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Abstract 19 

   Himawari-8 is a new generation geostationary meteorological satellite launched 20 

by Japan Meteorological Agency (JMA). It carries the Advanced Himawari Imager 21 

(AHI) onboard, which can continuously monitor high-impact weather events with 22 

high frequency space and time. The assimilation of AHI radiance data was 23 

implemented with the three-dimensional variational data assimilation system of 24 

Weather Research and Forecasting model (WRF-3DVAR) for the analysis and 25 

prediction of Typhoon Soudelor (2015) in the Pacific Typhoon season. The effective 26 

assimilation of AHI radiance data in improving the forecast of the tropical cyclone 27 

during its rapid intensification has been realized. The results show that after 28 

assimilating the AHI radiance data under clear sky conditions, the typhoon position in 29 

the background field of the model is effectively corrected compared with the control 30 

experiment without AHI radiance data assimilation. It is found that the assimilation of 31 

AHI radiance data is able to improve the analyses of the water vapor and wind in 32 

typhoon inner-core region. The analyses and forecasts of the minimum sea level 33 

pressure, the maximum surface wind, and the track of the typhoon are further 34 

improved. 35 

Key words: Weather Research and Forecasting model; Three-Dimensional 36 

Variational Data Assimilation; AHI Radiance Data; Typhoon 37 
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 1. Introduction 39 

 In recent years, although researchers have made great progress in the field of 40 

numerical weather prediction (NWP), the huge challenges are encountered in the 41 

accurate forecasts of tropical cyclones (TCs) with rapid intensifications (DeMaria et 42 

al., 2014). The predictability of these TCs is limited because it entails complex 43 

multi-scale dynamic interactions (Minamide and Zhang 2018). These interactions 44 

include environmental airflows, TC vortex interactions, atmosphere-ocean 45 

interactions, and the effects of mesoscale and micro-convective scale, together with 46 

the microphysics and atmospheric radiation. In order to attain a better initial condition 47 

and improve the accuracy of the forecast, data assimilation seeks to fully utilize the 48 

observations. The life span of most TCs is over the ocean where conventional 49 

observations are relatively insufficient compared to the land. Therefore, by analyzing 50 

observed data from satellites and planes over the ocean, it is crucial to adopt effective 51 

data assimilation (DA) methods to improve the analysis and forecast of TCs. 52 

 With the rapid development of atmospheric radiative transfer model, many 53 

numerical weather prediction centers have adopted variational DA method to 54 

assimilate a variety of radiance data from different satellite observation instruments 55 

(Bauer et al., 2011; Buehner et al., 2016; Derber et al., 1998; Hilton et al., 2009; 56 

Kazumori et al., 2014; McNally et al., 2006; Prunet et al., 2000; Pennie, 2010). These 57 

data can take up 90% of all data used in global DA system and can improve the 58 

accuracy of the numerical model results strikingly (Bauer et al., 2010). Some 59 
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researches demonstrated that in global model, satellite radiance DA makes more 60 

contribution to improving the accuracy of the numerical model results than 61 

conventional observation DA does (Zapotocny et al., 2007). 62 

 Generally speaking, radiance data are derived from microwave and infrared 63 

detecting instruments, which are from polar-orbit satellites and geostationary satellites, 64 

respectively. Polar-orbit satellites cover the sphere of all the earth, thereby suitable for 65 

global NWP models (Jung et al., 2008). Besides, they have finer resolutions compared 66 

to geostationary satellites (Li et al., 2017; Shen et al., 2015; Xu et al., 2013). However, 67 

it is highlighted that they are not able to perform continuous monitoring over a fixed 68 

area, thus leaving out some rapidly intensified TCs or storms. On the contrary, 69 

because geostationary satellites have a fixed location related to the earth’s surface, 70 

although their resolutions are lower than that of polar-orbit satellites, they can capture 71 

the formation and development of mesoscale convective systems by continuous 72 

monitoring (Montmerle et al., 2007; Stengel et al., 2009; Zou et al.,2011). 73 

 Geostationary satellites are able to continuously detect a region at a higher 74 

frequency, thus observing TCs over the vast ocean effectively. In fact, they can 75 

capture convective spiral cloud systems relating to TCs. As the first new generational 76 

geostationary satellite, Himawari-8 plays a pioneering role for the geosynchronous 77 

