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Abstract. The changing climate and anthropogenic activities raise the likelihood of damages due to compound flood 9 

hazards, triggered by the combined occurrence of extreme precipitation and storm surge during high tides, and 10 

exacerbated by sea-level rise (SLR). Risk estimates associated with these extreme event scenarios are expected to be 11 

significantly higher than estimates derived from a standard evaluation of individual hazards. In this study, we present 12 

case studies of compound flood hazards affecting critical infrastructure (CI) in coastal Connecticut (USA). We           13 

based the analysis on      actual and synthetic (considering future climate conditions for the atmospheric forcing, sea-14 

level      rise, and forecasted hurricane           tracks) hurricane events, represented by heavy precipitation and surge 15 

combined with tides and SLR conditions. We used the Hydrologic Engineering Center’s River Analysis System (HEC-16 

RAS), a two-dimensional hydrodynamic model to simulate the combined coastal and riverine flooding on selected CI 17 

sites. We forced a distributed hydrological model (CREST-SVAS) with weather analysis data from the Weather 18 

Research and Forecasting (WRF) model for the synthetic events and from the National Land Data Assimilation System 19 

(NLDAS) for the actual events, to derive the upstream boundary condition (flood wave) of HEC-RAS. We extracted 20 

coastal tide and surge time series for each event from the National Oceanic and Atmospheric Administration (NOAA) 21 

to use as the downstream boundary condition of HEC-RAS. The significant outcome of this study represents the 22 

evaluation of changes in flood risk for the CI sites for the various compound scenarios (under current and future 23 

climate conditions). This approach offers an estimate of the potential impact of compound hazards relative to the 100-24 

year flood maps produced by the Federal Emergency Management Agency (FEMA), which is vital to developing 25 

mitigation strategies. In a broader sense, this study provides a framework for assessing the risk factors of our modern 26 

infrastructure located in vulnerable coastal areas throughout the world. 27 

1 Introduction 28 

The impacts of hurricanes such as Harvey, Irma, Sandy, Florence, and Laura are characteristic examples of hazardous 29 

storms that have affected the society and environment of coastal areas      and have damaged infrastructure, through 30 

the combination of heavy rain and storm surge.  The increased frequency of such events      raises concerns about 31 

compound flood hazards previously considered independent of one another (Barnard et al., 2019; Leonard et al., 2014; 32 

Moftakhari et al., 2017; Wahl et al., 2015; Zscheischler et al., 2018; Winsemius et al., 2013; Hallegatte et al., 2013; 33 

de Bruijn et al., 2017; de Bruijn et al., 2019, Bevacqua et al., 2019).  34 
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Concurrent with the rise in event intensities, damages caused by compound flooding (CF) to critical infrastructure 36 

(CI) and services have substantial adverse socioeconomic impacts. Low-lying coastal areas, where almost 40 percent 37 

of people in the United States live (NOAA, 2013), are especially vulnerable to CF threats to infrastructures such as      38 

electrical systems, water, and sewage treatment facilities, and other utilities that underpin modern society. 39 

The growing record of significant impacts from extreme events around the world (Chang et al., 2007; McEvoy et al., 40 

2012; Ziervogel et al., 2014; FEMA, 2013; Karagiannis et al., 2017) adds      urgency to the need for reassessing CI 41 

management policies based on compound impact, to help ensure flood safety and rapid emergency management 42 

(Pearson et al., 2018).  The uncertainty of the current evolution of compound events translates into an even larger 43 

uncertainty concerning future damage to CI (de Bruijn et al., 2019, Marsooli et al., 2019).  44 

Recent studies have underlined the importance of understanding and quantifying the flood impacts on critical 45 

infrastructure, and their broader implications in risk management and catchment‐level planning (Chang et al., 2007; 46 

McEvoy et al., 2012; Ziervogel et al., 2014; de Bruijn et al., 2019; Pearson et al., 2018; Pant et al., 2018; Dawson, 47 

2018). Some authors have estimated the frequency of compound flooding and provide approaches to risk assessment 48 

based on the joint probability of precipitation and surge (Bevacqua et al., 2019; Wahl et al., 2015). The spatial extent 49 

and depth of compound flooding can vary in frequency (Quinn, et al., 2019) if any of the components of CF is not 50 

taken into consideration while evaluating flood frequency. Both storm surges and heavy precipitation, and their 51 

interplay, are likely to change in the future (Field et al., 2012, Dottori et al., 2018; Blöschl et al., 2017; Muis et al., 52 

2016; Marsooli et al., 2019; Vousdoukas et al., 2018). Nonetheless, the effects of CF, considering the climate change 53 

impact, have not been thoroughly explored yet.  54 

 55 

To deal with CF threats and challenges to coastal communities, there is a need to develop efficient frameworks for 56 

performing systematic risk analysis based on a wide range of actual and what-if scenarios of such events in current 57 

and future climate conditions. In this study, we focused on coastal power grid substations as critical infrastructure and 58 

investigated the impacts of compound flood hazard scenarios associated with tropical storms. We present a hydrologic-59 

hydrodynamic modeling framework to evaluate the integrated impact of flood drivers causing CF by      synthesizing 60 

current and future scenarios. This study enables the quantitative measurement of CF hazards cast      on critical 61 

infrastructures in terms of flood depth and flood extent by observing actual storm-induced floods and drawing 62 

information from synthetic scenarios. To project the combined flood hazard in future climate conditions, we integrated 63 

the effects of SLR, tides, and synthetic hurricane event simulations into the flood hazard exposure. 64 

Even though past research on the assessment of damages to the power system components or other related 65 

infrastructures has proposed design and operation countermeasures and remedies (     i.e., Kwasinski et al. 2009; Reed 66 

et al. 2010; Abi-Samra           and Henry, 2011; Chang et al., 2007; de Bruijn et al., 2019; Pearson et al., 2018; Pant et 67 

al., 2018; Dawson, 2018), these studies lack a comprehensive hazard assessment on power grid components, and      68 

potential changes due to climate change.  69 

The scenario-based analysis of this study formed the basis on which to address two questions:  70 

(1) What are the characteristics of the tropical storm-related inundation, considering the compound effect of riverine 71 

and coastal flooding coinciding or not with peak high tides  72 
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(2) Will future climate (including SLR and intensification of storms due to warmer sea surface temperatures) bring a 73 

significant increase in flood impact for the power-grid coastal infrastructures?  74 

