://italy.minervageo.com/debris-flow-model/.

:
190

The ‘Slides in Rock’ model describes slopes that may generate slides in rock. Slides in Rock form when steep rock slopes

and cliffs fail under the influence of gravity,
:::
and

:::
are commonly triggered by intense rainfall or earthquakes. Slides in rock are

usually very fast, and the failure can occur along planar, curved, and/or multiple surfaces. This model represents the collective

class of landslides that have as material "rock" and movement type "slide", including rotational, planar, compound, wedge

and irregular slides in rock (Hungr et al., 2014). Given the regional scale of this study, we do not have the data resolution195

to determine the possible failure plane geometry. For example, we cannot identify slopes more susceptible to planar rock

slides rather than rotational rock slides.
::
To

::::::::
visualize

:::
the

::::::
‘Slides

::
in

::::::
Rock’

:::::
model

::::
see

:::
the

::::
table

::
in

:::::::::
Appendix

::
C

::
or

::::::::
navigate

::
to

https://italy.minervageo.com/the-roberti-slides-in-rock-model/

The ‘Slides in Soil’ model describes slopes that may generate slides in soil. Slides in soil are downslope movements of soil

under the influence of gravity, commonly triggered by intense rainfall or earthquakes. They can be slow or fast, and the failure200

can occur along one or many planar or curved surfaces (Hungr et al., 2014). With Slides in Soil, we refer to the collective class

representing all landslides that have as material "soil" and movement type "slide”, including rotational, planar, and compound,

clay, silt, sand, gravel, debris slides. Given the regional scale of this study, we do not have the data resolution to determine the

possible failure plane geometry and the specific kind of soil that is involved in the failure.
::
To

::::::::
visualize

:::
the

::::::
‘Slides

::
in

:::::
Soil’

:::
see

::
the

:::::
table

::
in

::::::::
Appendix

::
C

::
or

::::::::
navigate

::
to https://italy.minervageo.com/slides-in-soil/205

In the presence of higher resolution information such as rock bedding orientation or shear geometry and stratigraphy in soil

masses, specific kinds of rock slides (e.g. planar vs rotational) or different kinds of slides in soil (e. g. clay compound slide vs

clay planar slide) susceptibility may be mapped.

2.2.2 Mapping unit and runout
::::
Map

:::::::
polygon

::::::::
instances

The definition of the mapping unit is a critical step in any landslide susceptibility mapping application and there are many210

different approaches to subdividing the area of interest
:
to

:::::::
identify

:::::
areas

:::::::::
susceptible

:::
to

:::::
slides

::
in

::::
soil

::
or

::::
rock

:
(see review by

Guzzetti et al., 1999). For this study, we used slope units, which are a geomorphic representation of single slopes bounded by

drainage and divide lines (Guzzetti et al., 1999), as mapping unitto identify areas susceptible to slides in soil or rock. We used

the r.slopeunits software to objectively automate the slope unit delineation (Alvioli et al., 2016)
:::::::::::::::::::::
(Alvioli et al., 2016, 2020). We

used stream line vector shapefiles provided by the Veneto Regional Government, buffered by a distance of 5 m as mapping215
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units to map debris flow susceptibility. In total, the region of Veneto was subdivided into 93,262 polygons, including
:
of

::::::
which

9,302
::
are

:
stream buffer polygons and 83,960

:::
are slope-unit polygons.

Following the calculation of susceptibility
:::
We

::::
used

::
a
::::::
spatial

:::::::
overlay

:::::::
analysis

::
to

:::::::::
aggregate

::::
data

:::::::::
describing

:::
the

::::::::
physical

::::::::
properties

::
of

:::
the

::::::::
mapping

::::
units

:::::::
(Figure

::
6).

::::
The

:::::::
analysis

:::::::::
aggregated

:::
the

:::::::::
properties

::::
from

:::
all

::::::
features

::::
that

:::::::
intersect

:::
the

::::::::
mapping

::::
units.

::::
For

::::
each

::::::::
property

::
in

::
an

:::::
input

:::::
layer,

:::
an

::::::::::
aggregation

::::
type

::
is

::::::::
specified

::
as

::::::
either:

:::
(a)

:::
list,

::::::::
whereby

::
all

:::
of

:::
the

::::::::::
intersecting220

::::::::
properties

:::
are

:::::::::::
concatenated

::::
into

:::
the

:::::::
mapping

::::
unit

::::
(e.g.

:::::::
multiple

::::
rock

::::::
types),

::
or

:::
(b)

:::::::
Boolean

:::::::::
evaluation,

::::::
which

::::::
checks

:::::::
whether

::
or

:::
not

:::
the

:::::::
mapping

::::
unit

:::
was

::::::::::
intersected

::
by

:
a
:::::::
specific

:::::
input

::::::
feature

::::
(e.g.

:
a
:::::
fault).

:

:::
The

:::::::::
properties

::::::::
describing

::::
each

::::::::
mapping

:::
unit

:::::::
polygon

:::::
were

::::::::
converted

:::
into

::::::::
semantic

::::::::
networks,

:::
one

:::::::
network

:::
for

::::
each

::::::::
polygon.

::::
This

:::::::::
conversion

:::::
allows

:::
for

::::::::
semantic

::::::::
reasoning

::
to

::::::::
compare

:::
and

:::::
rank,

:::::
based

::
on

:::::::::
similarity,

:::
the

:::::::
mapping

:::::
units

::::::
(hereon

:::::::::
instances)

::::::
against

:::
the

::::::::::::
expert-defined

:::::::
landslide

:::::::
models

::
to

:::::::
evaluate

:::::::
landslide

::::::::::::
susceptibility.

:
225

2.2.3
:::::::::
Matching,

:::::::::::
susceptibility

::::
and

:::::::
runout

:::
The

::::::::
similarity

:::::
score

:::::::
between

::
a

::::
given

::::::
model

:::
and

:::::::
instance

::
is
:::::
used

::
as

:
a
:::::
proxy

::
of
::::::::
landslide

::::::::::::
susceptibility.

::
A

::::
high

::::::::
similarity

:::::
score

:::::::
between

::
an

:::::::
instance

::::
and

:
a
::::::::
landslide

:::::::::::
susceptibility

::::::
model

::::::
signals

:
a
::::
high

:::::::::::
susceptibility

:::
to

:::
that

::::
type

::
of

:::::::::
landslide.

:::
We

::::::
deliver

:::
the

::::::::
similarity

::::
score

::::::::
between

::::::
models

:::
and

::::::::
instances

::
as

:::::::::::
susceptibility

:::
on

:::
the

:::::
output

::::::
maps.

::::
After

:::
the

:::::::::::
susceptibility

::::::::::
assessment, a first-order estimate of hazard is provided by calculating the likely extent of landslide230

runout for the most susceptible (highest scoring
::::
99.9

::

th
::::::::
percentile

:::::
score,

::
i.
::
e.

:::
top

::::
one

::
in

:
a
::::::::
thousand) instances for each model.

Various physical methods have been developed to calculate
:::::::
potential landslide runout, given the physical properties of the ma-

terial and the topography (see review by McDougall, 2016). To compute the
:::::::
potential

:
runout extents, we applied the r.avaflow

code (Mergili et al., 2017) which is an open source software package implementing the two-phase debris flow model developed

by Pudasaini (2012). Physical model parameters for ‘Slides in Rock
::::
rock’ are inferred from the back-calculations of the recent235

Mt. Joffre landslide, in British Columbia, Canada (Friele et al., 2020), ‘Slides in Soil
:::
soil’ and ‘Debris Flow

::::
flow’ parameters

use the default r.avaflow parameters for those landslide types (Table 1).

::::::
Various

::::::::
landslide

::::
size

::::::
classes

::::
were

::::::::
simulated

:::
for

::::
each

::::
map

::::::::
instance,

:::::::
ranging

::::
from

:::::
class

:
4
::
to

:::::
class

:
6
::::::::::::
(Jakob, 2005).

:::::::
Classes

:
4
::
to

::
6

::::
were

::::::
chosen

::
to
:::::::
provide

:
a
::::::::::

preliminary
::::::
hazard

::::::::::
assessment,

::::::
where

::::
class

::
4

::::
event

::::
may

:::::
have

::
an

:::::::::::
approximate

:::::
return

:::::::
interval

::
of

::::::::
hundreds

::
of

::::
years

::::
and

::::
class

::
6
:::
are

::::
very

:::::::
unlikely

:::
and

:::::::
extreme

::::::
events

::::
with

:::::
return

::::::::
intervals

::
on

:::
the

:::::
order

::
of

:::::::::
thousands

::
of

:::::
years240

:::::::::::
(Jakob, 2005).

:

2.2.4 Web map

This study’s landslide susceptibility maps and hypothetical landslide runouts for slides in soil, slides in rock and debris flows

are delivered as an interactive web map based on OpenLayers (MetaCarta, 2005) and React (Facebook, 2013). Input layers are

hosted through a Geoserver (The Open Planning Project, 2001) with a PostGIS (Refraction Researtch, 2001) backend database.245

INSPIRE-aligned layers are hosted on Hale Connect (WeTransform, 2014), a platform used to host and serve INSPIRE-

compliant data.
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Table 1. R.avaflow parameters for slides in soil, slides in rock and debris flows runout calculations

Variables (unit) Slides in Soil Slides in Rock Debris Flow

Solid fraction (%) 60 70 60

Fluid fraction (%) 40 30 40

Solid fraction internal friction angle (degree) 18 18 5

Solid fraction basal friction angle (degree) 10 10 4

Fluid fraction internal friction angle (degree) 0 0 0

Fluid fraction basal friction angle (degree) 0 0 0

Solid fraction viscosity (m2 s-1) 30 30 5

Fluid fraction viscosity (m2 s-1) 3 3 3

3 Results

3.1 INSPIRE Natural Risk Zones extension

To develop an INSPIRE-compliant AI application to map of landslide susceptibility, we needed to extend the INSPIRE250

Risk Zones theme to include the concept of landslide susceptibility and the specific code list dealing with landslide ter-

minology. The INSPIRE extensions developed in this project are documented and stored in the INSPIRE registry software

(Minerva Intelligence, 2019a). The Minerva ‘
:::::::
Minerva

:
Re3gistry ’ is

::::::::::::::::::::::::
(Minerva Intelligence, 2019a),

:
a version 1.3.1 instance of

the INSPIRE registry based on the Re3gistry software (ISA, 2016). The registry service is packaged within a collection of

Docker (Hykes, 2013) containers and hosted on a local server.255

The Natural Risk Zone core (NZ-core) schema extension, which includes the Natural Risk Zone Susceptibility feature

type was based on SafeLand recommendations (SafeLand, 2011). The ‘Natural Hazard Classification ’ code list was ex-

tended
::::::::::::::::::::::::
(Minerva Intelligence, 2019b) to include a classification of various landslide types using the Updated Varnes Landslide

Classification
:::::::
updated

::::::
Varnes

::::::::
landslide

:::::::::::
classification (Hungr et al., 2014), which has been

::
is

:
a
::::::::
landslide

:::::::::::
classification widely

adopted within the scientific community, the Natural Hazard Classification Landslide Extension’ code list (Minerva Intelligence, 2019b)260

, and a new code list of landslide size classes
::::::::::::::::::::::::
(Minerva Intelligence, 2019c) based on Jakob (2005)(see the ‘Landslide Size

Class’ code list (Minerva Intelligence, 2019c)). This .
::::
The

:::::::
landslide

::::
size

:
code list contains ten landslide size classes based on

landslide volume and descriptions of approximate damage potential.

3.1.1 Code list extension

The Natural Hazard Classification code list extension for landslides was prepared using the open access ACE taxonomy editing265

software (Minerva Intelligence, 2019d). The classification tree considers material type and failure movement,
::::::::
splitting

:::
the

:::
tree,

::::
first

:::
on

::::
type

:::
of

:::::::::
movement,

::::
and

::::
then

:::
on

::::
type

:::
of

:::::::
material,

:::::::::
following

::::::::::::::::
Hungr et al. (2014) (Figure 3). Properties dealing

with
:::::
Other

:::::::::
properties,

::::
such

:::
as:

:
water content, depth of failure, rate of movement, loading state, channelized state, and fail-
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ure plane geometry (see Appendix B) are used to further describe the different landslide types. The
:::::::
describe

:::
the

:::::::::
individual

:::::::
landslide

:::::
types,

:::
as

:::
the unique combination of these properties allows for unambiguous classification of the different landslide270

types into an Aristotelean taxonomywhich is multi-hierarchical and amenable to reasoning by both humans and computers.

Multi-hierarchical means that, for example, the concept “debris flow” is in different position in the taxonomy depending on the

chosen top concept. It can be three level down from the top concept “flow-like landslide” (flow landslides>flows in soil>debris

flow) or two level down from the top concept “fast landslides” (fast landslide >debris flow)
::
in

::
an

::::::::::
Aristotelian

:::::::::
taxonomy.

:::
We

::::
used

::::
these

:::::::::
properties

:::::::
because,

::::
even

::
if

:::
not

:::::
shown

::
in

:::
the

::::
final

:::::::::
taxonomic

::::
tree,

::::
they

:::
are

::::::::
explicitly

::::::
applied

::
in

:::
the

:::::
wordy

::::::::::
description275

::
of

:::::::
landslide

:::::
types

:::
by

:::::::::::::::
Hungr et al. (2014)

:
.

The formal extension registration process via the INSPIRE Registry software does not enable the representation of such

multi-hierarchical classifications. Because of this we had to work with a single tree hierarchy, and consequently chose to first

divide the classes on type of failure followed by a division based on
::
the

:
type of movement (Figure 3).
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Figure 3. Natural Hazard Category code list extension for landslides
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3.1.2 Schema extension: susceptibility280

The INSPIRE Natural Risk Zone schema includes hazard and risk feature types, but the concept of susceptibility as a feature

type is missing. To overcome this problem, we extended the INSPIRE Natural Risk Zone core XML schema, adding a Natural

Risk Zone Susceptibility schema (Minerva Intelligence, 2019e). The Natural Risk Zone Susceptibility schema includes Ab-

stract Susceptibility Area (a in Figure 3) and Susceptibility Area feature types (b in Figure 3
::::::
Figure

:
4). The Susceptibility Area

feature type is modelled following the structure of the Hazard Area and Risk Zone feature types in the
::::::::
INSPIRE

:
Natural Risk285

Zone core schema. Susceptibility Area has three elements: Geometry, Influencing Factor and Relative Spatial Likelihood of

Occurrence (b in Figure 3
:::::
Figure

::
4). Geometry, as with all INSPIRE vector datasets, is the geometric representation of the

:::::
extent

::
of

:::
the

::::::
feature

:::
on

:::
the

:::::
Earth

::::::
Surface

:::
as

:
a
:
spatial feature. Influencing factors are defined as the intrinsic, preparatory variables

which make an area susceptible to a hazard (SafeLand, 2011). Influencing factors are unbounded in multiplicity
:::
(i.e.

