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Abstract. Rainfall thresholds are a simple and widely used method to forecast landslide occurrence. We provide a com-

prehensive data-driven assessment of the effects of rainfall temporal resolution (hourly versus daily) on rainfall thresholds

performances in Switzerland, with sensitivity to two other important aspects which appear in many landslide studies–the

normalisation of rainfall, which accounts for local climatology, and the inclusion of antecedent rainfall as a proxy of soil

water state prior to landsliding. We use an extensive landslide inventory with over 3800 events and several daily and hourly,5

station and gridded rainfall datasets, to explore different scenarios of rainfall threshold estimation. Our results show that al-

though hourly rainfall did show best predictive performance for landslides, daily data were not far behind, and the benefits of

hourly resolutions can be overcome by the higher uncertainties in threshold estimation connected to using short records. We

tested the impact of several typical actions of users, like assigning the nearest raingauge to a landslide location and filling in

unknown timing, and report their effects on predictive performance. We find that localisation of rainfall thresholds through10

normalisation compensates for the spatial heterogeneity in rainfall regimes and landslide erosion process rates and is a good

alternative to regionalisation. On top of normalisation by mean annual precipitation or a high rainfall quantile, we recommend

that non-triggering rainfall be included in rainfall threshold estimation if possible. Finally, while antecedent rainfall thresh-

olds approaches used at the local scale are not successful at the regional scale, we demonstrate that there is predictive skill in

antecedent rain as a proxy of soil wetness state, despite the large heterogeneity of the study domain.15

1 Introduction

Landslides are a natural hazard that affects alpine regions worldwide resulting in substantial economic losses and human

casualties (Kjekstad and Highland, 2009). Landslides can be initiated by different triggering factors, mainly rainfall and earth-

quakes. Economic losses connected to landsliding are estimated to be between 0.5 and 5 Billion USD annually for the European

Alps regions (e.g., Salvati et al., 2010; Trezzini et al., 2013; Klose, 2015; Kjekstad and Highland, 2009), and similar losses20

are also reported for Canada and the United States (e.g., Kjekstad and Highland, 2009; Schuster, 1996; Mirus et al., 2020).

Petley (2012) carried out a global study over a 7 year period (2004-2010) and found a total of 2620 nonseismically triggered

landslides causing 32’322 fatalities. Clearly, the socio-economic impact of landslides is large and this natural hazard requires

attention in the form of risk mapping, better prediction, and early warning systems.
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The focus in this work is on rainfall-induced shallow landslides, which are the predominant type of landslides in Switzerland25

and other alpine environments. These are landslides where the entire soil (upper regolith) fails along a weathered bedrock

interface, and they develop quickly leading to mass failure following soil-saturating rainfall (e.g., Highland et al., 2008).

Despite their smaller size, these landslides can be widespread and have the potential to damage infrastructure (railways, roads),

homes, and even lead to fatalities. For instance in Switzerland, a total of 520 Million Euros in damage was recorded in the

period 1972–2007 and 32 people lost their life due to shallow landslides (Hilker et al., 2009).30

One of the most widespread approaches for the prediction of triggering conditions leading to rainfall-induced landslides is

that of rainfall thresholds (e.g., Stevenson, 1977; Caine, 1980; Guzzetti et al., 2007), which are used operationally in many

countries (e.g., see reviews in Guzzetti et al., 2020; Piciullo et al., 2018). These can be based on any rainfall property, but

most frequently are assumed to be power law curves in the intensity-duration (ID) or the total rainfall-duration (ED) space.

The reasoning behind this choice is that two different storm types may be responsible for the initiation of landslides: short35

and intense, or long-lasting and typically less intense. Many approaches exist to formulate and estimate ID or ED curves, and

they differ in the accuracy of the landslide inventory, the rainfall records used, the definition of rainfall events, the statistical

methodology for threshold definition, and the validation technique, among others (see review in Segoni et al., 2018).

One of the main aspects in which the approaches differ is the choice of rainfall temporal resolution, typically forced by data

availability. The short and intense events responsible for local soil saturation and triggering of landslides are usually associated40

with convective activity, which can last for just a few hours in alpine environments (e.g., Molnar and Burlando, 2008). For this

reason, hourly thresholds are expected to be more appropriate for landslide prediction. There is some evidence for this in the

literature. For example, Marra (2019) shows the underestimation of rainfall thresholds as the temporal resolution of rainfall is

coarsened with a numerical experiment, while Gariano et al. (2020) demonstrate a similar effect on a real case dataset, where

reported landslides are combined with rain gauge records aggregated to different temporal resolutions. At the same time, daily45

rainfall thresholds or ID curves may also exhibit good predictive power for landsliding, e.g. as shown in a comprehensive

analysis in Switzerland (Leonarduzzi et al., 2017). So the question arises, how does the temporal resolution of the rainfall data

actually affect landslide prediction?