imagers to be launched in US, China, Korea and Europe. It has an advanced imager 78 

called Advanced Himawari Imager (AHI) with 16 visible and infrared bands, 79 

including 3 moisture channels, which can conduct a full-disk scan every 10 minutes. 80 
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Meanwhile, it can also acquire regional scanning images and that is to say it can scan 81 

the Japan and the target areas every 2.5 minutes. Compared to the early 82 

geosynchronous imagers, AHI has more spectrum bands and this can monitor the state 83 

of atmosphere with a higher frequency.  84 

 In recent years, some experts and scholars have carried out some studies on the 85 

data assimilation of geostationary satellite observations. Firstly utilizing GSI 86 

(Gridpoint Statistical Interpolation) from NCEP (National Centers for Environmental 87 

Prediction), Zou, et al (2011) conducted direct assimilation on imagers’ data from 88 

GOES-11 and GOES-12 to estimate their potential influences on QPF (quantitative 89 

precipitation forecasts) of coastal regions in the eastern part of American. They found 90 

that assimilating radiance data from GOES’s imager has a remarkable improvement 91 

on 6 to 12 hour’s QPF near northern Mexico Gulf coast. Their work was continued by 92 

Qin, et al (2013), which put thinned radiance data into GSI system to make a 93 

comprehensive investigation on the issue on combined assimilation of GOES Imager 94 

data together with AMSU-A (Advance Microwave Sounding Unit-A), AMSU-B 95 

(Advance Microwave Sounding Unit-B), AIRS (Atmospheric Infrared Sounder), 96 

MHS (Microwave Humidity Sounder), HIRS (High Resolution Infrared Radiation 97 

Sounder), GSN (GOES Sounder). The results showed the effect of single assimilation 98 

of AHI radiance data are better than combined assimilation in term of precipitation 99 

forecast. Zou, et al (2015) adopted the GSI system to assimilate radiance data from 100 

four infrared channels on GOES-13/15 and set up two experiments for comparison. A 101 
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symmetric vortex was used for initialization in the first experiment and an asymmetric 102 

counterpart for the other experiment. Results showed that direct assimilation of 103 

GOES-13/15’s radiance data could yield positive effects on the track and intensity 104 

forecasts of hurricane “Debbie”. As the new instrument of himawari-8, there are few 105 

studies on the DA of himawari-8 data. Ma, et al (2017) used 4DEnVar 106 

(four-dimensional ensemble variational) DA in NCEP’s GSI system to assimilate 107 

radiance of three moisture channels of AHI radiance data under clear-sky condition 108 

and then NCEP GFS (Global Forecast System) was utilized to estimate the impacts of 109 

AHI radiance data assimilation on whether forecast. They found it had a positive 110 

impact on the forecast of global vapor at high level of troposphere. Wang, et al (2018) 111 

investigated the impact of assimilating three water vapor channels under clear sky on 112 

the analysis and forecast of a rainstorm in Northern China with the 3DVAR method. It 113 

pointed out that the assimilation of AHI radiance data could improve the wind and 114 

vapor fields and the accuracy of rainfall forecast in the first 6 hours lead time. 115 

 Although previous researches have made several achievements in satellite data 116 

assimilation and application, it is still a challenge to make more effective use of the 117 

new generational geostationary satellite imager data with high spatial and temporal 118 

resolution. In most of the previous studies, researches usually use a 6 hour’s or even 119 

longer time interval with a coarse spatial resolution. Therefore, the rapid updating 120 

assimilation techniques of the geostationary satellite radiance data have not been well 121 

carried out at convective scale. This study intends to build a data assimilation system 122 
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aiming at AHI radiance data based on the new generational mesoscale Weather 123 

Research and Forecasting (WRF) model. A case of Typhoon Soudelor is studied by 124 

performing numerical simulation to address the impacts of convective DA on the 125 

improvement of the initial conditions of TC and the enhancement of track and 126 

intensity forecasts. Our study focuses mainly on assimilating the three water vapor 127 

channels (6.2, 6.9, and 7.3μm) since they are very sensitive to the humidity in the 128 

middle and upper troposphere and have a certain effect on the lower troposphere. 129 