:::
can

:::
be

::
as

:::::
many

::
as

:::::::
needed) and can be defined qualitatively or quantitatively. Qualitative influencing factors are expressed as a string,290

while quantitative influencing factors are expressed as GML:MeasureType (c in Figure 3
::::::
Figure

:
4). Whether defined quantita-

tively or qualitatively, the influencing factor can also define a DataSetType attribute, such as slope or air quality. Influencing

factors are used in the calculation of Relative Spatial Likelihood of Occurrence, which is an element that can be quantitatively

or qualitatively defined (d in Figure 3
:::::
Figure

::
4). The relative spatial likelihood of occurrence refers to values that represent the

spatial probability of occurrence of a specific hazard type, given the influencing factors present in the area (SafeLand, 2011).295

The Influencing Factor element allows end users of Susceptibility Area datasets to understand which known conditions of the

specific area led to the resultant Relative Spatial Likelihood of Occurrence (susceptibility)
:::::::::::
susceptibility.
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Figure 4. UML diagram showing the Natural Risk Zone Core Schema extended with Natural Risk Zone Susceptibility schema (red squares); a) Abstract

susceptibility area; b) Susceptibility area; c) Influencing factor; d) Relative spatial likelihood of occurrence
::::
UML

:::::::
diagram

:::::::
showing

:::::::
Natural

::::
Risk

::::
Zone

::::::::::
Susceptibility

:::::::
schema

:::::::
extension

::
of

:::
the

::::::
Natural

::::
Risk

:::::
Zone

::::
Core

::::::
Schema
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3.2 Landslide susceptibility mapping in Veneto

3.2.1 Input data

For this study, we used open access datasets from the Veneto Region Geoportal and other sources (Table 2 ,
:::
and 3). We

:::::::
Aligning300

::
all

:::::
input

::::::
datasets

::::
was

::::::
beyond

:::
the

:::::
scope

:::
of

:::
this

:::::::
project.

:::
We

:::
did,

::::::::
however,

::::
want

::
to

:::::
show

:::
the

:::::
value

::
of

::::::::::::::
INSPIRE-aligned

::::
data

::::
and

:::::::
therefore

:
aligned stream network, CORINE land cover, bedrock geology, and the Italian Landslide Inventory (IFFI) (Table 2)

to INSPIRE standards using the software program
:::::
using

::::
Hale

:::::
Studio

::::::::::::::::::
(WeTransform, 2008)

:
.
:::::
Figure

::
5
:::::
shows

::::
how

:::::::
different

:::::
tools

::
in

::::
Hale

::::::
Studio

:::
are

::::
used

::
to

::::
align

:::::::::
properties

::::
from

:::
the

::::::
source

::::::
dataset

::
to

:::
the

:::::
target

:::::::
dataset.

:::
For

::::::::
example,

:::
the

::::
field

::::
“eta”

:::::::
–“Age”

::
in

::::::
Italian,

::
of

:::
the

::::::
original

::::::
Veneto

:::::::
dataset,

:::
was

:::::::
directly

:::::::
mapped

::
to

::::
four

:::::::
different

::::::::
INSPIRE

:::::
fields:

:::
the

::::::::::::::::::
olderNamedAge.href

:::
and

::::
title305

:::
and

:::
the

::::::::::::::::::::
youngerNamedAge.href

:::
and

:::::
title.

::::
Note

::::
that

:::::::::::::::::
olderNamedAge.href

::::::::::::::::::::
youngerNamedAge.href

:::
are

:::::::::
hyperlinks

::
to

:::
the

:::::
code

::
list

:::::
value

::
id
::::
and

:::
the

::::
title

:
is
:::

the
::::::

actual
::::
code

:::
list

::::
term

:::::
from

:::
the

:::::::::::::::::::::
GeochronologicEraValue

::::
code

::::
list.

::::
This

::::::::
alignment

::
is
:::::
done

::::
with

::::
many

:::::::::::
classification

::::::::
methods,

:::::::::
including:

::::::
Groovy

:::::::
Scripts,

::::::::
formatted

::::::
strings

::::
and

::::::::::::::
assign-alignment

:::::
tools.

:::
For

::::::
further

::::::::::
explanation

::
on

::::
term

::::::::::
alignments,

:::::
refer

::
to

:::
the

::::::::::::
documentation

::
of
:

Hale Studio (WeTransform, 2008). Datasets used that were not compliant

with INSPIRE include
:
: lakes, watersheds, permafrost, fire, slope angle, faults, soil, roads and railways (Table 3).310

Figure 5.
::::::::::
Visualization

::
of

:::::::
INSPIRE

:::
data

::::::::
alignment

:::::
within

::::
Hale

:::::
Studio.

::::
The

:::
left

:::
side

:::::
shows

::
the

::::::
source

:::::
Veneto

::::::::
Lithology

::::
shape

:::
file,

:::
the

::::
right

:::
side

:::::
shows

::
the

:::::
target

::::::::::
GeologicUnit

::::::
feature

:::
type

:::::
within

:::
the

:::::::
INSPIRE

:::::::
Geology

::::::
Schema,

:::
and

:::
the

:::::
centre

:::::
shows

::
the

::::::::::
classification

::::::
method

:::
use

::
to

::::
align

::
the

::::
data.
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Table 2. INSPIRE-compliant layers

Layer Description Source URL (last access: January 2020)

Streams Hydrographic network in the Veneto region, including https://idt2.regione.veneto.it

streams, rivers, and other inland flowing water bodies

Land Cover (CORINE) Land cover units in the Veneto region. The CORINE https://land.copernicus.eu/pan-european

Land Cover (CLC) classification was used which corine-land-cover

includes 44 classes, and was last updated in 2018

Geology Bedrock lithology in the Veneto region. http://www.pcn.minambiente.it/mattm/

en/wfs-service/

IFFI Landslide Landslides that have been identified in the Veneto region http://www.pcn.minambiente.it/mattm/

Points and Areas as part of the IFFI project. The INSPIRE Natural Hazard Category en/wfs-service/

code list was extended to include the updated Varnes landslide

classification (Hungr et al., 2014),

and the data were aligned to this standard
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Table 3. Layers not compliant with INSPIRE standards

Layer Description Source URL (last access: January 2020)

Lakes Lakes in the Veneto region. https://idt2.regione.veneto.it

Watersheds Watersheds in the Veneto region, derived from a digital http://tinitaly.pi.ingv.it/

elevation model from the TINITALY project made available by

the National Institute of Geophysics and Volcanology (INGV).

Permafrost Permafrost derived from the Global Permafrost Zonation http://www.geo.uzh.ch/microsite/cryodata/

Index Map (Gruber, 2012)

Fires Location and date of past forest fires in the Veneto region. https://idt2.regione.veneto.it

Slope The gradient of the slope in the Veneto region, http://tinitaly.pi.ingv.it/

derived from a digital elevation model from the

TINITALY project made available by

the National Institute of Geophysics and Volcanology.

Faults Faults in the Veneto region, published as part of http://diss.rm.ingv.it/diss/index.php/DISS321

the Database of Individual Seismogenic Sources (DISS) provided

by the National Institute of Geophysics and Volcanology (INGV).

Soils Soil map of the Veneto region, including https://idt2.regione.veneto.it

information about surficial deposit genesis,

material, texture, thickness, geomorphic form and process.

Railroads Railroad network in the Veneto region. https://idt2.regione.veneto.it

Roads Road network in the Veneto region. https://idt2.regione.veneto.it
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Figure 6.
::::
Web

:::
map

:::::::
interface

::::::
showing

::::::::::
susceptibility

::
to

:::::
slides

:
in
:::
soil

::
in
::::::
Veneto,

::::
Italy.

::::::
Colours

:::::
range

::::
from

:::
blue

::::
(0-20

:::::
score

::::::::
percentile),

::
to

::::
dark

::::
green

:::::
(20-40

::::
score

:::::::::
percentile),

::::
light

::::
green

:::::
(40-60

::::
score

:::::::::
percentile),

:::::
yellow

:::::
(60-80

:::::
score

::::::::
percentile),

:::
red

::::::
(80-99.9

:::::
score

::::::::
percentile)

:::
and

:::::
purple

:::::::
(99.9-100

::::
score

:::::::::
percentile).

::::
Base

:::
map

:::::
credit:

::
©
::::::::::::
OpenTopoMap

:::::::::
(CC-BY-SA)

:

3.2.2 Mapping units and Spatial overlay
:::::::
Webmap

We used a spatial overlay analysis to aggregate data describing the physical properties of the mapping units,

:::
The

:
83,960 slope units and 9,302 stream buffer polygons

::::::::
instances (Figure 6) . The analysis was conducted using a custom

QGIS script which aggregated the properties from all features that intersect the mapping units. For each property in an input

layer, an aggregation type is specified as either: (a)list, whereby all of the intersecting properties are concatenated into the315

mapping unit (e. g. multiple rock types), or (b)boolean evaluation, which checks whether or not the mapping unit was

intersected by a specific input feature
:::
are

:::::::
encoded

::::
with

:::
the

::::::::
available

:::::
data,

::::
then

::::::::::
transformed

:::::
from

:::::
vector

::::
files

::::
into

::::::::
semantic

:::::::
network

::::::
format.

:::::
Then,

::::
each

:::::::
polygon

::::
was

:::::::
matched

::::::
against

:::
the

:::::::::::
expert-based

:::::
slides

::
in

::::
soil,

:::::
slides

::
in

::::
rock

:::
and

:::::
debris

::::
flow

:::::::
models

:::
and

:::::
colour

::::::
coded

::
on

::::::::
matching

:::::
score

::::::::
percentile

::
to

::::::
portray

::::::::
landslide

:::::::::::
susceptibility

::::::
(Figure

:::
6).

::::
The

:::::::
left-side

::::
panel

:::
of

::
the

::::::::
webmap

:::::
shows

:::
the

::::::::
landslide

:::::
model

::::::
layers,

:::
the

:::::::
reference

::::::
layers,

::::
and

:::::::
different

::::
base

::::
maps

:::::::
(Figure

::
7).

:::
By

:::::::
clicking

:::
on

:
a
:::::::
polygon

:::::::::
(instance),320

:
a
:::::
popup

:::::::
window

::::::
opens

::::::
(Figure

:::
7):

:::
this

:::::::
window

::::::::
contains

:::
the

:::::
name

:::
and

::::::::
hyperlink

::
to

:::
the

::::::::
INSPIRE

:::::::
registry

::::
code

:::
list

:::::::::
definition

::
of

:::
the

:::::::
landslide

::::
type

:::::::::::
investigated,

:::
the

:::::::
attributes

::::
that

:::
are

::::::
present

::
in

:::
the

:::::::
mapping

::::
unit

:
(e.g. a fault). The end results are polygonal

representations of the landscape which are attributed with all available data for landslide susceptibility mapping as required by

our ontology.
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Web map interface portraying susceptibility to slides in soil in Veneto, Italy. Base map credit: © OpenTopoMap (CC-BY-SA)325

3.2.3 Semantic network conversion, matching and impact zone modelling

The properties describing each mapping unit polygon were converted into semantic networks, one network for each polygon.This

conversion allows for semantic reasoning to compare and rank , based on similarity, the mapping units against the expert-defined

landslide models to evaluate landslide susceptibility.We deliver the similarity score between models and instances on the330

output maps. A higher similarity scorebetween an individual mapping unit and a landslide susceptibility model signals a higher

susceptibility to that type of landslide over other polygons. Explanations on how the scores were calculated are shown on

::::::
bedrock

:::::::::
lithology,

:::::::
erosional

:::::::
process,

:::::
etc.),

:::
the

:::::::
instance

::::::::
percentile

:::::
rank

:::
and

::::
total

:::::
match

::::::
score, the

::::::::
hyperlink

::
to

:::
the

::::::::::
comparison

::
of

:::
the

:::::::
instance

::::::
against

::::
other

::::::::
landslide

::::::
models

::::
(e.g

::
the

:::::
slides

::
in
::::
rock

:::::::
model),

:::
and

:::::
(only

:::
for

:::
the

:::::
99.9th

::::::::
percentile

:::::
score,

:::
top

::::
one

::
in

:::
one

::::::::
thousand)

:::::::
buttons

::
to

::::
turn

::
on

:::
the

::::::
display

:::
of

:::::::
landslide

::::::
runout

:::
for

:::::::
different

::::::::
landslide

:::::::
classes,

:::
and

:::
the

::::::::
hyperlink

::
to

:::
the

:
match335

reportavailable for each spatial unit (Figure ??). .
:

The match report shows matchingproperties with green lines and unmatched properties in beige. Conflicting properties, if

present, are coloured in red. Within the match report, there are hyperlinks to explanations describing how points are awardedfor

each property.
:
is

:
a
:::::::
detailed

::::
table

::::::::
showing

:::
the

:::::
results

:::::
from

::
the

:::::::::::::
model-instance

::::::::
semantic

::::::::
matching,

:::::::
ensuring

:::
the

::::::::::::
explainability

::
of

::
the

:::::::
results.

::::
Each

::::
line

::::::::::
corresponds

::
to

:
a
:::::::::::::::::::::
property-value-frequency

::::
term

::::
(e.g

:::
has

:::::
slope

:
–
::::::::::

moderately
:::::
steep

:
–
:::::::
always)

::::::::::
comparison340

:::::::
between

:::
the

:::::
model

::::
and

:::
the

:::::::
instance,

::::
how

::::
they

:::::
match

:::::
(with

::
a

::::::::
hyperlink

::
to

::::::
textual

::::::::::
explanation

::
on

::::
how

:::
the

:::::
score

:::
was

:::::::::
awarded),

::
the

:::::::::
numerical

:::::
score

:::::
value,

::::
(see

:::::
Table

::
4

::
for

::::::::
example)

::
a
::::::
textual

::::::::::
explanation

::
on

::::
why

::::
that

:::::::
attribute

::::
was

::::::
chosen,

::::
and

:::
the

:::::::
original

:::
data

:::::
value

::::::
(Table

::
5).

:::
An

::::::::
"advice"

:::::
button

:::::::
opening

::
a
::::::
textual

::::::
advice

:::::::::
expressing

:::::
which

::
of

:::
the

:::::::
instance

::::::::::
unmatched

::::::::
attributes

::::
may

::::::
change

:::
the

:::::
score

::
is

::::::::
available.

