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Abstract: The Mediterranean region is characterized by intense rainfall events giving rise to 13 

devastating floods. In Maghreb countries such as Morocco, there is a strong need for forecasting 14 

systems to reduce the impacts of floods. The development of such a system in the case of ungauged 15 

catchments is complicated but remote sensing products could overcome the lack of in-situ 16 

measurements. The soil moisture content can strongly modulate the magnitude of flood events and 17 

consequently is a crucial parameter to take into account for flood modeling. In this study, different 18 

soil moisture products (ESA-CCI, SMOS, SMOS-IC, ASCAT satellite products and ERA5 19 

reanalysis) are compared to in-situ measurements and one continuous soil moisture accounting 20 

(SMA) model for basins located in the High-Atlas Mountains, upstream of the city of Marrakech. 21 

The results show that the SMOS-IC satellite product and the ERA5 reanalysis are best correlated 22 

with observed soil moisture and with the SMA model outputs. The different soil moisture datasets 23 

were also compared to estimate the initial soil moisture condition for an event-based hydrological 24 

model based on the Soil Conservation Service Curve Number (SCS-CN). The ASCAT, SMOS-IC 25 

and ERA5 products performed equally well in validation to simulate floods, outperforming daily in 26 

situ soil moisture measurements that may not be representative of the whole catchment soil moisture 27 

conditions. The results also indicated that the daily time step may not fully represent the saturation 28 

state before a flood event, due to the rapid decay of soil moisture after rainfall in these semi-arid 29 

environments. Indeed, at the hourly time step, ERA5 and in-situ measurements were found to better 30 

represent the initial soil moisture conditions of the SCS-CN model by comparison with the daily time 31 

step. The results of this work could be used to implement efficient flood modelling and forecasting 32 

systems in semi-arid regions where soil moisture measurements are lacking. 33 

 34 

Keywords: Soil moisture, floods, Morocco, ERA5, Rheraya, Issyl, High Atlas 35 

 36 

https://doi.org/10.5194/nhess-2020-119
Preprint. Discussion started: 12 May 2020
c© Author(s) 2020. CC BY 4.0 License.



2 

 

1 Introduction 37 

 38 

The Mediterranean region is characterized by intense rainfall events generating floods with a very 39 

short response time (Gaume et al., 2004; Merheb et al., 2016; Tramblay et al., 2011). The socio-40 

economic consequences of these floods are very important in terms of fatalities or damages to the 41 

infrastructures in particular for Southern countries (Vinet et al., 2016). This highlights the need for 42 

forecasting systems to reduce the impacts of floods. Unfortunately, the development of such systems is 43 

very complicated in the case of ungauged catchments (Creutin and Borga, 2003) such as in North 44 

Africa and requires remote sensing products to overcome the lack of in situ measurements. 45 

Furthermore, while several studies have been focused on northern Mediterranean catchments for flood 46 

modelling, only a few studies are available on southern basins, yet those probably the most vulnerable 47 

to floods. 48 

 49 

The Moroccan catchments are exposed to intense flash floods, such as the event of August 17, 1995 in 50 

the Ourika river where the max discharge reached in 45 minutes a peak discharge of 1030 m3/s 51 

causing extensive damages and more than 200 casualties (Saidi et al., 2003). Few studies have been 52 

carried out in Morocco to minimize the impact of floods by improving the forecasting systems, either 53 

by event-based modeling of floods (El Alaoui El Fels et al., 2017; Boumenni et al., 2017; El Khalki et 54 

al., 2018) or by hydro-geomorphological approaches (Bennani et al., 2019) to identify the areas at risk 55 

of flooding. The severity of floods in these semi-arid regions is controlled by several factors including 56 

precipitation intensity, soil permeability, steep slopes and soil moisture content at the beginning of 57 

event (El Khalki et al., 2018; Tramblay et al., 2012). In Mediterranean regions, the soil moisture 58 

content varies between events and is known to strongly modulate the magnitude of floods (Brocca et 59 

al., 2017; Tuttle and Salvucci, 2014) and particularly to be useful for flood modeling and forecasting 60 

systems (Brocca et al., 2011; El Khalki et al., 2018; Koster et al., 2009; Marchandise and Viel, 2010; 61 

Tramblay et al., 2012). However, studies in North African basins are lacking to document the rainfall-62 

runoff relationship with soil moisture during floods (Merheb et al., 2016). 63 

 64 

In most Mediterranean regions and particularly in North Africa, only a few measurements of soil 65 

moisture are available. To represent spatial variability, several measurement at different locations are 66 

needed due to the potentially large spatial variability of soil moisture for a wide range of scales 67 

(Massari et al., 2014; Schulte et al., 2005; Western and Blöschl, n.d.). However, even the in-situ data 68 

may not represent the spatial variability over a very wide area in the case of large basins. On the 69 

contrary, satellite soil moisture products provide coverage of the earth's surface by microwave sensors. 70 

There are two types of microwave sensors, active and passive, noting: 1) The Advanced Scatterometer 71 

(ASCAT) soil moisture product is on board MetOp with good radiometric accuracy and stability. This 72 

product provides a spatial resolution of 25 km with a temporal resolution of 1 day since January 2007 73 
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(Wagner et al., 2013). 2) The Soil Moisture and Ocean Salinity Mission (SMOS) product, which 74 

begins in January 2010 with a spatial resolution of 50km (Kerr et al., 2012). The improvement of the 75 

robustness of satellite soil moisture products can be achieved by merging passive and active 76 

microwave sensors as initiated and distributed by ESA-CCI (European Space Agency Climate Change 77 

Initiative) (Liu et al., 2011) providing data from 1978 to 2018. However, remote sensing products 78 

might suffer from several problems in complex topography or very dense vegetation and snow cover 79 

(Brocca et al., 2017). For this reason and before any use the data, it is necessary to validate them (Al-80 

Yaari et al., 2014; Van doninck et al., 2012; Ochsner et al., 2013), either by in-situ measurements, if 81 

they exist, or by using Soil Moisture Accounting models (Javelle et al., 2010; Tramblay et al., 2012) to 82 

simulate soil moisture in the ungauged basins. 83 

 84 

In this context, with an increasing number of satellite products becoming available to estimate soil 85 

moisture, clear guidelines and recommendations about the most suitable products to estimate the initial 86 

soil moisture content prior to floods are lacking for the semi-arid basins of North Africa. The purpose 87 

of this study is to compare different satellite soil moisture products with in-situ soil moisture 88 

measurements and the recently developed ERA5 reanalysis to estimate the initial soil moisture before 89 

flood events. The goal is to identify the best products to be used for flood modelling that could 90 

improve forecasting systems. This comparison is performed for two basins representative of medium-91 

size catchments of North Africa that are the most sensitive to flash flood events. The validation of the 92 

different soil moisture products is made with a Soil Moisture Accounting (SMA) model, to test the 93 

capabilities of the different soil moisture products for the sake of estimating the initial conditions for 94 

an event-based hydrological model for floods. The paper is organized as follow: In section 2, an 95 

overview of the study area and all used data (hydro-meteorological and soil moisture products). 96 