The proposed framework offers a multi-dimensional strategy to quantify the potential impacts of tropical storms, thus 75 

enabling      a more resilient grid for climate change and the increasing incidence of severe weather. 76 

We investigated these questions based on eight case studies of CI in Connecticut (USA), distributed on the banks of 77 

coastal rivers discharging along the Long Island Sound. 78 

2 Materials and methods 79 

2.1 Study sites 80 

This study focused on seven coastal river reaches (Fig. 1, Table 1), where eight power grid substations lie in proximity 81 

to riverbanks and are prone to flooding caused by both coastal storms (such as hurricanes) that combine heavy 82 

precipitation and high surge. These power grid substations are labeled on the map CI1 through CI8. 83 

For each river reach adjacent to a CI, we developed a hydrodynamic model domain, and we applied a distributed 84 

hydrological model for predicting river flows from the upstream river basin. Table 1 shows the specification of each 85 

river reach, associated drainage basin, the correspondent domain extent for the hydrodynamic simulations, and the 86 

hydrological distance [distance along the flow paths] of each power grid substation from the coastline. This distance 87 

was derived using the 30m National Elevation Dataset (NED) for the continental United States (USGS 2017).  88 

Among the case study sites, two CIs are relatively inland [CI3 and CI4] (table 1: see hydrologic distance. Figure 1: 89 

see coastal boundary), nonetheless all the sites are included within the Coastal Area as defined by Connecticut General 90 

Statute (CGS) 22a-94(a) [https://www.cga.ct.gov/current/pub/chap_444.htm#sec_22a-94]. The      considered rivers 91 

belong to watersheds ranging from 10 to 300 km2 basin area, which are sub-basins of the Connecticut River basin. 92 

The hydrodynamic model simulation domains ranged from 3.7 to 8.3 km in river length and 2.2 and 20.7 km2 in area.  93 

2.2 Simulation framework 94 

To evaluate the effect of compound events, we selected four tropical storms: two actual hurricanes (Sandy and Irene) 95 

that hit Connecticut, and two synthetic scenarios based on actual hurricanes Sandy and Florence. Both Irene (August 96 

21–28, 2011) and Sandy (October 22–November 2, 2012) reached category 3, but they made landfall in Connecticut 97 

as category 1 hurricanes. The synthetic simulations (Chapt. 2.2.1) include different atmospheric conditions leading to 98 

landfall scenarios with more significant impacts. The Sandy synthetic scenario represents hurricane Sandy under 99 

future climate and sea surface conditions (Lackmann 2015), while the synthetic scenarios for Florence were based on 100 

simulated surge-tide conditions and future SLR (see Chapt. 2.2.1 and 2.3). 101 

To investigate the impact of floods of the various scenarios, we devised a combined hydrological (Chapt. 2.2.2) and 102 

hydrodynamic (Chapt. 2.2.3) modeling framework (Figure 2), forced with weather reanalysis and geospatial data for 103 

the actual events, and a numerical weather prediction model (subsection a) for the synthetic events (that is, synthetic 104 

hurricane Florence and future hurricane Sandy). 105 
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2.2.1 Atmospheric simulations 106 

To simulate the two synthetic Sandy and Florence hurricane events, we used the Weather Research and Forecasting 107 

(WRF) system (Powers et al., 2017; Sk     amarock et al., 2007). For the synthetic hurricane Florence event, we used 108 

a hurricane track forecast by the National Oceanic and Atmospheric Administration (NOAA), that as of September 6, 109 

2018, according to the Global Forecast System (GFS) forecasts of the National Center for Environmental Prediction 110 

(NCEP), showed landfall in Long Island and Connecticut on September 14 as a category 1 hurricane (Higgins 2000).  111 

We based synthetic hurricane Sandy events on future climate conditions (post-2100).  112 

For the soil type and texture input in the WRF model for both synthetic storm simulations, we used the USGS 113 

GMTED2010 30-arc-second (Danielson and Gesch 2011) Digital Elevation Model for the topography, the Noah-114 

modified 21-category IGBP-MODIS (Friedl et al., 2010) for land use, and vegetation input, and the Hybrid 115 

STATSGO/FAO (30-second) (FAO 1991) for soil characteristics. 116 

To simulate the synthetic hurricane Florence with WRF, we used the GFS forecasts at 0.25° x 0.25° spatial resolution 117 

as initial and boundary conditions. We used a three-grid setup with a coarse external domain of 18 km spatial resolution 118 

and two nested domains with 6 km and 2 km horizontal grid spacing, respectively. Two-way nesting was activated for 119 

both inner domains. Vertically, the domains stretched up to 50 mb with 28 layers. We parameterized convective 120 

activity on the outer (resolution of 18 km) and the first nested (resolution of 6 km) domain using the Grell 3D ensemble 121 

scheme (Grell and Devenyi 2002). Further details on the model setup are presented in Table 2. 122 

For the future hurricane Sandy scenario, we used the hurricane Sandy simulations under future climate conditions 123 

(after 2100) by Lackman (2015), who used a three-grid setup at spatial resolutions of 54, 18, and 6 km. We defined 124 

initial and boundary conditions by altering the European Centre for Medium-Range Weather Forecasts (ECMWF) 125 

interim reanalysis (Dee et al., 2011) data, based on five General Circulation Model (GCM)-projected, late-century 126 

thermodynamic changes derived from the IPCC (Intergovernmental Panel on Climate Change) AR4 A2 emissions 127 

scenario (Meehl et al., 200     7). A complete description of the modeling framework is provided by Lackman (2015). 128 

2.2.2 Hydrological modeling 129 

To account for the river inflow (upstream boundary condition), we applied a physically-based distributed hydrological 130 

model [CREST-SVAS (Coupled Routing and Excess Storage–Soil–Vegetation–Atmosphere–Snow)] described in 131 

Shen and Anagnostou (2017).  132 

To simulate river discharges for the synthetic hurricanes (Florence and future Sandy), we used the WRF simulations 133 

at 6-km/hourly spatiotemporal resolution, as described above. To force the hydrological model for the actual events 134 

(Sandy and Irene), we used data from Phase 2 of the North American Land Data Assimilation System (NLDAS-2) 135 

(Xia et al., 2012) dataset. NLDAS-2 is a gridded dataset derived from bias-corrected reanalysis and in situ observation 136 

data, with a one-eighth-degree grid resolution and an hourly temporal resolution, available from January 1, 1979, to 137 

the present day. We derived the precipitation from daily rain gauge data over the continental United States, and all 138 

other forcing data came from the North American Regional Reanalysis (NARR) by NCEP (Higgins 2000), to which 139 

we applied bias and vertical corrections. To reduce the computational effort, we performed the hydrological simulation 140 

using a hydrologically conditioned 30 m spatial resolution DEM (USGS 2017).  141 
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The hydrologic simulation includes the use of land use and land cover information retrieved from the Moderate 142 