::::
This

::::::
advice

::
is
::
a
:::
sort

:::
of

::::::::::
data-advice:

::
it
::::::
invites

:::
the

::::
user

::
to
::::::

check
::
in

:::
the

::::
field

:::
or

::
in

:::::
some

:::::
other

::::::::
databases

::
if,

:::
for

:::::::
example,

::
a
::::
fault

::
is

::::::
present

::
in

::::
that

::::::
specific

::::::::
instance.345

Sample Match Report showing polygon 117309 compared to slides in soil model

Landslide runout simulations were computed for all mapping units that fell within or above the 99.9th percentile of evaluated

instances for each landslide type (Figure 7). Various landslide size classes were simulated for each instance , ranging from class

4 to class 6 (Jakob, 2005) for a total of 3696 landslide runout simulations. Classes 4 to 6 were chosen to provide a preliminary

hazard assessment, where class 4 event may have an approximate return interval of hundreds of years and class 6 are very350

unlikely and extreme events with return intervals on the order of thousands of years (Jakob, 2005).
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Table 4.
:::::::
Simplified

:::::
match

:::::
report

::::
table

::::::
showing

:::::::
instance

::::::
117309

:::::::
compared

::
to
:::::
slides

::
in

:::
soil

:::::
mode.

:::
The

:::::
match

:::::
report

::
is

:::::::
accessible

:::::
online

:::
by

::::::
clicking https://spot.italy.minervageohazards.com/match_results?if_id=34434&t_id=117309

:::::
Model

::::::
Instance

:::::
Results

:

::::::
Property

: ::::
value

:::
freq.

: ::::::
Property

: ::::
value

:::
freq.

: ::::
match

::::
type

::::
Score

::
has

:::::::::
Geomorph

:::::
Process

:

::::::::::::
ErosionalProcess

:::::
always

::
has

:::::::::
Geomorph

:::::
Process

:

::::
Gully

::::::
Erosion

: :::::
present

: ::::
AKO

:::::
match

:::::
10000

::
has

:::::::::
Surficial

::::::
Material

:

::::::::
Colluvium

:::::
always

::
has

:::::::::
Surficial

::::::
Material

:

::::::::
Colluvium

:::::
present

: ::::
exact

:::::
match

:::::
10000

Table 5.
:::::::

Simplified
:::::
match

:::::
report

::::
table

::::::
showing

:::
the

:::::::
comment

:::
for

::
the

:::::
model

:::::::
property

:::
"has

:::::::
erosional

:::::::
process"

:::::::
matching

:::
the

::::::
instance

:::::::
property

:::::
"Gully

:::::::
erosion".

:::
The

:::
full

:::::
match

:::::
report

::
is
::::::::
accessible

:::::
online

::
at
:
https://spot.italy.minervageohazards.com/match_results?if_id=34434&t_id=

117309

:::::
Model

:::::
Instnce

:::::::
Comment

: ::::::
Original

::::
value

:

:::::::
Erosional

:::::::
process

:::
-

:::::
Always

:

::::
Gully

::::::
erosion

:
-
::::::
Present

:::::
Active

:::::::
erosional

::::::::
processes

:::
are

::::::
possible

::::::::
indicators

::
of

:::::::
landslide

::::::
activity,

:::
as

::::::::
landslides

::::::
occur

::::
where

::::::::
landslides

::::
have

:::::::
occurred

:::::
before.

::::
Rock

:::::
fall,

::::::
gully

::::::::
erosion,

:::::::
erosional

::::::
process,

::::
karst.
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Figure 7. Landslide runout and
:::::
Screen

::::::
capture

::
of

::
the

::::
web

:::
map

:::::::
showing

::::
layer

:::
list,

:
information popup in Web Map

::::::
window,

::::
map

::::::
legend,

:::
and

::::::
landslide

::::::
runout. Base map credit: © OpenTopoMap (CC-BY-SA)
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4 Discussion

4.1 INSPIRE as a framework for Explainable AI

Across society, the use of numerous complex and non-standardized earth science taxonomies results in interoperability problems
:::::::::
limitations,

which hinder the widespread implementation of explainable AI solutions to natural hazard-related problems. This is evident in355

the landslide domain, where data layers for landslide susceptibility analysis, ranging from landslide databases (Van Den Eeck-

haut et al., 2013) to geomorphology maps, vary across regions and countries. Consequently, despite the wealth of scientific

literature on landslides in general, and landslide susceptibility in particular (Reichenbach et al., 2018), broad-scale operational

landslide hazard management systems are scarce (Guzzetti et al., 2020), resulting in significant human and economic losses

(Froude and Petley, 2018).360

INSPIRE partially addresses this problem by providing standardised data structures for data-hosting and standard terminologies

::::::::::
terminology to use within those structures. As illustrated by this study , once it is

:::
This

:::::
study

::::::::
illustrates

:::::
that,

::::
once

:
INSPIRE-

compliant, European data can be subjected to powerful AI analytical methods that can be efficiently and meaningfully applied

::::::
applied

:::
for

:::::::
practical

::::::::::
application to multiple other equivalent INSPIRE-compliant data sets. For example, the same landslide

focused
::::::::::::::
landslide-focused

:
ontology that uses terminology and knowledge models based on INSPIRE code lists used in this365

project has been applied in South-Western British Columbia, Canada (Minerva Intelligence, 2019f).

By maintaining carefully curated standards, INSPIRE can play a critical role in AI applications that seek to be “explainable”

(Gilpin et al., 2019). Its code lists can be imported into ontologies
:::::::
mapped

:::
into

::::::::
ontology

:::::::::
properties, enabling machines to

make inferences
::
of

:::::::
semantic

::::
and

:::::::::
hierarchic

:::::::
relations

:
based on data. The explainability in the application presented in this

study is provided in the form of a comprehensive match report, which can be opened via an information popup for each slope370

instance. The match report provides the user with complete access to the logic that drives the AI reasoning engine, allowing

interrogation of the results displayed on the map. By embedding explanations in a user-friendly interface, ontologically-based

AI can improve the understanding of complex geospatial problems by decision-makers, insurance companies and the general

public.

As shown in this study, INSPIRE compliance increases interoperability of data and enables AI applications to identify new375

insights from that data. Public and private organisations, within and outside the European Union, can significantly enhance the

value of the data they collect and publish by using INSPIRE-compliant standards not only in natural hazard mapping but also

in other domains. Quantification of this value has yet to be made, but calculations from (Craglia and Campagna, 2010) have

shown that the development of an SDI for interoperable exchange of spatial data can save between
:
A

::::::::::
comparative

:::::
study

:::
of

:::::::
regional

:::
SDI

::
in

:::
the

::::::
context

::
of
::::::::
INSPIRE

:::::::::::::
implementation

::::::::::::::::::::::::::
(Craglia and Campagna, 2010)

::::::
showed

::::
that

::::::::
inefficient

::::
data

:::::
access

::::
and380

:::
use

::
at

:::
the

::::::::
European

::::
level

::::::
results

::
in

::::::::
economic

::::::
losses

::
in

:::
the 100-200 million Euro per annum in the Lombardia Region

::::::
Million

::::
Euro

::::::
annual

:::::
range.

::::
The

:::::
same

:::::
study,

:::::
shows

::::
that

:::
the

:::::::
regional

::::
SDI

::
of

::::::::::
Lombardia, Italy, alone.

::::::
allowed

::
3

::::::
Million

:::::
Euro

:::
per

::::
year

::::::
savings

::
to

:::::::::
companies

:::::::
working

::
in

::::::::::::
Environmental

::::::
Impact

:::::::::::
Assessments

::::::
(EIA),

:::
and

::::::::
Strategic

::::::::::::
Environmental

:::::::::::
Assessments

::::::
(SEA).

::::::
Savings

::
in
:::
the

:::::
same

:::::
order

::
of

:::::::::
magnitude

:::
can

:::
be

:::::::
expected

:::
by

:::::::
adopting

::::::::
INSPIRE

:::::::::
standards

::
in

:::
the

::::::::
geological

::::::
hazard

::::::::::
assessment

:::::::
domain.

:
385
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4.2 INSPIRE extension and limitations

INSPIRE-compliant datasets are still rare across European countries in general, and in Italy in particular (Cetl et al., 2017;

Mijić and Bartha, 2018; Cho and Crompvoets, 2019). Consequently, the authors were not able to find
:::
we

::::
were

::::::
unable

:::
to

::::::
identify

:
a jurisdiction in Europe with INSPIRE-compliant datasets for all the inputs necessary for this study. Therefore, instead

of using already-compliant data, a region optimal for demonstrating the inter-relationship between INSPIRE and explainable390

AI was chosen, and
:::::
some

::
of the data for that region was transformed to

:::
into INSPIRE compliance. In so doing

:::::
doing

::
so, the

study provides both a case study of dealing with non-INSPIRE-compliant data, and an illustration of the rewards achievable

by bringing a coherent set of data into INSPIRE compliance.

The code lists and application schemas in the INSPIRE Natural Risk Zone theme lacked the level of detail necessary for

this application. This is understandable
:
, as given the broad scope of the directive; ,

:
schemas lack the necessary granularity for395

specific applications. INSPIRE is intended to be used as an overarching umbrella under which domain-specific applications can

find their place by extending it where necessary. The Natural Risk Zone theme (Tomas et al., 2015) and the extension presented

in this work is an example of using this extension facility. Within the Natural Risk Zone theme, the Natural Hazard Category

Value code list includes geological/hydrological hazards, including ‘flood’ and ‘landslide’, but the different subclasses of floods

and landslides are not specified. For this landslide evaluation, and other applications seeking the status of interoperable and400

explainable, the
::::
kind

::
of

::::::::
landslide

:::::::::::
susceptibility

::::::::::
assessment,

:::
the

:
clear definition of landslide types, landslide size classes, and

susceptibility is
:::
was

:
fundamental. For example, the hazard posed by a debris flow, which moves rapidly (tens of meters per

second), and an earth flow, which may move slowly (meters per year) is very different . They
::::::
present

::::::
entirely

::::::::
different

:::::::
hazards;

:::
they

:
can both destroy property but it is unlikely for an earth flow to result in fatalities while the opposite can be said of debris

flows (Hungr et al., 2014). The definition of landslide sizes is also important: a size class 1 debris flow has a smaller impact405

area than a size class 6 event, but, by having a higher frequency, it may result in greater losses (Jakob, 2005).

From a data
:::::::
structure

:
perspective, INSPIRE code lists cannot currently host multi-hierarchical taxonomies. This limits the

nature of reasoning that can be brought to bear on them. We understand the technical difficulties in handling multi-hierarchical

taxonomies, but hope that future versions of the Registry software will be able to handle these complex knowledge representa-

tions.410

The INSPIRE Natural Risk Zone theme also lacks the definition of susceptibility as a concept and feature type. The term

susceptibility is not implemented as a feature type because for most hazards (e. g floods and earthquakes) the concept is

embedded within the concept of hazard likelihood (Tomas et al., 2015). This does not apply in the landslide domain where

susceptibility and hazard are distinct concepts (e.g. Van Den Eeckhaut and Hervás, 2012). In this study, we implemented the

susceptibility feature type. Although we applied this feature type in the landslide domain, it will be useful for other natural415

hazard applications, when the spatial likelihood of hazard occurrence must be expressed separately from the general concept

of hazard likelihood.

The extensibility of INSPIRE allows for domain-specific applications, like the approach presented in this paper, to fit within

the INSPIRE framework. However, problems may also arise from the fact that INSPIRE is extensible. Extensibility allows
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greater precision in terminology and schema for a specific application but this allows different public and private institutions420

to implement separate, and eventually, incompatible extensions. For example, another landslide classification may be imple-

mented by another institution: this implementation may not be interoperable with the one presented in this study, but will have

the same INSPIRE compliance, leading to two conflicting standards. Much work remains at the level of thematic clusters to

implement as many standardized vocabularies and schemas as possible. Our extension is open and free, and we hope that other

entities will adopt it for other landslide applications.425

4.3 AI-based
::::::::::
Ontological probabilistic matching for landslide susceptibility mapping

The semantic AI system applied in this study aimed to replicate the reasoning with uncertainties typical of geological assess-

ments, using
:::::::
applying the terminology that geological and geotechnical professionals use in their daily practice (Smyth et al.,

2007). As
:::::
Since they are based on expert-defined models, the landslide susceptibility maps produced in this study are compara-

ble to qualitative heuristic assessments (SafeLand, 2011). The choice of using a qualitative method for landslide susceptibility430

assessment is in contrast with recent recommendations for the application of quantitative methods (Corominas et al., 2014).

However, in current geological assessments
::::::::::
professional

:::::::::
geological

::::::::::
assessments

:::
and

:::::::::::::::
geomorphological

::::::::
mapping

::::::::::
applications,

expert judgment is still widely applied (e.g., Association of Professional Engineers and Geoscientists of British Columbia, 2010

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
e.g., Association of Professional Engineers and Geoscientists of British Columbia, 2010; Guzzetti et al., 2012), and quantitative

(statistically and physically-based) methods rely on data that are not always available or of unknown quality. For example, land-435

slide databases necessary for statistically-based susceptibility mapping are often incomplete, inaccurate, and geographically-

limited (Guzzetti et al., 2012). Usually
::::::
Further, the geotechnical parameters necessary for running physical models are

::::::
usually

approximated to carry out regional-scale studies (e.g., Mergili et al., 2014).

The semantic AI system applied in this study can be used in cases of data scarcity, and if coupled with numerical methods, can

improve the explainability of predictions. For example, by embedding the ontology concepts related to statistical parameters440

(e.g. receiving operating curves, confidence intervals) or physical parameters (e. g. friction angles, viscosity), it will be possible

for the numerical outputs of quantitative methods to be explained in natural language, helping to reduce the gap between

scientists and decision-makers (Newman et al., 2017).

:::
The

:::::
main

::::
goal

::
of

::::
this

:::::
paper

::
is

:::
not

::
to

::::::
present

:::
the

::::::::
semantic

::::::::
matching

:::::::::
approach,

:::
but

::
to

:::::
show

::
an

::::::::
example

::
on

::::
how

::
to

:::::::
modify

::::::::
INSPIRE

::
to

:::::
make

:
it
::::::::

possible
::
to

:::
use

::
it

:::
for

::::::::::::::
landslide-specific

:::::::::::
applications.

:::
By

:::::::::
suggesting

:::::
these

:::::::::::::::
landslide-specific

::::::
schema

::::
and445

::::
code

:::
list

:::::::::
extensions,

:::
we

::
set

:::
the

::::::
ground

:::
for

::::::::::::::::
INSPIRE-compliant

::::::::
landslide

:::::::::::
susceptibility

:::::::
studies.