Section 3 explains the methods adopted in this paper. Section 4 presents the results. The conclusion 97 

and perspectives are given in the last section. 98 

 99 

2 Study area and data 100 

 101 

2.1 Rheraya and Issyl catchments 102 

 103 

The Rheraya research catchment (Jarlan et al., 2015) is located in the Moroccan High Atlas Mountains 104 

(Figure 1) with an altitude ranging from 1027 to 4167m and an area of 225km². The climate in the 105 

basin is semi-arid, strongly influenced by altitude, with a mean annual precipitation of 732mm, 106 

including 30% as snow in altitudes above 2000m (Boudhar et al., 2009). The geology is characterized 107 

by volcanic formations that are considered impermeable in the highest elevation areas, while the 108 

lowest elevation areas are made of granites with clays and marls. In the highest elevation areas very 109 

steep slopes are found with an average of 19% (Chaponnière et al., 2008). The vegetation cover is only 110 
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located in the lowest areas with a concentration of cultivated areas found along the river channel. 111 

These natural conditions favor runoff generation. There is very low human disturbance for runoff, with 112 

only some local water uptake in the lower part of the river. 113 

 114 

The Issyl basin (Figure 1) is located in the foothills of the Moroccan High Atlas Mountains with an 115 

altitude ranging from 632 to 2300m, an area of 160 km², and a mean annual precipitation of 666mm. It 116 

is an ephemeral river with discharge occurring only after rainfall events. The climate is semi-arid to 117 

arid and the downstream part of the basin reaches the city of Marrakech. The geological formations in 118 

this downstream are alluvial conglomerates that are relatively permeable. The upstream of the basin 119 

consists of clays and calcareous marl. The basin area includes agricultural activities that are irrigated 120 

in the downstream part of the basin. The irrigation comes from seguias, earthen-made channels that 121 

traditionally draw their water supply from the river itself, by building small diverting dams on the side 122 

of the river (Pérennès, 1994). The seguias channels are usually filled up during floods, and water is 123 

distributed to the neighboring agricultural parcels. The map on the seguias in the Issyl basin can be 124 

seen in Figure 1, covering the northern part of the basin. The system is unmonitored and in a context 125 

of high evaporation rates the portion of runoff diverted from the stream is not quantified. Due to the 126 

temporary nature of seguias, they can be partially destroyed during large floods and consequently their 127 

hydraulic properties and the amount of water collected can be modified over time.     128 

 129 

2.2 Hydro-meteorological data 130 

 131 

In the Rheraya basin, we used 8 rainfall stations, 5 of them from the data network of the Joint 132 

International Laboratory Télédétection et Ressources en Eau en Méditerranée semi- Aride ‘’LMI 133 

TREMA’’ (Jarlan et al., 2015; Khabba et al., 2013) and the remaining ones from the Tensift Hydraulic 134 

Basin Agency. The data is covering from 2008 to 2016. For the Issyl basin, only 2 rainfall stations are 135 

available from the Tensift Hydraulic Basin Agency, covering the years from 2010 to 2015. In this type 136 

of basin, the spatial variability of rainfall is very important (Chaponnière et al., 2008). The 137 

hydrometric data was provided by radar installed in each basin’s outlet. The data is covering only the 138 

year 2014 for Rheraya, since the sensor was installed at the end of 2013, and the years 2010 to 2015 139 

for Issyl. The discharge data is provided with a time step of 10min converted into hourly time step as 140 

for rainfall.  141 

 142 

The discharge data is missing in some events that are not selected. For this reason we considered only 143 

the events with complete discharge data. Some of the flood events considered in this study (Table 1) 144 

occurred in winter season, where rainfall can be in the form of snow above 2000m elevation. 145 

According to El khalki et al.(2018) the snow doesn’t contribute to runoff during winter season in the 146 

Rheraya basin, where only 17% of basin area is occupied by snow. The runoff coefficients calculated 147 
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for each selected events are ranging from 13.1 to 34.1% for Rheraya and from 1.2 to 7.2% for Issyl. 148 

This indicates the important role of initial conditions in both basins, with a much higher infiltration 149 

capacity in the Issyl basin in addition to potential water loss due to irrigation. We used 5 temperature 150 

stations located in the Rheraya basin and one temperature station located in the Issyl basin with an 151 

hourly time step to calculate the average temperature over each basin, ranging from 2008 to 2016. This 152 

data enabled us to calculate potential evapotranspiration (PET) with Oudin formula (Oudin et al., 153 

2005) requiring temperature only. 154 

 155 

2.3 Soil moisture data 156 

 157 

We used 7 different types of soil moisture data over the Rheraya basin and 6 types in the Issyl basin 158 

due to the absence of measurements in this basin. Covering the same period of rainfall data mentioned 159 

in the 2.3 section, we used:  160 

1. In-situ measurement with three Thetaprobes at 5cm and 30cm depth in the Rheraya basin, 161 

located at the SMPR7 station (Figure 1). 162 

2. Simulated soil moisture from a Soil Moisture Accounting model (SMA) 163 

3. ASCAT satellite soil moisture  164 

4. SMOS satellite soil moisture 165 

5. SMOS-IC satellite soil moisture 166 

6. ESA-CCI satellite soil moisture  167 

7. ERA5 reanalysis soil moisture  168 

 169 

2.3.1 In-situ measurements 170 

 171 

Soil moisture measurements are available at one location with three Thetaprobes at two different 172 

depths (5cm and 30cm). In this study we used Thetaprobes with 5cm depth, which is comparable with 173 

the depths of  satellite products (Massari et al., 2014).  The site is located in Rheraya basin, with an 174 

altitude of 2030m and a slope of 30% (Figure 1). The data is covering the time period from 2013 to 175 

2016, with 30min time step converted to daily time step.  176 

 177 

2.3.2 Soil moisture accounting model 178 

 179 

The SMA is a continuous Soil Moisture Accounting model that can be used in the absence of soil 180 

moisture data to represent the degree of saturation for flood modeling (Anctil et al., 2004; Tramblay et 181 

al., 2012). In this study, a simplified version of the SMA model is used, adopting the same approach 182 

used by Tramblay et al. (2012) and Javelle et al. (2010). The SMA calculates the level of the soil 183 

reservoir (S/A), ranging between 0 and 1, by calibrating its single parameter, A, which represents the 184 
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reservoir capacity. An interpolated daily rainfall dataset created by the Inverse Distance method and 185 

evapotranspiration data computed from daily maximum and minimum temperature with the 186 

