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Abstract. Preparedness saves lives. Forecasts can help improve preparedness by triggering early actions as part of a pre-defined

protocols under the Forecast-based Action/Finance (FbA) approach, however it is essential to understand the skill of a forecast

before using it as a trigger.

In order to support the development of early action protocols over Kenya we evaluate the 33 heavy rainfall advisories (HRA)

issued by the Kenya Meteorological Department (KMD) during 2015-2019. The majority of HRA warn counties which go on5

to receive heavy rainfall. However in general the total area warned is much larger than the extent of significant rainfall.

The three periods of flood impacts during 2018 and 2019 were all preceded by HRA, which warned the counties with

recorded losses. By contrast, none of the four flooding periods in 2015-2017 were preceded by HRA. We suggest that access

to the UK Met Office Global Hazard Map (GHM) at KMD at the end of 2017 was a key factor in this step-change in skill.

Overall we find that KMD HRA effectivly warn of heavy rainfall and flooding and can be a vital source of information for10

early preparedness. However a lack of spatial detail on flood impacts limits their utility for systematic FbA approaches. We

conclude with suggestions for making the HRA more useful for FbA, and outline the developing approach to flood forecasting

in Kenya.

1 Introduction

Like many worldwide, the Kenyan population are at significant risk from heavy rainfall-induced flooding. In the last two years15

alone flood losses and damages have been extensive. Recent examples of this include flooding during the ‘Long Rains’ sea-

son of 2018, impacts of which included the displacement of 300,000 people (OCHA, 2018), shortly followed by the ‘Short

Rains’ flooding of 2019 which induced a landslide in West Pokot, killing 72 (reliefweb, 2019). In response to this kind

of climate risk, the Red Cross Red Crescent movement has pioneered Forecast-based Action/Finance approach (FbA/F, see

https://www.forecast-based-financing.org/ for more details).20
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In the humanitarian action landscape, FbA/F sits within a wider set of approaches to anticipatory risk management which can

broadly be termed Early Warning-Early Action, of which there are many examples (see Wilkinson et al., 2018, for a review

of FbA/F initiatives). FbA/F specifically has three defining features: A set of objective pre-defined forecast triggers, which

when met activate a set of pre-defined preparedness actions, themselves funded by a dedicated finance mechanism. Together

these constitute the Early Action Protocols (EAPs) of an FbA/F system. The EAPs facilitate rapid preparedness actions to be25

implemented before the hazard event occurs, thus moving from disaster response to early preparation and reduction of potential

risks posed by the hazard event. Many FbA/F pilots are active worldwide (see Wilkinson et al., 2018, for a review of FbA/F

initiatives), and whilst it is not simple to precisely quantify the impact of such programs, evidence suggests programs can

significantly reduce individual expenses (Gros et al., 2019) along with unquantifiable benefits to lives and livelihoods.

Following the establishment of the IFRC FbA/F by DREF (Disaster Risk Emergency Fund) in December 2017 national30

Red Cross/Red Crescent societies are working to define their EAPs, for the dominant hazard types. In Kenya, this work is

facilitated through the project “Innovative Approaches in Response Preparedness” (IARP) funded by the IKEA Foundation

and implemented by the Kenya Red Cross Society (KRCS), with further support from aligned projects notably the the UK-

funded NERC/DFID project “Toward Forecast-Based Preparedness Action” (ForPAc, www.forpac.org).

Setting up a FbA/F EAP for a particular hazard (e.g. flood or drought) begins by identifying priority risks or impacts that35

can be addressed by anticipatory early action. The next step is to identify the best forecasts to use to trigger early action. In

Kenya under the IARP programme, this involved exploring a range of potential forecasts that can support anticipation of the

priority risks, and evaluating the accuracy (or skill) of the forecasts. Anticipatory actions are then selected which are consistent

with the skill of the forecast. For instance a reliable forecast of extremely high probability of imminent flooding might be an

appropriate trigger for a higher-cost intervention such as evacuation, whilst a lower probability level (with a higher chance of40

action in vain) could still be linked to a lower cost or “no-regret” action, such as repair of river dykes.

Forecast skill assessment is therefore an essential step in designing a system for FbA/F. In order to be used (in this case,

by the KRCS and national disaster management agencies), forecasts must show evidence of skill, which should be quantified.

In addition, the forecast must be readily available to the actors, from the mandated agency for providing weather forecasts

(in this case, the Kenya Meteorological Department, KMD). Finally, the forecast must be provided in such a way to be easily45

integrated within the EAP.

Through the IARP programme, a ‘menu’ of potential forecasts of flood risk has been developed for the Kenya EAPs. In

the absence of a Kenya-wide national flood forecast system (Weingärtner et al., 2018) forecasts of rainfall provide the most

appropriate proxy. One key potential forecast for heavy rainfall events that could result in flooding is the KMD heavy rainfall

advisories (HRA, described in full in Section 2.1). These text-based advisories are issued on an irregular basis by KMD, when50

forecasters’ interpretation of conditions and output of dynamical atmospheric models point to risk of heavy rainfall. These

advisories are made widely available to the public and risk management agencies in relevant counties. For example, during the

exceptionally wet Long Rains season of 2018 two heavy rain advisories were issued leading to actions by risk management

bodies including KRCS (Kilavi et al., 2018).

2

https://doi.org/10.5194/nhess-2020-122
Preprint. Discussion started: 27 April 2020
c© Author(s) 2020. CC BY 4.0 License.



As these heavy rain advisories are issued from the mandated forecasted agency they have high potential to be used in a more55

systematic manner as an FbA/F trigger in flood EAPs. However the skill of these advisories is unknown. In addition, they

are developed explicitly for heavy rainfall warnings and only implicitly warn of flooding. Here then we assess the accuracy

of the historically issued KMD HRAs and evaluate their potential to be used as a trigger in a FbA/F system for flooding.

Understanding the level of skill of the advisories supports the development of early action protocols by disaster managers.