:::::
Other

:::::::::::
organizations

:::
can

::::
build

:::
on

:::
top

::
of

::::
these

:::::::::
extensions

::::
and

:::::
future

:::::::
landslide

::::::::::::
susceptibility

::::::::::
applications

:::
can

::
be

:::::::::
compared

::
as

::::
they

:::::::
formally

::::
refer

::
to
:::
the

:::::
same

::::
data

:::::::
structure

:::
and

:::::::::
semantics.

:::::
Note

:::
that

:::
we

:::
do

:::
not

:::::
force

:::
any

:::::::
specific

::::
data

:::
and

::::::::
modeling

:::::::
variable

::::::::
selection,

::::
nor

::::::::
modeling

::::::::
approach

::
for

::::::::
landslide

:::::::::::::::::::::
susceptibility/hazard/risk

:::::::
method.

:::::
Such

::
an

:::::
effort

::
is

::::::
beyond

:::
the

::::::
scope

::
to

:::
this

:::::
paper

::::
and,

::
to
:::::

some
::::::
extent,

:::::::
already

::::::::
addressed

::
by

:::
the

::::::::
SafeLand

::::::
project

::::::::::::::::::
(e.g., SafeLand, 2011

:
)
:::::
rather,

:::
we

:::::::
provide

::
the

::::
data

::::::::
structure

:::
and

::::::::
semantics

::
to
:::::
store

:::
and

:::::
share450

::::::::
whichever

:::::::
method

:::
has

:::::
been

::::::
chosen

::
by

:::
the

::::::::
modeler.

:::
For

::::::::
example,

::::
data

::::::::
selection

:::
for

:::::::::
calculation

:::
of

:::::::
landslide

::::::::::::
susceptibility

::
is

:::::::::::
encompassed

::
in

:::
the

:::::::
schema

:::::::
structure

::::::
under

::::::::::
“Influencing

:::::::
Factor”

::::::
which

:::
are

::::::::::
“unbounded

::
in
:::::::::::

multiplicity
:::
and

::::
can

::
be

:::::::
defined

::::::::::
qualitatively

::
or

:::::::::::::
quantitatively”,

::::::
leaving

:::::
broad

:::::
range

::
of

::::::::::
possibilities

::
to

:::
the

:::::::
modeler.

:::::::::
Regarding

:::
the

::::
data

::::::
quality,

::
it

::
is

::::::::
discussed

::
in
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::
the

:::::::
Natural

::::
Risk

:::::
Zone

::::::
schema

:::
and

::::
they

:::::
refer

::
to

:::
ISO

::::::::
standards

::::::::::::::::::::::::::::::::::::::::::::::::::::
(INSPIRE Thematic Working Group Natural Risk Zones, 2013)

:
.
::::::::
However,

:::
we

::::::::
recognize

::::
that

::::::
specific

:::::
code

:::
list

::::::::::
(semantics)

::::::
dealing

::::
with

::::
data

::::::
quality

::::
and

::::::
model

:::::::::
uncertainty

:::
are

:::::::
missing.

::::
We455

::::
hope

:::
that

:::
the

::::::::
INSPIRE

::::::::
thematic

:::::
group

::::
will

::::::
address

:::
this

::::::
point.

5 Conclusions

This study presents AI-based
::
an

::
AI

:::::::
method,

:::::
based

:::
on

::::::::
semantic

:::::::
network

::::::::::
comparison,

::
to

:::::::
produce

:
landslide susceptibility maps

::::
using

:::
an

:::::::
ontology

:::
and

:::::::::::
standardized

::::::::::
taxonomies

:::::
within

:::
the

:::::::::
framework

::::::::
provided

::
by

:::
the

::::::::
INSPIRE

::::::
Natural

::::
Risk

:::::
Zone

::::::
theme.

::::
This

::::::
method

::::
does

:::
not

:::::
need

::
an

:::::::
accurate

:::::::::
landslides

::::::::
inventory

::
to
:::::
make

::::::::::
predictions,

::
as
::

it
::::
uses

:::::::::
qualitative

:::::::::::
probabilistic

::::::::
reasoning

::::
that460

::::::::::
incorporates

:::::
expert

::::::::::
knowledge.

:::
We

::::::::
produced

:::::::::::
susceptibility

::::
maps

:
for debris flow, slides in soil and slides in rock for the province

of Veneto, Italy, in the framework provided by the INSPIRE Natural Risk Zone theme. To produce the maps for specific

landslide types, we extended the Natural Risk Zone theme to encompass both the concept of susceptibility and the different

types of landslides. In particular, we registered a landslide classification extension of the Natural Hazard Category code list,

a landslide size class code list, and Susceptibility Area and Abstract Susceptibility Area feature types schema extensions.465

After defining the extension, we aligned key input layers (geology, streams, and land cover) to INSPIRE and, by using a

state-of-the-art
:
an

:
ontologically-grounded probabilistic matching algorithm, we produced the landslide susceptibility layers.

The processing outputs were mapped to the Natural Risk Zone Susceptibility schema extension. Then,
:::::::
potential impact zones

of potential landslides for difference landslide
::::::::
landslides

:::
for

:::::::
multiple

:::::::::::
landslide-size

:
classes were physically modelled for the

most susceptible polygons
:
a
::::::
subset

::
of

:::
the

::::::::
instances

::::
with

:::
the

:::::::
highest

:::::::::::
susceptibility

:::::
scores. Finally, the results were embedded470

::::::::
presented in a user-friendly interface, and made available online

::::::::
embedding

:::::
plain

::::::::
language

::::::::::
explanations

:::
on

::::
how

::
the

:::::
score

::::
was

:::::
assign

:::
and

:::::::
advises

::
on

::::
how

::
to

:::::::
improve

:::
the

::::::::
matching.

We have demonstrated the value of INSPIRE-compliance by showing how it enhances information and knowledge interop-

erability, and allows for explainability in AI applications by standardized interrogation of their inputs and outputs. Ontologies

provide the formal structure for INSPIRE code lists to run algorithms similar to that applied here. The maps can explain the475

scientific results that they portray, and consequently improve the understanding of complex geospatial problems not only by

domain experts but also by decision-makers and other non-specialized interested parties.

This study also illustrates that, in their current state of development, the INSPIRE standards are not sufficiently expressive

to support complex landslide susceptibility mapping. We provided an example of how INSPIRE’s extension capabilities may

be implemented to add the required expressivity. This extension framework ensures, through its Re3gistry register, that the480

expressivity extensions are documented and available to all interested parties for re-use. In so doing, it sets the context for the

ongoing refinement of standards by the INSPIRE thematic committees.
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6 Data availability

– The web application is available at: https://map.italy.minervageohazards.com/

– The schema extension is available at: https://github.com/minervaintelligence/INSPIRE-NZ-Susceptibility

– The code list extension is available at: http://minerva.codes/registry

– Data from the Italian National geoportal is available under “Attribution-NonCommercial-ShareAlike 3.0

Italy (CC BY-NC-SA 3.0 IT)” License, https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en

– Data from the Veneto Geoportal are available under the “Italian Open Data License 2.0”,

https://www.dati.gov.it/content/italian-open-data-license-v20

– CORINE land cover data is available under EEA standard re-use policy: re-use of content on the EEA

website for commercial or non-commercial purposes is permitted free of charge, provided that the source is

acknowledged (http://www.eea.europa.eu/legal/copyright)

– Tinitaly DEM is available upon request by sending an email to simone.tarquini@ingv.it with the subject

of TINITALY DEM. Terms and Conditions of Use: Data is provided for research purposes only. Data is

provided solely to the person named on this application form and should not be given to third parties.

Third parties who might need access to the same dataset are required to fill their own application forms

http://tinitaly.pi.ingv.it/ Data from INGV is available under “Creative Commons Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license http://creativecommons.org/licenses/by-sa/4.0/

– The permafrost data is available under “Attribution 3.0 Unported (CC BY 3.0)” licence.

http://www.geo.uzh.ch/microsite/cryodata/.
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B Appendix A
:
-
:::::::::
Dictionary

:::
of

:::::
Terms485

B.1 Dictionary of Terms

Term Description

Code list Are vocabularies storing INSPIRE terms
::
A

::::::
dataset

:::::::::
specifying

:::::
terms

::
for

:::::::::
populating

::::::::
INSPIRE

:::::::::
properties

:::
that

:::::::
require

::::::::
controlled

::::::::::
vocabulary

CLC CORINE land Cover,
::
a
:::::::::::
classification

::::::
system

:::
for

::::
land

::::
cover

::::::
based

::
on

:::::::::
vegetation

:::
and

::::
land

:::
use

:

Feature type Vector
:
A
::::
data

::::
type

:::::::::::
representing

:
a
:::::::
thematic

:::::
entity

::
in
::
a
::::::
domain

::
of
:::::::
interest,

::::::::
typically

::::
with

:::::
some

::::::::
geospatial

:::::::
location

:

:::::::
specified

:::
by

:::::
vector

:
based spatial data

IFFI Italian Landslide Inventory

Instance A
:::
data

:::::
item

:::
that

:::::::::
represents

::
an

:::::::::
individual,

:::::::
specific real-world entity, for this application an Instance is

:::::::
instance

::
is

a spatial feature, either a slope unit polygon or a stream buffer polygon.

Model Expert-defined conceptualization of some entity,
:
A

:::::::::::::::
conceptualization

::
of

:::
the

::::::
entities,

:::::::::
properties

:::
and

:::::::::::
relationships

::
in

:::::
some

::::::
domain

::
of
:::::::
interest,

:

in this case, landslides. Three landslide models were used in this project;

debris flow, slides in soil and slides in rock.

Ontology Definition of entities and of the rules
::
A

:::::
formal

::::::::::::
representation

::
of

::
a
::::::::::::::
conceptualization

:::
of

:::
the

::::::
entities,

:::::::::
properties,

::::::::::::
relationships,

:::
and

::::
rules

:

describing the relation between the entities
::
in

::::
some

:::::::
domain

::
of

::::::
interest.

Semantic Network A graph network of arcs and nodes storing data in semantic triple format
:::
that

::::::::
represent

::::::::
concepts

::
in

:
a
:::::::
domain

::
of

::::::
interest.

Schema The structure of the spatial data themes
::
A

:::::::::::
representation

:::
of

:
a
::::
data

::::::
model,

::::::::
describes

:::
the

:::::::
structure

::
of

::
a
::::
data

:::::
theme

Slope unit Mapping
:
A
::::
map

:
unit polygon that is automatically derived from the terrain

:::::
digital

::::::::
elevation

::::::
model,

based on
::::::
defined

::
by

:
hydrologic drainage and divide lines

Taxonomy Hierarchical classification scheme based on shared characteristics between entities

Triple A semantic triple is a subject-object-predicate expression
:::
that

::::::
asserts

::
a

:::
fact,

and it is the basic unit of a semantic network.
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D Appendix B
:
-
:::::::::
Properties

::::
used

:::
for

::::
the

::::::::
landslide

:::::::::::
classification

D.1 Properties used for the landslide classification

Property Property defi-

nition

Property

value

Property value definition

Type of

movement

Landslide

movement

types (Hungr

et al., 2014)

Fall A fall starts with the detachment of soil or rock

from a steep slope along a surface on which little

or no shear displacement takes place. The material

then descends largely through the air by falling,

saltation or rolling (Cruden and Couture, 2011)

Topple A topple is the forward rotation of material about

a point or axis below the centre of gravity of the

displaced mass. (Cruden and Couture, 2011)

Slide A slide is a downslope movement occurring dom-

inantly on surfaces of rupture or relatively thin

zones of intense shear strain (Cruden and Couture,

2011)

Spread Spread is an extension of mass combined with a

general subsidence of a upper fractured mass of

material into softer underlying material. (Cruden

and Couture, 2011)

Flow A flow is a spatially continuous movement in

which surfaces of shear are short-lived, closely

spaced and not usually preserved (Cruden and

Couture, 2011).

Slope de-

formation

Slow, sometime unmeasurable, deformation of

slopes (Hungr et al., 2014)

Material Landslide-

forming

material types

(Hungr et al.,

2014)

Ice Glacier ice or other solid water on steep slopes

(Hungr et al., 2014)

Rock Intrusive, volcanic, metamorphic, strong sedimen-

tary, (carbonatic or arenaceous) and weak sedi-

mentary (argillaceous) (Hungr et al., 2014)
29



Strong Rock broken with hammer (Hungr et al., 2014)

Weak Rock peeled with knife (Hungr et al., 2014)

Soil Residual, colluvial, alluvial, lacustrine, marine, aeolian,

glacial, volcanic, organic, random anthropogenic fills,

engineered anthropogenic fills, mine tailings, and sani-

tary waste (Hungr et al., 2014).

Peat Organic material (Hungr et al., 2014).

Debris Low plasticity, unsorted and mixed material (Hungr

et al., 2014).

Silt, sand,

gravel, and

boulders

Nonplastic (or very low plasticicty), granular, sorted.

Silt particles cannot be seen by eye. (Hungr et al., 2014).

Partly

satu-

rated

GW, GP, and GM unified soil classes (Hungr et al.,

2014)).

saturated SW, SP, and SM unified soil classes (Hungr et al., 2014).

dry ML unified soil class (Hungr et al., 2014).

Mud Plastic, unsorted, and close to Liquid Limit material.

CL, CH, and CM unified soil classes (Hungr et al.,

2014).

Clay Plastic, can be modeled into standard thread when

moist, has dry strength. GC, SC, CL, MH, CH, OL, and

OH unified soil classes (Hungr et al., 2014).

Sensitive Sensitive or quick clay is a special type of clay prone

to sudden strength loss upon disturbance. From a rela-

tively stiff material in the undisturbed condition, an im-

posed stress can turn such clay into a liquid gel (Geert-

sema, 2013).

soft Easily molded with fingers. Point of geologic pick eas-

ily pushed into shaft of handle. Easily penetrated sev-

eral centimeters by thumb. (Hungr et al., 2014; USDA,

2012).

stiff Indented by thumb with great effort. Point of geologic

pick can be pushed in up to 1 centimeter. Very difficult

to mold with fingers. Just penetrated with hand spade

(Hungr et al., 2014; USDA, 2012).
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E Appendix C
:
-
:::::::::
Landslide

::::::
models

E.1 Landslide models490

Debris flow model https:
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Table E1.
::::
Debris

::::
flow

:::::
model https://italy.minervageo.com/debris-flow-model/

::::::
Instance

::::::::::::::::::::
Property-Value-Frequency

:::::
Model

:::::::
Definition

::::::
Source

::::::::
Comments

::
has

:::::::
surficial

::::
form

:::::::::::
-Fan(s)-always

:::::::::::
(Goudie, 2014)

:::
Fans

:::
are

:::::
where

:::::
debris

::::
flows

::::::
deposit.