Hargreaves-Samani equation (Hargreaves and Samani, 1982) are used as inputs to the SMA model. 187 

 188 

2.3.3 Soil moisture products 189 

 190 

In this study we used three different types of satellite products and a Reanalysis product: an active 191 

product (ASCAT), two variants of a passive product (SMOS and SMOS-IC), a product that combines 192 

the two active and passive products (ESA-CCI) and ERA5 product:  193 

 194 

1. The Advanced SCATterometer (ASCAT) is a Soil Moisture product, onboard Metop-A 195 

and Metop-B and a Metop-C satellite is a C-band (5.255 GHz) scatterometer onboard the 196 

Metop satellite series. It has a spatial sampling of 12.5 km and 1 to 2 observations per day 197 

(Wagner et al., 2013). The SM product was provided within the EUMETSAT project 198 

(http://hsaf.meteoam.it/) denoted as H115. 199 

2. The Soil Moisture and Ocean Salinity (SMOS) mission  is a radiometer operating at L 200 

band (1.4 GHz), providing Soil Moisture data with ~50km as spatial sampling and 1 201 

observation per 2/3 days (Kerr et al., 2001). Centre Aval de Traitement des Données 202 

SMOS (CATDS, https://www.catds.fr/) provided the version RE04 (level3) for this study. 203 

This version is gridded on the 25km EASEv2 grid. 204 

3. The Soil Moisture and Ocean Salinity INRA-CESBIO (SMOS-IC) is an algorithm 205 

designed by Insitut National de la Recherche Agronomique (INRA) and Centre d’Etudes 206 

Spatiales de la Biosphère (CESBIO) for a global retrieval of Soil Moisture and L-VOD. 207 

Two parameters of inversion of the L-MED model are used in the SMOS-IC (Wigneron 208 

et al., 2007) with a consideration of the pixel as homogeneous. This version is 105 and 209 

has a spatial sampling of 25km with EASEv2 Grid (Fernandez-Moran et al., 2017). 210 

4. The ESA-CCI soil moisture product (http://www.esa-soilmoisture-cci.org/) regroups 211 

active and passive microwave sensors to measure soil moisture, giving three type of 212 

products: Active, Passive and Combined (Active + Passive). In this paper, the ESA-CCI 213 

V4.5 – Combined product is used (Dorigo et al., 2017; Gruber et al., 2017, 2019). The 214 

product has been  validated to be useful by 600 ground-based measurement points around 215 

the globe (Dorigo et al., 2015), as well as it was compared with ERA-Interim products 216 

(Albergel et al., 2013). In the field of hydrological modeling, several global studies have 217 

used the ESA-CCI product to initiate the hydrological model (Dorigo et al., 2012, 2015; 218 

Massari et al., 2014) at the scale of Morocco (El Khalki et al., 2018). We extracted for 219 

each basin the pixel that corresponds to it. 220 
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5. ERA5 (Copernicus Climate Change Service (C3S), 2017) developed by European Centre 221 

for Medium-Range Weather Forecasts (ECMWF), it is the latest version of atmospheric 222 

reanalysis available for public since February 2019. The ERA5 replaced ERA-Interim 223 

with improvement at different scales, particularly, a higher spatial and temporal 224 

resolution, and a better global balance of precipitation and evaporation. The spatial 225 

resolution is 31km instead of 79km, hourly resolution is used instead of 6 hours, and the 226 

covered period will be extended to 1950 in future. The ERA5 product was applied in 227 

some recent studies in hydro-climatic field (Albergel et al., 2018; Hwang et al., 2019; 228 

Mahto and Mishra, 2019; Olauson, 2018). We selected the volumetric soil water of the 229 

first soil layer. This new product is tested in our study for the first time in Morocco. An 230 

alternative dataset, ERA5-Land using an improved land-surface scheme with a spatial 231 

resolution of 10km,  was also tested, providing the same results as ERA5 since there is a 232 

strong correlation between soil moisture simulated by the two products. 233 

 234 

3 Methods 235 

 236 

3.1 Evaluation of different soil moisture datasets 237 

 238 

In-situ data preparation consists of averaging the 5cm depth probes in order to get a single value to 239 

work with and take into account the plot-scale variability of the measurements. This data is considered 240 

as a reference for soil moisture data in the Rheraya basin, so that all the other soil moisture products 241 

are compared to it. The different soil moisture products are compared to the observed soil moisture 242 

over the entire period and also on a seasonal basis. 243 

 244 

The SMA model is used to represent the soil moisture aggregated at the catchment scale. The rationale 245 

behind the use of such model here is that continuous rainfall and temperature series are often available 246 

in monitored catchments, unlike soil moisture, and a calibrated SMA model can sometimes palliate the 247 

lack of soil moisture measurements (Tramblay et al., 2012). For the SMA model, the A parameter, 248 

representing the soil water holding capacity, is calibrated to obtain the best correlation between 249 

observed and simulated soil moisture (S/A). The calibration with observed data can only be performed 250 

in the Rheraya basin where soil moisture is measured. In addition to this calibration, other values of A, 251 

ranging between 1 and 1000, are tested in the SMA model to maximize the correlations with the 252 

different soil moisture products. The choice of this approach is to check if there are any possible 253 

uncertainties that can be related to the in-situ soil moisture measurements, located on a steep slope plot 254 

that may not fully represent the average soil moisture conditions over the whole basin. In the case of 255 

the Issyl basin, since there is no observed soil moisture data, the model is run for a range of different 256 
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values of the A parameter. The best value of the A parameter is selected as the one yielding the best 257 

correlations with the different satellite products. 258 

 259 

The values from ASCAT and SMA are given in percentage (values are ranging between 0 and 1) while 260 

SMOS, SMOS-IC, ERA5, ESA-CCI and observations are in m3 m-3. To allow a comparison for all soil 261 

moisture datasets a rescaling procedure is needed. Before applying the rescaling procedure, according 262 

to Albergel et al. (2010), a 95% confidence interval is chosen to define the higher and lower values to 263 

exclude any abnormal outliers using equation 1 and 2. The resulted data is then rescaled to their own 264 

maximum and minimum values considering the whole period using the equation 3. The issue in the 265 

validation of satellite soil moisture products and reanalysis product with in-situ measurements is the 266 

spatial resolution (Jackson et al., 2010). Several studies mentioned that, in the case of the temporal 267 

stability  introduced by Vachaud et al. (1985), one in-situ measurement point can represent the soil 268 

moisture condition of a larger area (Brocca et al., 2009b, 2010; Loew and Mauser, 2008; Loew and 269 