We address this question with a data analysis experiment, where we take into account conditions which typically accom-

pany different temporal resolution of data. For example, choosing a higher resolution (e.g. hourly) has several undesirable50

consequences: (a) rainfall records are typically shorter as hourly records are only available in automatic networks in more

recent decades, (b) rainfall records are likely to be less dense in space leading to poorer matching with landslide locations, and

(c) landslide inventories are typically less rich (required timing and not only date of occurrence) or more uncertain, especially

for older events that were reconstructed from newspaper articles or other indirect sources. All these aspects have to be taken

into consideration in an objective analysis of the effects of temporal resolution on rainfall thresholds.55

In this paper we undertake such an analysis with the high quality landslide database available in Switzerland (Hilker et al.,

2009) and several high quality rainfall records available for Switzerland from Meteoswiss. We expand the impact of temporal

resolution (hourly versus daily) on landslide prediction with sensitivity to two other important aspects which appear in many

landslide studies: the normalisation of rainfall, which accounts for local meteorological properties (e.g., Marc et al., 2019), and
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the inclusion of antecedent rainfall which provides additional information on soil state prior to landsliding, typically at local60

scales (Glade et al., 2000; Godt et al., 2006; Mirus et al., 2018a, b). The objectives of the paper therefore are (a) to provide

an extensive comparison between hourly and daily rainfall data for the definition of rainfall thresholds, considering several

practical consequences of choosing a higher temporal resolution, (b) to compare different strategies for the normalisation of

rainfall thresholds, and (c) to explore whether antecedent rainfall does provide added predictive power at the regional scale.

2 Data and Methods65

We use several rainfall datasets and a landslide inventory (Section 2.1) to derive objective landslide-triggering rainfall thresh-

olds at the daily and hourly scale using two different statistical methods,True Skill Statistic maximisation and frequentist

approach (Section 2.2), and to address some of the issues associated with higher temporal resolution data, such as the absence

of accurate timing information for landslide occurrence (Section 2.3) and the lower quality (density) of rainfall data (Section

2.4). We follow up with methods which quantify the impact of rainfall threshold normalisation (Section 2.5) and the added70

power of antecedent rainfall on landslide prediction (Section 2.6).

2.1 Rainfall and landslide data

The rainfall datasets differ by type of measurement, duration of record, and temporal and spatial resolutions (Figure 1 and

Table 1). The daily product (Rainfall Daily Interpolated, RDI) is the longest record (1972–2018), containing daily sums (6 am

to 6 am) over 1×1km cells covering Switzerland. It is obtained by interpolating daily measurements from approximately 42075

rain gauges, using the climatology (anomaly relative to the monthly mean precipitation over the reference period 1971–1990),

and a regionally varying precipitation-topography relationship (procedure explained in details in Frei and Schär, 1998).

The hourly station rainfall dataset (Rainfall Hourly Gauges, RHG) is the collection of the hourly rainfall timeseries measured

continuously since 1981 at 45 gauges across the country (green dots in Figure 1). We use two different hourly datasets that

were derived by disaggregating RDI such that the daily sums match that of the corresponding RDI cell at the same 1×1km80

resolution. The first dataset (Rainfall Hourly Interpolated Gauges, RHIG) is computed by disaggregating the daily sum RDI

into hourly intensities by using the hourly fractions recorded at the nearest hourly gauge (RHG). The second dataset (Rainfall

Hourly Interpolated Radar, RHIR), instead uses an hourly composite of radar measurements NASS (Joss et al., 1998; Germann

and Joss, 2004; Germann et al., 2006) for the disaggregation (procedure explained in details in Wüest et al., 2010). Due to the

quality of the radar composite, we expect RHIR to be more accurate than RHIG in-between stations. In fact, the hourly gauge85

network measuring continuously since 1981 is quite sparse (see Figure 1, ca. 1 rain gauge per 900 km2) and it is likely to miss

heavy rainfall intensities especially during convective storms.

The four different rainfall records (RDI, RHG, RHIG, and RHIR) are combined with the landslides extracted from the Swiss

flood and landslide damage database (Hilker et al., 2009). This databases collects floods, debris flows, landslides, and rockfalls

that produced damage in Switzerland since 1972. Of the total reported landslides in the period 1972–2018 we selected those90

with known location and date. Then, depending on the rainfall dataset used, the timeframe is modified, and for hourly analysis
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a further selection is made of the entries with known timing. The final number of landslides per rainfall dataset is reported in

Table 1.

2.2 Rainfall thresholds

The methodology for the definition of rainfall thresholds follows the statistical procedure introduced in Leonarduzzi et al.95

(2017). First we separate the rainfall timeseries into events, by considering a minimum amount of dry hours in between. We

choose 24 hours for daily rainfall data and 6 hours for hourly rainfall data. The hourly interstorm period of 6 hours separating

events is selected as the one leading to the best performances (highest True Skill Statistic, see methodology explained here-

after), within a range of 2-12 hours, which is the amount of dry hours expected to separate individual storms. This is longer

than the requirement of statistical independence between events, which Gaál et al. (2014) showed to be at least 2 hours. This100

difference reflects the role that antecedent rain plays in landslide generation.

Then we classify rainfall events as triggering events if a landslide happens during or immediately after the event, and non-

triggering otherwise. We compute the event duration, total rainfall, mean and maximum rainfall intensity for each event. We

then define optimal thresholds for each of the precipitation characteristics by finding the threshold that maximises the True

Skill Statistic TSS = specificity+ sensitivity− 1, where sensitivity is the rate of true positives and specificity is the rate105

of true negatives. Additionally we also define total rainfall E versus duration D (ED) thresholds in the form of a power law

function, E = a ·Db, by optimising the two parameters a and b through TSS maximisation. As a reference, we provide also the

results for the thresholds defined following the frequentist approach, first introduced in Brunetti et al. (2010), which is one of

the most widely used methods for ED fitting (e.g., Peruccacci et al., 2012; Vennari et al., 2014; Gariano et al., 2015; Iadanza

et al., 2016; Melillo et al., 2018; Roccati et al., 2018). The optimum threshold in this case is based on triggering events only.110

The exponent b is obtained by fitting the ED pairs with a line in log-log space. The intercept a is adjusted to match a chosen

exceedance probability (in this paper we use the 5% exceedance probability as a reference).