The verification of the advisories also helps to build confidence in early warnings from subjective forecasts. Many forecasts60

of natural hazards are produced with some level of expert judgment, but this subjectivity makes verification difficult; a large

number of forecasts produced using a consistent method are rarely available for objective evaluation. Without this evalua-

tion, trust in the forecast producer determines confidence in the forecasts. However when a reasonable archive of forecasts is

available, forecast verification can help to build confidence in the use of forecast, as well as help increase trust in the forecast

producer.65

The forecast and verification data are described in the following section, along with an outline of the challenges to verification

posed by the format of the advisories and approach to meet this challenge. Results follow and the paper concludes with a

discussion of the main findings, limitations to the analysis along with recommendations for design and operation of the Kenya

EAPs and further research.

2 Data and verification approach70

2.1 Production of the KMD heavy rainfall advisories

The first HRA was issued at KMD on 2nd June 2015 after being introduced as a forecast product as part of the Severe Weather

Forecasting Demonstration Project (SWFDP) for Eastern Africa (https://www.wmo.int/pages/prog/www/swfdp/SWFDP-EA.

html). This project was implemented with support from the World Meteorological Organisation with the aim of improving

the ability of National Meteorological and Hydrological Services (NMHS) to forecast severe weather events, improve the75

lead time of early warnings and improve the interaction of NMHS with disaster managers before and during the event. The

intended audiences for these advisories are national and county risk management agencies, humanitarian organisations, relevant

ministries and the media for dissemination to the general public within areas of concern.

The decision to issue a HRA is a subjective one, informed by dynamical model output and forecaster experience. Every

day forecasters at KMD’s Severe Weather Forecasting section review forecast products from Global Producing Centres (such80

as ECMWF, NCEP, UK Met Office and Meteo France) using their judgement to produce a five-day running severe weather

forecast. The models are deterministic and probabilistic, at a range of spatial resolution from 4km to 28km. A range of mete-

orological fields are considered, including pressure and wind fields throughout the atmosphere, precipitable water, low level

relative humidity, convergence and divergence at the lower and upper levels, and convective available potential energy. Consis-

tency between model fields, observations and satellite imagery is checked to filter out unrealistic model outputs.85

This five-day severe weather forecast is based on areas expected to receive any of the following: rainfall above 50mm in 24

hours, winds greater than 25 knots or waves above 2m height. The forecasts are presented graphically as polygons, along with
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tables showing the level of risk (low, medium or high) over specified areas. At 0900Z representatives from the NMHS of all

the contributing countries of the SWFDP participate in a teleconference call to discuss the forecast and develop a consensus.

If any models indicate a raised chance of an extreme event occurring over Kenya during the next few days then a high impact90

weather conference is held at KMD by experts from the forecasting unit and a consensus advisory is drafted. A subjective

probability of occurrence is estimated based on the consensus between models, taking into account weighting of the better-

performing models (according to forecasters’ experience). Once the advisory is drafted it is sent to the Assistant Director of

forecasting, then to the Deputy Director, for review and amendments. It is finally examined and signed by the Director and sent

to the public weather service section for dissemination to the public and to risk management agencies. The Director has the95

ultimate authority for the advisory release.

We note that the forecast information used at KMD to produce the HRA has changed over the advisory period under study:

in mid-2016, KMD was granted a two year trial license to ECMWF ‘eccharts’ through the SWFDP and since August 2017

KMD began using the UK Met Office Global Hazard Map (GHM) as part of the ForPAc project. The GHM provides an at-

a-glance summary of forecast high-impact weather over the coming week (seven days), using global ensemble forecast data.100

The system visualises forecasts from MOGREPS-G and ECMWF both separately and in a multi-model ensemble forecast. The

multi-model informs summary polygons which direct forecasters to attention to potential high-impact weather.

There are no clear objective criteria triggering advisory issuance, which is subjective and depends on forecasters’ experience

and perception of model skill, consensus within the forecasting section and forecast data available.

HRA are the most frequently issued type of advisory by KMD. Advisories for strong winds, marine and temperature are also105

issued but are not considered in this study. An example of a HRA is shown in figure 1.

The advisory is text-based. It generally mentions a rainfall threshold which could be reached: sometimes this is included as a

rainfall rate (e.g. 30mm in 24 hours), otherwise an accumulation total without a rate is mentioned. Finer scale details are often

mentioned in this description, such as when within the valid period the rainfall can be expected to start for different regions.

Following the forecast description, the full list of potentially affected counties is listed, along with general instructions for110

flood preparedness (e.g. “be on the lookout for potential floods”, “avoid driving through or walking in moving water”, “people

in landslide prone areas...should be on high alert”).

The first HRA was issued in 2015 and by the end of 2019 a total of 33 had been produced. Here these HRA are digitized

with relevant information extracted: the date of issue and validity, the probability range, the rainfall threshold mentioned, along

with all counties mentioned. Details are given in table 1 and descriptive statistics are shown in figure 2. Several aspects of the115

KMD advisories demand a careful approach to verification, as detailed in the following section.

2.2 Verification approach

There are three characteristics of the HRA forecast data with important implications for the verification approach:

1. The small sample size (33 HRAs) means it is difficult to assess specific aspects of the forecast, such as reliability of

probabilities or accuracy of rainfall thresholds, descriptive statistics of which are provided in figure 2., showing for120
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example that the probability range of “33-66%” is indicated in nearly all advisories (figure 2d, used in 26 advisories)

and other probability ranges are rarely used.

2. The forecast window over which advisories are active is variable, from one to six days but most commonly out to three

days (figure 2c, 13 advisories) such that the definition of heavy rainfall for verification cannot be consistent.