Schlenz, 2011; Martínez-Fernández and Ceballos, 2005; Miralles et al., 2010; Wagner et al., 2008). 270 

According to (Massari et al., 2015), the coarse satellite observations can be beneficial for small basins, 271 

in the case if the in-situ observation falls in the satellite product pixel. This means that the in-situ 272 

measurements can represent a good benchmark (Liu et al., 2011). In this study we considered the in-273 

situ measurement as a benchmark to validate different soil moisture products. 274 

 275 

UpSM = μSM + 1.96σSM, (1) 

LowSM = μSM −  1.96σSM, (2) 

Where 𝑈𝑝𝑆𝑀 and 𝐿𝑜𝑤𝑆𝑀 are the limits of the confidence interval (the upper and the lower 95%)  276 

 277 

SM =
SM− LowSM

LowSM−UpSM 
, (3) 

 278 

3.2 Extended collocation analysis: 279 

 280 

An alternative technique to validate soil moisture products when ground truth is missing is the use of 281 

Triple Collocation (TC) analysis (Gruber et al. 2016b). TC analysis requires the availability of three 282 

datasets with mutually independent errors and linear additive error model between the measurement 283 

systems and the unknown truth: 284 

 285 

X = α + βS + ε, (4) 

 286 

where X is the soil moisture estimate, S is the true soil moisture, α and β are additive and 287 

multiplicative biases, respectively. Eventually, ε is the zero-mean random error.  288 
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 289 

To build such a triplet, satellite and ground-based datasets can be combined with modeled soil 290 

moisture fields from reanalysis (e.g., ERA5). The reanalysis datasets ingest a number of satellite, 291 

atmospheric and ground observations which can potentially undermine their independence with 292 

respect to other members of the triplets. This creates doubts about the satisfaction of the null cross-293 

correlation assumptions required to apply TC (Stoffelen, 1998). In a preliminary analysis (not shown), 294 

we used TC to characterize the error variance of the different soil moisture datasets by using different 295 

triplet combinations of the products. However, we observed substantial differences among the selected 296 

triplets likely due to error co-dependence. Based on that, we assumed the existence of non-null error 297 

cross correlation for the selected triplets (e.g. ERA5, SMOS and ASCAT). 298 

 299 

When more than three products are available (i.e., N), the error can be estimated using an Extended 300 

Collocation (EC) approach (Gruber et al. 2016). The same assumptions for TC also apply for EC, but 301 

the number (N >3) datasets constitutes an over-constrained system, allowing the designation of N-3 302 

non-zero error covariance terms which can be estimated with a least-squares solution (Pierdicca et al. 303 

2015). Therefore, the zero TC assumption can be relaxed to allow non-zero correlation among N-3 304 

data product pairs. For N = 4, the X, Y, Z, W measurement systems and assuming that non-zero EC 305 

exists only between X and Y, the least-squares solution for the QC problem is given by: 306 

 307 

𝑀 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜎𝑋
2

𝜎𝑌
2

𝜎𝑍
2

𝜎𝑊
2

𝜎𝑋𝑌

𝜎𝑋𝑍𝜎𝑋𝑊 𝜎𝑍𝑊⁄

𝜎𝑌𝑍𝜎𝑌𝑊 𝜎𝑍𝑊⁄

𝜎𝑋𝑍𝜎𝑍𝑊 𝜎𝑋𝑊⁄

𝜎𝑌𝑍𝜎𝑍𝑊 𝜎𝑌𝑊⁄

𝜎𝑋𝑊𝜎𝑍𝑊 𝜎𝑋𝑍⁄

𝜎𝑌𝑊𝜎𝑍𝑊 𝜎𝑌𝑍⁄

𝜎𝑋𝑍𝜎𝑌𝑊 𝜎𝑍𝑊⁄
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𝜎𝜀𝑋
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𝜎𝜀𝑌
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𝜎𝜀𝑍
2

𝜎𝜀𝑊
2

𝜎𝜀𝑋𝜀𝑌 ]
 
 
 
 
 
 
 
 
 
 
 

,  

 

 

 

 

 

(5) 

 308 

where σ_T^2 is the true soil moisture variance, σ_ε^2 is the variance of the random error, and σ_(ε_X 309 

ε_Y ) is the error covariance between X and Y.   310 

 311 

And the least squares solution for the parameters in S is given as: 312 

 313 

𝑆 = (𝐴𝑇𝐴)−1𝐴𝑇𝑀, (6) 

 314 
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Which provide the error variance of each dataset as long as the error covariance terms. More details on 315 

the method and its mathematical derivation can be found in Gruber et al. (2016).The error variance 316 

provided by EC can also be expressed in normalised form as Signal-to-Noise Ratio (SNR). This 317 

overcomes the dependency on the chosen scaling reference and allows to compare the error variances 318 

between the data sets. SNR is usually given in decibel, which can be easily interpreted: a value of zero 319 

means that the signal variance is equal to the noise variance, and every 3dB increase(decrease) implies 320 

a doubling (halving) of the signal variance compared to the noise variance. The SNR (expressed in 321 

dB) can be computed using the following formulation: 322 

 323 

𝑆𝑁𝑅[𝑑𝑏] = 10 log
𝛽𝑖

2𝜎𝜃
2

𝑀𝑆𝐸𝑖
, 

(7) 

with i, j in [X, Y, Z] and i ≠ j. 324 

 325 

In some special cases, the MSEi can become negative and the SNR cannot be expressed in dB 326 

(logarithm of a negative number is undefined). The reason is that the relation of the covariances 327 

between the data sets become larger than the actual signal variance (e.g. #XY #XZ/#Y Z > #2X), 328 

which can be related numerical problems, wrong estimation of the covariances or a violation of the 329 

underlying assumptions of the error model in general.In our study we used two different 330 

configurations of the EC techniques. In particular, for the Issyl basin no in situ observations are 331 

available so we used quadruple collocation analysis with quadruplets constructed with ASCAT, 332 