For all analyses based on the gridded rainfall products, we consider the rainfall timeseries for each susceptible cell, for which

we define rainfall events following the procedure explained above. Susceptible cells are those rainfall cells in which at least

one landslide was recorded in the respective timeframe of each dataset in Table 1.115

2.3 Inaccurate landslide timing: triggering and peak intensities

One problem we face when utilising hourly rainfall records, is that the actual timing of historical landslides is typically not

available or very uncertain/inaccurate. For instance, Guzzetti et al. (2007) report that out of the 2626 rainfall events associated

with shallow slope failures globally, only 26.3% had information about the date of occurrence and only 5.1% also the timing.

Although a common approach to compensate for the lack of accurate landslide timing is to assign the landslide to the rainiest120

hour within a certain time window, the effect of this approximation is not well known. Peres et al. (2018) showed the potential

impact of timing and date uncertainty using synthetic databases by coupling a stochastic weather generation and a physically

based hydrological and slope stability model. Staley et al. (2013) showed, using a precise debris-flow database, that using peak

rainstorm intensity instead of the actual triggering intensity, results in an overestimation of the ID threshold.
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We study the wrong timing effect similarly to Staley et al. (2013) by introducing two scenarios as alternatives to the actual125

landslide database: one in which we assume that when the day of a landslide is known its timing is assigned to the most intense

rainy hour within the day (this is the case of Staley et al., 2013), and a second alternative in which the timing is assigned to

the rainiest hour within a 48h window centred on the actual timing recorded in the database. This is a hypothetical case which

considers the fact that, as historical landslides are sometimes reconstructed from newspapers and others secondary sources, we

may not have the right date recorded in the database. Once the timing is altered accordingly, the modified landslide databases130

are used for the definition of ED thresholds following the same procedure as with the original true database. We carry out

this exercise utilising landslides with known date and time of occurrence recorded between May 2003 and December 2010

(timeframe of RHIR).

2.4 Rainfall quality: gauge density and interpolation

In most studies where regional rainfall thresholds are defined, landslides in a region are assigned to the closest rain gauge,135

sometimes taking into consideration not only distance (e.g., Finlay et al., 1997; Godt et al., 2006), but also similarities in

topography or other aspects important for precipitation (e.g., Aleotti, 2004; Berti et al., 2012; Gariano et al., 2012; Rossi et al.,

2012; Melillo et al., 2018; Vennari et al., 2014). Nikolopoulos et al. (2015) showed that decreasing the density of the rain

gauge network, the b parameter of the power law ID curve on average decreases, depending on whether the closest rain gauge

is considered (nearest neighbour) or simple interpolation methods are used such as inverse distance weighting or ordinary140

kriging. In the context of comparing the impacts of daily and hourly rainfall resolutions on landslide thresholds, we recognise

that gauge density is very important and we construct an experiment to test the effects of gauge density and accuracy of spatial

interpolation.

To do this, we define rainfall thresholds with the "closest rain gauge" based on the very sparse station-based hourly rainfall

record RHG and compare it to the spatially-distributed disaggregated dataset RHIG. The comparison shows the effect of145

improving an hourly record obtained with a very sparse network, by taking advantage of a daily dataset based on a much denser

network and an advanced interpolation method in RDI (Frei and Schär, 1998), merged with hourly station data. We propose

two versions of the "closest rain gauge" approach used in many studies. First we assign each landslide to the geographically

closest rain gauge and then extract rainfall events for each of the gauges which have at least one landslide (maximum 45 rain

gauges) from the RHG dataset. Second we assign to each susceptible rainfall cell (as defined for the gridded rainfall products)150

the rainfall of the closest rain gauge, and the event definition is carried out for each of these cells (maximum as many cells as

the number of landslides) from the RHIG dataset.

2.5 Rainfall normalisation

One of the methods suggested to improve the predictive power of regional rainfall thresholds is to localise them. This can be

done through regionalisation, by dividing the area into homogeneous regions and defining a different threshold for each of them155

(e.g., Peruccacci et al., 2012; Leonarduzzi et al., 2017; Peruccacci et al., 2017), or by normalisation, that is defining thresholds

based on the ratio between the precipitation parameters and a local scaling value, considered to be representative of local rainfall
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characteristics. Typically, the property chosen is the Mean Annual Precipitation MAP (e.g., Dahal and Hasegawa, 2008; Aleotti,

2004; Guzzetti et al., 2007; Leonarduzzi et al., 2017; Peruccacci et al., 2017), the Rainy-Day Normal RDN = MAP
n where n

is the number of rainy days in a year (e.g., Guidicini and Iwasa, 1977; Wilson and Jayko, 1997; Guzzetti et al., 2007; Postance160

et al., 2018), or other precipitation characteristics (e.g. anomaly relative to 10-yr return period rainfall in Marc et al., 2019).

In this paper we test in addition to the well established MAP and RDN normalisations also quantiles of event properties

and of daily/hourly rainfall as scaling parameters. We consider both wet quantiles, which are computed only considering rainy

days/hours, and absolute quantiles, which consider all days/hours. Note that there are fundamental differences between scaling

with MAP and absolute quantiles or RDN, event properties quantiles, and wet quantiles, in that the former ignore intermittency165

of rainfall, while the latter are computed only from the rainy hours/days of the rainfall dataset.