Thus, a large amount of effective atmospheric information can be provided for AHI 130 

radiance data assimilation in the troposphere. The weighting functions for the three 131 

channels are provided in Fig. 1. 132 

  Section 2 describes the observations and the data assimilation system. Introductions 133 

to the typhoon case and the experimental setup are provided in section 3. The detailed 134 

results in terms of the analyses and the forecasts are illustrated in section 4 before 135 

conclusions are summarized in section 5.  136 

2. Observational data and DA system 137 

2.1 An introduction to Himawari-8 AHI radiance data 138 

 Himawari-8 satellite was launched by JMA to a geosynchronous orbit on 17 139 

October 2014 and has begun its operational use since 7 July 2015 (Bessho et al., 140 

2016). It is located between the equator and 140.7°E, thus the earth is observed 141 

between 60°N and 60°S meridionally and between 80°E and 160°W zonally. 142 

Compared to its previous generation Himawari-7, its detective ability can get 143 
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significantly improved since the instrument AHI on Himawari-8. Besides, its device is 144 

comparable to imagers on American GOES-R satellite (Goodman et al., 2012; Schmit 145 

et al., 2005; Schmit et al., 2008; Schmit et al., 2017). AHI is able to provide a full-disk 146 

image every 10 minutes and complete a scan over Japan every 2.5 minutes. AHI 147 

conducts continuous scan and detection on a moving targeted typhoon. It has 16 148 

channels covering visible, near-infrared, and infrared spectral bands with a resolution 149 

of 0.5 km or 1 km, and 2 km respectively. Channel 8 to 10 (6.2, 6.9, and 7.3 μm) are 150 

water vapor bands that are sensitive to the humidity in the middle and upper 151 

troposphere (Di et al., 2016). Other channels (channel 11, 12, 16: 8.6 μm, 9.6 μm, and 152 

13.3μm ) are either monitoring other fields such as the thin ice clouds, volcanic SO2 153 

gas, the ozone or CO2, or the atmospheric window channels (13-15: 10.4, 11.2, and 154 

12.4 μm) function as monitors for ice crystal/water, low water vapor, volcanic ash, sea 155 

surface temperature and other phenomena (Bessho et al., 2016).  156 

2.2 WRFDA system and AHI radiance data  157 

 WRFDA system is designed by National Center for Atmospheric Research 158 

(NCAR) and it contains 3DVAR, 4DVAR, Hybrid parts. This research is based on the 159 

3DVAR method. An interface that is suitable for AHI DA is built in WRFDA system. 160 

Currently, WRFDA is able to assimilate many conventional and unconventional 161 

observations. In terms of satellite radiance data, this system is compatible with 162 

RTTOV (the Radiative Transfer model of the Television and Infrared Observational 163 

Satellite Operational Vertical sounder) and CRTM (Community Radiative Transfer 164 
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Model, Liu and Weng, 2006) as observation operators. In this study, CRTM is utilized 165 

as the observation operator to simulate and compute AHI radiance data. Estimating 166 

the systematic bias and random error of the observations caused by the errors of 167 

numerical models and instruments are the key factors to directly assimilate the 168 

satellite radiance data. Apart from eliminating cloud pixels, other procedures for 169 

quality control are as follows. (1) when reading the data, remove the observed outliers 170 

with values below 50 K or above 550 K; (2) only the marine observations are applied 171 

by removing the observations on the land and the observations over complex surfaces; 172 

(3) remove observations when the observation minus the background is larger than 3 173 

times of the observation error; (4) the pixels are removed when the cloud liquid water 174 

path calculated by the background field of the numerical model is greater than or 175 

equal to 0.2 kg/m2; (5) eliminate the data when the observation minus background is 176 

greater than 5 K. 177 

 By using 3DVAR algorithm, the assumption is that there is no bias between 178 

observation and background (Dee et al., 2009; Liu et al., 2012; Zhu et al., 2014). A 179 

bias correction scheme for observation is essential before DA. Usually, radiance bias 180 

can be obtained by a linear combination of a set of forward operators. 181 
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 Here, ( )xH  represents the initial observation operator (before the bias 183 

correction), x represents the mode state vector, 0  represents a constant component 184 
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of the total bias (constant part), ip
 and i  represent the i-th predictor and its 185 

coefficient respectively. In this study, four potentially state-dependent predictors 186 