SMOS, ERA5 and SMA and ASCAT, SMOS-IC, ERA5 and SMA. The choice of these quadruplets 333 

was based on the assumption of non-zero correlation between SMOS products and ERA5 so in the 334 

process we also estimated  σ_(SMOS-ERA) (not shown). Similarly, for Rheraya we applied the 335 

methods by using five different datasets and assuming SMOS and ERA products and SMA and in situ 336 

observations characterized by non-null error cross-correlations. For both basins we used either SMOS 337 

or SMOS-IC in the configurations. 338 

 339 

3.3 Event-based hydrological model for floods 340 

 341 

In this study, we used the Soil Conservation Service Curve Number (SCS-CN) model for each basin, 342 

implemented in the hydrologic Engineering System - Hydrologic Modeling System ‘’HEC-HMS’’ 343 

software (US Army Corps of Engineers, 2015). This model is known by its widespread popularity  and 344 

to the simplicity of the application method (Miliani et al., 2011). SCS-CN is often used in the semi-345 

arid context (Brocca et al., 2009a; El Khalki et al., 2018; Tramblay et al., 2010; Zema et al., 2017). 346 

Our methodology is based on the use of SCS-CN model as a production function to compute net 347 

rainfall, by manually calibrating the Curve Number parameter (CN), the value of CN is non-348 
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dimensional ranging from 0 (dry) to 100 (wet). The potential maximum retention, S, is related to CN 349 

as follows:   350 

 351 

S =
25400

CN
− 254 , (8) 

 352 

The transformation of precipitation excess into runoff is provided by Clark Unit hydrograph model 353 

(transfer function). The calibration procedure is based on calibrating the Clark Unit hydrograph model 354 

parameters; Storage Coefficient (Sc) and Time of Concentration (Tc). The two functions (production 355 

and transfer) are calibrated separately to avoid the parameter dependence.  356 

 357 

The validation procedure is based on two steps; first, testing the relationship between soil moisture 358 

data (In-situ, SMA, ERA5, ASCAT, SMOS, SMOS-IC and ESA-CCI), at two different timescales 359 

(daily and hourly) and the S parameter of the event-based model of all the flood events.  The hourly 360 

time step concerns only the in-situ data and ERA5 by choosing the soil moisture state 1 hour before 361 

the starting time of rainfall for each event. Only the ERA5 product can be used in the Issyl basin at the 362 

hourly time step due to the absence of observed data. Then, the soil moisture products that are well 363 

correlated with S parameter are used to validate the model by calculating the S parameter from the 364 

linear equation obtained between soil moisture and S, using the leave-one-out resampling procedure; 365 

each event is successively removed and a new relationship between the remaining event is re-366 

computed. The estimated S parameter for a given event is then used in the SCS-CN model in 367 

validation. For the Clark Unit Hydrograph model, the average of the Sc and the Tc parameters are used 368 

in validation. 369 

 370 

The correlation coefficient of Pearson equation (9) and the Root Mean Square Deviation (RMSD) 371 

equation (10) are used to compare in-situ measurements and humidity modeled by SMA model and 372 

the different soil moisture products. For the evaluation of the flows simulated by the flood event 373 

model, we compared the simulated discharge with those observed using the efficiency coefficient of 374 

Nash-Sutcliffe (Ns) (Nash and Sutcliffe, 1970) equation (11) as well as through the bias on peak flow 375 

and on volume equation(12). 376 

 377 

r =
N∑SMsatSMIn−situ−(∑SMsat)(∑SMIn−situ)

√[N∑SMsat
2−(∑SMsat)

2][N∑SMIn−situ
2−(∑SMIn−situ)2]

, (9) 

RMSD =  √
∑ (SMIn−situ−SMsat)²

n
i=1

N
, 

(10) 

Ns = 1 −
∑ (Qobs,i−Qsim,i)²

n
i=1

∑ (Qobs,i−Qobs̅̅ ̅̅ ̅̅ ̅)²n
i=1

, 
(11) 
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BIASQ =
(Qsim−Qobs)

Qobs
, (12) 

 378 

Where Qsim  is the simulated discharge, Q𝑜𝑏𝑠 is the observed discharge, 𝑆𝑀𝐼𝑛−𝑠𝑖𝑡𝑢  is the in-situ 379 

measurements of soil moisture, 𝑆𝑀𝑠𝑎𝑡 is the soil moisture from satellite or reanalysis and N is the 380 

number of values. The Ns ranges between -∞ and 1, the 1 value of Ns indicates that the simulated 381 

discharge perfectly match the observed hydrograph 382 

 383 

 4 Results and discussions 384 

 385 

4.1 Relationship between satellite soil moisture data and in-situ measurements 386 

 387 

The comparison between measured soil moisture at 5cm depth and the different products of soil 388 

moisture show that the SMOS-IC and ERA5 provide the best correlations, with r=0.76 and r=0.67 389 

respectively, but it should be noted that all the correlations with the different products are also 390 

significant. Figure 2 shows that SMOS-IC and ERA5 reproduce dry periods well, whereas ERA5 391 

reproduces well wet periods. This result is in accordance with the results of Massari et al. (2014) who 392 

found that ERA-Land is well correlated with In-situ data. ASCAT product shows a correlation of 393 

r=0.43 which is less than the correlation given in Albergel et al. (2010) who found r values ranging 394 

from between 0.59 and 0.64, the lower correlation may be caused by the orography and the coarse 395 

resolution. In fact, this results shows that the use of a combined product as ESA-CCI give an obvious 396 

advances in term of r values than one single satellite soil moisture product (Ma et al., 2019; Zeng et 397 

al., 2015). It should be noted that the soil moisture products have a different percentage of missing 398 

data for ASCAT (0%), SMOS (18.7%), SMOS-IC (6.82%), ESA-CCI (46%) and observed soil 399 

moisture (12%). The ESA-CCI showed an important percentage of missing values comparing to 400 

ASCAT that is integrated in the ESA-CCI product. This due to the filter used in the ESA-CCI product 401 

to ensure the data quality, more description can be found in (Dorigo et al., 2017).  402 

 403 

4.2 Relationship between the SMA model outputs and soil moisture products 404 

 405 

The best correlation between observed soil moisture and the soil moisture level (S/A) modeled by the 406 

SMA model is obtained for A=8mm with r=0.86. But it shows higher RMSD than observations 407 

(RMSD =0.23) which is due to the overestimation of the wet periods (Figure 3). This can be related to 408 

the averaging of rainfall data in the SMA model over the basin which could be higher than rainfall in 409 

the soil moisture measurement site. It should be noted that the value of the A parameter is very small 410 

by comparing to previous studies (Javelle et al., 2010; Tramblay et al., 2012), indicating a much lower 411 

soil storage capacity.  412 
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 413 

We correlated the SMA model output (for A=8mm) with the Satellite Products of Soil Moisture, and 414 

the best correlations are found for SMOS-IC and ERA-5, with r=0.74 and r=0.63 respectively (Figure 415 