2.6 Antecedent rainfall

The main criticism raised against rainfall thresholds for landsliding in general, is that they only consider recent/event rainfall,

without taking into account the soil water status prior to it (e.g., Bogaard and Greco, 2018). To include this antecedent soil

moisture state into rainfall thresholds, several ad-hoc approaches have been introduced with varying levels of complexity and170

data demand. The simplest of these consists in accumulating rainfall over a fixed duration prior to the triggering event rainfall

(e.g., Chleborad, 2003; Frattini et al., 2009). In other studies the fixed duration has been modified to account for vanishing

memory in rainfall using the Antecedent Precipitation Index (API), which gives less weight to rainfall contributions further

back in time (e.g., Crozier et al., 1980; Crozier, 1986), often relating the decay coefficient to the recession curves of storm

hydrographs, as first suggested by Glade et al. (2000). A further development of the API is the so-called Antecedent Wetness175

Index, which accounts also for other hydrological variables by removing from antecedent rainfall the potential evapotranspi-

ration, and then following the same approach as API (e.g., Godt et al., 2006). Finally, a few studies use estimates of the real

antecedent soil wetness which are based on the soil water balance (Ponziani et al., 2012) or hydrological modelling (e.g.,

Segoni et al., 2009; Thomas et al., 2018), or obtained from on-site (e.g., Mirus et al., 2018b; Wicki et al., 2020) or remote

sensing measurements (e.g., Brocca et al., 2012; Thomas et al., 2019).180

Here, we follow a new approach to assess the information content of antecedent rainfall, with the goal of testing whether

it is still recognisable over a large and heterogeneous area. To do this, we follow an approach opposite to what is normally

done, when events are separated into with and without antecedent rainfall a priori (e.g., Frattini et al., 2009). We start from the

rainfall events, as described in Section 2.2. For each event we compute the antecedent 5 and 30 day rainfall, which is simply

the sum of rainfall over the N days prior to the beginning of the event. All these events were either observed as triggering,185

if a landslide happened during them, or non-triggering. According to the optimised ED threshold, we can also separate them

into predicted triggering above the ED power law curve, or predicted non-triggering below it. The intersection of these predic-

tions/observations gives us 4 groups of events: false alarms, true positives, misses, and true negatives. If the antecedent rainfall

is the parameter explaining the failures of the ED threshold, we would expect that misses were associated with high antecedent

rainfall, and false alarms with very low antecedent rainfall. We investigate this by averaging within each of the 4 groups the190

antecedent rainfall for each event duration, because duration could be a proxy of storm/weather system type. Averaging an-
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tecedent rainfall over these groups of events and durations allows us to study the general tendencies (i.e. whether antecedent

wetness is generally higher or lower), and possibly reduce the effect of heterogeneities unavoidable at such regional scale.

3 Results

3.1 Daily and hourly thresholds195

We define several rainfall thresholds by maximising TSS for the different rainfall datasets, as well as the associated timeframes

(Figure 2). Comparing the results for the three different rainfall products (comparison D in Figure 2 or top panel for TSS values

in Figure 3) it can be seen as expected that performance is best with the high quality hourly rainfall product which uses high

resolution radar information for the disaggregation of daily sums (RHIR). Disaggregation using the closest hourly rain gauge

(RHIG) seems to lead to worse performances than the corresponding daily analysis RDI (red and blue bars in the upper part of200

Figure 3). However this may be deceptive, as the time periods as well as the number of landslides behind the rainfall datasets

are different. This is a critical point we investigate below.

A fairer comparison would be to compare performances over the same time period (05/2003–12/2010) and considering the

same landslide events (comparison A in Figure 2 and middle panel of Figure 3). In this case, the differences in performances

across the different rainfall datasets become smaller. The hourly disaggregated product using radar (RHIR) is still leading to the205

best performance, but the performance with daily data (RDI) is improved even with the simple disaggregation using the closest

rain gauge (RHIG), for all rainfall properties except duration. Remarkably, the daily rainfall dataset RDI retains reasonably

good predictive power despite its coarser temporal resolution.

One additional comparison that can be made in the overlapping timeframe (05/2003–12/2010) is with all landslide events,

regardless of whether the timing is also known or only the date. The performances obtained with daily data and all these events,210

are now comparable to the ones with the high quality hourly product (RHIR). The differences between the two are even more

evident when looking at the thresholds associated with the performances shown here (first two or last two bars in the bottom

panel in Figure 3). The daily thresholds considering only events with known timing rather than all landslides decrease to 22.5

mm/d for the maximum intensity (32.0 mm/d considering all landslides within the timeframe), 35.0 mm for the total rainfall

(47.9 mm considering all landslides within the timeframe), and 14.0 mm/d for the mean intensity (19.0 mm/d considering all215

landslides within the timeframe).

While the decrease of the thresholds and performances is consistent for all rainfall properties as the landslide dataset is

reduced, this is not a general result. Rather it demonstrates that the size and accuracy of the landslide dataset is important, and

that results based on shorter records are likely to be less robust as they are more susceptible to individual events, years, outliers,

or mistakenly reported landslides. This short-record bias is also evident when comparing daily thresholds obtained using the220

1981–2018 timeframe or the shorter timeframe 05.2003-12.2010 for which RHIR is available (first and third bars in the bottom

panel of Figure 3). The thresholds obtained with the latter are higher. The reason is that in 2005, 187 landslides occurred, most

of them due to a single intense summer storm in August. Considering all 38 years (1981–2018) the effect of that "outlier" year
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is reduced as it amounts to ca. 10% of the total number of landslides available with known timing (almost 40% within the

period 05.2003-12.2010).225

Final visual evidence of the lower robustness of thresholds defined using hourly rainfall data, is found in the relative fre-

quency plots of triggering events for hourly rainfall data, compared to daily (upper and lower hlpanels of Figure 4). The

triggering events at the hourly resolutions (237 events) are much more sparse than the corresponding daily events (2117

events).