Resolution Imaging Spectroradiometer (“MOD12Q1” from MODIS) (Friedl et al., 2015). To compensate for the 143 

coarse resolution (500 m) of these data, we obtained imperviousness ratios using Connecticut’s Changing Landscape 144 

(CCL) database and the National Land Cover Database (NLCD) at 30 m resolution. In CREST-SVAS, the land surface 145 

process was simulated by solving the coupled water and energy balances to generate streamflow at hourly time steps 146 

at the outlet of the studied watershed. CREST-SVAS was calibrated and validated for the whole Connecticut river 147 

basin [that contains all the investigated sites] with an NSCE of 0.63 (Shen and Anagnostou, 2017). We further 148 

validated the model considering hourly flows in two locations within the Housatonic River and Naugatuck River 149 

watersheds with an NSCE of 0.69 (Hardesty et al., 2018). The quality measures indicate a satisfactory model 150 

performance at the watershed scale over the topographic region that collectively include our study sites. 151 

2.2.3 Hydrodynamic modeling 152 

To assess the flood hazard in terms of extent and the maximum depth of the flood, we implemented the Hydrologic 153 

Engineering Center’s River Analysis System (HEC-RAS), developing two-dimensional model domains around the CI 154 

location. Except for CI4 and CI5, which are within the same simulation domain, each substation has an independent 155 

domain. 156 

The inundation maps are derived using a 1m LIDAR DEM (CtECO 2016) taken as base maps for the study reaches. 157 

To better represent the impacts of urban establishments on inundation dynamics, urban features such as houses and 158 

buildings, which obstruct the flow of stormwater, were added to the bare-earth DEM. For this, we considered the 159 

building footprints from (CtECO, 2012) and identified positions of buildings and houses in the DEM by increasing 160 

the elevation of the pixels within the building footprint polygons by an arbitrary height of 4.5 m, assuming one-story 161 

buildings.  162 

The considered locations have no bathymetric (underwater topography) data represented in the DEM. In general, the 163 

impact of inclusion/exclusion of bathymetry data on the hydrodynamic model simulations will vary according to the 164 

river size and event severity (Cook & Merwade 2009). For the investigated events in this study, flood risk is mainly 165 

dominated by defence overflow.      The proposed analysis focussed upon the effects of extreme events that are so 166 

severe that all defences would, in any case, be overtopped. This allows for a simplification of the modelling problem 167 

and allows for a correct approximation of flows even without detailed bathymetric information in the main channel, 168 

as underlined in (Bates et al. 2005). 169 

To reduce the computation time, we created a 2D mesh grid at 10 m background resolution, enforced with breaklines 170 

to intensify the riverbank and other areas with a large elevation gradient up to 1 m resolution. CREST-SVAS provided 171 

the upstream boundary condition.  National Water Level Observation Network (NWLON) data, provided by NOAA, 172 

offered the basis for defining the downstream boundary condition (coastal water level, including coastal tide, storm 173 

surge, and sea level). The latter data are available as actual observations and predictions at intervals of six minutes to 174 

one hour. Figure 3 provides an example of one of the sites, showing the upstream and downstream boundaries, along 175 

with a map overlay of flooded areas of five (SD1–SD5) scenarios (see below) for CI2. We initiated the simulation 176 
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with a warmup period of 12 hours to achieve stability. We chose the full momentum scheme in HEC-RAS and 177 

extracted hourly output from the simulation. 178 

The model parameters were calibrated to obtain realistic water depths and extents, as compared to reference data 179 

collected for Sandy. To validate the hydrodynamic model simulations, we used surveyed HWMs (high water marks) 180 

(Koenig et al., 2016) collected by the United States Geological Survey (USGS) after hurricane Sandy at 15 selected 181 

locations spread across the simulation domains.  HWMs are frequently used to calibrate and validate model outputs 182 

and satellite-based observations of flood depth (Bunya et al.     , 2010; Cañizares and Irish 2008; Cariolet, 2010; Chang 183 

et al., 2007; Hostache et al. 2009; McEvoy et al., 2012; Pearson et al.,      2018; Schumann et al., 2008; Schumann et 184 

al., 2007a; Schumann et al., 2007b; Ziervogel et al., 2014). As for the flood extent, we further validated the model 185 

against the most accurate available information on the 2D extent, and the maximum depth of storm surge for Sandy 186 

(FEMA, CT DEEP, 2013), created from      field verified HWMs and Storm Surge Sensor data from the USGS.   187 

An HWM does not necessarily indicate the maximum flood depth; rather, it can be a mark from a lower depth that 188 

lasts long enough to leave a trail. Based on this understanding, we compared the HWMs against the simulated flood 189 

depths within a 10x10m radius around the high water marks, also to avoid issues due to the presence of buildings in 190 

the DEM (Boxplots in Fig. 4). The simulated depths demonstrated reasonable agreement with the collected HWM 191 

values (Figure 4), with the model showing a slight overestimation. In this case, the systematic error fell within values 192 

of expected precision, implying a consistent positive bias in the simulations not strong enough to hinder the results. 193 

Figure 5 shows a visual comparison for CI1 and CI2 between the simulated inundation (Fig.5 a, c), and the reference 194 

extent (Fig. 5 d,e). A slight overestimation of the flood level, ranging between 0.2 and 0.4 m, with a precision of 0.2 195 

m or less, is observed for the inundation depths at the displayed locations, which is consistent with the results obtained 196 

locally, at the HWM locations (Fig. 4). Taking into consideration the accuracy of the inundation depth, the declared 197 