3. Ambiguous spatial characteristics of the forecasted heavy rainfall. To illustrate: should we deem an advisory warning125

of 50mm of rainfall for two named counties to be a ‘hit’ if 50mm accumulated rainfall is observed (a) over single point

within at least one of the counties or (b) over the entirety of either or both counties or (c) any areal extent between

these extremes? This spatial aspect is further complicated by the wide range of size of Kenyan counties: from just over

200km2 (Mombasa) to over 70,000km2 (Turkana). The hit rate and false alarm rate would be highly sensitive to these

verification criteria.130

In order to address these issues, we take a step back and refocus on the question: would these advisories have been worth-

while for flood preparedness? We proceed by considering the advisory from the perspective of a manager responsible for

national preparedness at KRCS. First, we assume that every advisory triggers preparedness actions, independent of the rainfall

threshold or probability mentioned. Second we define the extent of the preparedness actions according to the counties men-

tioned in the advisory. Such actions are unspecified here and could range from a low-regret communication to county-level135

Red Cross volunteers to a more expensive decision to pre-position supplies. We note that by ‘ignoring’ the forecast probability

and the specific rainfall thresholds the decision to trigger action is less flexible, however following discussion in the previous

paragraph, carrying out verification based on specific thresholds is unable to provide robust statistics and precludes any mean-

ingful statement. Despite this, the approach followed is still consistent with the FbA/F approach; the action trigger is defined

as the probability of heavy rainfall (of any specific threshold) exceeding zero.140

After assuming that action was taken within the entire region under advisory for each advisory window, we then consider the

question, was this action worthwhile? There is no single answer to this question, as it depends on the specific actions along with

the individual and institutional tolerance for false alarms and misses. However following this approach we can identify clear

hits and false alarms, and can confront the advisories with ‘what really happened’. As such, our method involves answering

the following questions:145

1. How well does the total area under advisory warn of the extent of heavy rainfall? (Section 3.1)

2. What is the relative spatial extent of preparedness actions implied by each advisory? (Section 3.2)

3. How many significant flooding events in the period 2015-2019 occurred directly following a HRA? (Section 3.3)

4. How often would an FbA/F system be expected to trigger, if it were based on the advisories? (Section 3.4)

By answering these questions we determine the extent to which the KMD HRAs could guide ‘worthy’ preparedness activity.150

We address question one with a visual comparison of the total area warned under each advisory with the total rainfall

accumulation in the subsequent advisory window. Rainfall observations are taken from the Climate Hazards and Infra-Red
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Precipitation Data with Stations (CHIRPS) dataset (Funk et al., 2015). With this visual comparison we begin with a subjec-

tive assessment of the overall performance of advisories. Following this we calculate the distribution of accumulation totals

across all 5km CHIRPS gridpoints inside the polygon associated with the warned counties, quantifying the spatial extent of155

high rainfall totals for areas under advisory. In addition we show the distribution as the percentage of grid points within the

warned region receiving more than a specified rainfall threshold. Throughout the analysis we consider the rainfall accumulation

across the window defined separately in each advisory, noting here that the variable window length precludes a standardized

verification.

In addition we derive the proportion of the warned area that experienced accumulated rainfall above indicative thresholds.160

No single rainfall threshold leads to increased flood risk, which depends on many factors, both hydrometeorological and social.

Even for a single location the same amount of rainfall may cause a flood in one year but not the next. In the following analysis

we show results for 25, 50, 75 and 100mm accumulation over the advisory window and focus the discussion on results for

50mm accumulation. We do not suggest that this threshold has primacy over others; an in-depth analysis would be necessary to

determine and quantify the most relevant thresholds for flood risk in a location. Instead we take 50mm as a working definition165

to keep the discussion concise, whilst including other thresholds in the analysis for reference.

To answer question we estimate the relative scale of preparedness implied by each advisory. In practice preparedness actions

would be determined by overlaying the forecast hazard footprint with data on exposure and vulnerability to that hazard. Many

different actions are possible, targeting different groups and we do not attempt to evaluate the cost of specific actions. Instead

we aim at a broad indication of the relative amount of preparedness appropriate for each advisory. One way of doing this170

would be to derive the total area of all the counties warned in each advisory as a proxy for the scale of preparedness action

required. However population density per county is highly variable (ranging from 12 people/km2 in Turkana to over 4,000

people/km2 in Mombasa), and so this proxy is likely to overestimate the required intervention where population density is low

and underestimate where it is high. Instead then we based this estimate on the total population living in each advisory region.

Population data is taken from the 2015 estimate from the Gridded Population of the World dataset produced by NASA175

SEDAC dataset at 2.5 arc minute resolution (CIESIN, 2018). We use the total population living in the warned area as a proxy

for the number of people likely to benefit from flood preparedness actions in the region, allowing a comparison of the extent

of preparedness action required between advisories. For instance an advisory active where 30 million people live is likely to

require significantly more preparedness than an advisory relevant for only one million people. We then assess the amount of

rainfall falling in the specific areas where people live and estimate the percentage of the ‘prepared people’ who received above180

threshold rainfall. From this we can show the relative ‘worthiness’ of each preparedness action: assuming that when flood

preparedness assistance is given in a location and significant rainfall follows the action is considered worthy.

Clearly this estimate of the scale of preparedness is only relative and not absolute, as not everyone living in a region will

be seriously affected by heavy rainfall and require flood assistance. In addition this approach carries the relatively strong

assumption that the percentage of people exposed to flood risk is relatively constant across counties. If estimates of population185

at risk from flooding were available they could be used to improve the estimate, however in the absence of this data our

approach broadly indicates the relative extent of preparedness associated with each advisory.
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This analysis quantifies the extent of rainfall accumulations, and estimates the relative scale of the actions which each

advisory may trigger. However heavy rainfall is not the only factor in flooding (Amoako and Frimpong Boamah, 2015), and

does not always lead to flooding. Comparing the advisories only to rainfall observations does not therefore fully evaluate their190

effectiveness for flood preparedness. To do this, we address question 3 and identify flooding events with significant impacts

over the period and determine those which were preceded by advisories.