3.2 Inaccurate landslide timing: triggering and peak intensities230

Results of two different approaches are presented here to illustrate the case when historical landslide inventories have no timing

information available. The landslides are assigned to the actual timing of the database, the most intense hour within the actual

day, or the most intense hour within a 48h window centred around the actual timing.

We defined ED thresholds using each of these modified landslide datasets (Figure 2). Searching for the most intense hour

within the actual day of the landslides (# 6 in Figure 2) leads to optimal thresholds that are not far off from the ones defined235

using the actual timing (#3 in Figure 2). Instead, when the hour with the maximum intensity is found within a 48h window

centred on the actual timing (#7 in Figure 2), the threshold changes, leading to a higher coefficient a and smaller slope b.

This observation is true for both threshold optimisation using TSS or following the frequentist approach, for which the

change in the threshold parameters is present also when limiting the time to the day of the landslides. The explanation for this

difference is that the TSS maximisation approach for the definition of ED thresholds is relatively robust, because when we alter240

the timing of the landslides some triggering events might change their total rainfall and duration values, but non-triggering

events are unaffected. What is important is that for the TSS maximisation in both scenarios of unknown adjusted timing, the

TSS value associated with the best threshold is higher than if the timing was known.

All the observations presented here are valid also when carrying out the same analysis over the 1981–2018 time period using

RHIG. The TSS maximisation leads to basically identical thresholds in the 3 scenarios but the TSS increases from 0.65 (actual245

timing) to 0.67 (most intense hour within the actual date), or 0.70 (most intense hour within a 48h window). Following the

frequentist approach with 5% exceedance the TSS also increases from 0.44 (actual timing) to 0.51 (most intense hour within

the actual date), or 0.60 (most intense hour within a 48h window).

This means that if we do not know the timing of landslides accurately and assign them to some a priori decided rainfall event

property, then we are overestimating the landslide prediction skill of our ED curves. Extending this to a situation in which the250

actual timing is unknown and this technique is applied to compensate for it, while the threshold might not be far off, the user

would overestimate model performance leading to a false overconfidence in the threshold predictions.

Nevertheless, having to make a choice between the two methods of correcting timing, limiting the search of the rainiest

hour to the actual date, seems to be slightly better, with smaller overestimation of the performance (TSS), and threshold

curve parameters more similar to the ones obtained using the actual timing. Considering a 48-h window not only leads to255

overestimation of the TSS, but the thresholds are also affected. For both threshold definition methods, the threshold in this case

gets higher (higher a) and less steep (smaller b).
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3.3 Rainfall quality: gauge density and interpolation

To test the importance of the general quality of the rainfall dataset in the context of the daily-hourly temporal resolution

comparison, we use here the hourly gauge measurements (RHG) in a sparse network and the hourly gridded rainfall dataset260

(RHIG). The latter, takes advantage of the high quality daily record (RDI), which is based on a denser daily rain gauges network

and accounts for climatology and topography (Comparison C in Figure 2).

As before, the comparison between the different rainfall datasets should not be based on the thresholds obtained, since both

triggering and non-triggering events can potentially change, but rather on the landslide prediction performances associated with

them. When the rain gauge rainfall record is used directly (RHG), whether duplicated at each (closest) landslide location (#5265

in Figure 2) or just using one timeseries per gauge (#4 in Figure 2), the sensitivity drops, and so does the TSS. The two rainfall

datasets (RHIG and RHG) have exactly identical hourly rainfall fractions and differ only by the daily sum, which for RHIG

is forced to match the RDI daily rainfall of the corresponding cell. When using the station hourly timeseries, the triggering

rainfall events have generally smaller event characteristics than the corresponding RHIG events. Out of a total 634 events,

423 have smaller maximum intensity, 382 have smaller mean intensity, 447 have smaller total rainfall, and 461 have shorter270

duration. This results in a decrease of the maximum TSS of up to 0.07, mostly due to a lower sensitivity (for total rain, the

sensitivity drops from 0.72 to 0.63).

The same drop in performance is observed when following the frequentist approach (Figure 2). The TSS, which is 0.44 for

the analysis using the hourly timeseries adjusted with the daily product (RHIG), drops to 0.29 or 0.24, depending on whether

the susceptible cells or closest rain gauge locations are used. In this case the effect on the threshold (ED curve) is also very275

consistent: the curves are lower (smaller a) and slightly steeper (higher b). This is a consequence of the fact that it is especially

the short (intense) events that are missed (underestimated) when considering rainfall measurements further away from the

actual location of landslides (RHG rather than RDI).

3.4 Rainfall normalisation

The improvement achieved by defining thresholds not based directly on the values of the different precipitation characteristics,280

but scaling them by a certain quantile of the corresponding event characteristic, a certain quantile of daily/hourly precipitation,

or the mean annual precipitation is shown in Figure 5 for the daily RDI and hourly RHIR datasets. When searching for the event

property thresholds, it seems to be irrelevant which quantile is chosen, as the TSS seems to be only slightly fluctuating around

a value somewhere between the no normalisation and the mean annual precipitation lines. Completely different behaviour is

observed for the normalisation using quantiles of hourly/daily rainfall. In that case, performances comparable to the other cases285

are achieved only for the highest quantiles, especially for absolute quantiles and for hourly data (right panels in Figure 5).