4). Other values of A that maximize the correlations with the different soil moisture products have also 416 

been tested. Optimal values of A are ranging from 1 mm with ASCAT (with r= 0.4), 8 mm for SMOS 417 

(r=0.56), SMOS-IC (r=0.75) and ESA-CCI (r=0.55) up to 16mm for ERA5 (r=0.68). Comparing the 418 

Figure 2 and Figure 4 we notice that the soil moisture products better reproduce in-situ measurements 419 

than modelled soil moisture with the SMA model, expect for ESA-CCI and SMOS. This improvement 420 

is directly related to the SMA model performance, which overestimates soil moisture, and should be 421 

compared to Figure 2 where ESA-CCI and SMOS products also overestimate in-situ measurements.  422 

 423 

For the Issyl basin, the percentage of missing values is a bit lower than in the Rheraya and also 424 

different between the satellite products: ASCAT (0%), SMOS (17.19%), SMOS-IC (9.1%) and ESA-425 

CCI (2.2%). As mentioned above, no observed soil moisture data is available in the Issyl basin to 426 

calibrate the A parameter of the SMA model. Therefore, different values of A are tested to correlate 427 

the SMA outputs with the different soil moisture datasets. Over all datasets, the value of A best 428 

correlated to the majority of soil moisture products is 30mm. The best correlation is given by 429 

A=30mm with r=0.78, 0.82 and 0.79 for ASCAT, SMOS-IC and ESA-CCI respectively. As for SMOS 430 

and ERA5, the best correlation is given for A=40mm with r=0.7 and A=60mm with r=0.8, 431 

respectively. In order to choose a single value of A that represents the basin, we have considered 432 

A=30mm, the optimal value yielding the best correlations with the different soil moisture products. 433 

Figure 5 shows that the best correlation between satellite products and S/A is obtained with SMOS-IC 434 

(r=0.82) and ESA-CCI (r=0.79). As observed over the Rheraya basin, the SMOS-IC and ERA5 435 

products showed a good reproduction for dry periods with a better reproduction of wet periods with 436 

ERA5, these results are similar to those of Ma et al. (2019) who found that SMOS-IC performs well in 437 

arid zones with a median r value of 0.6. Overall, the higher value for the A parameter found for this 438 

basin is coherent with the fact that this basin is located in a plain area with a much higher soil moisture 439 

storage capacity than in the mountainous Rheraya basin.  440 

 441 

4.3. Comparison of soil moisture datasets by seasons 442 

 443 

Seasonal evaluation of satellite soil moisture and reanalysis data shows for the Rheraya basin that 444 

during the summer season there are low correlations (average r=0.34) for all the products which is 445 

possibly due to very low precipitation amounts mostly as localized convective precipitation (Albergel 446 

et al., 2010). On the contrary, better performance are obtained with the SMA model (r=0.59) that 447 

considers catchment-scale precipitations. Better correlations are obtained in fall with an average of 448 

r=0.61 and 0.58 for the in-situ data and SMA respectively (Table 2). In the winter we found a poor 449 
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correlation using SMOS and ESA-CCI that can be related to the important percentage of missing 450 

values. For the Issyl watershed, the satellite products show good correlations with the SMA model 451 

outputs (on average r=0.76) except for the SMOS product especially in winter. We also notice a trend 452 

of improving correlations by moving from winter to autumn with a similarity between spring and 453 

autumn, which is not the case in the Rheraya basin, probably because of different precipitation 454 

patterns. The ERA5 overall product shows good correlations for most seasons. 455 

 456 

4.4 Extended collocation analysis 457 

 458 

Table 3 shows the results obtained for the two basins and two configurations. For Issyl, it can be seen 459 

that SMOS-IC is the best performing product with SNR much larger 3DB, followed by ASCAT and 460 

SMA. Conversely ERA5 and SMOS are suboptimal having noise variance similar to the signal 461 

variance. For Rheraya SMOS-IC is the only product providing SNR>3DB followed by SMOS and 462 

ERA5 which are however are still suboptimal. Poor results are found for both SMA, in situ and 463 

ASCAT in this catchment. Overall, the results of this complementary analysis confirm the findings of 464 

previous sections.   465 

 466 

4.5 Calibration of the event-based hydrological model 467 

 468 

Calibration results (Table 4) on the individual flood events of Table 1 show that the difference 469 

between the values of the potential maximum soil moisture retention (S) of each basin is very 470 

important with larger values for the Issyl basin where the soil depth is prominent. We noticed that the 471 

temporal variability of soil moisture can be important between two successive events like the events of 472 

02/04/2012 and 05/04/2012 for the Issyl basin. The SCS-CN model reproduces well the floods of the 473 

Rheraya basin with average Ns of 0.67 and bias on runoff peak (BIASQ) of 4% (Table 3). As shown on 474 

Figure 6, the SCS-CN model in calibration is able to reproduce the shape of the different flood events 475 

even for the most complex ones (21/04/2014 and 22/11/2014). Similarly, for the Issyl basin the SCS-476 

CN model gives good results with average Ns of 0.66 and an average bias on runoff peak of 6.93%. 477 

Figure 7 shows the simulated hydrographs which are in good agreement with the observations. The 478 

lower Ns coefficients obtained for the 23/01/2014 event in the Rheraya and for the 03/04/2011 and 479 

28/09/2012 events in the Issyl basin are caused by a slight shift in the hydrograph probably due to a 480 

time lag in instantaneous precipitation measurements. For the Clark Unit Hydrograph model, the 481 

averages of calibrated Tc and Sc parameters are considered for validation (Sc = 1.42 and 2.54 hours 482 

and Tc = 2.85 and 3.64 hours for Rheraya and Issyl respectively). 483 

 484 

The S parameters of the hydrological models, for the two basins, are then compared to the soil 485 

moisture products. For the Rheraya basin, there are significant correlations of the S parameter with in-486 
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situ soil moisture data, ERA5 and SMOS-IC (Table 5). The correlations using observed soil moisture, 487 

ESA-CCI and SMOS data can be computed with only 8 and 6 events respectively, due to the presence 488 

of missing values. The time step of the soil moisture data in the Rheraya basin seems to play a key role 489 

in the representation of soil moisture conditions. Indeed, the daily time step shows a weakness to 490 

effectively represent the antecedent soil moisture conditions in the SCS model, which indicates the 491 

rapid change of soil moisture content in such a semi-arid mountainous basin. For the Issyl basin, ESA-492 