We use the EM-DAT database to extract all significant flood events over Kenya from the date of the first HRA until the end

of 2019 (EM-DAT, 2020). EM-DAT collects data on the occurrence and effects of mass disasters globally, and require at least

one of the following four conditions for inclusion in the database:195

– 10 or more people dead;

– 100 or more people affected;

– The declaration of a state of emergency

– A call for international assistance

Eight significant flood events in Kenya are found in EM-DAT for the period June 2015 to December 2019. We remove the200

Solai earth dam collapse of May 2018, as the key reasons for collapse were non-meteorological (including lack of maintenance,

and an outdated design, NECC, 2018). Accumulated rainfall in the weeks before the event was a factor as it led to saturation

of the soil: longer lead time subseasonal and seasonal forecasts (along with close monitoring of rainfall accumulation and soil

moisture overlaid with locations of earth dams) may have provided some early warning of the potential for collapse. However

the week directly preceding the dam burst did not receive heavy rainfall in the county (Kilavi et al., 2018) and so no HRA205

directly preceding the event should have been expected. Also we merge the two EM-DAT entries beginning 14th March 2018

as they relate to the same period of heavy rainfall. This leaves six flood events from EM-DAT, to which we add the landslide

recorded of November 2019 as this was directly triggered by a period of heavy rainfall.

We note that the EM-DAT inclusion criteria preclude smaller scale events from the database (Gall et al., 2009). For instance

a flood leading to fewer than 10 / 100 people dead/affected would not be included, nor would a flood which leads to significant210

loss of property. This suggests that the lack of an EM-DAT record following an advisory does not necessarily mean that flood

impacts were not felt, which advance preparedness may have helped to mitigate. In addition we report EM-DAT mortality

statistics as a broad indication of the impact of flooding events, however we note discrepancies with other official sources of

information, find that sub-national locations of impact and total numbers do not always agree. However despite these inevitable

uncertainties in the details, we take the EM-DAT events to represent the most significant flood impacts in Kenya in recent215

memory and those which an early warning system should anticipate.

We finish the analysis by addressing question four and determine the number of times a FbA/F system based on HRAs might

be expected to trigger in each county, assuming action is triggered by a HRA , but also assuming that an action has a ‘lifetime’

where the system will not be triggered again if it has not recently been triggered.
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3 Results220

3.1 How much rain fell in counties under HRA?

We begin by identifying the total area of all counties named in each HRA, and comparing this with the accumulated rainfall

over Kenya during the advisory valid window. For convenience, advisories are labelled (A-Z, followed by A’ to G’) in table 1

and these labels are used from this point.

Figure 3 shows all the advisories and the resultant accumulation. From a visual comparison, we see that eighteen advisories225

provide a good forecast of all areas going on to receive at least 50mm rainfall accumulation (A, F, H, J, K, L, P, R, S, Y, Z, A’,

B’, C’, D’, E’, F’ and G’). For these advisories preparedness is most likely to have been considered worthy, and local actions

based on these advisories are likely to be hits.

Nine advisories do successfully warn of heavy rainfall in some areas, whilst failing to warn other counties which received

similar amounts (G, I, M, N, O and T, V, W, X). In these cases preparedness may have been considered worthy, although230

preparedness would not have reached all those potentially affected by flooding, with risk of missed events and therefore failing

to act.

Five advisories warned the “wrong” counties, where more accumulation was seen in unwarned counties than those receiving

warnings (C, D, E, Q and U). One advisory (B) warned coastal counties of heavy rain yet 20mm fell in during a two-day

window, a relatively normal amount for the region. For these six advisories it is unlikely that preparedness triggered by the235

advisories would be considered worthwhile, instead would possibly be seen as false alarms and misses.

Next, we consider the rainfall distribution across these regions under advisory. Figure 4(a) shows the rainfall accumulation

across the warned region for each advisory, presented as the distribution over the sample of 25km2 CHIRPS gridpoints. Figure

4(b) shows the percentage of the warned area which receives rainfall accumulation above thresholds 25, 50, 75 and 100mm. We

see that for the vast majority of advisories (29 out of 33), less than 50% of the warned area received over 50mm. This implies240

that for any point location falling in an area under advisory there is quite a reasonable chance that no ‘significant’ accumulation

will be seen. This is inevitable for rainfall early warnings, particularly in a region with a large contribution from small-scale

convection, leading to high spatial variability in rainfall totals. As the advisories associate each warning with a probability,

these findings are quite consistent.

From a meteorological perspective then we find the advisories to be relatively good indications of heavy rainfall: 18 suc-245

cessfully warned those regions which did receive heavy rainfall, nine provide warning for some regions but miss other regions,

whilst only six of 33 are unlikely to be useful for early preparedness actions. However at the same time, nearly all ‘good’

advisories warn significantly larger areas compared to the areas which go on to receive heavy rainfall.

We next turn to potential actions triggered by the advisories; estimating the relative extent of preparedness action implied by

advisories along with the potential public perception of the actions based on locally experienced rainfall.250

8

https://doi.org/10.5194/nhess-2020-122
Preprint. Discussion started: 27 April 2020
c© Author(s) 2020. CC BY 4.0 License.



3.2 What is the extent of preparedness action implied by advisories?

We use gridded population estimates from NASA SEDAC to estimate the extent of preparedness implied by each advisory.

Population density is shown in figure 5 for reference. This is integrated across the warned region for each advisory to estimate

the total number of people warned by the advisory, shown as the black stars in figure 6(a). This calculation represents an

extreme upper bound on the number of people requiring assistance, since vulnerability to heavy rainfall is not felt equitably.255

However the numbers do allow an order-of-magnitude comparison of the extent of action required between advisories.

Significant variability in the extent of the warning is apparent: eight advisories cover nearly the entire country and warn

at least 24 million people and six warn around 15 million. The rest warn fewer than 10 million people and of these, the

warning from 14 advisories is ‘only’ targeted at fewer than 5 million people (these smallest scale warnings are generally when

only warnings for coastal counties are active). This demonstrates that if flood preparedness based on advisories is undertaken260

nationally then the extent and cost of preparedness action taken based on advisories will vary significantly.