DEM accuracy (vertical RMSE ~0.3m), and the simplified modeling problem concerning bathymetry, the accuracy of 198 

the flood extent assessment was judged satisfactory. 199 

 200 

2.3 Compound scenarios 201 

We modeled four types of synthetic compound event scenarios, as well as actual events by (1) simulating the synthetic 202 

hurricanes; (2) introducing a climate change factor, in the form of SLR (~0.6 m), as projected for 2050, as a prediction 203 

for intermediate low probability (CIRCA 2017; O’Donnell, 2020); (3) shifting the surge timing to make the surge 204 

peak-level occurring at local high tide; and (4) combining the SLR with the high tide condition. The combination of 205 

these four event types yielded nine simulations, hereby coded as IR or SD for hurricanes Irene and Sandy, and FL for 206 

the synthetic hurricane Florence.  207 

Two scenarios were created for hurricane Irene. IR1 was the actual hurricane Irene that made landfall in Connecticut 208 

during high tide, and IR2 was the IR1 scenario with future SLR added to the tidal water level as a downstream 209 

boundary condition in HEC-RAS.  210 

For hurricane Sandy, we generated five scenarios. SD1 was the actual Sandy. For SD2, we shifted the peak high tide 211 

to coincide with the maximum storm surge recorded, as derived from the local NOAA stations (hereafter referred to 212 
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as ‘shifted tide water levels’). We further added SLR to the shifted tide water levels from SD2 to create the third 213 

scenario (SD3). The remaining two scenarios for hurricane Sandy represented future climate conditions. Specifically, 214 

SD4 was the future hurricane scenario simulated with the GFS (Chapt. 2.2.1) and shifted tidal water level. SD5 was 215 

the future Sandy with shifted tide water levels and SLR. 216 

For the synthetic hurricane Florence event, we simulated two scenarios. FL1 was the synthetic Florence event, based 217 

on the GFS track that gave landfall in Connecticut and Long Island (Chapt. 2.2.1). FL2 was the same synthetic event, 218 

with SLR added to the coastal water levels.  219 

Table 3 shows, for each scenario, the basin-averaged event accumulated precipitation (mm) and the simulated peak 220 

flow (m3/s) used as an upstream boundary condition in HEC-RAS, along with the recurrence interval of the peak 221 

flows derived using a Log-Pearson probability distribution fitted using yearly maxima from the long-term simulated 222 

flows (1979-2019) from CREST. This shows how significant the precipitation forcing was for each considered 223 

scenario.  For CI1, for example, the future Sandy (SD4/5) scenario, with a peak flow of 242.4 m3/s, was the most 224 

extreme event with a recurrence interval of 316 years, followed by Irene (158.5 m3/s) and Florence (51.3m3/s) with 225 

a recurrence interval of 56 and 2 years respectively, whereas, for CI8, Florence and future Sandy had similar 226 

magnitudes with peak flows of 93.1m3/s (6) and 94.7m3/s (6), respectively. In table 3, we have summarised the 227 

maximum total water level (tide & surge) used in the model at the downstream of the study sites for all the scenarios. 228 

This table represents the change in the severity of the coastal component of the compound scenarios concerning added 229 

challenges like shifted tide and SLR. For example, for CI3, the total water level increases 1m with the shifted tide 230 

(SD2/ SD4), and with SLR it becomes 4.4 m. 231 

2.4 Compound flood hazard analysis 232 

We investigated the compound effect of the different events by comparing flood area extents and flood depths for 233 

each event. For the flood area extent, we used as a baseline the 100-year flood maps provided by FEMA. We 234 

considered the distance correlation index (dCorr) (Székely et al; 2007)  to identify the correlation of the differences 235 

between simulated and FEMA extent and compound events’ parameters [flow and total water level peak]. dCorr values 236 

range from 0 to 1 expressing the dependence between two independent variables. The closer dCorr is to 1 the stronger 237 

the dependency would be, and zero implies that the two variables in question are statistically independent. dCorr can 238 

depict the non-monotonic associations of the variables and declare the dCorr value is zero if only the variables are 239 

statistically independent. 240 

For the flood level differences, we considered the overall distribution of water depths across the domain of the CI sites 241 

and investigated the time series of water depth at each location (Figure 6 is an example of the simulated flood depth 242 

during the scenarios of Sandy (SD1- SD5) over time for CI2).  243 

To evaluate the flood hazard in terms of flood depth, we computed a Cumulative Distribution Function (CDF) to 244 

shows the probability that the flood depth will attain a value less than or equal to each measured value. We estimated 245 

the CDF using all the depth values of all the grid of the simulation domain, for the time step when the inundation was 246 

maximum. We evaluated the depth empirical exceedance probability (Hanman et al., 2016; Lin et al., 2016; Warner 247 

and Tissot 2012) within the whole domain, considering the maximum depth at each pixel, as suggested in (Pasquier 248 
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et al. 2019, Hamman et al. 2016).  The benefits of this empirical approach are that it overcomes sensitivity to the 249 

choice of the distribution and does not require a definition of the distribution parameters.  By comparing the empirical 250 

distributions, we can investigate how changes in the scenario characteristics modify the frequency of the maximum 251 

inundation depths.  252 

The study further looked at whether the depth of water at a station would change for various scenarios. Figure 6 shows 253 

an example of the flood depth over simulated time at CI3 for the scenarios of Sandy. We investigated pre-defined 254 

hazardous water levels for each station, as hypothetical values representing the height between the floor and the critical 255 

electric system in the station. Specifically, we considered 0.5 m, 1.5 m, and 2.5 m for threshold levels. As a measure 256 

of the potential threat to the electric infrastructure, we determined the percentage of time that the flood level was over 257 

each specific threshold (Figure      9). This data was then used to assess potential flooding problems associated with 258 

on-site inundation: we associated the changes in risk posed to the CI from the different examined scenarios based on 259 

the changes in those percentages.  260 

3 Results and Discussion 261 

3.1 Flood extent 262 

The inundation extents shown in figure 6 represent an aggregation of the overall runs rather than a specific simulation 263 

time, and it represents the extent reached when all pixels had the maximum inundation depth. Total flood extent ranged 264 

between less than 1 km2 to more than 7 km2, with a minimum extent of 0.4 km2 for the actual Sandy (SD1) at C8, and 265 

a maximum extent of 7.1 km2 for the future Sandy (SD5) at C3. The results showed consistent agreement that the 266 

flood extent increased with increasing intensity of the event and an increase in the recurrence intervals of the flows 267 

(Table 3). 268 

Changes across the study sites relative to the FEMA 100-year flood extend (Table 4, Figure 7a–c) ranged from –87.8% 269 

