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Abstract: The aim of the present study is to explore the potential relationship between landslides8

and debris flows by establishing susceptibility zoning maps separately with the use of random9

forest. Longzi township, Longzi County, located in Southeastern Tibet, where historical landslide10

and debris flow are commonly occurred, was selected as the study area. The work has been carried11

out with the following steps: (1) A complete landslide and debris flow inventory map was12

prepared; (2) Slope units and 11 controlling factors were prepared for the susceptibility modelling13

of landslide while watershed units and 12 factors for debris flow; (3) Establishing susceptibility14

zoning maps for landslide and debris flow, respectively, with the use of random forest; (4) The15

performance of two models are verified using ROC curve, the values of AUC and contingency16

tables; (5) Putting the high or very-high-class watershed units in the debris flow susceptibility17

zone map as the base map to observe its coverage by slope units of different classes; (6) The18

landslide zoning map was put at the bottom floor and analyzed the distribution of high or19

very-high-class slope units in watershed units; (7) transforming the slope units into points and20

distributed them on the watershed units. Two models based on random forest have demonstrated21
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great predictive capabilities, of which accuracy was close to 90% and the AUC value was close to22

1. The loose sources carried out by the debris flows are not necessarily brought by the landslides23

although most landslides can be converted into debris flows. The area prone to debris flow does24

not promote the occurrence of landslides. A susceptibility zoning map composed of two or more25

natural disasters is comprehensive and significant in this regard.26

Key words: Landslide; Debris flow; Susceptibility; Random forest; Potential relationship27

28

1. Introduction29

Landslides and debris flows are natural phenomenon mainly occurring in mountainous areas,30

which pose considerable threats to people, industries, and the environment directly or indirectly.31

Generally, damages can be decreased to a certain extent by predicting the likely location of future32

disasters (Pradhan, 2010). Thus, extensive research has been conducted for the prediction and33

susceptibility assessment of landslides and debris flows.34

In geomorphology, a “landslide” is the movement of a mass of rock, debris or earth down a35

slope, under the influence of gravity (Cruden and Varnes, 1996). Debris flow is a specific type of36

landslide, which can be defined as (Hungr et al. 2013): ‘‘Very rapid to extremely rapid surging37

flow of saturated debris in a steep channel”. Generally, a landslide that occurs on a steep slope and38

becomes disaggregated as it tumbles down can transform into a debris flow if it contains sufficient39

water for saturation. Therefore, landslide provides sufficient material source for the occurrence of40

debris flow and most of the landslides were accompanied by debris flow. In the past, few scholars41

have not been specifically distinguished the landslide and debris flow in terms of susceptibility42
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evaluation (Alessandro et al., 2015; Guzzetti et al., 2005). In addition, some scholars made43

separate evaluations of landslide and debris flow (Park et al., 2011; Haydar et al., 2016). Some44

scholars have proposed a coupled model of landslide-debris flow (Chiang et al., 2012; Gomes et45

al., 2013). However, not every landslide has evolved into a debris flow and the material source of46

the debris flow is may not a landslide. The causes and manifestations of landslides and debris47

flows are different. In a debris flow, it is possible to distinguish initiation (source area), transport48

and deposition zone. In other words, there is no necessary connection between debris flow and49

landslides. Besides, the conditioning factors and mapping units involved in the susceptibility50

assessment of debris flow and landslide are not identical. Therefore, it is more reasonable to51

evaluate the susceptibility of landslide and debris flow separately. As an example, a landslide52

inventory map includes only landslides, as does debris flow.53

The methods of susceptibility assessment can be broadly classified as qualitative or54

quantitative(Aleotti et al., 1999). Several methods and approaches have been proposed and tested55

to ascertain susceptibility, such as physical-based approaches (Carrara et al., 2008), heuristic56

methods (Blais et al., 2016) and statistically-based approaches (Reichenbach et al., 2018). In57

addition, new machine learning models, such as neural networks (Park et al.,2013), support vector58

machines (Colkesen et al.,2016) and random forest (RF) ( Liu et al., 2018), have also been59

applied.60

The Longzi County in Southeastern Tibet is always exposed to landslide and debris flow61

hazard because of climatic and topographic conditions, which is chosen as the study area. The62

purpose of the present study is to explore the potential relationship between the occurrence of63

landslides and debris flows by establishing susceptibility zoning maps separately with the use of64
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random forest.65