To evaluate the extent to which this preparedness would have been perceived as worthwhile, we also show the number of

people living in a warned area which then went on to receive accumulation of 25, 50, 75 or 100mm. These results are also

shown in figure 6(a), whilst figure 6(b) presents these values as a percentage of the population warned which received rainfall

above each threshold. Since these scores are conditioned on population, they are highly sensitive to the underlying population265

density. They will only be improved if heavy rain falls on a populated area, and this improvement will be higher if the area

is more densely populated. In this way we move beyond purely meteorological verification and take into account real-world

implications of acting on a forecast. This also considers the potential response of beneficiaries of flood preparedness: if flood

preparedness is carried out in a region that subsequently receives significant rainfall, most people will see the preparedness as

worthwhile. Conversely, people are more likely to see the action as a false alarm if no significant rainfall falls where they live.270

Focusing again on 50mm accumulation as a nominal threshold for increased flood risk, we see several advisories for which

most people receiving early preparedness would not have seen significant rainfall. For eight advisories (A-E, P, Q and U) less

than 10% of those receiving assistance would have seen more than 50mm; these are unlikely to be seen by most as worthy

actions. A further seven (G, K, N, R, V, Z and G’) fare a little better, with between 20-30% of those receiving assistance

perceiving it to be worthwhile. The remaining 18 would have seen significant rainfall for at least 40% of those receiving275

assistance, with five of these advisories (M, T, X, C’ and E’) seeing significant accumulation for at least 70% of those assisted.

Notably by this metric the first five advisories (covering mid 2015 to mid 2017) are among the worst-performing.

3.3 Did advisories precede significant impacts of heavy rainfall?

We now turn to observed impacts of heavy rainfall and compare the seven events selected from the EM-DAT database with any

relevant advisories. We consider an advisory to be relevant if it was issued in the seven days preceding the indicated start date280

of the impact, since early preparation triggered by that advisory would have been in place for the onset of the event. We do

not require the heavy rainfall window to explicitly overlap with the recorded period of impact, allowing for some lag between
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heavy rain and flooding. The locations and details of the events are plotted in figure 7, which also shows the counties mentioned

in any relevant advisories as defined above (if any). These seven events are now discussed in turn.

Figure 7a shows the significant flooding which occurred across Kenya in December 2015 during the large 2015 El Niño285

event, which peaked in December. This event led to the most number of deaths recorded in the sample (112). No HRA was

issued at any point before or during this event, or during the season as a whole. Notably seasonal forecasts did indicate an

increased risk of a particularly wet season; although as a whole, the seasonal rainfall anomalies were smaller than previous

comparable El Niño events (Siderius et al., 2018; MacLeod and Caminade, 2019).

Figure 7b represents a smaller event in Turkana county, caused by intense rainfall on a single afternoon (10th March 2016).290

This rainfall led to river overflow, three deaths, displacement of 1,000 people and loss of livestock. No HRA was issued for

this event.

The third event (figure 7c), occurred at the end of April 2016. This flooding impacted over 10,000 people across semi-arid

counties in the north (Turkana, Marsabit and Wajir) along with Nairobi. In Nairobi the rainfall triggered the collapse of a

building in the Huruma estate (a building which was not constructed to safe standards), ultimately leading to 52 deaths. In295

advance of this period, a HRA was issued by KMD (advisory C here), however warnings were given for coastal and parts of

Western Kenya and not for those counties most seriously impacted. KRCS did trigger an early response based on this advisory,

activating response teams and sending out warnings via SMS to communities living in lowland areas. Although no heavy

rainfall was directly experienced in those regions for which the response was triggered, the action was felt to be worthwhile at

KRCS, as some flooding was experienced later due to Tana River bursting its banks after heavy rainfall in the central highlands.300

The next EM-DAT event occured in May 2017 (figure 7d). This involved coastal counties along with some in the central

highlands and some in the west. 26 deaths were recorded with over 25,000 affected for this event, during which a reported

235mm of rain fell on Mombasa in a 24 hour period between 8-9 May. Although an advisory for coastal counties was issued in

late April (advisory E), the valid period was a single day which saw little accumulation in the warned counties. This advisory

also predated the beginning of observed flood impacts by over a week and so we do not consider it to have provided adequate305

warning of the impacts.

Figure 7e shows the impacts of heavy rainfall during the 2018 long rains season, which has been evaluated in depth elsewhere

(Kilavi et al., 2018; Finney et al., 2019). Widespread flood impacts were seen across the country, beginning on 14 March and

extending throughout the month. Two advisories were issued during March (advisories K and L). The first was issued on the

9th and covered the period 13-15th and a follow-up was issued on the 15th, covering the period 16-19th. Both of these periods310

saw significant rainfall accumulation (see figure 3, and Kilavi et al., 2018). Every county noted in EM-DAT as experiencing

flood impacts was mentioned in these advisories, except for Mandera in the extreme northeast of Kenya.

Figure 7f shows impacts occurred from 17-24 October during the short rains 2019. Flash floods, landslides and riverine floods

were reported in Turkana, Wajir and Elgeyo-Marakwet counties. Two advisories were issued preceding this event (advisories Z

and A’). The first was issued on the 10th, covering the period 10-14th and a second was issued on the 14th, covering the period315

16-20th. Counties with reported flood impacts were all mentioned in these HRAs.
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The final event in the sample also occurred during the 2019 short rains: a landslide in West Pokot on the 23rd November

(figure 7g). This occurred following heavy rainfall across many counties, for which a warning was issued several days ahead

of the event 18th November, covering the 19-24th of the month (advisory C’).