(1000–300 hPa and 200–50 hPa layer thicknesses, surface skin temperature, and total 187 

column water vapor) are applied. The variational bias correction (VarBC) scheme is 188 

utilized to update the bias correction coefficient variationally with the new 189 

observation operator considered in the cost function of 3DVAR. 190 

3. Introduction to the typhoon and experimental design 191 

3.1 Typhoon Soudelor 192 

 From the record of the China Meteorological Administration (CMA), Typhoon 193 

Soudelor was the 13th typhoon in 2015 as the second strongest tropical cyclone in that 194 

year. At 1200 UTC 30 July 2015, it formed at northwest Pacific Ocean as a tropical 195 

storm at 13.6°N, 159.2°E, then moved north-westwards. It upgraded to a strong 196 

tropical storm at 2100 UTC 1 August 2015. Afterwards, it went through a process of 197 

rapid intensification. It became a typhoon at 0900 UTC 2 August 2015, a strong 198 

typhoon at 2100 UTC 2 August 2015, a super typhoon at 0900 UTC 3 August 2015. 199 

Then it weakened to a strong typhoon in the morning on 5 August 2015. However, it 200 

intensified to a super typhoon again at 1200 UTC 7 August 2015 with a maximum 201 

surface wind of 52 m s-1, moving west by north, and its intensity raised to its second 202 

peak. It was reduced to a strong typhoon again at 1800 UTC 7 August 2015. It 203 

decreased to a typhoon, entering to Taiwan Strait. It landed again as a typhoon at 1410 204 

UTC on the coast of Fujian Province, China. Owing to continuous orographic friction, 205 
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it decreased to a tropical depression. Fig. 2 shows the track of Soudelor and different 206 

color lines represent typhoon’s maximum surface wind. It is displayed that after the 207 

formation of typhoon, its track is relatively stable. After July 30, the tropical 208 

depression moved west by north at a speed of about 20 km/h. Its moving tendency 209 

changed slightly within 10 days of its generation. However, its intensity went through 210 

a rapid intensification, a weakening, a second intensification, then a continuous 211 

weakening till disappearing gradually after landing on the China. Fig. 3 demonstrates 212 

the variation of typhoon’s intensity from 31 July 2015 to 5 August 2015. It is shown 213 

that typhoon’s maximum surface wind increased fast, while its minimum sea level 214 

pressure decreased sharply. This was the stage of typhoon’s rapid intensification. The 215 

date from 1 August 2015 to 3 August 2015 during its rapid intensification are selected 216 

as a research object. 217 

3.2 Experimental design 218 

 Two experiments are designed to investigate the effects of AHI radiance data 219 

direct assimilation on the analysis and forecast of Typhoon Soudelor starting from 220 

1800 UTC 1 August 2015 to 0000 UTC 3 August 2015. WRF 3.9.1 is employed as the 221 

forecast model in this experiment. Arakawa C grid is used in the horizon with a 5 km 222 

grid distance. As is known, Arakawa A grid is "unstaggered" by evaluating all 223 

quantities at the same point on each grid cell. The "staggered" Arakawa B-grid 224 

separates the evaluation of the velocities at the grid center and masses at grid corners. 225 

Arakawa C grid further separates evaluation of vector quantities compared to the 226 
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Arakawa B-grid. Vertically, it has 41 eta levels using 10 hPa as its top with coarser 227 

vertical spacing for the higher levels. Model center is (17.5 °N, 140 °E) (Fig. 4). The 228 

initial condition and lateral boundary are provided by 0.5°×0.5° Global Forecasting 229 

System (GFS) reanalysis data. The following parameterization schemes are used: The 230 

following parameterization schemes are used: WDM6 microphysics scheme (Lim et 231 

al., 2010), Grell Devenyi cumulus parameterization scheme (Grell et al., 2002), 232 

RRTM (Rapid Radiative Transfer Model) longwave radiation scheme (Mlawer et al., 233 