::
has

:::::::
surficial

::::
form

::::::::::::::
-Terrace(s)-usually

:::::::::::
(Goudie, 2014)

::::::
Terraces

:::
are

:::::::
formed

::
by

::::::::::
downcutting

:::
and

::::
lateral

::::::
erosion

::
of

::::::
alluvial

:::::::
sediments

::
by

::::::
streams.

::::::
Debris

::::
flows

::::
can

::::::
generate

::::::
terraces;

:::::::
hence,

:::::::
terraces

:::::
can

:::
be

::::::
indicator

::
of
:::::
debris

::::
flow

::::::
activity.

::
has

:::::::
surficial

:::
form

::::::::::::::::
-Hummock(s)-always

::::::::::::::::::
(Howes and Kenk, 1997)

::::::::
Hummocky

:::::::::::
topography

:::::
may

::::
be

::::::
indicator

::
of
:::::::
landslide

:::::
debris

:

::
has

:::::::::::
water

:::::::::::
-River//italy.

minervageo.com/debris-flow-model/

Slides in soil model

https://italy.minervageo.com/slides-in-soil/

Slides
:::::::::::
Stream-always

::::::::::::::::::
(Howes and Kenk, 1997)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams

::
has

::::::
rainfall

:
-
:::::::
Extreme

::::::
Rainfall-

::::::
always

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

:::::
Debris

::::
flows

::::
are

:::::::
triggered

:::
by

:::::
intense

:::::
rainfall

::::::::::::::::
(Segoni et al., 2018).

:::::::
Rainfall

:::::::
threshold

::
for

:::
this

::::
study

:::
are

::::::
derived

:::
from

:::::::::
Friele (2012)

:
.

::
has

::::::
rainfall

::::::
-Severe

::::::::::::
Rainfall-usually

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

:::::
Debris

::::
flows

::::
are

:::::::
triggered

:::
by

:::::
intense

:::::
rainfall

::::::::::::::::
(Segoni et al., 2018).

:::::::
Rainfall

:::::::
threshold

::
for

:::
this

::::
study

:::
are

::::::
derived

:::
from

:::::::::
Friele (2012)

:
.

::
has

::::::::::::
rainfall

::::::::::::::
-Moderate

::::::::::::::
Rainfall-sometimes

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

:::::
Debris

::::
flows

::::
are

:::::::
triggered

:::
by

:::::
intense

:::::
rainfall

::::::::::::::::
(Segoni et al., 2018).

:::::::
Rainfall

:::::::
threshold

::
for

:::
this

::::
study

:::
are

::::::
derived

:::
from

:::::::::
Friele (2012)

:
.

::
has

::::::
rainfall

:::::
-Mild

:::::::::::
Rainfall-rarely

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

:::::
Debris

::::
flows

::::
are

:::::::
triggered

:::
by

:::::
intense

:::::
rainfall

::::::::::::::::
(Segoni et al., 2018).

:::::::
Rainfall

:::::::
threshold

::
for

:::
this

::::
study

:::
are

::::::
derived

:::
from

:::::::::
Friele (2012)

:
.

::
has

::::::::::::::
geomorph

::::::::::::
process

:::::::::::::::::::
-ErosionalProcess-always

::::::::::::::::::
(Bovis and Jakob, 1999))

::::::
Streams

:::
with

:::::
active

:::::::
erosional

:::::::
processes

::
are

:::::
more

:::::
likely

::
to
:::::::::

experience
:::::

debris

::::
flows

::::
than

:::::::
streams

::::
with

::::
less

:::::
active

:::::::
erosional.
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::
has

::::::::::::::
geomorph

::::::::::::
process

::::::::::::::::::
-MassMovement-always

::::::::::::::::
(Guzzetti et al., 2012)

::::::::
Landslides

:::
are

::::
more

:::::
likely

:
to
:::::

occur
::
on

::::
slopes

:::
or

:::::
valleys

:::
that

::::
have

:::::::::
experienced

:::::::
landslides

:::::
before

::
has

:::::
been

::::::
logged

::::::
within

::::
years

:::::
-5-10

:::::::::
years-always

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

:::
are

:::::::
extremely

:::::
likely

::
by

::
5

:
to

::
10

::::
years

::::
after

:::
tree

:::::::::
harvesting.

::::
Most

::
of

:::
tree

::::
roots

::::
have

::::
died,

:::
and

::::
new

::::
trees

::
are

::
too

:::::
small

::
to
:::::::

provide
::::::::
anchoring

::::
effect

:::
with

::::
their

::::
roots

::
on

:::
the

:::::
slope.

::
has

:::::
been

::::::
logged

:::::
within

:::::
years

:::::
-10-20

::::::::::
years-usually

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

:::
are

::::
likely

::
by

:::
10

::
to

::
20

::::
years

:::
after

::::
tree

::::::::
harvesting

::
as
::::

new
::::

trees
:::

are

:::::
starting

::
to

::::::
provide

::::::::
anchoring

::::
effect

:::
with

:::
their

::::
roots

:::
on

::
the

:::::
slope.

::
has

:::::
been

::::::
logged

::::::
within

:::::
years

::::
-0-5

::::::::::
years-usually

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

:::
are

:::::
likely

::
by

::
0
::
to

::
5
::::
years

:::
after

::::
tree

::::::::
harvesting

:::
as

:::
the

::::
trees

:::
are

:::
dead

:::
but

:::::
some

::::
roots

:::
are

:::
still

:::::::
providing

:::::::
anchoring

:::::
effect

::
on

:::
the

::::
slope.

::
has

:::
fire

:::::
within

:::::
years

:::
-0-2

::::::::::
years-always

::::::::::::::
(Jackson Jr, 2019)

:::::
Debris

:::::
flows

:::
are

:::::
very

:::::
likely

:::
for

::
2

::::
years

::::
after

::
a
:::::::

wildfire.
::::::

Water
:::::
cannot

:::::::
infiltrate,

::::
runoff

:::
and

::::::
erosion

:::::::
increase

:
as

::
the

::::
soil

:::::::
becomes

:::::
water

:::::::
repellent

:::
and

::::
loses

::::::
cohesion

:::::::
because

::
of

::
the

:::
fire

::::
heat.

::
has

:::
fire

:::::
within

:::::
years

:::
-3-5

::::::::::
years-usually

::::::::::::::
(Jackson Jr, 2019)

:::::
Debris

:::::
flows

::::
are

:::::
likely

:::::::
between

::
3

:
to
:::

5
:::::

years
:::::

after
::

a
::::::::

wildfire.
::::

The

:::::::::::
water-repellent

:::
soil

:::::::
horizon

:::::::
degrades

::
but

:::
the

::::
roots

::
of
:::::

dead
::::
trees

::
are

::::::
starting

:
to
:::
rot

:::
and

::::
they

::
do

:::
not

:::::
support

:::
the

::::
slope

:::
with

::::
their

::::::::
anchoring

::::
effect

:::::::
anymore.

::
has

:::
fire

:::::
within

::::
years

:::::
-5-10

:::::::::
years-always

::::::::::::::
(Jackson Jr, 2019)

:::::
Debris

:::::
flows

:::
are

::::
very

:::::
likely

::::::
between

:
5
::
to

:::
10

:::::
years

::::
after

:
a
:::::::

wildfire.
:::::

Roots

:
of
:::::

dead
::::
trees

:::::
decay,

::::
and

:::
they

:::
are

:::
not

::::::::
supporting

:::
the

:::
soil

:::::::
anymore

::
as

:::
for

::
the

:::
case

::
of

:::
tree

::::::::
harvesting

:::::::
logging.

::
has

::::
fire

:::::
within

:::::
years

::
-
:::::
10-20

:::::
years-

:::::
usually

:

::::::::::::::
(Jackson Jr, 2019)

:::::
Debris

::::
flows

:::
are

:::::
likely

:::::::
between

::
10

::
to

::
20

::::
years

::::
after

:
a
::::::
wildfire.

::::
The

::::
roots

:::
have

:::
lost

:::::::
anchoring

:::::
effect

:::
and

:::
the

:::
new

::::
trees

::
are

:::
still

:::
too

::::
small

::
to
::::::
support

:::
the

:::::
slope.
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::
has

:::::::::::
transport

:::::::
line

::::::::
-Road

::::::::::::
Resource-always

:

::::::::::::::
(Jackson Jr, 2019)

::::::
Logging

::::::
roads

::::
are

:::::
the

:::::::
greatest

::::::::
aggravating

:::::::
factor

:::::
for

::::::::
landslide

:::::
activity

:::
as

::::::::
compared

:::
to

:::::::::
undisturbed

:::::
slopes.

::
has

::::::::
transport

::::
line

::::::
-Road

::::::::
Resource

:::::::::::::::
Demographic-always

:

::::::::::::::
(Jackson Jr, 2019)

::::::
Logging

::::::
roads

::::
are

:::::
the

:::::::
greatest

::::::::
aggravating

:::::::
factor

:::::
for

::::::::
landslide

:::::
activity

:::
as

::::::::
compared

:::
to

:::::::::
undisturbed

:::::
slopes.

::
has

:::::::
transport

:::
line

:::::
-Road

:::::::::
Unclassified

::
Or

:::::::::::::
Unknown-always

::::::::::::::
(Jackson Jr, 2019)

:::
The

:::::
’Road

:::::::::
Unclassified

:::
Or

::::::::
Unknown’

:
in
::::

this
::::

area
:::

of
::::

BC
:::
are

::::::
mostly

:::
old

::::::
inactive

::::::
logging

::::
roads.

::::
This

::::::::
assessment

::
has

::::
been

:::::
done

::
by

:::::
visual

::::::::
evaluation

::
of

::
the

::::
data.

:::::::
Logging

::::
roads

:::
are

::
the

::::::
greatest

::::::::
aggravating

:::::
factor

:::
for

:::::::
landslide

:::::
activity

:
as
::::::::

compared
::
to

:::::::::
undisturbed

:::::
slopes.

::
has

:::::
bed

:::::
rock

:::::::::
-volcanic

:::::::
igneous

:::::::::
rock-always

::::::::::::::::::
(Bovis and Jakob, 1999))

: ::::::::
Quaternary

:::::::
volcanic

::::
rocks

::
in
:::

BC
::::

have

:::::
usually

:::::
weak

::::::::::
geotechnical

::::::::
properties.

::::
Basin

:::::::
underlain

::
by

::::
these

:::::
weak

::::
rocks

::
are

::::
likely

::
to

::::::::
experience

:::::::
frequent

:::
and

::::
large

::::
debris

::::
flow

:::::
events.

::
has

::::::
fire

:::::::
within

:::::::
years

::::::
->20

::::::::::::
years-sometimes

:

::::::::::::::
(Jackson Jr, 2019)

::::
After

:::
20

::::
year

::::
since

::
a
:::::::

wildfire,
::::

trees

:::
have

:::::::
regrown

:::
and

::
the

::::::
wildfire

:::::
effects

::
on

::::
slope

::::::
stability

::::
have

:::::::::
diminished.

::
has

:::::::::::::
surficial

:::::::::::::
material

:::::::::::::::
-Colluvium-Usually

::::::::::::::::::
(Bovis and Jakob, 1999)

:::::
Debris

::::
flows

:::
are

:::::::
common

:
is
:::::

areas
:::
with

::::
easily

:::::::
erodible

::::::
material.

::
has

:::::::::
surficial

::::::::
material

:::::::::
-Morainal

::::::
Material

::::::::::
(Till)-Always

:

::::::::::::::::::
(Bovis and Jakob, 1999)

:::::
Debris

::::
flows

:::
are

:::::::
common

:
is
:::::

areas
:::
with

::::
easily

:::::::
erodible

::::::
material.

::
has

::::::
stream

::::
order

::::::::
-1-Always

:::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams.

::
has

::::::
stream

::::
order

::::::::
-2-Always

:::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams.
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::
has

::::::
stream

::::
order

:::::::
-3-rarely

:::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams.

::
has

::::::
stream

::::
order

:::::::
-4-rarely

:::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams

::
has

::::::
stream

::::
order

:::::::
-5-rarely

:::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams

::
has

:::::
been

::::::
logged

::::::
within

:::::
years

::::
->20

::::::::::::
years-sometimes

:

::::::::::::::
(Jackson Jr, 2019)

::
By

:::
20

::::
year

::::
since

:::::::
logging,

::::
trees

::::
have

::::::
regrown

:::
and

:::
the

::::
roots

::
are

::::::::
anchoring

::
the

:::
soil

::::
again.

::
has

::::::::::
geomorph

::::::::
process

::::::::
-Debris

:::::::::
Flow-always

:::::::::::::::::::::::::::::::::
(Bovis and Jakob, 1999; Wilford et al., 2004)

:::::
Melton

:::::
ratio

::::::::
(number

:::::
that

:::::
takes

:::
into

:::::::
account

:::::
relief

::::
and

::::
area

:::
of

::
a

::::::::
watershed)

:::::
and

:::::::::
watershed

::::::
length

:::::
allows

:::::::::::
discrimination

:::
of

:::::
debris

::::
flow,

::::
debris

:::::
flood,

:::
and

::::
flood

:::::
prone

::::
fans.

::
has

:::::::
landslide

:::::::::
type-debris

::::::::::
flow-Always

::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
path.

:::::::::::
Determining

::::
the

:::::::
frequency

:::
of

:::::
event

:::
is

::
a
::::::::
non-trivial

:::
task,

:::
but

:::
the

:::
fact

:::
that

:::::::
someone

::::::
mapped

:
a
:::::
debris

::::
flow

:::
in

::
a
::::::
specific

:::::::
channel,

::::::
indicates

:::
the

::::::
channel

::
as

:::::
prone

::
to

::::
debris

::::
flows

:::::
events.

