

Interactive comment on “Evaluation of global seismicity along Northern and Southern hemispheres” by Olaide Sakiru Hammed et al.

Yavor Kamer (Referee)

yaver.kamer@gmail.com

Received and published: 26 June 2020

Dear Anonymous Reviewer,

The paper that you recommend uses Bender's 1983 formula for grouped data. In 2003 Marzocchi and Sandri [1] showed that Tinti and Mulargia's 1987 formula (equation 3.9 and 3.10) is more accurate.

It is unfortunate that a paper investigating systematic biases uses a biased estimator, while being recommended here as a reference to guide others.

Kind regards, Y.Kamer

[1] Marzocchi, W. and Sandri, L., 2009. A review and new insights on the estimation of

C1

the b-value and its uncertainty. *Annals of geophysics*, 46(6).

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., <https://doi.org/10.5194/nhess-2020-128>, 2020.

C2

The validity of eqs. (3.6) and (3.7) deserves further explanations. In particular, these equations assume that $E(\hat{b}') = \hat{b}'$ and $E(\hat{b}) = \hat{b}$, respectively. If we take the expected value of Taylor's expansion around the true value μ of eqs. (2.3) and (3.1), we see that these assumptions hold only for small deviations of $\hat{\mu}$, *i.e.* for large datasets. Numerical investigations have shown that the biases are negligible for datasets with 50 or more earthquakes.

By comparing eqs. (3.6) and (3.7) we obtain

$$\sigma_{\nu} = \left(1 + \frac{\theta_2}{b}\right)^2 \sigma_b \quad (3.8)$$

therefore, $\sigma_{\nu} > \sigma_b$. From eqs. (3.5) and (3.8), we can conclude that the true dispersion of the RV $\hat{b}'(\sigma_{\nu})$ increases more than the increase in the estimation of the uncertainty σ_{ν} . In other words, eq. (2.4) provides an underestimation of the true dispersion.

3.2. Binned formulas

After the correction suggested by Utsu (1966), Bender (1983), Tinti and Mularia (1987) provided formulas to estimate the b -value, by properly taking into account the grouping of the magnitudes. Remarkably, besides very few exceptions (*e.g.*, Frohlich and Davis, 1983), these formulas were almost ignored in subsequent applications. We argue that the reasons are mainly of a technical nature. Bender's (1983) formula, for example, can be solved only numerically. Moreover, in her analysis she gave more emphasis to the bias θ_1 introduced by the use of the continuous approximation (eq. (2.3)), concluding that the latter provides almost unbiased estimations of the b -value if the magnitude interval for the grouping is $\Delta M = 0.1$.

A definite improvement to the estimation of the b -value was provided by Tinti and Mularia (1987). Their formula reads

$$\hat{b}_{\text{nu}} = \frac{1}{\ln(10)\Delta M} \ln(p) \quad (3.9)$$

where

$$p = \left(1 + \frac{\Delta M}{\mu - M_{\text{true}}}\right) \quad (3.10)$$

and the associated asymptotic error is

$$\hat{\sigma}_{\text{nu}} = \frac{1-p}{\ln(10)\Delta M \sqrt{Np}} \quad (3.11)$$

where N is the number of earthquakes. In this case, we think the very scarce use of these formulas was probably due to some kind of crypticism of the paper.

3.3. Numerical check

In order to check the reliability of the formulas described above, we simulate 1000 seismic catalogs, for different catalog sizes. The magnitudes M are obtained by binning, with $\Delta M = 0.1$ (as for the instrumental magnitudes), a continuous RV distributed with a pdf given by eq. (2.2); in other words, M is a magnitude attribute to all the synthetic seismic events with real continuous magnitude in the range $M = -0.05 \leq M \leq M_0 + 0.05$.

In fig. 1a,b we report the medians of \hat{b}' , \hat{b} and \hat{b}_{nu} calculated in 1000 synthetic catalogs as a function of the number of data, for the case $b = 1$ and $b = 2$. To each median is attached the 95% confidence interval, given by the interval between the 2.5 and 97.5 percentile. From fig. 1a,b, we can see that the estimation \hat{b}_{nu} (Tinti and Mularia, 1987) is bias free, also for a small dataset. As regards the continuous formulas, with and without correction (respectively eqs. (3.1) and (2.3)), we can see that the bias θ_1 reported in fig. 1a,b is comparable to the theoretical expectation given by eq. (3.3). The corrected estimation \hat{b} is undoubtedly much closer to the real b -value. The slight underestimation of \hat{b} (much less than 1% of the real b -value) is due to the bias θ_2 previously discussed (Bender, 1983). Therefore, at least for $\Delta M = 0.1$, θ_1 can be neglected (*e.g.*, Bender, 1983), but θ_2 is certainly relevant.

In order to evaluate the reliability of the estimations of the uncertainty, it is necessary to compare each estimation with the true dis-

Fig. 1.

C3