1997), shortwave radiation scheme (Dudhia et al., 1989), and YSU boundary layer 234 

scheme (Hong et al., 2006) .  235 

   The experimental procedures are illustrated by Fig. 5. Firstly, a 6 hour’s spin-up 236 

conducted initialized from 1800 UTC 1 August 2015 to prepare the background field 237 

for the data assimilation at 0000 UTC 2 August 2015. The first experiment is 238 

assimilating GTS (Global Telecommunications System) conventional data (including 239 

aircraft report, ship report, sounding report, satellite cloud wind data, ground station 240 

data) only, which is called control experiment (CTNL). Another experiment is 241 

configured with AHI radiance data assimilation (AHI_DA). AHI radiance data is 242 

assimilated hourly further from 0000 UTC to 0600 UTC on 2 August 2015. 243 

Afterwards, an 48 hours forecast is launched as the deterministic forecast. The 244 

climatological background error (BE) statistics are estimated using the National 245 

Meteorological Center (NMC) method. There are 5 control variables applied in this 246 

study including U component, V component, full temperature, full surface pressure, 247 
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and pseudo-relative humidity. The observation error for each channel is estimated 248 

based on the observed brightness temperature minus background brightness 249 

temperature (OMB) from 0000 UTC on 1 August 2015 to 0000 UTC on 3 August 250 

2015 every 6 hours. 251 

   Fig. 4 also shows the distribution of GTS observation data at the simulated 252 

domain at 0000 UTC 2 August 2015. It is proved that raw radiance observations 253 

thinned to a grid with 2–6 times of the model grid resolution are able to remove the 254 

potential error correlations between adjacent observations (Schwartz et 255 

al ., 2012;  Xu et al ., 2015; Choi et al., 2017). Hence, 20 km is chosen to make 256 

thinning of AHI radiance data. Also, sensitivity experiments with 25 km, and 30 km 257 

thinning mesh are also conducted with similar results. The length scale and the 258 

variance scale are set to be 0.5 and 1 respectively after several sensitivity experiments 259 

conducted on tuning the background error. Similar conclusions are also found in Shen 260 

and Min (2015) with the scale factors related to the static background error 261 

covariance. 262 

4. Results 263 

4.1 Minimization iterations 264 

 Fig. 6 shows the cost function and gradient with the iteration times. There is an 265 

obvious exponential decrease curve in Fig. 6a, while Fig. 6b shows gradient decreases 266 

with the increase of iteration times. Taking Fig. 6a as an example, cost function 267 

decreases remarkably in the first 10 iterations. However, after 30 times of iteration, 268 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000826#jame20389-bib-0051
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000826#jame20389-bib-0061
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the cost function curve becomes smooth gradually. The differences between 269 

background field and observation are largest. With continuous iterations, background 270 

field goes through continued adjustments. Finally, the cost function tends to reach a 271 

stable minimum that represents the point when cost function has its optimal solution. 272 

Besides, the gradient in Fig. 6b decreases stably with increasing iterations. The 273 

exponential decrease of the cost function and the change trend of its gradient indicate 274 

that the effectiveness of AHI radiance DA. The final iterated analytical field is close 275 

to the observation. 276 

4.2 Analytical results of the brightness temperature 277 

 Fig. 7a, c, e show the distribution of OMB, while the observed brightness 278 

temperature minus analytical brightness temperature (OMA) after the bias correction 279 

of AHI radiance data are presented in Fig. 7b, d, f from channel 8, 9, and 10 at 0000 280 

UTC 2 August 2015. It should be pointed that even only parts of the AHI radiance 281 

data are applied after quality control in the data assimilation, the radiative transfer 282 

model is able to simulate the brightness temperature for all the pixels with the 283 

background and the analysis respectively for the verification purpose. The similar 284 

verification method is also applied in Yang et al., (2016). In the Fig. 7a, part of 285 

typhoon’s spiral cloud belt is clearly visible. The brightness temperature in typhoon’s 286 

inner-core area is low, while the brightness temperature in other areas is high. The 287 

mean of observed OMB was -4.65 K, indicating that the background brightness 288 

temperature is higher than the observation. It is found in Fig. 7b that the OMA values 289 
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of most pixels are below 0.02 K, indicating that the analytical field fitting the 290 

observation after analyzing. It can be inferred from Fig. 7a, c, and e that the 291 

magnitude in OMB of channel 10 is generally larger than that of channel 9, while that 292 

of the OMB in channel 8 is the smallest. This is because the detection height of 293 

channel 10 is lower than that of channel 8 and 9 seen from the weighting function (Fig. 294 