::
has

:::::::
landslide

:::::::
type-Fall

:::::::
-usually

::::::::::::::::::
(Bovis and Jakob, 1999)

:::
Any

::::::::
landslide

::::
types

::::
may

:::::::::
accumulate

::::
debris

:::
in

:
a
:::::::

channel
:::
that

::::
can

::
be

::::
then

:::::::
mobilized

:::
into

::
a
:::::
debris

:::
flow

::
has

:::::::
landslide

::::::::::::::
type-Flow-usually

::::::::::::::::::
(Bovis and Jakob, 1999)

:::
Any

::::::::
landslide

::::
types

::::
may

:::::::::
accumulate

::::
debris

:::
in

:
a
:::::::

channel
:::
that

::::
can

::
be

::::
then

:::::::
mobilized

:::
into

::
a
:::::
debris

:::
flow

::
has

:::::::
landslide

::::::::::::::
type-Slide-usually

::::::::::::::::::
(Bovis and Jakob, 1999)

:::
Any

::::::::
landslide

::::
types

::::
may

:::::::::
accumulate

::::
debris

:::
in

:
a
:::::::

channel
:::
that

::::
can

::
be

::::
then

:::::::
mobilized

:::
into

::
a
:::::
debris

:::
flow

::
has

:::::::
landslide

:::::::::::::::
type-Spread-usually

::::::::::::::::::
(Bovis and Jakob, 1999)

:::
Any

::::::::
landslide

::::
types

::::
may

:::::::::
accumulate

::::
debris

:::
in

:
a
:::::::

channel
:::
that

::::
can

::
be

::::
then

:::::::
mobilized

:::
into

::
a
:::::
debris

:::
flow

::
has

:::::::
landslide

:::::::::::::::
type-Topple-usually

::::::::::::::::::
(Bovis and Jakob, 1999)

:::
Any

::::::::
landslide

::::
types

::::
may

:::::::::
accumulate

::::
debris

:::
in

:
a
:::::::

channel
:::
that

::::
can

::
be

::::
then

:::::::
mobilized

:::
into

::
a
:::::
debris

:::
flow
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::
has

:::::::::::::
landslide

:::::::::::::
type-Slope

:::::::::::::::
deformation-usually

::::::::::::::::::
(Bovis and Jakob, 1999)

:::
Any

::::::::
landslide

::::
types

::::
may

:::::::::
accumulate

::::
debris

:::
in

:
a
:::::::

channel
:::
that

::::
can

::
be

::::
then

:::::::
mobilized

:::
into

::
a
:::::
debris

:::
flow

::
has

:::::
slope

::::
-Very

::::::::::
steep-always

:::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams

::
has

:::::
slope

::::::::::
-Steep-always

: :::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams

::
has

:::::
slope

:::::::::
-moderately

::::::::::
steep-usually

:::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams

::
has

:::::
slope

:::::::::::::
-moderate-usually

: :::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams

::
has

:::::
slope

::::::::::
-gentle-rarely

::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams

::
has

:::::
slope

:::::::::
-plain-never

:::::::::::::::
(Hungr et al., 2014)

:::::
Debris

:::::
flows

:::::
occur

::::::::::
periodically

:::
on

::::::::
established

:::::
paths,

::::::
usually

::::::
gullies

:::
and

:::
first-

::
or
::::::
second-

:::::
order

::::::
streams

::
has

:::::::
surficial

::::
form

:::::::::
-cliff-always

::::::::::::::::::
(Howes and Kenk, 1997)

::::
Cliffs

:::::::
indicate

:::::
steep

:::::::
terrains

:::::
where

:::::::
sediments

::::
may

::
be

::::::::
mobilized

::
as
:::::

debris

::::
flows.

::
has

:::::::
surficial

::::
form

::::::::::
-cones-always

::::::::::::::::::
(Howes and Kenk, 1997)

:::::
Cones

:::::
store

:::::::::
sediments

:::
that

:::::
may

::
be

:::::::::
re-mobilized

:::
into

:::::
debris

::::
flow.

::
has

:::::
water

::::::::::::::
-permafrost-always

:::::::::::::::
(Hungr et al., 2014)

::::::::
Permafrost

:::::::::
degradation

:::
can

::::::::
destabilize

:::::::
sediments

::
has

::::::
texture

:::::::::::
-blocks-always

::::::::::::::::::
(Howes and Kenk, 1997)

:::
The

:::::::
presence

:
of
::::::
blocks

:::
can

::
be

::::::
indicator

:
of
:::::::

landslide
::::::::
processes

::
has

::::::
texture

:::::::::::
-rubble-always

::::::::::::::::::
(Howes and Kenk, 1997)

:::
The

:::::::
presence

::
of

:::::
rubble

::
is
::
an

:::::::
indicator

:
of
:::::::

landslide
::::::::
processes.
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Table E2.
::::
Slides

::
in

::::
rock

:::::
model https://italy.minervageo.com/the-roberti-slides-in-rock-model/

::::::
Instance

::::::::::::::::::::
Property-Value-Frequency

:::::
Model

:::::::
Definition

::::::
Source

::::::::
Comments

::
has

::::::::::::::
geomorph

::::::::::::
process

:::::::::::::::::::::::::::
-GeneralPeriglacialProcesses-always

:::::::::::::::::::
(Evans and Clague, 1994)

::::::::
Landslides

:::
are

:::::::
common

::
in

::::::::
periglacial

:::::::::
environment,

::::::::
especially

::::
under

:::::::
changing

::::::
climatic

::::::::
conditions.

::
has

::::::::::::::
geomorph

::::::::::::
process

:::::::::::::::::::
-ErosionalProcess-always

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Active

:::::::
erosional

:::::::
processes

:::
are

::::::
possible

::::::
indicator

::::
of

::::::::
landslide

:::::::
activity,

:::
as

:::::::
landslides

:::::
occur

:::::
where

::::::::
landslides

:::
have

::::::
occurred

::::::
before.

::
has

::::::::::::::
geomorph

::::::::::::
process

::::::::::::::::::
-MassMovement-always

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Active

::::
mass

:::::::::
movement

:::::::
processes

:::
are

::::::
possible

:::::::
indicator

::
of

:::::::
landslide

::::::
activity,

:
as
:::::::::

landslides
:::::
occur

:::::
where

::::::::
landslides

:::
have

:::::::
occurred

::::::
before.

::
has

:::::
slope

::::
-Very

::::::::::
Steep-always

:::::::::::::::
(Hungr et al., 2014)

:::
Very

:::::
Steep

:::::
slopes

::
are

:::::
prone

::
to

::::
slides

::
has

:::::
slope

::::::::::
-Steep-always

: :::::::::::::::
(Hungr et al., 2014)

::::
Steep

:::::
slopes

:::
are

::::
prone

::
to

:::::
slides

::
has

:::::
slope

:::::::::
-Moderately

::::::::::
Steep-usually

: :::::::::::::::
(Hungr et al., 2014)

::::::::
Moderately

:::::
steep

:::::
slopes

:::
are

:::::
prone

::
to

::::
slides

::
has

:::::
slope

::::::::::::::::
-Moderate-sometimes

:::::::::::::::
(Hungr et al., 2014)

:::::::
Moderate

:::::
slopes

:::
may

:::
be

::::
prone

::
to

::::
slides

::
has

:::::
slope

::::::::::
-Gentle-never

:::::::::::::::
(Hungr et al., 2014)

:::::
Gentle

:::::
slopes

::
are

:::::
rarely

:::::
prone

:
to
:::::
slides

::
has

:::::
slope

:::::::::
-Plain-never

:::::::::::::::
(Hungr et al., 2014)

::::
Plain

:::::
slopes

::
are

:::::
rarely

::::
prone

::
to
:::::
slides.

::
has

:::::::
surficial

::::::
material

:::::::::::::
-Bedrock-ususally

:::::::::::::::
(Hungr et al., 2014)

:::::::
’bedrock’

::::::
mapped

::
as
:::::::

surficial
::::::
material

::::::
indicates

::::
the

:::::::
presence

:::
of

:::::
cliffs

:::
and

:::::
bluffs,

::::::::
possibility

::::
prone

::
to

::::
rock

:::::
slides.

::
has

::::::::
surficial

::::::::
material

::::::::::
-Weathered

::::::::::::
Bedrock-always

:::::::::::::::
(Hungr et al., 2014)

::::::
Weather

::::::
bedrock

::
is
:::::

more
::::
likely

::
to
:::

fail

:::
than

::::
fresh

:::::::
bedrock.

::
has

::::::::
weather

:::::::::
threshold

:::::::::
-Extreme

:::::::::::
Weather-always

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

::::::::
Landslides

::::
can

::::
be

:::::::::
triggered

:::
by

:::::
intense

::::::
rainfall

::::::::::::::::
(Segoni et al., 2018)

:
or

:::::::
snowmelt.

:::::::
Rainfall

::::::::
threshold

:::
for

:::
this

::::
study

:::
are

:::::
derived

::::
from

:::::::::::
(Friele, 2012).
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::
has

:::::::::
weather

:::::::::
threshold

::::::::
-Severe

::::::::::::
Weather-usually

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

::::::::
Landslides

::::
can

::::
be

:::::::::
triggered

:::
by

:::::
intense

::::::
rainfall

::::::::::::::::
(Segoni et al., 2018)

:
or

:::::::
snowmelt.

:::::::
Rainfall

::::::::
threshold

:::
for

:::
this

::::
study

:::
are

:::::
derived

::::
from

:::::::::::
(Friele, 2012).

::
has

:::::::::
weather

::::::::::
threshold

:::::::
-Mild

:::::::::::
Weather-rarely

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

::::::::
Landslides

::::
can

::::
be

:::::::::
triggered

:::
by

:::::
intense

::::::
rainfall

::::::::::::::::
(Segoni et al., 2018)

:
or

:::::::
snowmelt.

:::::::
Rainfall

::::::::
threshold

:::
for

:::
this

::::
study

:::
are

:::::
derived

::::
from

:::::::::::
(Friele, 2012).

::
has

::::::::
weather

:::::::::
threshold

:::::::::
-Moderate

::::::::::::::
Weather-sometimes

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

::::::::
Landslides

::::
can

::::
be

:::::::::
triggered

:::
by

:::::
intense

::::::
rainfall

::::::::::::::::
(Segoni et al., 2018)

:
or

:::::::
snowmelt.

:::::::
Rainfall

::::::::
threshold

:::
for

:::
this

::::
study

:::
are

:::::
derived

::::
from

:::::::::::
(Friele, 2012).

:

::
has

::::
land

:::
use

:::::::::::
-Alpine-always

: :::::::::::::::::::
(Evans and Clague, 1994)

::::::::
Landslides

:::
are

:::::::
common

::
in

:::
the

:::::
Alpine

::::
zone,

:::::::::
especially

:::::::
under

::::::::
changing

::::::
climatic

::::::::
conditions

::
has

::::::::::::::
land

::::::::::::
use

::::::::::::::::::::::::::
-SubAlpineAvalancheChutes-always

:::::::::::::::
(Hungr et al., 2014)

::::
Rock

::::
slides

:::
can

:::::
occur

:
in
::::::

gullies
:::
that

::
are

:::
also

:::::::
avalanche

:::::
tracks

::
has

::::::
stream

::::
order

:::::::
-1-always

::::::::::::
(Strahler, 1957)

:::::
Stream

::::::
erosion

:::
can

::::
affect

::::
slope

::::::
stability

::
has

::::::
stream

::::
order

:::::::
-2-always

::::::::::::
(Strahler, 1957)

:::::
Stream

::::::
erosion

:::
can

::::
affect

::::
slope

::::::
stability

::
has

::::::
stream

::::
order

:::::::
-3-always

::::::::::::
(Strahler, 1957)

:::::
Stream

::::::
erosion

:::
can

::::
affect

::::
slope

::::::
stability

::
has

::::::
stream

::::
order

::::::::
-4-usually

::::::::::::
(Strahler, 1957)

:::::
Stream

::::::
erosion

:::
can

::::
affect

::::
slope

::::::
stability

::
has

::::::
stream

::::
order

::::::::::
-5-sometimes

::::::::::::
(Strahler, 1957)

:::::
Stream

::::::
erosion

:::
can

::::
affect

::::
slope

::::::
stability

::
has

:::::::::::
transport

:::::::
line

::::::::
-Road

::::::::::::
Resource-usually

::::::::::::::
(Jackson Jr, 2019)

::::::
Logging

::::::
roads

::::
are

:::::
the

:::::::
greatest

::::::::
aggravating

:::::::
factor

:::::
for

::::::::
landslide

:::::
activity

:::
as

::::::::
compared

:::
to

:::::::::
undisturbed

:::::
slopes.

::
has

:::::::
transport

:::
line

:::::
-Road

:::::::::
Unclassified

::
Or

:::::::::::::
Unknown-usually

::::::::::::::
(Jackson Jr, 2019)

:::::
Roads

::::
are

:::
an

:::::::::
aggravating

:::::
factor

:::
for

::::::
landslide

::::::::
activity

:::
as

::::::::
compared

:::
to

::::::::
undisturbed

::::::
slopes.

::
has

:::::::
transport

:::
line

:::::::::::
-Trail-usually

::::::::::::::
(Jackson Jr, 2019)

:::::
Roads

::::
are

:::
an

:::::::::
aggravating

:::::
factor

:::
for

::::::
landslide

::::::::
activity

:::
as

::::::::
compared

:::
to

::::::::
undisturbed

::::::
slopes.
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::
has

::::::::
transport

::::
line

:::::
-Road

:::::::::
Recreation

::::::::::::::::::
Demographic-sometimes

::::::::::::::
(Jackson Jr, 2019)

:::::
Roads

::::
are

:::
an

:::::::::
aggravating

:::::
factor

:::
for

::::::
landslide

::::::::
activity

:::
as

::::::::
compared

:::
to

::::::::
undisturbed

::::::
slopes.

::
has

:::::
water

::::::::::::::
-Permafrost-always

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

:::
are

:::::::
common

::
in

::::::::
periglacial

:::::::::
environment,

::::::::
especially

::::
under

:::::::
changing

::::::
climatic

::::::::
conditions.

::
has

:::
bed

::::
rock

::::::::::
-metamorphic

:::::::::
rock-always

:::::::::::::::
(Hungr et al., 2014)

::::::
Foliated

::::::::::
metamorphic

::::
rocks

:::
are

:::::
usually

::::
weak

:::
and

::::
prone

::
to
::::::
failure.

:::
Has

:::::::
CORINE

::::
land

:::::::::::
cover-Glacier

:::
and

:::::::
perpetual

:::::::::
snow-always

:::::::::::::::::::
(Evans and Clague, 1994)

::::::::
Landslides

:::
are

:::::::
common

::
in

:::
the

:::::
Alpine

::::
zone,

:::::::::
especially

:::::::
under

::::::::
changing

::::::
climatic

::::::::
conditions.

::
has

::::::::::
CORINE

::::::
land

::::::::::
cover-Bare

:::::::::
rocks-always

:

:::::::::::::::
(Hungr et al., 2014)

::::
Rock

:::::::
outcrops

:::
can

::
be

::::
steep

::::
and

::::
prone

:
to
::::::::
landslides

::
has

::::::::
CORINE

:::
land

:::::::::
cover-Road

:::
and

:::
rail

:::::::
networks

:::
and

:::::::
associated

::::::::::
lands-always

:

::::::::::::::
(Jackson Jr, 2019)

:::::
Roads

:::::
and

::::
rail

:::::::
increase

::::::::
landslide

:::::
activity

:::
as

::::
they

:::
are

::
a

::::
break

:::
in

::::
slope

::::
where

:::::
water

:::
can

::::::::
accumulate

:

::
has

::::
fault

::::
-Any

::::::::::
Fault-always

:::::::::::::::::::
(Reichenbach et al., 2018)

::::
Faults

::::
are

:::::::
indicator

:::
of

:::::
weak

:::::
rocks,

:::
and

:::
the

::::::::
presence

:::
of

:::::
faults

:::
is

:::
one

:
of
::::

the
::::
main

:::::::::
parameters

::::::::
considered

::
in

::::::
landslide

:::::::::::
susceptibility

:::::::
mapping.