2. Materials66

2.1 Study area67

The study area located in Longzi Township, Longzi County, Southeastern Tibet is bounded by68

longitudes of 92°15'E and 92°45'E, latitudes of 28°10'N and 28°30'N (Fig.1). It covers an area of69

about 535 km2 with a population of more than 6000. The study area belongs to a semi-arid70

temperate monsoon climate with the annual rainfall of 279 mm, mainly concentrated in May to71

September. The seismic intensity within the area has a degree of VIII on the modified Mercalli72

index.73

The study area belongs to the zone of stratigraphic division of the Northern Himalayan block.74

The strata is mainly composed of Mesozoic Cretaceous, Jurassic, Triassic, and Cenozoic units.75

There were three common lithology observed during our field investigation: Siltstone from the76

Laka Formation (K1l); Conglomerates from the Weimei Formation (J3w) and Quaternary slope77

wash (Q4el+dl) from the Cenozoic strata.78

The disasters in the study area mainly consist of rain-fed high frequency debris flows and79

landslides, which destroyed and flooded roads, bridges, farmlands, villages, etc., causing great80

economic losses.81

2.2 Landslide and debris flow inventory82

The statistically-based susceptibility models are based on an important assumption: future83

landslides will be more likely to occur under the conditions which led to the landslides past and84
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present (Varnes, 1984; Furlani and Ninfo, 2015). Therefore, a complete and accurate inventory85

map is the key for model training and validation. In this study, data comes from historical records,86

field surveys (Fig.2 and Fig.3) and interpretation of Google Earth images carried out in Google87

Earth pro 7.1(Fig.4). Finally, a total of 396 landslide points and 49 debris flow points were88

recorded and mapped (Fig.1).89

2.3 Mapping units90

The selection of the mapping unit is an important pre-requisite for susceptibility modelling91

(Guzzetti, 2006). The main mapping units commonly used for landslide and debris flow92

susceptibility assessment are grid cells (Reichenbach et al., 2018). Despite its popularity and93

operational advantages, grid-cells have clear drawbacks for susceptibility modelling (Guzzetti et94

al., 1999). There is no physical relationship between a grid-cell, while slope units can make up for95

this deficiency. Depending on the landslide type, a slope unit may correspond to an individual96

slope, an ensemble of adjacent slopes or a small catchment (Reichenbach et al., 2018). The97

geometry of debris flow is better represented by apolygon or a set of polygons in vector format. In98

the present study, adjacent slope units were applied to the susceptibility assessment of landslides.99

First-order sub-catchments, which is also called watershed unit, was applied to the susceptibility100

of debris flow (Francesco et al., 2015; Qin et al.,2018). Therefore, ArcGIS is used in this paper to101

divide the study area into 174 catchments or 1003 slope units and make artificial corrections102

according to remote sensing image.103

2.4 Controlling factors and mapping104

The selection of evaluation parameters is another key prerequisite to ensure that the model is105
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accurate and reasonable. With reference to previous studies (Ahmed et al., 2016; Xu et al., 2013;106

Braun et al., 2018), there are differences in the controlling parameters used in landslide and debris107

flow susceptibility assessment. The occurrence of debris flow emphasizes the indispensability of108

provenance, topography and triggering factors. Availability, reliability, and practicality of the109

factor data were also considered (van Westen et al., 2008). In this paper, 11 landslide controlling110

factors are selected, including distance to fault, distance to road, distance to river, annual rainfall,111

slope angle, aspect, plan curvature, profile curvature, topographic wetness index, elevation and112

maximum elevation difference. Besides, a total of 12 controlling factors, including basin area,113

main channel length normalized difference vegetation index (NDVI), drainage density, roundness,114

melton, average gradient of main channel, slope angle, maximum elevation difference, annual115

rainfall, distance to fault and elevation were selected to fully reflect the characteristics of the116

watershed for the susceptibility assessment of debris flow.117

The controlling factors in the present study can be categorized into four types: (1) The118

morphological factors (slope, aspect, plan curvature, profile curvature, roundness, melton); (2)119