In summary, the first three recorded events in the study period were not well warned by advisories. The fourth event in May320

2017 was preceded by a warning, but it did not target the counties with significant flood impacts. The final three events in

2018 and 2019 were all preceded by advisories correctly targeting the counties which saw major impacts from heavy rainfall;

the lead time between the first advisory and the recorded start of the impacts for these three events was five, seven and five

days respectively. Advisories issued in 2018-2019 therefore gave effective warning to areas experiencing significant flooding

impacts, whilst the earlier advisories did not. This suggests that in recent years advisories have the potential to act as a trigger325

for an FbA/F system. However it should be recalled that the warned area is often much larger than the area experiencing heavy

rainfall (see figures 4, 6, 7). Even those advisories leading to worthy action where impacts are felt will also simultaneously

trigger in many places which do not require early preparedness, and these ‘actions in vain’ may be quite expensive in highly

populated regions such as West Kenya. In the next and final section, we turn to a practical consideration of basing such a system

on advisories and estimate how often such a system might be expected to trigger.330

3.4 How often would an FbA/F system based on advisories trigger?

An important consideration in setting up an FbA/F system is how frequently it can be expected to be activated. It is desirable

to prepare for all significant events, however more frequent triggering limits the cost of actions if the system is to remain

financially sustainable. Here we estimate how often such a system might trigger.

Naturally the number of advisories will fluctuate year to year, depending on climate variability. However 2018 and 2019335

could reasonably indicate the potential number of activations of a FbA/F system, given that they both experienced significant

rainy seasons (with 11 advisories issued in 2018 and 13 in 2019, figure 2a). For low-cost actions such as targeted communi-

cation of the warning to vulnerable communities this may be an acceptable number of triggers, and results from section 3.3

suggest that these would successfully warn against all significant flood events. A key requirement of the advisories is to warn

the vulnerable public of significant hazards and so for this purpose the frequency of issuance is appropriate to the cost of the340

warning.

In the FbA/F context, the advisories could be used to instigate actions from response organizations and disaster management.

Several actions have already been identified as potentially forming part of an EAP (Maurine Ambani, personal communication):

– Enforcement of barriers for people not to cross rivers or places where there is usually fast flowing water

– Provision of water containers and water treatment345

– Provision of vouchers to affected populations to access water treatment tablets, containers and treated mosquitoes nets

These kinds of actions would have significant costs, and so more than ten triggers in a year may not be realistic. However

on the other hand, for such actions triggering on every advisory may not be necessary. Frequently an advisory is issued which
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follows on from another, describing a continuing rainfall event (e.g. J-L, M-O, C’-G’). Significant flood preparedness may not

need to be carried out for each individual one of the advisories in sequence as actions of this nature will have a “lifetime”350

that may span the interval between several consecutive issued warnings (Coughlan de Perez et al., 2016). For example, river

defenses will still be effective several weeks after action is taken to repair or reinforce them.

The impact of action lifetime on trigger frequency is illustrated for each county in 2019 in figure 8. Here we assume that

the action will not be repeated if another advisory follows closely after the action is triggered. The number of total actions is

shown, assuming an action lifetime of one, two, three or four weeks. Note that we consider multiple chained advisories such as355

C’-G’ as triggering a single preparedness action, since after the first days of heavy rain activity will have already moved from

preparedness to response mode.

With an action lifetime of one week most counties would have triggered four times in 2019. With a longer lifetime the system

activates less often and in the longest case of four weeks no county would have activated in 2019 more than twice (on average,

once for each of the rainy seasons).360

4 Discussion and recommendations

Here we have evaluated the KMD HRAs. This has been done from the perspective of a humanitarian agency such as KRCS, as

if the advisories were used to initiate a preparedness protocol such as FbA/F in order to reduce risks related to heavy rainfall.

Such EAPs for a national flood FbA/F system are currently being developed. Our assessment of the advisories has considered:

– the relationship between area warned and the subsequent rainfall received365

– the scale of preparedness triggered by the advisories, and the perception of the actions based on locally experienced

rainfall

– whether the most significant recent flood events followed HRAs

– how frequently an FbA/F system could be expected to trigger

We now draw some general conclusions and provide some recommendations for improvement of the HRAs and outline the370

development of flood risk forecasting in Kenya.

4.1 Conclusions

Advisories issued in the ‘early period’ (from the first in 2015 through to 2017 inclusive) do not appear to be particularly

effective for preparedness for flood or heavy rain impacts. For each of the nine advisories that were issued in this early period

the counties which were warned did not generally receive significant amounts of rainfall. Furthermore, four significant flood375

events were reported in this period and none were anticipated by any advisory. We conclude then that it is unlikely that

conducting preparedness actions based on advisories between 2015-2017 would have effectively reduced flood or heavy rain

impacts.
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However we note evidence of an improvement in the potential utility of advisories in the more recent period 2018-2019,

where they were more frequently issued. Notably these years had particularly wet seasons, March-May 2018 and October-380

December 2019. More than half of the advisories led to at least 40% of all people warned receiving more than 50mm accumu-

lation. In addition, all three of the periods in these years which saw significant mortality directly associated with heavy rainfall

which were well-warned by advisories. We conclude then that advisories issued across 2018-19 were particularly skillful at

anticipating heavy rainfall, and that preparedness actions based on these could have led to reductions in the impacts of the

worst floods in this period. If the performance of advisories over this period is indicative of future performance, then they have385

the potential to effectively warn of all significant flooding impacts in Kenya.

One factor in the poor performance in the early period may be the novelty of the system. The first advisories were issued in

2015 and it may have taken some time to develop the systems and expertise and gain confidence in issuing advisories. Another

explanation for the change in skill is the evolving access to forecast information from global models at KMD.

In mid-2016, KMD was granted a two year trial license to ECMWF ‘eccharts’ through the SWFDP which is reported to have390

been crucial in informing the advisories released during that period (Mary Kilavi, personal communication), and particularly so

during the long rains 2018 (advisories J-Q). In addition the GHM in use since August 2017 has provided a multi-model easy-

to-interpret visualization of potential severe weather. Evaluation has shown that multi-model forecasts outperform individual

models for extreme precipitation (Robbins and Titley, 2018). The availability of a higher skill multi-model forecast at KMD

in an easy-to-interpret format may then be a factor in the significant improvement in skill of advisories during 2018 and 2019.395

Indeed, it is reported that the GHM was a key source of information for the advisories which were issued in advance of all

three significant heavy rainfall impacts reported during 2018 and 2019 (figure 7e-g). See also Kilavi et al. (2018) for analysis

of the GHM forecasts use during the 2018 ‘Long rains’.