(for CI8 for SD1) to 192.2% (for CI2 for IR2). Overall, the sites with a return period of fewer than 100 years, showed 270 

consistently less flooding than that of the FEMA map, a finding best represented by the comparison of actual events, 271 

such as IR1. 272 

Since the model performance shows a good agreement with the actual flood extent     , and the HWMs (Chapt.2.2.3), 273 

our results suggest that FEMA’s flood maps do not fully capture the flood extent at least for some locations. Similar 274 

findings were reported in Jordi et al. (2019), Wang et al. (2014), and Xian et al. (201     5), where tens of meter-scale 275 

absolute differences were found between the FEMA estimated flood extent for hurricane Sandy. The strength of 276 

correlation (dCorr) between changes in the upstream (flow peak) or downstream (surge peak) components, and the 277 

absolute differences with FEMA extent, gives an idea of the importance of      every single driver of change.  For the 278 

cases investigated in this study, the percentage difference mostly depends on the surge: surge height explains more 279 

than 80% of the variation in the differences to FEMA extent (dcorr=0.8 in median). CI6 appears to be the sites where 280 

the surge has the strongest correlation with the absolute difference in flood extent, as compared to FEMA maps. The 281 

differences with FEMA maps are less related to the peak flows (median correlation 0.5, with max correlation recorded 282 

for CI3). As expected, the correlation with surge increases at the decreasing of the hydrologic distance to the coast, 283 
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while the correlation with the flow increases the further a site is from the coast, even though this relationship is not 284 

linear. 285 

As we proceeded with the synthetic scenarios, adding compound and future climate, the results indicated the additional 286 

impacts of the joint flood drivers (shifted tide, surge, SLR).  287 

For the same event, peak storm-tide levels occurring near local high tide (     i.e., SD2) resulted in more flooding than 288 

that of events happening at low-tide (like actual Sandy, SD1). Climate      change related SLR exacerbates extreme 289 

event inundation relative to a fixed extent (FEMA) with variability that ranged from 8.3% (CI4/5) to as high as 425% 290 

(CI8). CI8 is the site hydrologically closer to the coast (see the hydrologic distance in Table 1), making it the most 291 

susceptible to the altered scenario. Nonetheless, the shifted tide increased the inundation relative to the FEMA 100-292 

year flood map also for CI2 and CI4/5.  293 

The effects of compound events emerged drastically with the combination of both shifted tide and SLR.      Except for 294 

CI3 and CI8, all other CIs showed an increase in the percentage change from FEMA (Table 4). In comparison to SD1, 295 

SD3 exhibited increased inundation for all the CIs. The inundated area was about 146% more (1.9 km2) for SD3 than 296 

SD1 (0.9 km2) for CI1, for example. The river flood peak for hurricane Sandy had a recurrence interval of about two 297 

years, but the flood hazard associated with this event became more devastating if simulated in a compound way, 298 

including SLR and shifted tide. This result suggests that events of lower river flood severity (from      fewer rain 299 

accumulations) can produce an aggravating impact, as the intensity of major storm surges increases due to shifted 300 

timing and SLR. 301 

For the synthetic hurricane Florence and hurricane Irene, we saw an increased flooded area in comparison to FEMA 302 

(Table 4); for CI2, for example, the increase was almost 200% from IR1 to IR2. Again, this result confirms that 303 

accounting for river peak flow frequency alone does not effectively capture the severity of a flood hazard in the case 304 

of coastal locations. 305 

For all the study sites for future Sandy, we saw consistent increases in flood extent (Table 4) from SD2 to SD4 and 306 

SD3 to SD5. Between SD2/SD3 and SD4/SD5, the only difference was the future projection of the flow. In comparison 307 

to the FEMA map, the percentage change ranged from –22.3 to +123.7. CI1, CI7, and CI8 for SD4 have less inundation 308 

than the FEMA 100-year map. This may be an indication of the significance of individual flood components specific 309 

to one site. For those sites, river flow might not be the most significant component of the flood. When we look at the 310 

hydrologic distances in table 1 CI1 and CI8 are closer to the coastline, making them more prone to coastal flooding 311 

than fluvial flooding. When we looked at SD5 (which added SLR), all the sites except CI8 showed more flooding than 312 

the FEMA 100-year flood map. Although CI8 had an increase of 22% in inundation compared to SD4. 313 

When we compare the worst-case future events (SD5 and IR2) to actual events (SD1 and IR1), we can see major 314 

changes in flood extents. The flood extent in all locations increased by about 60% on average for future Sandy with 315 

both SLR and coinciding tide (SD5) in comparison to the actual Sandy (SD1), with the highest impact in CI8 (+148%). 316 

Looking at Irene, the worst-case future scenario (IR2) increased the flood extent by about 30% on average for all 317 

locations compared to the actual event (IR2), with the highest impact in CI2 (101%). Among all the events, Florence 318 

had the lowest expected changes, between the current climate scenario (FL1) and the future one (FL2). One must note 319 

that hurricane Florence had no actual impact in the study area; the simulation for this event was based on a hurricane 320 
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track forecast by GFS, which if materialized would have produced a flood inundation of almost 5 km2 in CI3, and this 321 

extent could have increased by about 20% in the worst-case future scenario (FL2) that includes shifted tide and SLR. 322 

Five of the CIs were outside the FEMA 100-year flood zone, but they present flooding for FL1 and SD3. For FL2 all 323 

of the study sites were more vulnerable (positive % change), as compared to the FEMA map. Similar findings are 324 

presented for SD5,      except for CI8. 325 

 326 

3.2 Flood depths over the domain 327 

While flooding occurs in all the presented scenarios, both extent and depth vary significantly between the different 328 

simulations. Depth is critical to consider while preparing for risk management as it is used in determining flood 329 

damage. 330 

The CDFs of water depth for the whole domain (Figure 8), confirm that the water depths derived for coupled events (     331 

i.e., high tide coinciding with surge peak, or SLR and future climate) are generally higher      than      those      derived 332 

from      events with independent drivers Note that for some cases (     i.e., IR1 and IR2, for CI2 in Fig. 8) water depths 333 

increase very consistently      as SLR increase.  Larges changes in the CDFs appear      for lower water depths. Thus, 334 

regions with generally lower hazard (depth), will likely experience      larger impacts under SLR. Results also confirm 335 

that scenarios with simultaneous high values for all these parameters implicated a higher vulnerability of the CIs. 336 

Comparing these changes in pairs [     i.e., IR1 vs IR2, or SD1 vs SD3] also highlights that compound scenarios change      337 

in the frequency of extreme values that go far beyond the average are much more pronounced than the related changes 338 

of the median depths (cumulative probability=0.50). In particular, it may be asserted that more expressed changes in 339 

extremes could lead to corresponding “hazard shift” for all CIs, as represented in Figure 8. 340 

 341 

These results suggest that fluvial flow is not the only driver determining flood risk. Actual Irene (IR1) and synthetic 342 