In general, best performances are obtained with normalisation by mean annual precipitation. In fact, with hourly data, this

level of performance can only be reached/exceeded for few very high rainfall quantiles of the total rainfall (wet or absolute

quantiles, centre right in Figure 5) or maximum intensity (absolute quantiles, top right in Figure 5). With daily data instead,
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performances are comparable with the mean daily precipitation over a wider range of quantiles (q > 0.4 for wet quantiles) of290

daily rainfall and event properties. The performances seems to be only slightly better for the highest quantiles.

With daily rainfall, the performances of wet, which only consider rainy days, and absolute quantiles are comparable to the

other normalisations for higher quantiles (q > 0.4 for wet quantiles and q > 0.9 for absolute quantiles). Instead, for hourly

rainfall, the normalisation with the absolute quantiles peaks around a very high quantile value (q = 0.95− 0.97), reaching

performances similar (mean intensity, bottom right in Figure 5) or even superior (maximum and mean intensity, top and center295

right in Figure 5) to the MAP normalisation.

The results for the RDN normalisation (not shown here) are basically indistinguishable from the MAP, not in terms of value

of optimum threshold, but of performances, with differences in the TSS of the normalised optimum threshold of less than 0.01.

The improvement of landslide prediction with normalised rainfall thresholds is statistically demonstrated, but it demands a

physical explanation. We hypothesise that the reason lies in the fact that the rainfall regime (climate) and the landsliding process300

(erosion) are connected through the landscape balance between weathering and soil formation, and the rainfall-driven erosion

of the top soil by landsliding and other geomorphic processes (e.g., Norton et al., 2014). In climates with a highly erosive

rainfall regime and high topography, the rate of landsliding has adjusted to match the lower soil formation rates. Consequently,

we need on the average higher rainfall intensities to generate landslides there. The scaling of rainfall thresholds by a high-

intensity rainfall quantile corrects for landscape scale differences between these process rates and leads to better prediction305

of landslide occurrence regionally. Evidence for this hypothesis can be found in some studies (e.g., Leonarduzzi et al., 2017;

Peruccacci et al., 2017) and can also be observed by comparing the differences in triggering intensities to those of mean daily

precipitation values in our data (Figure 6). Here cells in which the mean daily precipitation is higher, also have generally higher

triggering intensities. Accounting for this in the threshold definition, for example dividing the values of maximum intensity by

the MAP of the corresponding cell, results in an improvement in the performances.310

It is interesting to note that most of the rainfall triggering intensities are indeed among the strongest intensities recorded.

Most of the triggering intensities (circles in Figure 6) lie between the 0.75 and 1 wet quantiles of rainfall. This is the foundation

for the success of rainfall thresholds for landslide prediction.

3.5 Antecedent rainfall

Including antecedent wetness or rainfall on regional scale thresholds is not a simple task. In fact, while thresholds that com-315

bine antecedent and triggering rainfall are successful in many local studies (e.g. for the Seattle area, Chleborad, 2003), the

results shown in Section 3.4 are indicative of the heterogeneity at the regional scale which will make antecedent rainfall signals

difficult to detect. For example, the approach suggested in Chleborad (2003) of defining thresholds considering as variables the

3-day and the 15-day prior cumulative rainfall applied to the RDI data 1972–2018 shows no pattern useful for the definition of

thresholds. Nevertheless, the information content even in the simplest proxy of soil wetness, that is the antecedent rainfall, is320

clear (Bogaard and Greco, 2018).

In our experiment where we separated the events into observed triggering or non-triggering, and predicted triggering or

not-triggering (above or below the ED threshold obtained maximising TSS) and plotting the mean antecedent rainfall for 5 and

10



30-day periods, we can see that antecedent rainfall can explain some of the misclassifications generated by the ED threshold

(Figure 7). We anticipate that some of the misses (triggering events below ED curve) were actually landslides caused by low325

rainfall amounts on very wet soil. At the same time some false alarms (non-triggering events above ED curve) were wrongly

predicted as triggering, but no landslide was observed due to the very low antecedent rainfall. These are exactly the patterns we

observe in Figure 7. Higher intensity events are generally associated with higher antecedent rainfall, due to seasonality effects

(typically in the wetter periods of the year), the false alarms are associated with clearly smaller antecedent rainfall than the

true positives, and, even more importantly, the misses have, for almost all durations, higher antecedent rainfall than the false330

alarms. As expected, the true negative events have on average the smallest antecedent rainfall for most durations.

The highest antecedent rainfall for misses (triggering events below ED curve) for events of duration of 1 day could be

indicative of the importance of antecedent conditions, either because the wrong event has been identified as triggering or

because those are really triggered due to previous high soil wetness conditions rather than the event itself. However, we cannot

provide evidence that this is the case. The patterns for the 5 and 30 days antecedent rainfall look very similar, showing that the335

antecedent conditions are consistent over longer periods. The only difference is in the true negatives, which for the 30 days,

have a much smaller mean antecedent rainfall than the other events.

4 Discussion

In the work presented here we show that the choice of the optimal temporal resolution for the definition of rainfall thresholds

might not be a straightforward exercise, and that many more aspects should be taken into consideration before concluding that340

the highest temporal resolution is best for landslide prediction.