Geological factors (distance to fault, basin area, main channel length, drainage density); (3)120

Topographical factors (elevation, maximum elevation difference, average gradient of main121

channel ); (4) Environmental factors (annual rainfall, topographic wetness index, NDVI, distance122

to road, distance to river). Totally 18 factors are obtained by processing the row data in the ArcGIS123

10.2 platform. Morpholigical and topographic related factors were derived from the DEM with a124

resolution of 30 × 30 m. Geological related factors were extracted from 1:50000 geological maps.125

Rainfall is one of the most important external factors inducing landslides and debris flow, which126

was determined by ordinary kriging interpolation in ArcGIS by collecting data of 6 precipitation127
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stations near the area under study as a reference.128

2.5 Mapping129

In the current study, the maps of controlling factors were reclassified into 4 to 7 classes based on130

the equal spacing principle and the mean value in the unit was counted as the representative value131

of the unit. Aspect, which is frequently used as landslide controlling factor (Dai and Lee, 2002),132

was reclassified into 8 classes (Fig.2 ). Plan curvature and profile curvature were both considered133

and were both reclassified into six classes. Generally, faults, rivers and roads play a key role in the134

occurrence of landslides and were reclassified into seven classes using an interval of 1500m135

(Fig.2). Topographic wetness index was reclassified into five classes (Fig.2 ).136

NDVI reflects the vegetation conditions in the area and was reclassified into 5 classes(Fig.3).137

Drainage density is the ratio of the total drainage length to the watershed area and was reclassified138

into six classes (Fig.3). Roundness refers to the ratio of the area of a basin to the area of a circle139

with the same circumference and was reclassified into six classes (Fig.3) . Melton ratio refers to140

the ratio of the degree of undulation in the watershed to the square root of the arithmetic area of141

the watershed (Melton, 1965), which is reclassified into seven classes (Fig.3). Considering the142

correlation between the two controlling factors, basin area and main channel length are143

represented by the same graph, which was reclassified into four classes (Fig.3). Average gradient144

of main channel , which is the ratio of the maximum elevation difference of main channel to its145

linear length, was reclassified into six classes (Fig.3).146

Rainfall is the only triggering factor to be considered for both landslide and debris flow in this paper,147

which was reclassified into six classes (Fig.2 and Fig.3). Slope angle is frequently employed in both148
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landslide and debris flow susceptibility mapping and was reclassified into six classes (Fig.2 and Fig.3).149

Maximum elevation difference reflects the kinetic energy condition and is reclassified into 6 classes150

using an interval of 200m (Fig.2 and Fig.3). Elevation was reclassified into five classes (Fig.2 and151

Fig.3), which has also been used by many authors (Ayalew and Yamagishi, 2005; Pourghasemi et al.152

2013a, b ).153

3. Methods154

3.1 Sampling strategies and validation155

Statistical models for landslide susceptibility zonation reconstruct the relationships between156

dependent and independent variables using training sets, and verify these relationships using157

validation sets (Guzzetti et al., 2006a,b), which usually implies the partitioning of the inventory in158

subsets. The sampling strategy affects the results of the susceptibility map (Yilmaz, 2010). Based159

on temporal, spatial or random criteria, the partition of landslide inventories can be made (Chung160

and Fabbri, 2003) and the most applied one is a one-time random selection (Reichenbach et al., 2018).161

In the current study, the random partition was used due to existing constrains with the temporal and the162

spatial partition. Therefore, sample data was divided into two parts: 70% of the data was selected as163

training data to create a prediction model, and the remaining 30% of the data was used for validation.164

The computation of the area under the curve (AUC) is the most popular metrics to estimate165

the quality of model , which has been applied for ROC curves( Green and Swets, 1966). It is one166

of the most commonly used indicators. A typical two-entry confusion matrix, including true167

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), is another168

common index. In current study, both ROC curve and the contingency tables were used to169
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evaluate the susceptibility models established for landslides and debris flow.170