::
has

:::::::
landslide

::::::::
type-Rock

:::::::::
Fall-usually

: ::::::::::::::::
(Guzzetti et al., 2012)

::::::::
Landslides

:::
are

::::
more

:::::
likely

:
to
:::::

occur
::
on

::::
slopes

:::
or

:::::
valleys

:::
that

::::
have

:::::::::
experienced

:::::::
landslides

::::::
before.
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::
has

::::::::::
landslide

::::::::::
type-Rock

::::::
Slope

:::::::::::
Spread-usually

::::::::::::::::
(Guzzetti et al., 2012)

::::::::
Landslides

:::
are

::::
more

:::::
likely

:
to
:::::

occur
::
on

::::
slopes

:::
or

:::::
valleys

:::
that

::::
have

:::::::::
experienced

:::::::
landslides

:::::
before

::
has

:::::::
landslide

::::::::
type-Rock

:::::::::::
topples-usually

::::::::::::::::
(Guzzetti et al., 2012)

::::::::
Landslides

:::
are

::::
more

:::::
likely

:
to
:::::

occur
::
on

::::
slopes

:::
or

:::::
valleys

:::
that

::::
have

:::::::::
experienced

:::::::
landslides

:::::
before

::
has

:::::::::
landslide

:::::::::
type-Slides

::
in rock

model https://italy. minervageo.

com/the-roberti-slides-in-rock-model/

:::::::::
Rock-always

::::::::::::::::
(Guzzetti et al., 2012)

::::::::
Landslides

:::
are

::::
more

:::::
likely

:
to
:::::

occur
::
on

::::
slopes

:::
or

:::::
valleys

:::
that

::::
have

:::::::::
experienced

:::::::
landslides

:::::
before

::
has

::::::::::
landslide

::::::::::::
type-Slides

::::
in

:::::::::::
soil-sometimes

::::::::::::::::
(Guzzetti et al., 2012)

:::
Note

:::::
that

:::::::
location

::::::
must

::::
also

:::
be

::::::::
considered.

::
In
:::::::

essence,
:::::
where

:::::
there

:
is

:::
soil,

::
it

::
is

:::
less

:::::
likely

:::
that

:::::
there

:::
will

::
be

::::
steep

:::::
slopes,

:::
but

::::
soil

::::
slides

:::
are

::
a
:::
sign

:
of
:::

an
::::::
unstable

:::::
slope,

::::
and

:::::::
therefore

::
are

::
not

::::::::
explicitly

::::::::
negatively

::::::::
correlated

::
to

:::
rock

:::::
slides

::
has

:::::::
landslide

::::::::
type-Slope

::::::::::
deformation

:
in

:::::::::
rock-usually

::::::::::::::::
(Guzzetti et al., 2012)

::::::::
Landslides

:::
are

::::
more

:::::
likely

:
to
:::::

occur
::
on

::::
slopes

:::
or

:::::
valleys

:::
that

::::
have

:::::::::
experienced

:::::::
landslides

:::::
before

::
has

::::::::::
landslide

::::::::::::
type-Flows

::::
in

:::::::::::
soil-sometimes

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

:::
is

::::
soil,

::
it

::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

::::
steep

::::::
slopes,

:::
and

:::
rock

:::::
slides.

:::
But

:::
soil

:::::
slides

:::
are

:
a
::::

sign
::
of

::
an

::::::
unstable

:::::
slope,

::::
and

:::::::
therefore

:::
are

:::
not

:::::::
explicitly

::::::::
negatively

::::::::
correlated

::
to

:::
rock

::::
slides

::
has

:::::::
landslide

:::::::
type-Soil

::::::::::::
Fall-sometimes

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

:::
is

::::
soil,

::
it

::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

::::
steep

::::::
slopes,

:::
and

:::
rock

:::::
slides.

:::
But

:::
soil

:::::
slides

:::
are

:
a
::::

sign
::
of

::
an

::::::
unstable

:::::
slope,

::::
and

:::::::
therefore

:::
are

:::
not

:::::::
explicitly

::::::::
negatively

::::::::
correlated

::
to

:::
rock

::::
slides
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::
has

:::::::
landslide

::::::::
type-Slope

::::::::::
deformation

:
in

:::::::::::
soil-sometimes

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

:::
is

::::
soil,

::
it

::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

::::
steep

::::::
slopes,

:::
and

:::
rock

:::::
slides.

:::
But

:::
soil

:::::
slides

:::
are

:
a
::::

sign
::
of

::
an

::::::
unstable

:::::
slope,

::::
and

:::::::
therefore

:::
are

:::
not

:::::::
explicitly

::::::::
negatively

::::::::
correlated

::
to

:::
rock

::::
slides

::
has

:::::::::::::
landslide

:::::::::::::
type-Soil

:::::::::::::
Topple-sometimes

:

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

:::
is

::::
soil,

::
it

::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

::::
steep

::::::
slopes,

:::
and

:::
rock

:::::
slides.

:::
But

:::
soil

:::::
slides

:::
are

:
a
::::

sign
::
of

::
an

::::::
unstable

:::::
slope,

::::
and

:::::::
therefore

:::
are

:::
not

:::::::
explicitly

::::::::
negatively

::::::::
correlated

::
to

:::
rock

::::
slides

::
has

:::::::
surficial

::::
form

:::::::::
-cliff-always

:::::::::::::::
(Hungr et al., 2014)

::::
Cliffs

:::
can

:::::::
generate

:::
rock

:::::
slides

::
has

:::::::::::::::::
texture-rubble-Always

: ::::::::::::::::::
(Howes and Kenk, 1997)

:::
The

:::::::
presence

:
of
::::::
blocks

:::
can

::
be

::::::
indicator

:
of
:::::::

landslide
::::::::
processes

::
has

:::::::::::::::::
texture-blocks-Always

: ::::::::::::::::::
(Howes and Kenk, 1997)

:::
The

:::::::
presence

::
of

:::::
rubble

::
is
::
an

:::::::
indicator

:
of
:::::::

landslide
::::::::
processes.

::
has

:::::::
surficial

::::
form

:::::::::::
-Cones-Always

::::::::::::::::::
(Howes and Kenk, 1997)

:::::
Cones

:::::
may

::
be

::::::
formed

:::
by

::::
rock

::::
slide

:::::
debris,

::::
hence

::::
they

:::
can

::
be

::::::::
considered

::
an

::::::
indicator

::
of
:::::::
rockslide

::::::
activity
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Table E3.
::::
Slides

::
in

:::
soil

:::::
model https://italy.minervageo.com/slides-in-soil/

::::::
Instance

::::::::::::::::::::
Property-Value-Frequency

:::::
Model

:::::::
Definition

::::::
Source

::::::::
Comments

::
has

:::::::::
surficial

::::::::
material

:::::::::
-Morainal

::::::
Material

::::::::::
(Till)-always

::::::::::::::::::
(Jackson Jr et al., 2008)

:::
Soil

:::::
slides

::::
can

:::
be

::::::::
generated

:::::
when

::::::
morainal

:::::::
material

:::
fails

::::
from

:
a
:::::

slope

::
has

:::::::::::::
surficial

:::::::::::::
material

:::::::::::::::
-Bedrock-sometimes

::::::::::::::::::
(Jackson Jr et al., 2008)

::::
There

::::
may

:::
be

:::::
some

:::
soil

:::::
even

::::
when

:::::::
’bedrock’

:::
has

::::
been

::::::
mapped

::
as

::::::
principal

::::::
surficial

::::::
material

:

::
has

:::::::::::::
surficial

:::::::::::::
material

::::::::::::::
-Colluvium-always

::::::::::::::::::
(Jackson Jr et al., 2008)

:::
Soil

:::::
slides

::::
can

:::
be

::::::::
generated

:::::
when

:::::::
colluvium

:::
has

::::
been

::::::
mapped

::
as

::::::
principal

::::::
surficial

::::::
material

:

::
has

::::::::::::::
geomorph

::::::::::::
process

:::::::::::::::::::
-ErosionalProcess-always

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Active

:::::::
erosional

:::::::
processes

:::
are

::::::
possible

::::::
indicator

::::
of

::::::::
landslide

:::::::
activity,

:::
as

:::::::
landslides

:::::
occur

:::::
where

::::::::
landslides

:::
have

::::::
occurred

::::::
before.

::
has

::::::::::::::
geomorph

::::::::::::
process

::::::::::::::::::
-MassMovement-always

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Active

::::
mass

:::::::::
movement

:::::::
processes

:::
are

::::::
possible

:::::::
indicator

::
of

:::::::
landslide

::::::
activity,

:
as
:::::::::

landslides
:::::
occur

:::::
where

::::::::
landslides

:::
have

:::::::
occurred

::::::
before.

::
has

:::::
slope

:::::::::
-Plain-rarely

: :::::::::::::::
(Hungr et al., 2014)

:::
Soil

::::
slides

:::::
rarely

::::
occur

:::
on

::::
plain

:::::
slopes.

::
has

:::::
slope

::::::::::
-Gentle-rarely

:::::::::::::::
(Hungr et al., 2014)

:::
Soil

::::
slides

:::::
rarely

::::
occur

:::
on

::::
plain

:::::
slopes.

::
has

:::::
slope

:::::::::::::
-Moderate-usually

:::::::::::::::
(Hungr et al., 2014)

:::
Soil

:::::
slides

::::::
usually

::::
occur

:::
on

:::::::
moderate

:::::
slopes.

::
has

:::::
slope

:::::::::
-Moderately

::::::::::
Steep-usually

:::::::::::::::
(Hungr et al., 2014)

:::
Soil

:::::
slides

::::::
usually

::::
occur

:::
on

:::::::
moderate

::::
steep

:::::
slopes.

:

::
has

:::::
slope

:::::::::
-Steep-rarely

:::::::::::::::
(Hungr et al., 2014)

:::
Soil

:::::
slides

:::::
rarely

:::::
occur

:::
on

:::::::
moderate

::::
steep

:::::
slopes,

:::::::
because

::::::
usually

::::
there

::
is

::
not

:::::
much

:::
soil

::
on

::::
steep

::::::
slopes.

::
has

:::::
slope

::::
-Very

:::::::::
Steep-never

: :::::::::::::::
(Hungr et al., 2014)

:::
Soil

::::
slides

:::::
rarely

:::::
occur

::
on

::::
steep

:::::
slopes,

::::::
because

::::::
usually

::::
there

::
is

:::
not

::::
much

:::
soil

::
on

::::
steep

:::::
slopes.

:

::
has

::::
land

:::
use

::::::::::
-Alpine-never

::::::::::::::
(Hungr et al., 2014)

:::
Soil

:::::
slides

:::::
rarely

:::::
occur

::
in

:::
the

:::::
Alpine

::::
zone,

::::::
because

::::::
usually

::::
there

:
is
:::
not

::::
much

:::
soil

::::
there.

:
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::
has

::::::::::::::
land

::::::::::::
use

:::::::::::::::::::::::::::
-SubAlpineAvalancheChutes-usually

::::::::::::::
(Hungr et al., 2014)

:::
Soil

:::::
slides

:::
can

::::
occur

::
in

:::
the

:::::
gullies

:::
that

::
are

::::
also

:::::::
avalanche

:::::
tracks.

:

::
has

::::::
stream

::::
order

:::::::
-1-always

::::::::::::
(Strahler, 1957)

:::::
Stream

::::::
erosion

:::
can

::::
cause

:::
soil

:::::
slides

::
has

::::::
stream

::::
order

:::::::
-2-always

::::::::::::
(Strahler, 1957)

:::::
Stream

::::::
erosion

:::
can

::::
cause

:::
soil

:::::
slides

::
has

::::::
stream

::::
order

::::::::
-3-usually

::::::::::::
(Strahler, 1957)

:::::
Stream

::::::
erosion

:::
can

::::
cause

:::
soil

:::::
slides

::
has

::::::
stream

::::
order

::::::::
-4-usually

::::::::::::
(Strahler, 1957)

:::::
Stream

::::::
erosion

:::
can

::::
cause

:::
soil

:::::
slides

::
has

::::::
stream

::::
order

::::::::::
-5-sometimes

::::::::::::
(Strahler, 1957)

::::
Large

::::::
stream

::::::
erosion

::::
may

:::::
cause

:::
soil

::::
slides

:

::
has

:::::::
transport

:::
line

:::::
-Trail

:::::::::
Skid-always

: ::::::::::::::
(Jackson Jr, 2019)

:::
Trail

::::
skid

::::
are

:::::::::
aggravating

:::::
factor

:::
for

::::::
landslide

::::::::
activity

:::
as

::::::::
compared

:::
to

::::::::
undisturbed

:::::
slopes

:

::
has

:::::::
transport

:::
line

:::::::::::::
-Trail-sometimes

::::::::::::::
(Jackson Jr, 2019)

::::
Trails

:::
are

:::
an

::::::::::
aggravating

:::::
factor

:::
for

::::::
landslide

::::::::
activity

:::
as

::::::::
compared

:::
to

::::::::
undisturbed

:::::
slopes

:

::
has

:::::::::::
transport

:::::::
line

::::::::
-Road

::::::::::::
Resource-always

::::::::::::::
(Jackson Jr, 2019)

::::::
Logging

::::::
roads

::::
are

:::::
the

:::::::
greatest

::::::::
aggravating

:::::::
factor

:::::
for

::::::::
landslide

:::::
activity

:::
as

::::::::
compared

:::
to

:::::::::
undisturbed

:::::
slopes.

::
has

:::::::
transport

:::
line

:::::
-Road

:::::::::
Unclassified

::
Or

:::::::::::::
Unknown-always

::::::::::::::
(Jackson Jr, 2019)

:::::
Roads

::::
are

:::
an

:::::::::
aggravating

:::::
factor

:::
for

::::::
landslide

::::::::
activity

:::
as

::::::::
compared

:::
to

::::::::
undisturbed

::::::
slopes.

::
has

:::::::
transport

:::
line

:::::::::::::
-Highway-rarely

::::::::::::::
(Jackson Jr, 2019)

:::::
Roads

::::
are

:::
an

:::::::::
aggravating

:::::
factor

:::
for

::::::
landslide

::::::::
activity

:::
as

::::::::
compared

:::
to

::::::::
undisturbed

::::::
slopes.