Florence (FL) had higher river flood return periods than did actual Sandy (SD1) (Table 2). Nonetheless, the CDFs of 343 

the flood depth showed different behavior in terms of severity. For CI1, for example, IR1 had higher probabilities for 344 

lower depth, followed by SD1 and FL1. In CI8, SD1 had higher probabilities for lower values of depth. These findings 345 

highlight that neither the severity of rainfall, nor the magnitude of river flow controls the flood characteristics, which 346 

are, rather, controlled by additional factors, such as storm surge, high tides, topography, and location of the site. CI7, 347 

for example, which is more coastal than the other CIs, presented increasing flood depth due to tidal timing.  348 

As expected, and as previously highlighted when considering the flood extent (Table 4), climate played an important 349 

role in flood hazard changes. Furthermore, the effect of SLR was also evident for all the events (IR, SD, and FL), 350 

increasing the flood depth for the same exceedance probability. For CI6, for example, the 50% exceedance 351 

corresponded to ~1 m depth of floodwater for IR1, increasing to ~1.5 m for IR2. For the CI4 and CI5 sites, for 352 

exceedance of 20%, actual Irene produced ~2 m of flood depth, whereas with SLR it was ~2.5 m. Another way to put 353 

it is that, for CI4/5, IR1 had an exceedance of ~20% for a flood depth of 2 m, whereas IR2 had an increased exceedance 354 

level of 40%. Similarly, for 50% exceedance, FL1 and FL2 corresponded to 1.5 m and 2 m depth of floodwater, 355 

respectively, and we saw the trend for the Sandy event scenarios (SD2–SD3; SD4–SD5) as well.  356 
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This analysis highlighted that the timing of a storm is also crucial. The changes from SD1 to SD2 showed very well 357 

the impact of the shifted tide for all the sites. For CI3, for example, the 1 m flood depth had an exceedance of ~88% 358 

for SD2, whereas it was only ~23% for SD1.  359 

Analysis of the overall flood depth across the whole domain shows that the coincidence of fluvial flood, high tide, and 360 

storm surge results in a significant increase in flood risk. SD3 and SD5 had all the components of a compound flood 361 

and comparing them with SD1 gave us a clear idea of how severe a compound event can be in the future. CI3, for 362 

example, had exceedance levels of almost 30%, 85%, and 90%, respectively, for SD1, SD3, and SD5 for a flood depth 363 

of 1 m. This suggests the compound effect increases the intensity of the flood hazard. 364 

3.3 Local risk for CI 365 

Much of the flood damage in CI is incurred by components being submerged for a long period. Investigating the 366 

duration of the flood depth at the CI location (Figure 9) should be considered in planning for any protective measures, 367 

such as elevating or waterproofing equipment. If a critical infrastructure shows 0%, it means that for that 368 

scenario/event the water      did not reach the substation at all, at least during the simulated timeframe. This could be 369 

due to the water flooding other upstream locations, and therefore draining away from the station, or because the 370 

topography of the landscape actually prevented water from reaching the area for some specific events. 371 

According to our analysis, none of the scenarios has an actual impact on CI1. For the other CIs, comparing individual 372 

events we could see an increase in risk due to the compound hazard scenarios—that is, shifted tide and SLR. Important 373 

to note is that, for most of the sites, the compound risk due to SLR and tide timing was always higher for the lower 374 

water-level thresholds (0.5 m). This implies a higher risk for CI components currently positioned closer to the ground. 375 

Damage to the CI components is dictated by both the flood depth and the duration of submergence. The suggested 376 

high values of risk [increase percentage in inundation duration] (Figure 9) further imply differences in the timing of 377 

repairs.  In the cases of CI7 and CI8 (Figure 9), the CIs remained submerged with 0.5 m of water for about 20% of the 378 

event period for actual Sandy. For the worst-case future Sandy scenario, the location was flooded for more than 90% 379 

of the event duration. This demonstrates the increased flood risk to which future climate conditions expose CI. 380 

Another critical insight was provided by the hurricane Florence scenarios. As mentioned earlier, Florence did not 381 

affect the study area, although an early GFS storm forecast track predicted landfall in Long Island and Connecticut. 382 

For this event, the estimated measure of risk was about 20%, and it was shown to increase to up to 40% for the lower 383 

water depth (0.5 m) threshold in some locations. The result of the simulated scenario allows for an assessment of 384 

potential damage and for an identification of equipment that might be affected by future events under current climatic 385 

conditions. In this regard, comparing the results for the different CIs during the Sandy scenarios revealed an interesting 386 

pattern. While we might have expected a more significant impact over the whole domain when shifting the tide (Figure 387 

9, Table. 3), we found different impacts in the CI locations.  Notably, the risk appeared lower when the tides were 388 

shifted (Fig. 9) for some of the CIs (for example, CI5 and CI7). This can be explained by the fact that higher water 389 

levels in the domain were changing the water flows, allowing the flood to follow different drainable ways. This can 390 

be a very useful piece of information for deciding whether to and where to take measures in terms of flood occurrence 391 

and potentially relocating CIs to avoid catastrophic compound flood events.  392 
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From table 1 we can see that CI8 is the closest to the coastline followed by CI7, CI6, and CI5. From figure 9 we can 393 

see that all the CIs that are closer to the coastline are susceptible to changes in the downstream water level condition 394 

(Shifted tide/ SLR) (Table 3). CI4 is the farthest from the coast followed by CI3. Both the CIs show minimal response 395 

to changes in the coastal water level compared to CI5/ CI6/ CI7. This analysis gives us conclusive evidence of risk 396 

associated with the location of the CI from the coastline. 397 

4 Concluding Remarks 398 

Preparing for the challenges posed by climate change requires an understanding of current actual, &      possible, and 399 

future scenario of tropical storm impacts, and a correct      interpretation of the hazard imposed by compound flooding.  400 