3.2 Random Forests171

Random forest (RF) is a powerful ensemble-learning method and was first introduced by Breiman172

(2001). RF uses the bagging technique (bootstrap aggregation) to select, at each node of the tree,173

random samples of variables and observations as the training data set for model calibration.174

Unselected cases (out of bag) are used to calculate the error of the model (OOB Error). The175

increase in OOB error is proportional to the importance of the predictive variable (Breiman and176

Cutler 2004). There are no restrictions on the types of variables, either numerical or categorical.177

RF has the ability to reduce errors caused by unbalanced data, which is suitable for susceptibility178

assessment.179

In this study, the scikit-learn package (Pedregosa et al.,2011) in the programming software180

python version 3.7 was used for the modeling. The number of trees (k) and the number of181

predictive variables used to split the nodes (m) are two user-defined parameters required to grow a182

random forest (Ahmed et al.,2016). In order to ensure the algorithm convergence and good183

prediction results, the number of trees (k) has been fixed to 500 and the number of predictive184

variables (m) has been selected as 5 (Breiman et al.,2001).185

4. Results and verification186

4.1 Landslides susceptibility mapping results187

In this study, the predictive accuracy, ROC curves and AUC values of the RF model using training188

data are showed in Table 1 and Fig. 4. The RF model ensured very high TN and TP values of189
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92.86% and 93.57%, respectively. An AUC equals to 1 indicates perfect prediction accuracy190

(Vorpahl et al., 2012). The RF model has great performance in terms of AUC, with value of 0.978.191

Standard error (St.), confidence interval (CI) at 95% and significance (Sig.) are applied as three192

evaluation statistics. All these results indicate a reasonable goodness-of-fit for models with the193

training dataset, for which the values are reasonably small.194

The task of validating the predicted results is the critical strategy in prediction models as195

shown in Table 3 and (Fig. 4). Consequently, the values of TN and TP were 92.90% and 90.0%,196

respectively. It can be seen that the model has also a great performance in terms of AUC with197

value of 0.977. In comparison with the training model, the accuracy and AUC values have slightly198

decreased, but still perform well.199

The landslide susceptibility map was also reclassified into five classes: very low (0~0.2), low200

(0.2~0.4), moderate (0.4~0.6), high (0.6~0.8), very high (0.8~1) by using the equal spacing201

method (Fig.5 ). The maps should satisfy two spatial effective rules: (1) The existing disaster202

points should belong to the high-susceptibility class and (2) The high-susceptibility class should203

cover only small areas (Bui et al. 2012). The number of units belonging to very high class reached204

179, accounting for 17% (Fig.6). Disaster points were mostly in the dark (red or orange) areas.205

The units belonging to moderate class accounted for the smallest proportion, at 13% (Fig.7).206

The controlling factors with significant effects were selected and normalized as shown in207

Table 2. The weight values of slope angle, distance to fault, plan curvature and topographic wetness208

index was 0.21, 0.19, 0.17, 0.13 respectively, which was closely related to the occurrence of209

landslide. The weight values of distance to road, maximum elevation difference, profile curvature210

and elevation are less than 0.1 as 0.08, 0.08, 0.06, and 0.05, respectively (Fig.7).211
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4.2 Debris flow susceptibility mapping result212

The debris flow susceptibility model perform well with a very high TN and TP values as 90.90%213

and 91.18%, respectively. In terms of AUC, the model has also a great prediction performance214

with the value of 0.979 (Fig.4). Three evaluation statistics also indicate a reasonable215

goodness-of-fit for the model.216

Table 1 shows that in the 30% sample data used for verification, the values of TN and TP217

were 89.13% and 86.67%, which were slightly decreased compared to the training model. It can218

be seen that the model has also a great performance in terms of AUC, with value of 0.968.219