Overall we demonstrate here in the first systematic verification conducted of the HRA that they have skill. We find that an

increase in skill over time, and that they have anticipated the most significant flood events during 2018 and 2019. However, we400

also find they lack spatial precision on the precise location of heavy rainfall impacts, which may limit their use as a trigger in

KRCS EAPs.

4.2 Recommendations

Though the HRA have skill, their likely utility will clearly depend on the specific context of use. Their intended purpose is to

alert county governments, other agencies and the general public of the possibility of heavy rainfall. For this purpose they are405

effective: they are widely disseminated, the text identification of counties under advisory requires no technical knowledge to

understand, and most importantly, they have skill. Indeed, Kilavi et al. (2018) note dissemination and use of HRA during the

Long Rains 2018.

As a source of information for a systematic FbA/F system for flooding, the advisories have several useful characteristics

for KRCS: they are produced by the national mandated agency for weather forecasting, they are readily available at no cost,410

and being text-based, they require no specific knowledge for interpretation. However it is likely that they are not suitable for

triggering a KRCS EAP for flood. The county-scale warning limits the spatial precision of interventions and the frequency of
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the triggering per county is likely to be too high for FbA/F, which is intended to target extreme events with a return period of

one in five years or greater. In addition, the HRA only provides a general picture of potential flood impacts, without taking into

account any local hydrological conditions. However given the clear skill of HRA found here, there is clear scope of KMD to415

develop these in the context of Impact-based Forecasting (WMO, 2015): here we make some recommendations for improving

the HRAs and the flood forecasting from the perspective of stakeholders such as KRCS.

4.2.1 Developing the HRAs

The probabilistic information in the HRA should be improved. A single category 33-66% is issued in nearly all advisories

which limits options for preparedness actions. More diverse and precise probabilities would allow a range of increasing levels420

of preparedness activities, where high-cost actions are only triggered for the highest probabilities. Of course it is essential that

these probabilities are reliable, and a relatively low frequency of subjectively developed forecasts makes this aspect of the

forecast difficult to evaluate. However the use of historical forecasts and hindcasts from ensemble forecasting systems used

in the GHM (Robbins and Titley, 2018), currently in use at KMD, would help to establish the reliability of probabilities and

provide a scientific basis for issuing more specific heavy rainfall probability forecasts. Analysis of these dynamical models425

should also evaluate their performance for the four flooding events in the early period of the KMD advisories (figures 7a-d) to

see if these systems did capture these events.

The heavy rain warning area could also be more precise, by providing it as a free-shape rather than administrative county

boundaries. Whilst naming counties in the advisory is essential for communication to the public and to county government

disaster risk management structures, the precise area of heavy rainfall areas will not align with administrative boundaries and430

so warning whole counties will tend to overestimate the total area expected to experience rainfall. Such warning polygons

are generated by the GHM, already in use at KMD and forecasts could be based upon this. KRCS could then overlay these

with maps of population exposure and vulnerability to flood risk, in order to further narrow down targets for intervention. This

would then provide the building blocks of an Impact-based Forecasting system, following WMO guidelines WMO (2015).

Finally many preparedness actions are limited by the lead-time of the HRA. They are often issued in the morning of or the435

day before the expected start to the rainfall, leaving a small window to coordinate and implement preparedness. A longer lead

heavy rainfall forecast would extend the scope of preparedness actions. Currently the time afforded by existing 7- and 5-day

forecasts from KMD could be used by KRCS to prepare higer-cost actions, which are finally triggered upon the issuance of

a HRA for the next few days. This approach would be analogous to the ready-set-go approach of the Red Cross designed to

integrate seasonal forecasts into decision making, adapted to a much shorter overall anticipation window (Bazo et al., 2019).440

However the provision of forecasts at even longer lead-time could further enlarge the window for preparedness.. For instance,

subseasonal forecasts have been shown to have skill out to several weeks ahead (Vitart et al., 2017) and there is clear potential

for warnings on this timescale to inform humanitarian preparedness (White et al., 2017), Evaluation of these timescales is

being carried out as part of the ForPAc project which has identified potential utility over Kenya and these subseasonal forecasts

are currently being trialed at KMD after being made available in real-time as part of phase two of the S2S project (Kilavi et445
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al. 2019, MacLeod et al. in preparation). The longer lead time of these rainfall forecasts can afford KRCS more flexibility and

potential for early preparedness.

4.2.2 Improving flood forecasting

Explicit modelling of local hydrology is necessary to provide accurate forecasts of flood risk, rather than reliance on rainfall

forecasts alone. Although here we do find that HRAs warn of the most significant flooding events (consistent with the analysis450

of Robbins and Titley (2018), who also find a good relationship between precipitation forecasts and heavy impacts across the

globe), it is unlikely that flood impacts will always be felt after heavy rainfall. Or indeed it is not the case that heavy rainfall is

always necessary to trigger flood impacts, which can occur with ‘normal’ rainfall if the soil is already saturated (MacLeod et al.,

in preparation). Accurate characterisation of flood impacts requires consideration of non-meteorological and non-hydrological

factors.455

A unified national flood modelling and forecasting system would would provide KRCS with a standardized view of flood risk

across the country, however KMD do not yet have such a system and different approaches are being followed in different basins.

Flood forecasting is most developed for the Nzoia basin of western Kenya, where a three-day forecast produced by a basin-

scale hydrological model based on monitoring of basin rainfall and soil moisture along with a short range rainfall forecast.