In this work, we have developed and implemented a modeling framework that allows      addressing this task, focusing 401 

on coastal electric grid infrastructure (substations). To date, the design of these facilities typically has assumed the 402 

current climatic conditions. However, a changing climate, as well as the co-occurrence of compound drivers, and the 403 

resulting more extreme weather events mean those climate bands are becoming outdated, leaving infrastructure 404 

operating outside of its tolerance levels. 405 

We explored a range of actual and synthetic hurricane scenarios, offering a system that could inform short- and long-406 

term decisions. For the short-term decision, the framework allowed to investigate the characteristics of the hurricane-407 

related inundation, considering the compound effect of riverine and coastal flooding coinciding, or not, with peak high 408 

tides. It allowed us to map those hazard-infrastructure intersections where risks will be likely exacerbated by climate 409 

change or compound events. 410 

               The results show that the vulnerability of each substation is linked to the event characteristics, and how they 411 

vary depending on the distance from the coast—that is, inland substations are less affected by surge and SLR and 412 

more affected by rainfall accumulation events (such as Irene). While coastal areas are more vulnerable to CF, our 413 

analysis shows that significant impacts due to climate change can be seen also inland, for increasing intensity of 414 

riverine events. 415 

This study also highlights that, for some locations, FEMA maps significantly underestimate the actual flood risk, 416 

especially for CI in coastal areas. These maps generally fail to account for the impacts posed by simultaneous 417 

conditions, such as high tide and river flows, or for future climate impacts. This further suggests the need to develop 418 

improved criteria for recognizing the effects of existing and planned protection measurements, such as relocating 419 

equipment or      CIs, where warranted. 420 

Future research should consider improved estimation methods, including more detailed information on the variability 421 

of river properties (     i.e., depth and width). Future works should also relate the frequency of inundation depths to 422 

return periods of precipitation, river flows, and surges, as well as differentiate among the individual effects of the 423 

components to determine the role of each in flooding impact.  424 

Notwithstanding these challenges, the findings of this study highlight that, whenever possible, risk assessments across 425 

different critical locations directly or indirectly affecting critical infrastructure should be based on a consistent set of 426 

compound risks. This will ultimately allow the building of resilience into different components of critical 427 

infrastructure to enable the system to function even under disaster conditions or to recover more quickly. 428 
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 637 

Figure 1: Study area with associated watersheds and simulation domains. Locations of substations and USGS high water 638 
marks are also shown. Red circles in the top left-hand panel, and marked with A, B, and C are highlighted in      panels A 639 
to C respectively. Background map by ESRI web-services, provided by UConn/CTDEEP, Esri, Garmin, USGS, NGA, 640 
EPA, USDA, NPS 641 

 642 

Figure 2: Considered framework including atmospheric simulations, hydrologic, and hydrodynamic modeling. Hurricane 643 
events (actual and simulated), and inputs and outputs of each component are shown. Readers should refer to chapter 2.2 644 
for specifications645 
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Figure 4: Validation results (boxplot of water depth within 10x10m around the high-water mark -HWM- location) 

compared to selected HWM (red dots) by USGS 
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Figure 5: Comparison between the results of the proposed model for two selected locations (a,c, CI1, and CI2 respectively) 

and the maximum surge extent as proposed by CtEco (c,d respectively). 
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Figure 6: Example of time series of depth values for the different scenarios of Sandy event at CI3 [SD1 to SD5, readers 

should refer to Table 3 and chapter 2.4 for specification on the scenarios]
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Figure 9: Peak over threshold (T=0.5, 1.5, and 2.5m) at selected critical infrastructures. Hurricanes scenarios, along the x-

axis, are labeled according to Table 3 and explained in chapter 2.2. Critical infrastructures are labeled CI1 to CI8, as 

described in Table 1. 
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Table 1: Study area- Characteristics of the considered CIs, with river and model domain information. Basin area 

represents the area of the underlining watershed; domain area is the extent of the simulation domain; reach length 

represents the length of the stream within the domain; hydrologic distance represents the distance from each CI to the 

coastline.  

Critical  

Infrastructure 

(CI) Town Rivers 

Basin 

area, 

km2 

Domain 

area, 

km2 

Reach 

length, 

km 

Hydrologic 

distance, 

km 

CI1 Coscob Mianus River 216.6 7.5 7.8 
4.5 

CI2 Southend Rippowam River 308.4 12.1 4.9 
5.3 

CI3 Norwalk Norwalk River 268.7 20.7 8.3 
7.8 

CI4/ CI5 Branford Branford River 84.5 7.9 6.7 
8.8/5.3 

CI6 Guilford West River 126.4 2.2 3.7 
5.1 

CI7 Madison East & Neck Rivers 173.0 8 5.3 
6.8 

CI8 Stonington Stonington harbor 10.0 14.9 5.2 
2.9 

 

 

 

Table 2: Model domain information for Florence  

Horizontal Resolution 18, 6, and 2 km 

Vertical levels 28 

Horizontal Grid Scheme Arakawa C grid 

Nesting Two-way nesting 

Convective parameterization Grell 3D ensemble scheme (18 and 6 km grids only) 

Microphysics option Thompson graupel scheme (Thompson et al., 2008) 

Longwave Radiation option RRTM scheme (Mlawer et al., 1997) 

Shortwave Radiation option Goddard Shortwave scheme (Chou and Suarez 1994) 

Surface-Layer option Monin-Obukhov Similarity scheme 

Land-Surface option Noah Land-Surface Model (Tewari et al., 2004) 

Planetary Boundary Layer Yonsei scheme (Song–You et al., 2006) 
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Table 3: Peak Tide, Surge at the maximum total water level instance, Accumulated precipitation & peak flows (with 

return period reported within brackets) for the simulated scenarios.      The reader should refer to Chapter 2.2 for a 

detailed description of each hurricane scenario (IR for Irene, SD for Sandy, FL for Florence). The “*” denotes the 

scenarios having sea level rise (SLR) added to the surge. Critical infrastructures are labe     led CI1 to CI8 according to 

Table 1.  

Scenarios   CI1 CI2 CI3 
CI4/ 

CI5 
CI6 CI7 CI8 

FL1 

Tide (m) 0.99 0.99 0.99 0.94 0.94 0.94 0.17 

Surge (m) 2.51 2.51 2.51 2.56 2.46 2.56 3.33 

Accumulated 

precipitation (mm) 
128.5 147.5 165.1 192 203.9 200.7 289.2 

Peak flow, m3/s 

(return period) 

51.3 

(<2) 

87.4 

(5) 

74.9 

(<2) 

106.1 

(13) 

113.3 

(8) 

143.2 

(51) 

93.1 

(6) 

FL2* 

Tide (m) 0.99 0.99 0.99 0.94 0.94 0.94 0.17 

Surge (m) 3.12 3.12 3.12 3.17 3.07 3.17 3.93 

Accumulated 

precipitation (mm) 
128.5 147.5 165.1 192 203.9 200.7 289.2 

Peak flow, m3/s 

(return period) 

51.3 

(<2) 

87.4 

(5) 

74.9 

(<2) 

106.1 

(13) 

113. 