The number of units belonging to very high-class reached to 26, which is accounting for 15%220

while the units belonging to high-class accounted for the smallest proportion at 13%. More than221

half of the units (58%) belong to on a low or very low-class (Fig.6). Disaster points were mostly222

in the dark (Bright or deep red) areas (Fig.5).223

The weight values of main channel length, roundness and slope angel were 0.25, 0.16, 0.14224

respectively, which has significant influence on the occurrence of debris flow. The weight values225

of elevation, maximum elevation difference, melton and basin area are close to 0.1, which are 0.13,226

0.12, 0.1, and 0.1 respectively(Fig.7).227

4.3 Analysis and comparison of landslide and debris flow228

susceptibility229

It is worth comparing the two susceptibility zonation. In terms of prediction accuracy, the values230

of TP, TN and AUC of landslide model are slightly higher than that of debris flow. However, both231

models achieved high predictive performance. Therefore, the landslide and debris flow232
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susceptibility assessment models based on random forest are reliable. The purpose of the present233

study is to explore the potential relationship between landslides and debris flows by establishing234

susceptibility zoning maps. Figure 8 shows the overlapping distance between debris flow and235

landslide in high or very high-class of susceptibility areas. It can be seen from the figure that most236

of the areas with high or very high-class in the map of debris flow are covered with landslides.237

However, there are also non-overlapping areas between the two zoning maps. There are 23 units238

belonging to high-class in the debris flow susceptibility zoning map (Fig.8), of which 17 units are239

covered with high or very high-class units in the landslide zoning map (Table 4). In addition, there240

are 4 watershed units covered with low or very low class slope units. In the same way, 19241

watershed units belonging to very high-class are covered with high or very high-class slop units242

and 4 watershed units with low or very low-class slop units. In other words, more than 70% of the243

high or very high-class watershed units are covered with high or very high-class slope units.244

However, there are still 30% of watershed units with high or very high-class without the245

distribution of slope units in corresponding grades. It validated the previous view that most of246

landslides can be transformed into debris flows. Factor analysis was applied to further analyze the247

reasons for the difference. 36 watershed units with distribution of high-grade slope units were248

taken as model 1 and the left 8 watershed units as model 2. The KMO (Kaiser-Meyer-Olkin)249

statistic test values were 0.766 and 0.643 respectively, which indicated that the correlation250

between variables is obvious and suitable for factor analysis (Table 5). In model 1, the cumulative251

contribution rate of the three factors (C1, C2 ,C3 ) reached to 83.6%, while the cumulative252

contribution rate of the first four factors (F1, F2 ,F3 and F4 ) reached to 80.5% for model 2 (Table253

6). According to the correlation coefficient of each common factor (Table 6), the first common254
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factor mainly highlighted the information of basin area, main channel length and maximum255

elevation difference. Similarly, the second and the third common factor highlighted the256

information of slope angle and elevation and roundness, respectively. The difference between the257

two models is that the second model has the fourth common factor (Table 7), which emphasized258

the effects of rainfall and distance to the fault. The transformation from a landslide to a debris259

flow most often occurs during heavy rainfall (Takahashi, 1978), and the landslides are the source260

area. But landslides are not the only source of debris flows. The loose material distributed in the261

basin is not necessarily caused by landslide.262

In turn, we analyze the distribution of high or very high-class slope units in watershed units.263

The landslide zoning map was put at the bottom floor and the debris flow zoning map on the top264

floor (Fig8). There are 167 slope units belonging to high-class in the landslide susceptibility265

zoning map (Fig.6), of which 68 units (accounting for about 40%) are distributed in the area of266

high or very high-class watershed units in the debris flow zoning map (Table 8). Besides, 69 slope267

units (accounting for about 41%) are distributed in the area of low or very low-class watershed268

units. Similarly, 53 slope units (accounting for about 30%) belonging to very high-class are269

distributed in the area of high or very high-class watershed units and 88 slope units (accounting270

for about 50%) in low or very low-class slop units (Table 8). Comparing with the extent of the271

landslide affecting the debris flow, the impact of the debris flow on the landslide is not obvious.272

This indicates that the area prone to debris flow does not promote the occurrence of landslides.273