::
has

::::::::
transport

::::
line

:::::
-Road

:::::::::
Recreation

::::::::::::::::::
Demographic-sometimes

::::::::::::::
(Jackson Jr, 2019)

:::::
Roads

::::
are

:::
an

:::::::::
aggravating

:::::
factor

:::
for

::::::
landslide

::::::::
activity

:::
as

::::::::
compared

:::
to

::::::::
undisturbed

::::::
slopes.

::
has

::::::::
thickness

::::::::::::
-Blanket-always

::::::::::::::::::
(Jackson Jr et al., 2008)

:::
Soil

:::::
Slides

::::
can

:::::
occur

:::::
when

::::
there

::
is

:::::
enough

:::
soil

::::
that

:::
can

::
be

::::::::
mobilized

::
on

:
a

::::
slope.

:

::
has

:::::::::
thickness

:::::::
-Mantle

:::
of

:::::::
Variable

:::::::::::::
Thickness-usually

::::::::::::::::::
(Jackson Jr et al., 2008)

:::
Soil

:::::
Slides

::::
can

:::::
occur

:::::
when

::::
there

::
is

:::::
enough

:::
soil

::::
that

:::
can

::
be

::::::::
mobilized

::
on

:
a

::::
slope.

:

::
has

::::::::
thickness

::::::::::::::
-Veneer-sometimes

::::::::::::::::::
(Jackson Jr et al., 2008)

:::
Soil

:::::
Slides

::::
can

:::::
occur

:::::
when

::::
there

::
is

:::::
enough

:::
soil

::::
that

:::
can

::
be

::::::::
mobilized

::
on

:
a

::::
slope.

:
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::
has

::::::::
thickness

::::
-Thin

::::::::::
Veneer-rarely

::::::::::::::::::
(Jackson Jr et al., 2008)

:::
Soil

:::::
Slides

::::
can

:::::
occur

:::::
when

::::
there

::
is

:::::
enough

:::
soil

::::
that

:::
can

::
be

::::::::
mobilized

::
on

:
a

::::
slope.

:

::
has

::::::
rainfall

:::::::
-Extreme

::::::::::::
Rainfall-always

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

::::::::
Landslides

::::
can

::::
be

:::::::::
triggered

:::
by

:::::
intense

::::::
rainfall

::::::::::::::::
(Segoni et al., 2018)

:
or

:::::::
snowmelt.

:::::::
Rainfall

::::::::
threshold

:::
for

:::
this

::::
study

:::
are

:::::
derived

::::
from

:::::::::::
(Friele, 2012)

:
..

::
has

::::::
rainfall

::::::
-Severe

::::::::::::
Rainfall-usually

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

::::::::
Landslides

::::
can

::::
be

:::::::::
triggered

:::
by

:::::
intense

::::::
rainfall

::::::::::::::::
(Segoni et al., 2018)

:
or

:::::::
snowmelt.

:::::::
Rainfall

::::::::
threshold

:::
for

:::
this

::::
study

:::
are

:::::
derived

::::
from

:::::::::::
(Friele, 2012).

::
has

::::::::::::
rainfall

::::::::::::::
-Moderate

::::::::::::::
Rainfall-sometimes

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

::::::::
Landslides

::::
can

::::
be

:::::::::
triggered

:::
by

:::::
intense

::::::
rainfall

::::::::::::::::
(Segoni et al., 2018)

:
or

:::::::
snowmelt.

:::::::
Rainfall

::::::::
threshold

:::
for

:::
this

::::
study

:::
are

:::::
derived

::::
from

:::::::::::
(Friele, 2012).

::
has

::::::
rainfall

:::::
-Mild

:::::::::::
Rainfall-rarely

:::::::::::::::::::::::::
(Friele, 2012; Segoni et al., 2018)

::::::::
Landslides

::::
can

::::
be

:::::::::
triggered

:::
by

:::::
intense

::::::
rainfall

::::::::::::::::
(Segoni et al., 2018)

:
or

:::::::
snowmelt.

:::::::
Rainfall

::::::::
threshold

:::
for

:::
this

::::
study

:::
are

:::::
derived

::::
from

:::::::::::
(Friele, 2012).

::
has

:::
bed

::::
rock

::::::::::
-metamorphic

:::::::::
rock-always

::::::::::::::::::
(Bovis and Jakob, 1999)

::::::::::
Metamorphic

:::::::
foliated

::::::
rocks

:::::
have

:::::
usually

:::::
weak

::::::::::
geotechnical

::::::::
properties.

::::
Basin

::::::::
underlain

::
by

:::::
these

:::::
weak

::::
rocks

::
are

:::::
likely

::
to

::::::::
experience

::::
more

:::::::
landslides

:::::::
compared

:::
to
::::::

basin
:::::::::

underlain
:::

by

::::::
stronger

::::::::
lithologies.

::
has

::::::
texture

:::::::::::
-blocks-always

: ::::::::::::::::::
(Howes and Kenk, 1997)

:::
The

:::::::
presence

::
of

::::
block

:::
can

:::
be

::::::
indicator

:
of
:::::

mass
::::::::
movement

:::::::
processes

::
has

::::::
texture

:::::::::::
-rubble-always

::::::::::::::::::
(Howes and Kenk, 1997)

:::
The

:::::::
presence

::
of

:::::
rubble

::
is
::
an

:::::::
indicator

:
of
:::::

mass
::::::::
movement

:::::::
processes.

:

::
has

:::::
been

::::::
logged

::::::
within

:::::
years

::::
->20

::::::::::::
years-sometimes

::::::::::::::
(Jackson Jr, 2019)

::
By

:::
20

::::
year

::::
since

:::::::
logging,

::::
trees

::::
have

::::::
regrown

:::
and

:::
the

::::
roots

::
are

::::::::
anchoring

::
the

:::
soil

::::
again

::
has

:::::
been

::::::
logged

:::::
within

:::::
years

:::::
-10-20

::::::::::
years-usually

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

:::
are

::::
likely

::
by

:::
10

::
to

::
20

::::
years

:::
after

::::
tree

::::::::
harvesting

::
as
::::

new
::::

trees
:::

are

:::::
starting

::
to

::::::
provide

::::::::
anchoring

::::
effect

:::
with

:::
their

::::
roots

:::
on

::
the

:::::
slope.

::
has

:::::
been

::::::
logged

::::::
within

::::
years

:::::
-5-10

:::::::::
years-always

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

:::
are

:::::::
extremely

:::::
likely

::
by

::
5

:
to

::
10

::::
years

::::
after

:::
tree

:::::::::
harvesting.

::::
Most

::
of

:::
tree

::::
roots

::::
have

::::
died,

:::
and

::::
new

::::
trees

::
are

::
too

:::::
small

::
to
:::::::

provide
::::::::
anchoring

::::
effect

:::
with

::::
their

::::
roots

::
on

:::
the

:::::
slope.
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::
has

:::::
been

::::::
logged

::::::
within

:::::
years

::::
-0-5

::::::::::
years-usually

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

:::
are

:::::
likely

::
by

::
0
::
to

::
5
::::
years

:::
after

::::
tree

::::::::
harvesting

:::
as

:::
the

::::
trees

:::
are

:::
dead

:::
but

:::::
some

::::
roots

:::
are

:::
still

:::::::
providing

:::::::
anchoring

:::::
effect

::
on

:::
the

::::
slope.

:

::
has

::::::
fire

:::::::
within

:::::::
years

::::::
->20

::::::::::::
years-sometimes

:

::::::::::::::
(Jackson Jr, 2019)

::::
After

:::
20

::::
year

::::
since

::
a
:::::::

wildfire,
::::

trees

:::
have

:::::::
regrown

:::
and

::
the

::::::
wildfire

:::::
effects

::
on

::::
slope

::::::
stability

::::
have

:::::::::
diminished.

::
has

:::::
fire

::::::::
within

::::::
years

:::::::
-10-20

::::::::::::
years-sometimes

:

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

:::
are

::::
likely

:::::::
between

::
10

::
to

::
20

::::
years

::::
after

:
a
:::::::

wildfire.
::::

The
::::
roots

::::
have

:::
lost

:::::::
anchoring

:::::
effect

:::
and

:::
the

:::
new

::::
trees

::
are

:::
still

:::
too

::::
small

::
to
::::::
support

:::
the

:::::
slope.

::
has

:::
fire

:::::
within

:::::
years

:::
-0-2

::::::::::
years-always

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

:::
are

::::
very

::::
likely

:::
for

::
2
::::
years

:::
after

::
a
::::::
wildfire.

:::::
Water

:::::
cannot

:::::::
infiltrate,

::::
runoff

::::
and

:::::::
erosion

:::::::
increase

:::
as

:::
the

:::
soil

:::::::
becomes

::::
water

:::::::
repellent

:::
and

::::
loses

::::::
cohesion

:::::::
because

:
of
:::

the
:::
fire

:::
heat

:

::
has

:::
fire

:::::
within

:::::
years

:::
-3-5

::::::::::
years-usually

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

::::
are

::::::
likely

::::::::
between

::
3

:
to
:::

5
:::::

years
:::::

after
::

a
::::::::

wildfire.
::::

The

:::::::::::
water-repellent

:::
soil

:::::::
horizon

:::::::
degrades

::
but

:::
the

::::
roots

::
of
:::::

dead
::::
trees

::
are

::::::
starting

:
to
:::
rot

:::
and

::::
they

::
do

:::
not

:::::
support

:::
the

::::
slope

:::
with

::::
their

::::::::
anchoring

::::
effect

:::::::
anymore.

:

::
has

::::
fault

::::
-Any

::::::::::
Fault-always

:::::::::::::::::::
(Reichenbach et al., 2018)

:::
The

:::::::
presence

::
of

::::
fault

::
is
:::

an
:::::::
important

::::
factor

:::::
to

::::::::::
determine

:::::::::
landslide

::::::::::
susceptibility

::
has

:::
fire

:::::
within

::::
years

:::::
-5-10

:::::::::
years-always

::::::::::::::
(Jackson Jr, 2019)

::::::::
Landslides

::
are

::::
very

:::::
likely

::::::
between

::
5

:
to

::
10

::::
years

::::
after

:
a
:::::::
wildfire.

:::::
Roots

::
of

:::
dead

:::
trees

:::::
decay,

:::
and

::::
they

:::
are

::
not

::::::::
supporting

::
the

:::
soil

:::::::
anymore

::
as

:::
for

:::
the

:::
case

::
of

:::
tree

:::::::
harvesting

:::::::
logging.
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::
has

:::::::
landslide

:::::::::
type-Slides

::
in

::::::::
soil-always

::::::::::::::::
(Guzzetti et al., 2012)

::::::::
Landslides

:::
are

::::
more

:::::
likely

:
to
:::::

occur
::
on

::::
slopes

:::
or

:::::
valleys

:::
that

::::
have

:::::::::
experienced

:::::::
landslides

::::::
before.

::
has

:::::::::::
landslide

::::::::::
type-Fall

:::::
in

:::::::::::
rock-sometimes

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

::
is
:::::

rock,
::
it
::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

:::
soil

:::::
slides

:::::
rather

:::
than

:::::::
landslides

:::
in

::::
rock.

::::
But

::::::::
landslides

::
in

:::
rock

:::
are

:
a
:::
sign

::
of
::
an

:::::::
unstable

::::
slope,

:::
and

::::::
therefore

::::
are

:::
not

:::::::
explicitly

::::::::
negatively

:::::::
correlated

::
to

:::
soil

:::::
slides

::
has

:::::::::::::
landslide

:::::::::::::
type-Rock

:::::::::::::
topples-sometimes

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

::
is
:::::

rock,
::
it
::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

:::
soil

:::::
slides

:::::
rather

:::
than

:::::::
landslides

:::
in

::::
rock.

::::
But

::::::::
landslides

::
in

:::
rock

:::
are

:
a
:::
sign

::
of
::
an

:::::::
unstable

::::
slope,

:::
and

::::::
therefore

::::
are

:::
not

:::::::
explicitly

::::::::
negatively

:::::::
correlated

::
to

:::
soil

:::::
slides

::
has

::::::::::
landslide

::::::::::::
type-Flows

::::
in

:::::::::::
rock-sometimes

:

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

::
is
:::::

rock,
::
it
::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

:::
soil

:::::
slides

:::::
rather

:::
than

:::::::
landslides

:::
in

::::
rock.

::::
But

::::::::
landslides

::
in

:::
rock

:::
are

:
a
:::
sign

::
of
::
an

:::::::
unstable

::::
slope,

:::
and

::::::
therefore

::::
are

:::
not

:::::::
explicitly

::::::::
negatively

:::::::
correlated

::
to

:::
soil

:::::
slides

::
has

::::::::::
landslide

::::::::::::
type-slides

::::
in

:::::::::::
rock-sometimes

:

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

::
is
:::::

rock,
::
it
::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

:::
soil

:::::
slides

:::::
rather

:::
than

:::::::
landslides

:::
in

::::
rock.

::::
But

::::::::
landslides

::
in

:::
rock

:::
are

:
a
:::
sign

::
of
::
an

:::::::
unstable

::::
slope,

:::
and

::::::
therefore

::::
are

:::
not

:::::::
explicitly

::::::::
negatively

:::::::
correlated

::
to

:::
soil

:::::
slides
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::
has

:::::::
landslide

::::::::
type-Slope

::::::::::
deformation

:
in

:::
rock

:::::::::
-sometimes

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

::
is
:::::

rock,
::
it
::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

:::
soil

:::::
slides

:::::
rather

:::
than

:::::::
landslides

:::
in

::::
rock.

::::
But

::::::::
landslides

::
in

:::
rock

:::
are

:
a
:::
sign

::
of
::
an

:::::::
unstable

::::
slope,

:::
and

::::::
therefore

::::
are

:::
not

:::::::
explicitly

::::::::
negatively

:::::::
correlated

::
to

:::
soil

:::::
slides

::
has

::::::::::
landslide

::::::::::::
type-Spread

::::
in

:::::::::::
rock-sometimes

::::::::::::::::
(Guzzetti et al., 2012)

:::::
Where

::::
there

::
is
:::::

rock,
::
it
::
is

:::
less

:::::
likely

:::
that

::::
there

:::
will

::
be

:::
soil

:::::
slides

:::::
rather

:::
than

:::::::
landslides

:::
in

::::
rock.

::::
But

::::::::
landslides

::
in

:::
rock

:::
are

:
a
:::
sign

::
of
::
an

:::::::
unstable

::::
slope,

:::
and

::::::
therefore

::::
are

:::
not

:::::::
explicitly

::::::::
negatively

:::::::
correlated

::
to

:::
soil

:::::
slides
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