1), indicating channel 10 is largely affected by the clouds. Conversely, the weighting 295 

peak of the channel 8 is the highest, being least affected by the clouds. In general, the 296 

analytical brightness temperature match well with the observed brightness 297 

temperature of all the three water vapor channels after the assimilation of AHI 298 

radiance data. 299 

 Fig. 8 shows the effect of the bias correction for AHI radiance data at 0000 UTC 300 

2 August 2015. Fig. 8a, d, g show the scatter plots of the observed brightness 301 

temperature and the brightness temperature from the background before the bias 302 

correction. Fig. 8b, e, h show results after bias correction. Fig. 8c, f, i show the scatter 303 

plots of observed brightness temperature and analytical brightness temperature after 304 

bias correction. From Fig. 8a, before the bias correction, the values from the 305 

observation and the background are comparable, but most of the scatter points are 306 

below the diagonal line. This suggests that the observed brightness temperature is 307 

higher than the background simulated brightness temperature. From Fig. 8b, after the 308 

bias correction, observed warm bias is corrected to some extent. From Fig. 8a, b, after 309 

the bias correction, the root mean square error (RMSE) of OMB decreases from 1.864 310 
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K to 1.627 K, with the average decreasing from 0.956 K to 0.358 K, proving the 311 

validity and rationality of the variational bias correction. Compared to the result of 312 

Fig. 8b, the scatters in Fig. 8c are more symmetrical, fitting closely to the diagonal 313 

line. The mean and RMSE were also significantly reduced, suggesting that the 314 

analytical field is more similar to observation than background field. Channel 9, 10 315 

have a similar result, but with a significantly reduced mean and RMSE, indicating that 316 

the background field and analytical field of channel 9, 10 match better with the 317 

observation than channel 8 does. Among them the RMSE of channel 10 is smallest as 318 

0.234 K in Fig. 8i, which is likely related to strict cloud detection scheme for channel 319 

10 with rather lower detecting peak (Wang et al., 2018).  320 

 Fig. 9 shows the observation numbers, the mean, and the standard deviation of 321 

OMB and OMA of channel 8, 9, and 10 before and after the bias correction. It can be 322 

seen that after the quality control, 24057, 24181, 21785 observations are adopted in 323 

the DA system for channel 8, 9, and 10, respectively. From the mean value of OMB 324 

before the bias correction, the value of the three channels is relatively small, 325 

indicating that the simulated brightness temperature of the three channels is close to 326 

the observed brightness temperature. The lowest mean of 0.3 K is found in channel 10, 327 

indicating that the simulated brightness temperature of channel 10 is closest to the 328 

observed brightness temperature. Bias correction effectively corrects the systematic 329 

bias and reduces the mean value of observation residuals. After the bias correction, 330 

the OMB mean value of the three channels significantly decreases to nearly 0 K. With 331 
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the bias correction, the simulated brightness temperature is almost the same as the 332 

observed brightness temperature. The analysis of the standard deviation of OMB 333 

shows that the results are comparable before and after the bias correction. The 334 

standard deviation of OMA decreases by about 80% compared to OMB, indicating 335 

that the analyses fit better with the observations after the data assimilation. 336 

Differences between the standard deviations of the OMB and OMA were statistically 337 

significant at the 95% level using zero difference for the null hypothesis. 338 

 The RMSEs of the simulated brightness temperature by the NWP model before 339 

and after the assimilation are also calculated against the AHI radiance observations. 340 

Fig. 10 shows the RMSEs during the DA cycles for channels 8, 9, 10. As can be seen 341 

from Fig. 10, RMSE decreases after each analysis in AHI_DA. The most significant 342 

improvement is from the first analysis cycle of channel 8, where RMSE of the 343 

brightness temperature after assimilation significantly decreases from 1.64 K to 0.46 344 

K, possibly due to the largest adjustment on the background for the first analysis time. 345 

The background before the assimilation is the short-term forecast from the previous 346 

analysis. The increase of the RMSE in the fluctuation arise from the model error in 347 

the 1 hour short-term forecast. Overall, the effect of the analysis from the channel 10 348 

is most significant. 349 

4.3 Analysis of the typhoon structure 350 

 Fig. 11 shows the wind field at sea level and the distribution of water vapor at 351 

850 hPa at 0000 UTC 2 August 2015. The obvious cyclonic eddy circulation 352 
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structures in the core area of the typhoon are found in both fields, while the 353 

anti-cyclonic circulation exists in the northwest quadrant of the typhoon. The mixing 354 

ratio of water vapor in the region where the typhoon located is very high and the wind 355 

field is cyclonic, indicating that the typhoon has a continuous water vapor advection. 356 