Finally, we took the center of gravity of 1,003 slope units as the potential hazard points and274

spread them over 174 watershed units. Thus, a combining susceptibility prediction map for275

landslide and debris flow was obtained (Fig.8). The darker the color, the higher the class of276
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susceptibility will be. It can be seen from the figure that the level of disaster susceptibility in the277

south is generally higher than that in the north, and the area in the southwest is disaster-prone. The278

northeast and central locations in the area are less likely to be affected by disasters and belong to279

low-susceptibility areas. Green or yellow dots, which refer to slope units with very low or low-280

class in the landslide zoning map, mainly distributed in light-colored areas but there are also quite281

a few green or yellow dots distributed in dark areas, which means that the occurrence of debris282

flow not necessarily depend on landslides. Blue or black spots are mainly distributed in dark areas283

but there are also quite a few blue or black spots distributed in dark light areas, which means that284

landslide is not the only condition for debris flow to occur. Most of the watershed units are285

distributed with two or more colored dots, which means that there would be multiple slope units286

with different susceptibility class in the same watershed. According to the susceptibility zoning287

maps of landslide and debris flow, the study area can be divided into 4 categories: (1) Low or very288

low-class watershed units coupled with low or very low-class slope units; (2) Low or very289

low-class watershed units coupled with high or very high-class slope units; (3) High or very290

high-class watershed units coupled with low or very low-class slope units; (4) High or very291

high-class watershed units coupled with high or very high-class slope units. We assume that the292

occurrence of landslides can bring rich sources of debris flow, thereby promoting or aggravating293

the outbreak of debris flow, that is, forming a landslide-debris flow disaster chain. Therefore, the294

susceptibility assessment of the landslide-debris flow chain in the study area can be roughly295

divided into three classes, which are low, moderate and high (Table 8).296

https://doi.org/10.5194/nhess-2020-127
Preprint. Discussion started: 27 April 2020
c© Author(s) 2020. CC BY 4.0 License.



15

5. Discussion297

5.1 Method used for modeling298

Many researchers have used different statistically-based methods to evaluate the susceptibility of299

landslides or debris flows. Logistic regression and discriminant analysis are the most popular300

methods to use in traditional multivariate statistical analysis. The performance of new learning301

machines, such as support vector machines and neural networks, has also been verified. Random302

forest, as a newly integrated learning machine, has less application in landslide and debris flow303

analysis. Actually, random forests have powerful data processing capabilities and can304

simultaneously solve problems such as high-dimensional, unbalanced and data loss, which are305

common in geological disaster assessment. Most importantly, random forests can compare the306

important differences between features and have strong ability to resist overfitting and307

generalization, which is difficult to achieve by other statistical methods.308

5.2 Potential relationship between landslide and debris flow309

There is a certain similarity in the evaluation of the susceptibility of landslides and debris flows310

from the concept, the selection of controlling factors and the application of modeling strategies.311

Therefore, some researchers have neglected the difference between landslide and debris flow i.e to312

express two different disasters with the same susceptibility zoning map(Ciurleo et al., 2016;313

Ciurleo et al., 2017; Persichillo et al., 2017;). However, similarity does not always mean314

consistency. Many researchers have previously conducted studies into the debris flow mobilization315

from shallow landslide using a coupled methodology. They are interested in the dynamic316

simulation of debris flow based on the prediction of landslide susceptibility(Wang et al., 2013; Fan317
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et al., 2017). However, not every landslide evolves into a debris flow, which means that the318

analysis process is highly selective or uncertain. In the same way, the source of the debris flow is319

not limited to landslides. Therefore, the potential relationship between landslides and debris flows320

needs to be discussed more reasonably and effectively. There, the potential relationship between321

landslides and debris flows needs to be discussed more reasonably and effectively. In this paper,322

the corresponding influencing factors and mapping units are selected to establish landslide and323

debris flow susceptibility zoning maps, respectively. The potential relationship between landslide324

and debris flow is explored in two ways: 1) Superimposing the high or very high-class325

susceptibility areas in the two maps; 2) Transforming the slope units into points and distributed326

them on the watershed units. The relationship between landslide and debris flow is illustrated by327

the distribution of slope units of different grades on the watershed units with different prone328