Substantial new investment is being made in flood forecasting in Kenya, notably under the World Bank-supported Water460

Security and Climate Resilience project, which will both upgrade the Nzoia flood forecasting system with a new hydrological

model software and will support an extension of river flood early warning systems to other main river basins of Kenya, including

upgraded hydro-meteorological observation networks supporting hydrological flood forecast models. This will help to provide

more targeted relevant flood forecasts, and as the hydrological monitoring network is expanded this will help to evaluate the

background level of flood risk, supported by new hydrological model simulations. Other parallel related activities include: the465

SHEAR HiPac project, which for the Nzoia river basin will map inundation risk in high resolution and link this to forecasts

from the existing system; the EU-supported ECHO project for the Tana River.

In the absence of readily available flood forecast information from the NMHS covering the entire country, some na-

tional Red Cross societies are now considering the use of ECMWF GloFAS flood forecasts (see Alfieri et al., 2013, and

www.globalfloods.eu) to trigger flood EAPs. In Kenya, GloFAS may be an appropriate product whilst the basin scale flood470

forecasting remains under development in Kenya and there remains no unified national flood forecasting system. Whilst Glo-

FAS is advantageous as it is freely available with national coverage, the GloFAS forecasts are unable to take advantage of

real-time local hydrological observations to initialise the model, limiting the forecast skill. A locally-calibrated model which

assimilates initial hydrological states would likely provide the optimal basin-scale flood risk forecast. In addition the need for

GloFAS forecast verification remains outstanding for most basins. KRCS should work with relevant organisations to undertake475

this analysis. Further, use of GloFAS should be sensitive to issues of national ownership of warnings systems.

Ultimately the evaluation of HRA presented here should be put in the context of flood preparedness systems such as the

KRCS flood hazard EAPs. It points to the need, now widely recognised, for strengthened co-production of forecast informa-

tion and products which support the effective uptake of forecasts into risk management systems. In Kenya, recent projects
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exemplify this approach including ForPAc, WISER SCIPEA and W2SIP, whilst the national Early Warning-Early Action plat-480

form convened by KRCS in September 2019 brought together relevant national actors. Co-ordinated verification of existing

forecast products such as the HRA presented here will help to integrate these into systematic preparedness activities. Whilst in

this case the current form of the HRA may preclude their use as a trigger for the KRCS EAPs, they are able to effectively warn

of heavy rainfall and should therefore take a key role in a seamless approach toward mitigating the risk from risks associated

with heavy rainfall across Kenya.485
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Figure 1. An example of a heavy rainfall advisory issued by KMD.
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Figure 2. Summary statistics of advisories issued over 2015-2018. Showing (a) the number of advisories issued per year, (b) the rainfall

threshold mentioned, (c) the length of the valid period and (d) the probability mentioned.
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Figure 3. (a) Counties with active warnings for each of the 33 heavy rainfall advisories issued by KMD during 2015-2018 (advisory details

are given in table 1). (b) Rainfall accumulations (mm) during each advisory window, based on CHIRPS.
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Figure 4. How much rain fell in counties under advisory? (a) Rainfall accumulation during advisory window, showing distribution over

all 5km gridpoints within counties mentioned in advisory (dark/light shading shows inner/outer quartiles and dot indicates the median. (b)

Percentage of each advisory region where rainfall accumulation was above 25, 50, 75 or 100mm.
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Figure 5. Population density over Kenya, from the Gridded Population of the World Database produced by NASA SEDAC CIESIN (2018))
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Figure 6. What is the extent of preparedness action implied by advisories? (a) The total population living in the warning region (black star)

and the number living in that region also receiving at least 25, 50, 75 or 100mm rainfall over the advisory window. (b) Percentage of the

population living in the advisory region and also receiving above-threshold rainfall.
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Figure 7. Were the most significant impacts of heavy rainfall preceded by advisories? Showing all seven relevant events extracted from

EM-DAT across the advisory period (see section 2.3 for details of event selection). Counties reporting impacts are shown in orange, whilst

hatching indicates counties for which warnings were active when the impact was recorded to have begun.
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Figure 8. How many times per year might an FbA/F system based on advisories trigger? Showing the number of potential triggers per

county during 2019: here we assume that an action is triggered if an advisory is issued, as long as no action had already been triggered in the

preceding one, two, three or four weeks (a-d).
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Table 1. Summary of all advisories 2015-2019 evaluated in this study

Label Issue date Period length Largest rainfall threshold mentioned Probability indicated

A 2nd June 2015 2 50mm 33-66%

B 2nd July 2015 2 50mm 0-33%

C 25th April 2016 2 50mm 80-100%

D 18th April 2017 2 50mm 33-66%

E 28th April 2017 1 50mm 70-89%

F 18th September 2017 3 50mm 80-100%

G 11th October 2017 3 50mm 33-66%

H 30th October 2017 2 50mm 33-66%

I 2nd November 2017 4 30mm 66-100%

J 27th February 2018 3 50mm 33-66%

K 9th March 2018 4 40mm 0-33%

L 15th March 2018 4 50mm 66-100%

M 27th April 2018 5 40mm 33-66%

N 2nd May 2018 3 50mm 33-66%

O 7th May 2018 3 50mm 33-66%

P 20th May 2018 1 50mm 33-66%

Q 30th May 2018 1 30mm 33-66%

R 4th June 2018 3 40mm 33-66%

S 24th September 2018 3 50mm 33-66%

T 23rd October 2018 3 40mm 33-66%

U 25th March 2019 3 30mm 33-66%

V 3rd May 2019 4 40mm 33-66%

W 7th May 2019 5 30mm 33-66%

X 22nd May 2019 3 40mm 33-66%

Y 31st May 2019 6 40mm 33-66%

Z 10th October 2019 5 20mm 33-66%

A’ 14th October 2019 5 40mm 33-66%

B’ 23rd October 2019 6 20mm 33-66%

C’ 18th November 2019 6 40mm 33-66%

D’ 23rd November 2019 3 30mm 33-66%

E’ 28th November 2019 6 30mm 33-66%

F’ 3rd December 2019 3 None 33-66%

G’ 6th December 2019 3 20mm 33-66%
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