CCI is the only satellite product that is significantly correlated to the S parameter at the daily time 493 

step. The ERA5 product is also significantly correlated with the S parameter but at the hourly time 494 

step. The daily output of the SMA model is also able to estimate the initial condition of the model for 495 

the Issyl basin, with a correlation of -0.69 with S. Interestingly, the SMA model does not provide a 496 

good performance in the Rheraya basin. It can be due to the fact that in such a mountainous basin, 497 

there is a strong spatial variability of rainfall and it is difficult to obtain reliable precipitation estimates 498 

for continuous simulations (Chapponiere et al., 2005). 499 

 500 

4.6 Validation of the event-based hydrological model 501 

 502 

The validation of the event-based hydrological model is performed on the events of Rheraya and Issyl 503 

using only the soil moisture datasets that show relatively good correlations with the initial condition 504 

(S) of the model from Table 6. These products include SMOS-IC, ERA5 and observed soil moisture 505 

for the Rheraya, and ESA-CCI, ERA5, SMOS and SMA for Issyl. The validation of the event-based 506 

model is performed with S calculated from the linear equation obtained from the correlation analysis 507 

between the different soil moisture products and the calibrated parameter S. The validation results 508 

show that for the Rheraya basin the events are well validated using both daily (Figure 6) and hourly 509 

(Figure 7) time step of soil moisture products. The best validation result at the daily time step is 510 

obtained with SMOS-IC with an average Ns of 0.58 for all events (median Ns =0.63). This result 511 

should be compared with the results found in the previous sections where SMOS-IC showed the best 512 

correlations with observed soil moisture. ASCAT and ERA5 show similar results in term of average 513 

Ns (~0.45). On the contrary, the daily observed soil moisture shows a lower performance with an 514 

average Ns of 0.25 (median Ns =0.49). The hourly time step enhanced the performance of the model, 515 

with an average Ns using the ERA5 product of 0.64 (median Ns = 0.73) and also a better performance 516 

with the hourly in-situ data with mean Ns = 0.54 (median Ns = 0.61). These results show that the 517 

hourly time step better represents the saturation content before the flood events in this bassin. For the 518 

Issyl, the validation results are quite different (Figure 8). For only 5 events (the 03/04/2011, 519 

02/05/2011, 19/05/2011, 05/04/2012 and 25/03/2015) the event-based model can be validated using 520 

the ERA5 hourly data with an average Ns coefficient of 0.46, while for all other events and with 521 

different soil moisture products the Ns coefficients are negative and the hydrographs not adequately 522 

reproduced. These validation results should be put in perspective with the fact that the Issyl basin has a 523 
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land use characterized by agricultural activities with possible large water uptake in the diver channel 524 

during floods for irrigation. Some simple methods to compensate for the water losses due to irrigation, 525 

such as the application of a varying percentage of runoff added to the observed discharge to 526 

compensate the part of water lost for irrigation, have been tested but with no improvement of the 527 

results. This is probably because the quantity taken for irrigation is not constant from one event to 528 

another depending on the farmer needs, as shown by field surveys, and this amount may also depend 529 

on discharge thresholds. 530 

 531 

5 Conclusions 532 

 533 

This study performed an evaluation of different soil moisture products (ASCAT, ESA-CCI, SMOS, 534 

SMOS-IC and ERA5) using in-situ measurements and a Soil Moisture Accounting model (SMA) over 535 

two basins located in the Moroccan High Atlas in order to estimate the initial soil moisture conditions 536 

before flood events. There is a knowledge gap on the evaluation of soil moisture products in North 537 

Africa (Jiang and Wang, 2019) that the present study aimed to fill. The results indicated that the 538 

SMOS-IC product is well correlated with both the in-situ soil moisture measurements and simulated 539 

soil moisture from the SMA model over the two basins. Beside satellite products, the new ERA5 540 

reanalysis reproduced also well the in-situ measurements over the mountainous basin, which indicates 541 

the robustness of this product to estimate soil moisture in these semi-arid environments. The seasonal 542 

analysis showed increasing correlations coefficients, from winter to autumn, for all the soil moisture 543 

products when compared to observations, which encourages the use of these remote sensing products 544 

for flood forecasting because the majority of events occur in autumn and early winter in these regions 545 

(El Khalki et al., 2018). The extended collocation analysis show coherent results with the correlation 546 

results with the SMOS-IC providing the best results for the Issyl and Rheraya basins. One of the main 547 

finding of the present study is that different products, in particular SMOS-IC, ASCAT and ERA5, are 548 

efficient to estimate the initial soil moisture conditions in an event-based hydrological model, that 549 

could improve the forecasting capability in data-scare environments.  550 

 551 

This study also showed that the hourly temporal resolution for soil moisture may provide a better 552 

estimate of the initial soil moisture conditions for both basins. Indeed, the use of hourly in-situ soil 553 

moisture measurements and ERA5 provided better performance to estimate the initial condition of the 554 

hydrological model. These results indicate that the temporal variability of soil moisture in these semi-555 

arid basins under high evapotranspiration rates can be very important causing a quick decay of soil 556 

moisture following a rainfall event. For this type of basin or others under even more arid conditions, 557 

the use of soil moisture products with an hourly temporal resolution could be required to estimate with 558 

accuracy the soil moisture content prior to flood events. This constitute a research challenge to 559 

monitor soil moisture at the sub-daily timescale without ground measurements, since most remote 560 
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sensing products at present are not available at the hourly time step. As shown by this study, 561 

atmospheric reanalysis coupled with a land surface model, such as ERA5, could provide a valuable 562 

alternative, in particular since the resolution of these products is constantly improving along with a 563 

more realistic representation of water balance.     564 

 565 

For the catchment that is the most influenced by agricultural activities, the Issyl basin located nearby 566 

Marrakech, the water uptake for irrigation made difficult the validation of the hydrological model. The 567 

model overestimates runoff for some flood events, since the water uptake during floods from the river 568 

channel by small artisanal structures is not monitored and thus cannot be represented in the 569 

hydrological model. This example show the difficulty in the implementation of a flood forecasting 570 

system in such basin without a good knowledge on the human influences on river discharge. This 571 

situation is not a particular case but deemed common in semi-arid areas where rivers with a high risk 572 

of flooding are also a substantial water resource for agriculture. Therefore, as shown by our results, a 573 

hydrological model that is not accounting for water use and irrigation may not be efficient at 574 

reproducing flood events in an operational context. The resolution of this issue would requires the 575 

development of an irrigation monitoring system, that would need intensive field surveys and mapping 576 

but also the agreement of the local farmers that benefit from this system. 577 

 578 

This study is a first step towards the development of operational flood forecasting systems in semi-arid 579 