grades.329

5.3 Necessity and feasibility of combining multiple natural330

disaster susceptibility zoning maps331

Previous studies on susceptibility zoning mapping of disaster have agreed that one disaster332

corresponds to one map. Multiple disasters may be bred simultaneously in a watershed unit and it333

will cause some confusion in practical. For example, the probability of a disaster occurring in a334

watershed is negligible, while the probability of another disaster occurring is high. If so, we need335

to combine multiple zoning maps at the same time to give a comprehensive evaluation, which is336

arduous to achieve. On the one hand, the prediction accuracy and error of different zoning maps337

should be similar or even consistent. On the other hand, the dimensions of the mapping unit338
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should be consistent or complementary. The fact that the appropriate prediction method and339

mapping units applied to the two disasters makes it possible to merge the two zoning maps .In340

addition, two natural disasters with potential relationship are simultaneously reflected in the same341

susceptibility zoning map, which can better guide the implementation of engineering, such as342

landslide-debris flow disaster chain.343

6. Conclusion344

In this paper, susceptibility prediction models for landslides and debris flows are established345

through random forest, respectively and the performance of the models are excellent in terms of346

accuracy and goodness of fit. The potential relationship between landslide and debris flow is347

discussed by the superimposition of two zoning maps and the following conclusions can be drawn:348

(1) The landslide and debris flow susceptibility prediction models based on random forest have349

great performance of accuracy and goodness-of-fit and have the ability to analyze the relative350

importance of different impact factors, which is suitable for the evaluation of natural disasters;351

(2) Although most landslides will be converted into debris flows, the landslides are not352

necessarily the source of debris flows, and the loose sources carried by the debris flow are not353

necessarily brought by the landslides;354

(3) By comparing the extent of the landslide affecting the debris flow, the impact of the debris355

flow on the landslide is not obvious, which indicates that the area prone to debris flow does not356

promote the occurrence of landslides;357

(4) A susceptibility zoning map composed of two or more natural disasters is more358

comprehensive and significant, which provides valuable reference for researchers and engineering359
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applications.360
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Table 1 The prediction accuracy of RF488

70% 30% 100%

Test group Total TN TP Total TN TP Total TN TP

Landslide (%) 93.14 92.86 93.57 91.75 92.90 90.00 92.72 92.87 92.50

Debris flow (%) 90.98 90.91 91.18 88.46 89.19 86.67 89.08 88.80 89.80

Table 2 Controlling factors assigned by the RF489

Test

group

Slope

angle

Distance

to fault

Plan

curvature

Topographic

wetness index

Distance

to road

Maximum

elevation

difference

Profile

curvature
Elevation

Landslide 0.21 0.19 0.17 0.13 0.08 0.07 0.06 0.05

Table 3 Controlling factors assigned by the RF490

Test group
Main channel

length
Roundness

Slope

angle
Elevation

Maximum elevation

difference
Melton

Basin

area

Debris flow 0.25 0.16 0.14 0.13 0.12 0.1 0.1

Table 4 The overlap number of debris flow and landslide height and very high-class mapping units491

Landslide

Debris flow
Very low Low High Very high

High 3/23 1/23 5/23 12/23

Very high 2/26 2/26 8/26 11/26

492

493

494
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Table 5 Statistical variables of the two models495

Model

Statistical variables

Model 1 Mode 2

KMO 0.766 0.643

Sig. 0.001 0.003

Table 6 The correlation coefficients between common factors and primitive variables496

Factor F1 F2 F3

NDVI 0.386 -0.336 -0.621

Basin area 0.897 -0.007 0.041

Main channel length 0.984 0.046 -0.023

Slop angle -0.223 0.829 0.455

Maximum elevation difference 0.744 0.66 0.011

Rainfall -0.768 0.33 0.201

Average gradient of main channel -0.753 0.544 0.106

Drainage density -0.844 0.06 0.015

Roundness 0.331 0.14 0.818

Elevation 0.133 0.846 0.382

Distance to fault -0.16 0.211 0.421

Melton -0.625 0.737 0.149

Contribution rate (%) 41.2 24.7 16.7
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Accumulative contribution (%) 41.2 65.9 83.6