This contributes to the enhancement of typhoon (Kamineni, et al., 2003). From the 357 

flow field of the control experiment in Fig. 11a, the water vapor convergence in the 358 

center of the typhoon region is weak with the low intensity and smaller coverage. As 359 

can be seen from Fig. 11b, after the assimilation of AHI radiance data, the streamlines 360 

in the typhoon region become denser, indicating that the cyclonic circulation is 361 

strengthened. Conversely, the intensity and distribution of the water vapor after the 362 

assimilation of AHI radiance data tend to contribute to the developing typhoon. This 363 

suggests that the assimilation of AHI radiance data are able to significantly improve 364 

the large-scale environmental field in the simulation region of Typhoon Soudelor. It 365 

should be pointed out that the model status in the cloudy area are modified due to the 366 

spatial correlation in the background error covariance. The similar findings for 367 

small-scale information in the cloudy area can also be referred in Wang et al., (2018). 368 

4.4 Track forecast 369 

 In order to further evaluate the effect of AHI radiance data assimilation, a 48-hour 370 

deterministic forecast is launched with the analyses initialized from 0000 UTC 2 371 

August 2015 and 0600 UTC 2 August 2015 respectively. The best track data are 372 

provided by the CMA (Yu et al., 2007; Song et al., 2010). As can be seen in Fig. 12a, 373 
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at the beginning of the forecast, the initial location of the typhoon from the CTNL 374 

experiment has large south bias and east bias at 0000 UTC and 0600 UTC 375 

respectively. Conversely, the location of the typhoon in AHI_DA is relatively closer to 376 

the observation at the beginning. During the following few hours of forecasts, the 377 

typhoon track predicted by the CTNL continues to show a south-west bias with the 378 

environmental wind, while the track predicted by AHI_DA match better with the best 379 

track. Fig. 12c shows the averaged typhoon track error over the two forecasts 380 

predicted by the two experiments. At the initial time of the forecast, the track errors of 381 

CTNL and AHI_DA are significantly different, with the magnitude of 55.6 km and 382 

13.4 km, respectively. During the subsequent 48-hour forecast, the track error of the 383 

CTNL gradually increases with the forecast time reaching 167.1 km at the end of the 384 

forecast. In contrast, the track error of AHI_DA is consistently less than 122.5 km 385 

during the 48-hour forecast period. In general, the average track error of the CTNL is 386 

168.57 km, and the average track error of AHI_DA experiment is only 67.0 km, 387 

indicating a significant improvement in the track prediction. 388 

 Fig. 13 provides the time series of the typhoon intensity from the two 389 

experiments in terms of the averaged maximum surface wind and minimum sea level 390 

pressure error over the two forecasts initialized from 0000 UTC 2 August 2015 and 391 

0600 UTC 2 August 2015 respectively. It can be seen that the maximum surface wind 392 

error predicted by the AHI_DA is much lower than that by the CTNL, due to the 393 

overall under estimation for the strength of Typhoon Soudelor simulated in the 394 
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background field. The maximum surface wind predicted by AHI_DA fit closer to the 395 

best track data with the maximum difference about 2.6 m s-1 after 12 hours forecast . 396 

In Fig. 13b, the results of the minimum sea level pressure are consistent with Fig. 13a.  397 

5. Conclusion 398 

An interface for AHI radiance data assimilation on the WRFDA system based on 399 

the 3DVAR assimilation method was built. Based on the Typhoon Soudelor in 2015, 400 

two experiments for comparison was designed to examine the impact of AHI water 401 

vapor channel radiance data assimilation on the analysis and prediction of the rapid 402 

development stage of Typhoon Soudelor under clear sky condition. Following 403 

conclusions are obtained: 404 

(1) The AHI radiance data on the new generation of geostationary meteorological 405 

satellite is able to reflect the structure of Typhoon Soudelor very clearly. After a series 406 

of pre-procedures such as the quality control, the bias correction, cloudy pixels are 407 

able to effectively be eliminated, ensuring the validity and rationality of the Ahi 408 

radiance data. The biases are also eliminated from the VarBC statistical method, 409 

which is able to provide a positive impact on the data assimilation procedure for the 410 

typhoon numerical simulation.  411 

(2) Compared with the control experiment with only GTS data, the 3DVAR 412 

assimilation including AHI radiance data is able to improve the structure of typhoon’s 413 

core and outer rain band. Also, the position and intensity of typhoon in the 414 

background field are able to be corrected. 415 



21 

 