Previous studies (e.g., Marra, 2019; Gariano et al., 2020) have focused on the effect of temporal resolution, and showed that

using lower temporal resolutions leads to the underestimation of the thresholds. From a theoretical point of view, we argue that

hourly rainfall data are superior to daily data as they can capture the short convective events lasting few hours which are known

to trigger landslides and which get averaged out in the daily sum. Also in the work presented here, when we consider the exact345

same time period and landslide events, we see that performances at the hourly temporal resolution are superior to those at the

daily resolution, especially for high quality datasets (RHIR). On the other hand, we show with this work that there are several

additional factors that should be taken into consideration.

Choosing hourly rainfall data usually implies dealing with shorter historical records, lower quality (sparser) rainfall datasets,

and less rich landslide databases. Typically in the past rain gauges were mostly recording precipitation daily, which means350

that the daily datasets go further back in time, allowing for an analysis spanning over many more years. Taking the example

of Switzerland, since 1961 ca. 420 gauges are available for generating the RDI rainfall product. The first hourly gauges start

to appear around 1981, and only 45 of those are continuously measuring until 2018. The much lower density of hourly rain

gauges makes the quality of the interpolated rainfall product lower, or the distance between observed landslide and measured

rainfall locations greater, and therefore less representative. In recent years (ca. since 2012) the number of hourly gauges has355

increased dramatically, with 270 stations at the moment, but this would allow an analysis on maximum 7 years (compared to
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the 48 years available at the daily resolution). The variability in the optimum threshold for the different time periods is proof

of the risk of using shorter timeframes (lower panel in Figure 3).

At the hourly resolution also the richness of the landslide database is affected, as not only the date but also the timing

of the landslide must be known. Staley et al. (2013) addressed this issue and showed the overestimation of thresholds when360

considering peak rainstorm instead of triggering intensity. This is common practice, when the actual timing of the landslides

is unknown. It generally leads to overestimation of the triggering events’ maximum intensity, but potentially also other trig-

gering events’ parameters. Here, the optimum threshold does not seem to change much, especially when the threshold is

obtained maximising TSS. This is true if at least the landslide date is known. Constraining the timing of landslides to the actual

date seems a better choice whenever possible. Allowing a larger window (48h centred on the actual timing) leads to bigger365

threshold changes, both if maximising TSS or following the frequentist approach. Nevertheless, in both cases, the performances

are overestimated if the peak intensity is used to time the landslides, giving the user overconfidence in the threshold values

themselves.

Some last factors to take into consideration when choosing the temporal resolution, are that in many countries hourly records

of rainfall could be even shorter and of lower quality than in Switzerland, and choosing to work with daily data might be the370

only realistic option. Furthermore, thinking of utilising rainfall thresholds in an operational setting, daily forecasts are usually

more reliable than hourly forecasts (e.g., Shrestha et al., 2013).

In all the comparisons between hourly and daily rainfall, we purposely refrained from comparing the value of the optimal

thresholds and of the ED curves between hourly and daily analysis. In fact, to allow this comparison, strong assumptions must

be made, which are clearly not realistic, such as assuming that the daily intensity is 24 times the corresponding hourly intensity.375

This is in agreement with the recommendation in Gariano et al. (2020) and other studies to not extend daily ED or ID rainfall

thresholds into the sub-daily domain.

Two methods for rainfall threshold estimation were presented here, TSS maximisation and frequentist approach, to show

that the threshold optimisation method used does not impact the main conclusions. While our work does not intend to compare

the two methods, the results presented here show clearly that accounting for triggering events also in the definition of the380

threshold (e.g. maximising TSS) increases the robustness of the obtained threshold. In fact, while the performances and the

parameters of the ED curves are affected in both cases, the frequentist approach seems to be more sensitive, with greater

differences in optimal thresholds and greater variability in performance (e.g. see variability of the optimum ED thresholds in

Figure 2). Nevertheless, there might be conditions in which continuous rainfall records are not available and only triggering

event rainfall can be reconstructed from newspaper and other historical records. In those conditions, a method based only on385

triggering events would be the only option.

Lastly, we demonstrate the benefits of normalising the rainfall thresholds using high quantiles of rainfall intensities, quantiles

of event properties, MAP, or RDN. These are all particularly useful when using daily data, but we suggest MAP as a good scal-

ing variables as it is a widely available climatological variable.
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5 Conclusions390

We define and test rainfall thresholds for triggering of landslides by taking advantage of a rich landslide database and several

rainfall products available in Switzerland with the main objective of providing a comparison between hourly and daily rainfall

resolutions, which considers data limitations associated with choosing a higher temporal resolution. These are shorter datasets,

unknown landslide timing, and more sparse rain gauge networks, that usually accompany higher temporal resolution data.

Furthermore, we test the impacts of two typical analysis steps in threshold definition: normalisation of the threshold, and395

antecedent rainfall.

Our main findings are:

– Although hourly rainfall is more appropriate for forecasting landslides since it better captures triggering intensities,

several other aspects should be taken into consideration before relying only on hourly rainfall for threshold definition.

Generally, hourly rainfall records are shorter (only available in recent years), and of lower quality (e.g. based on sparser400

rain gauge networks), and landslide databases only seldom contain accurate (hourly) timing.