497

Table 7 The correlation coefficients between common factors and primitive variables498

Factor C1 C2 C3 C4

NDVI 0.042 -0.079 -0.279 -0.813

Basin area 0.802 -0.344 0.057 0.009

Main channel length 0.885 0.126 -0.196 0.227

Slop angle 0.009 0.748 0.58 -0.057

Maximum elevation difference 0.801 0.434 -0.128 0.144

Rainfall 0.197 -0.076 -0.487 0.637

Average gradient of main channel -0.744 0.205 0.15 -0.23

Drainage density -0.776 -0.176 -0.267 0.117

Roundness -0.014 0.022 0.896 -0.002

Elevation 0.34 0.746 0.25 0.326

Distance to fault 0.31 0.289 -0.344 0.757

Melton -0.182 0.932 -0.192 0.061

Contribution rate (%) 29.2 20.3 15.2 15.8

Accumulative contribution (%) 29.2 49.5 64.7 80.5

Table 8 The overlap number of landslide and debris flow height and very-high class mapping units499

Debris flow

Landslide
Very low Low High Very high
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High 36/167 33/167 25/167 43/167

Very high 48/179 40/179 25/179 28/179

500

Table 9 Comprehensive evaluation of landslide-debris flow susceptibility501

Debris flow

Landslide
Low or Very low High or Very high

Low or Very low Low Moderate

High or Very high Moderate High

502

503

504

505

506

507
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Fig.1. Location map of the study area showing landslide and debris flow inventory.509
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Fig.2. Photos of landslide or debris flow: (a) Lunba landslide in a tributary; (b) Zhenqiong landslide in512

Jiayu village; (c) Debris flow in Misha Township; (d) Debris flow in Lelong Village.513
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Fig.3.Multistage landslide in Xiongqu village515
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Fig.4. Stereo remote sensing map of landslides in Longzi Township (Tong et al., 2019)517
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（a） （b） （c）

（d） （e） （f）

（g） （h）

（j） （k）

（i）

519
Fig.5. Study area thematic maps for landslide:（a）Rainfall;（b）Profile curvature;（c）Maximum520
elevation difference;（d）Average elevation;（e）Plan curvature;（f）Average slope;（g）Aspect;（h）521
Wetness;（i）Distance to road;（j）Distance to river;（k）Distance to fault.522
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（j）523
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Fig.6. Study area thematic maps for debris flow:（a）Melton;（b）NDVI;（c）Rainfall;（d）Roundness;524
（e）Maximum elevation difference;（f）Average elevation;（g）Drainage density;（h）Area;（i）525
Average slope;（j）Average gradient of main channel;（k）Distance to fault.526

Legend
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Legend
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527

Fig.7. Analysis of ROC curve for the two susceptibility maps: (a) Success rate curve of landslide using528

the training dataset; (b) Prediction rate curve of landslide using the validation dataset; (c) Success rate529

curve of debris flow using the training dataset; (d) Prediction rate curve of debris flow using the530

validation dataset.531

532
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（a） （b）
533

Fig.8. Susceptibility maps:（a）Landslide susceptibility zoning map;（b）Debris flow susceptibility zoing534

map.535

（a） （b）

536

Fig.9. Numbers and percentage of units in different susceptibility classes for landslide and debris flow:537

(a) Numbers of units in different susceptibility classes for landslide and debris flow; (b) Percentages of538

different susceptibility classes for landslide and debris flow.539
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（a） （b）
540

Fig.10. Parametric importance graphics obtained from RF model: (a) Parametric importance graphics541

of landslide; (b) Parametric importance graphics of debris flow.542
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（a）
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（b）

（d）

（e）543
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Fig.11. Landslide-debris flow susceptibility maps: (a) Height and very high-class watershed units with544

high or very high slope units; (b) High or very high-class watershed units with low or very low slope545

units; (c) High or very high-class slope units with high or very high-class watershed units; (d) Mapping546

units.547

548

549

550

https://doi.org/10.5194/nhess-2020-127
Preprint. Discussion started: 27 April 2020
c© Author(s) 2020. CC BY 4.0 License.