(3) It is found that the track, maximum surface wind, and minimum sea level pressure 416 

from the AHI radiance data assimilation experiment match better with the best track 417 

than the control experiment does for the subsequent 18-hour forecast. 418 

 In this study, the AHI water radiance data assimilation is conducted under the 419 

clear sky condition. The results of the experiments indicate that AHI radiance data 420 

assimilation has a positive effect on the analysis and prediction of rapidly intensifying 421 

TC. Considering the complex influence of underlying surface, only the rapid 422 

development stage of typhoon at sea were studied, while the whole generation, 423 

development and disappearance stage of typhoon can also be studied in the future. In 424 

addition, based on the AHI radiance data of the water vapor channels under the 425 

condition of clear sky, only 3DVAR method was adopted. Further improvements 426 

under the condition of all sky and hybrid DA can be obtained in the future. 427 
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Fig.1 Weighting functions of Himawari‐8 Advanced Himawari Imager three water 579 

vapor channels for Channel 8, 9, and 10. 580 
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 585 

Fig.2 The best track of Soudelor from the China Meteorological Administration 586 

(CMA) from 0000 UTC 30 July to 0600 UTC 12 August 2015. Different colors 587 

represent intensity changes. 588 
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 595 

Fig. 3 The time series of the minimum sea level pressure (solid line, unit: hPa) and the 596 

maximum surface wind (dash line, unit: m s-1) of typhoon Soudelor from the CMA 597 

best-track data.   598 
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 605 

Fig. 4 Distribution of GTS observations in the simulated area at 0000 UTC 2 August 606 

2015. On the right side of the map is the name of observation data and the number of 607 

observations. 608 
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 615 

Fig. 5 The flow chart of the data assimilation experiments. (a) CTNL, (b) AHI_DA 616 
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 628 

Fig. 6 (a) Cost function as functions of iterations, (b) gradient as functions of 629 

iterations. 630 
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            642 

   643 

Fig. 7 (a, c, and e) OMB (unit: K) after bias correction for channel 8, 9, and 10, 644 

respectively; (b, d, and f) OMA (unit: K) after bias correction for channel 8, 9, and 10, 645 

respectively at 0000 UTC 2 August 2015.  646 
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 651 

 652 

Fig. 8 Scatter plots of (a, d and g) the observed and background brightness 653 

temperature before the bias correction of channel 8, 9 and 10. Scatter plots of (b, e 654 

and h) the observed and background brightness temperature after the bias correction 655 

of channel 8, 9 and 10. Scatter plots of (c, f and i) the observed and analyzed 656 

brightness temperature after the bias correction of channel 8, 9 and 10. 657 
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 658 

Fig. 9 Number of (a) observations, (b) mean (unit: K), and (c) standard deviations 659 

(unit: K) of OMB and OMA before and after the bias correction for water vapor 660 

channels 8-10 (OMB_nb: OMB without bias correction; OMB_wb: OMB with bias 661 

correction). 662 
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 664 

Fig.10 Time series of the RMSE for the brightness temperature (unit: K) with 665 

assimilation times before and after the data assimilation. 666 

 667 
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 672 

 673 

Fig. 11 The surface wind speed (vectors, unit: m s-1) and water vapor (colored, unit: 674 

g/kg) for (a) CTNL; (b) AHI_DA at 850 hPa at 0000 UTC 2 August 2015. 675 
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685 

  686 

Fig. 12 The 48-hour predicted tracks (a) from 0000 UTC 2 August to 0000 UTC 4 687 

August, (b) from 0600 UTC 2 August to 0600 UTC 4 August 2015, (c) averaged track 688 

errors (unit: m s-1) for the two forecasts.  689 

 690 

 691 



41 

 

 692 

  693 

Fig.13 The 48-hour (a) maximum surface wind (unit: m s-1)，(b) minimum sea level 694 

pressure (unit: hPa) of Soulder averaged from two forecasts. 695 
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