3(8) 

143.2 

(51) 

93.1 

(6) 

SD1 

Tide (m) 0.82 0.82 0.82 0.4 0.4 0.4 0.01 

Surge (m) 2.37 2.37 2.37 2.3 2.3 2.3 1.87 

Accumulated 

precipitation (mm) 
24.8 24.7 21.5 17 17.7 15.1 8.9 

Peak flow, m3/s 

(return period) 

3.4 

(<2) 

9.3 

(<2) 

3.3 

 (<2) 

4.7 

(<2) 

1.3 

(<2) 

0.9 

(<2) 

0.03 

(<2) 

SD2 

Tide (m) 1.01 1.01 1.01 1.13 1.13 1.13 -0.15 

Surge (m) 2.56 2.56 2.56 2.8 2.8 2.8 1.95 

Accumulated 

precipitation (mm) 
24.8 24.7 21.5 17 17.7 15.1 8.9 

Peak flow, m3/s 

(return period) 

3.4 

(<2) 

9.3 

(<2) 

3.3 

 (<2) 

4.7 

(<2) 

1.3 

(<2) 

0.9 

(<2) 

0.03 

(<2) 

SD3* 

Tide (m) 1.01 1.01 1.01 1.13 1.13 1.13 -0.15 

Surge (m) 3.12 3.12 3.12 3.4 3.4 3.4 
2.5640

16 

Accumulated 

precipitation (mm) 
24.8 24.7 21.5 17 17.7 15.1 8.9 

Peak flow, m3/s 

(return period) 

3.4 

(<2) 

9.3 

(<2) 

3.3 

 (<2) 

4.7 

(<2) 

1.3 

(<2) 

0.9 

(<2) 

0.03 

(<2) 

SD4 

Tide (m) 1.01 1.01 1.01 1.13 1.13 1.13 -0.15 

Surge (m) 2.56 2.56 2.56 2.8 2.8 2.8 1.95 

Accumulated 

precipitation (mm) 
555.3 546.9 526.8 338.2 330.2 316.6 323.7 

Peak flow, m3/s 

(return period) 

242.4 

(316) 

319.1 

(326) 

201.7 

(28) 

178.3 

(98) 

168.4 

(48) 

197.0 

(301) 

94.7 

(6) 

SD5* 

Tide (m) 1.01 1.01 1.01 1.13 1.13 1.13 -0.15 

Surge (m) 3.12 3.12 3.12 3.4 3.4 3.4 
2.5640

16 

Accumulated 

precipitation (mm) 
555.3 546.9 526.8 338.2 330.2 316.6 323.7 

Peak flow, m3/s 

(return period) 

242.4 

(316) 

319.1 

(326) 

201.7 

(28) 

178.3 

(98) 

168.4 

(48) 

197.0 

(301) 

94.7 

(6) 
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IR1 

Tide (m) 1.16 1.16 1.16 1.1 1.1 1.1 0.93 

Surge (m) 1.94 1.94 1.35 1.42 1.42 1.42 1.1 

Accumulated 

precipitation (mm) 
187.8 177.8 173.5 98.1 91.6 86.1 58.5 

Peak flow, m3/s 

(return period) 

158.5 

(56) 

201.1 

(58) 

126.7 

(26) 

93.9 

(5) 

85.7 

(5) 

93.5 

(5) 

30.8 

(3) 

IR2* 

Tide (m) 1.16 1.16 1.16 1.1 1.1 1.1 2 

Surge (m) 2.54 2.54 1.94 2.03 2.03 2.03 1.7 

Accumulated 

precipitation (mm) 
187.8 177.8 173.5 98.1 91.6 86.1 58.5 

Peak flow, m3/s 

(return period) 

158.5 

(56) 

201.1 

(58) 

126.7 

(26) 

93. 

9(5) 

85.7 

(5) 

93.5 

(5) 

30.8 

(3) 
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Table 4:  Overall extent of the inundated area (in km2), the relative difference (% change in parenthesis) compared to the FEMA 100yr 

Flood Zone and dCorr (correlation between differences in flood extent as compared by FEMA, and flow and surge peak) 

 CIs FL1 
FL2 SD1 SD2 SD3 SD4 SD5 IR1 IR2 

dCorr 

surge 

dCorr 

flow 

CI1 
1.6 

(-8.5) 

1.8 

(2.9) 

0.9 

(-48.1) 

1.4 

(-21.7) 

1.9 

(8.3) 

1.7 

(-2.8) 

2.0 

(13.9) 

1.3 

(-27.5) 

1.5 

(-15.9) 0.86 0.40 

CI2 

3.9 

(134.2) 

4.0 

(139.4

) 

1.9 

(-12.7) 

2.1 

(25.6) 

2.3 

(36.3) 

3.7 

(123.7

) 

4.8 

(185.2

) 

1.6 

(-1.9) 

4.9 

(192.2) 
0.53 0.55 

CI3 
4.7 

(2.6) 

4.9 

(7.5) 

3.5 

(-24.5) 

4.0 

(-10.5) 

4.3 

(-6.2) 

5.4 

(17.5) 

7.1 

(56.2) 

3.2 

(-29.3) 

4.0 

(-12.1) 0.67 0.70 

CI4/CI

5 

2.7 

(-8.3) 

3.2 

(8.4) 

2.4 

(-18.5) 

2.6 

(0.3) 

3.4 

(13.8) 

2.9 

(2.5) 

3.6 

(22.2) 

2.0 

(-32.3) 

2.4 

(-17.3) 0.98 0.43 

CI6 
0.9 

(3.7) 

0.9 

(13.1) 

0.7 

(-14.9) 

0.8 

(-10.3) 

1.0 

(16.6) 

0.9 

(11.4) 

1.0 

(16.5) 

0.7 

(-20.4) 

0.8 

(-4.8) 0.84 0.56 

CI7 
2.5 

(1.0) 

2.7 

(12.5) 

1.6 

(-33.9) 

2.0 

(-12.8) 

2.6 

(8.5) 

2.1 

(-10.7) 

2.6 

(7.3) 

1.9 

(-23.5) 

2.3 

(-7.5) 0.81 0.46 

CI8 
3.1 

(4.5) 

3.5 

(18.4) 

0.4 

(-87.8) 

2.1 

(-28.8) 

2.6 

(-11.1) 

2.2 

(-22.3) 

2.7 

(-8.9) 

1.1 

(-63.1) 

1.8 

(-37.9) 0.88 0.67 

Note: (-) Area inundated less than FEMA's 100yr zone 