– In ideal conditions, hourly datasets do show best predictive performance for landslides, but daily data are not far behind,

potentially since daily data tend to capture cumulative storm totals that may also be relevant for landslide triggering. The

benefits of hourly resolutions can be overcome by the higher uncertainties in threshold estimation connected to using

short records and unknown landslide timing.405

– Whenever continuous rainfall records are available together with a landslide inventory, our work underscores the impor-

tance of including non-triggering events in the definition of optimal rainfall thresholds, not only because false alarms are

an essential factor in warning systems, but also to increase the robustness of the threshold estimation.

– Localisation of rainfall thresholds through normalisation is a useful procedure, which allows to compensate for the spatial

heterogeneity in rainfall regimes and landslide erosion process rates. We recommend using mean annual precipitation or410

a high quantile of rainfall intensity as a normalisation factor as an alternative to regionalisation.

– Antecedent rainfall as a proxy of soil wetness state can explain some of the false alarms in rainfall thresholds associated

with lower antecedent rainfall, and some of the misses preceded by heavy rainfall, even when considering an entire

(heterogeneous) country. Although we did not formulate new rainfall-duration curves including antecedent rainfall, it is

likely that these would increase predictive skill.415

Data availability. The rainfall products were provided by the Swiss Federal Office of Meteorology and Climatology MeteoSwiss (available

for research purposes upon request). The gauges timeseries are available upon request at https://gate.meteoswiss.ch/idaweb/ (last accessed

18.11.2019). The Swiss Federal Research Institute WSL provided the landslide data (available for research purposes upon request).
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Figure 1. Map and scheme of the different rainfall datasets used in the analysis. The daily interpolated product (RDI, here shown as a spatial

map of Mean Daily Precipitation, mdp), the hourly rain gauges (RHG), and the two derived hourly gridded products, which preserve the

daily sums from RDI, but use the sub-daily temporal variability of a radar composite (RHIR) or of the hourly rain gauges (RHIG).
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Table 1. Description of the different rainfall datasets used.

Rainfall Daily

Interpolated

Rainfall Hourly

Gauges

Rainfall Hourly

Interpolated Gauges

Rainfall Hourly

Interpolated Radar

acronym RDI RHG RHIG RHIR

data source rain gauges rain gauges rain gauges rain gauges + radar

type of product gridded (1km2) gauges (Figure 1) gridded (1km2) gridded (1km2)

temporal resolution daily hourly hourly hourly

timeframe 1972–2018 1981–2018 1981–2018 05.2003-12.2010

methods

interpolation of rain

gauges using

climatology and

topography

relationships

measured

disaggregation of RDI

using temporal

evolution of RHG

disaggregation of RDI

using temporal

evolution of radar data

reference Frei and Schär (1998) - - Wüest et al. (2010)

number of landslides in

timeframe
2271

1842 (634 with known

date and time)

1842 (634 with known

date and time)

501 (237 with known

date and time)
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Figure 2. Table containing the coefficients of the threshold power law curve in the total rainfall - duration plane E = a ·Db obtained by

maximising the TSS, or selecting the 5% exceedance probability line following the frequentist approach, for all the different timeframes

and rainfall records. To facilitate reading, the different comparisons carried out (A-D) are indicated. Below, all the ED threshold curves are

shown, separated into daily (above) and hourly (below), obtained with TSS maximisation (left) or following the frequentist approach (right).

The numbers in the legend match the "#REF" entry in the Table above.
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Figure 3. True Skill Statistic for the different precipitation characteristics and all rainfall datasets considered. Above using for each rainfall

dataset the entire timeframe available, in the middle by comparing over the overlapping timeframe (05.2003-12.2010). On the right, the

performances of the ED power law threshold are shown for the corresponding datasets as reference. At the bottom, the optimum thresholds

obtained with daily rainfall data and considering all timeframes and landslides with known date and timing (known date and time) or at least

date (all land.).
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Figure 4. Total rainfall - duration (ED) plots with color scale representing the relative frequency of non triggering (left) and triggering (right)

events. The lines represent the best power law curve thresholds obtained maximising TSS, above with hourly (RHIR) and below with daily

(RDI) rainfall data.
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Figure 5. True Skill Statistic (TSS) values for the best threshold for the different normalisations, for the daily (RDI, left) and hourly (RHIR,

right) rainfall data. On top for maximum rainfall, in the middle for total rain, and the bottom for mean intensity. For the normalisation by

event properties (event properties) and quantiles of rainfall (rainfall), the TSS is computed for each 0.01 quantile value (x axis). For the

normalisation by Mean Annual Precipitation (MAP) and the TSS value of the variable without normalisation (no normalisation), the constant

value of the TSS is indicated as a straight line across all x values.
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Figure 6. Wet quantiles of daily intensities, Mean Daily Precipitation (MDP=Mean Annual Precipitation/365) and maximum daily triggering

intensities for all the susceptible cells (rainfall cells with at least one landslide). The cells are sorted (x axis) by value of MDP, left to right

from the cell with the highest to lowest MDP. Markers show the daily rainfall intensities of triggering events for each cell.
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Figure 7. Mean antecedent rainfall over 5 (above) or 30 days (below) before the date beginning of the event. All the rainfall events are

separated into: True Positives (observed triggering events, T, which are above the cumulative rainfall-duration, ED, threshold), False Alarms

(observed non-triggering, NT, events which are above the ED threshold), Misses (observed triggering events which are below the ED thresh-

old), and True Negatives (observed non-triggering which are below the ED thresholds). The mean antecedent rainfall is computed for each

of these for each group of rainfall events and each event duration (d=1 to 6 days). Results are based on the RDI rainfall dataset, 1972-2018.
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