North Africa basins highly impacted by floods. Indeed, the evaluation of the most suitable satellite or 580 

reanalysis products to estimate soil moisture for the monitoring of the basin saturation conditions 581 

before floods is a necessary first step prior to implement flood warning systems based on rainfall and 582 

soil moisture thresholds or coupled hydrometerological modelling (Javelle et al., 2010; Norbiato et al., 583 

2008). One important aspect that should be addressed in further research aiming at developing a flood 584 

forecasting system is the selection of soil moisture data based on the latency of these products. For 585 

instance the ERA5 reanalysis is available within 5-days latency when ASCAT or SMOS satellite 586 

products could be available with 3-hours latency. Prior to these developments, this type of evaluation 587 

should be generalized in Morocco and other sites in North Africa where soil moisture measurements 588 

are available, for the development of reliable flood forecasting systems using the outputs of 589 

meteorological models in combination with the soil moisture state. 590 
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 911 

TABLES 912 

 913 

 914 

Table 1: Characteristics of the selected flood events.  915 

 

Rheraya 

  

Max Discharge 

[m
3
/s] 

Volume 

[10
3
 m

3
] 

Precipitation 

Volume [10
3
 m

3
] 

Runoff Coefficient [%] 

23/01/2014 17.1 459.2 2749.5 16.7 

29/01/2014 39.7 602.8 2632.5 22.9 

10/02/2014 19.2 543.2 2904.7 18.7 

11/03/2014 19 557 1633.5 34.1 

21/04/2014 38.2 1070 5431.5 19.7 

21/09/2014 24.4 440.6 3363.8 13.1 

05/11/2014 46.5 1027 5737.5 17.9 

09/11/2014 42.2 869.3 4575.2 19 

22/11/2014 99.5 3868.9 17586 22 

28/11/2014 76.4 3797.2 11940.8 31.8 

  Issyl 

25/03/2011 63.8 385.28 27520 1.4 
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03/04/2011 16.6 550.656 30592 1.8 

29/04/2011 19.7 246.4 11200 2.2 

02/05/2011 17.1 303.36 10112 3.0 

16/05/2011 45.8 361.12 9760 3.7 

19/05/2011 27.6 315.392 7168 4.4 

06/06/2011 18.3 212.352 5056 4.2 

02/04/2012 16.8 216.576 18048 1.2 

05/04/2012 20 543.744 7552 7.2 

28/09/2012 22.7 126.72 7040 1.8 

05/04/2013 15.4 365.376 16608 2.2 

28/11/2014 37.2 489.6 28800 1.7 

25/03/2015 16.2 767.424 18272 4.2 

 916 

 917 

 918 

 919 

 920 

Table 2: Results of correlation analysis between soil moisture data and in-situ measurements 921 

and SMA model (significant correlations are represented in bold) 922 

 923 

 

Winter Spring Summer Fall 

Rheraya 

In-situ SMA A=8mm 0.82 0.83 0.67 0.75 

ASCAT 
In-situ  0.47 -0.03 0.18 0.70 

SMA A=8mm 0.32 0.09 0.54 0.65 

SMOS 
In-situ 0.01 0.68 0.61 0.16 

SMA A=8mm -0.09 0.75 0.58 0.54 

SMOS-IC 
In-situ 0.80 0.68 0.45 0.85 

SMA A=8mm 0.80 0.72 0.62 0.57 

ESACCI 
In-situ 0.12 0.28 0.41 0.60 

SMA A=8mm 0.15 0.30 0.67 0.51 

ERA5 
In-situ 0.74 0.73 0.04 0.73 

SMA A=8mm 0.86 0.76 0.54 0.65 

Mean 
In-situ 0.43 0.47 0.34 0.61 

SMA A=8mm 0.41 0.52 0.59 0.58 

    Issyl 

ASCAT 
SMA A=30mm 

0.77 0.86 0.70 0.90 

SMOS 0.39 0.76 0.47 0.74 
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SMOS-IC 0.85 0.81 0.56 0.93 

ESACCI 0.70 0.89 0.77 0.89 

ERA5 0.88 0.82 0.70 0.88 

Mean SMA A=30mm 0.72 0.83 0.64 0.87 

 924 

 925 

Table 3: Signal to noise ratio for Rheraya and Issyl basins. The SNT = 0 : Error variance, SNR > 3 Signal 926 

variance double the noice variance (very good) and SNR < 3 Signal variance half noice variance (not 927 

good). 928 

 
ASCAT SMOS SMOS-IC ERA5 SMA 

Rheraya 
-5.55   7.54   -1.99 

-6.16 4.31   1.16 -1.10 

Issyl 
4.23 1.90   2.33 5.03 

4.28   8.12 2.33 4.99 

 929 

 930 

 931 

 932 

 933 

 934 

Table 4: Calibration results of SCS-CN model, S is the potential maximum soil moisture retention, 935 

BIASQ is the difference between the observed and calibrated peak discharge of the event, BIASV is 936 

the difference between the observed and calibrated volume of the event. 937 

Rheraya Issyl 

Events S[mm] Ns 
BIASQ 

[%] 

BIASV 

[%] 
Events S[mm] Ns 

BIASQ 

[%] 

BIASV 

[%] 

23/01/2014 19.1 -0.58 1.18 -5.76 25/03/2011 679.8 0,83 29,94 -13,5 

29/01/2014 24.5 0.87 6.43 29.14 03/04/2011 730.5 0,02 -12,05 27,93 

10/02/2014 34.6 0.71 -4 2.85 29/04/2011 218.1 0,83 0 10,36 

11/03/2014 9.5 0.61 -17.39 2.57 02/05/2011 113 0,91 -0,58 44,39 

21/04/2014 55.8 0.73 6.41 2.3 16/05/2011 176.5 0,61 17,69 -26,31 

21/09/2014 34.6 0.77 27.08 -6.87 19/05/2011 136.7 0,87 1,09 9,64 

05/11/2014 39.6 0.97 15.38 0.88 06/06/2011 108.8 0,75 0 -5,38 

09/11/2014 40.7 0.83 6.3 -0.32 02/04/2012 440.3 0,56 0 15,26 

22/11/2014 43.1 0.78 -5.06 2.38 05/04/2012 125.1 0,56 13,5 -1,91 

28/11/2014 71.6 0.97 3.66 -6.22 28/09/2012 159.7 0,11 32,16 23,41 

     

05/04/2013 388.2 0,9 6,49 -4,16 
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28/11/2014 254 0,74 1,88 0,71 

          25/03/2015 356.6 0,89 0 12,32 

Mean   0.67 4 2.09 Mean   0,66 6,93 7,14 

Median   0.77 4.98 1.59 Median   0,75 1,09 9,64 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

Table 5: Correlation between soil moisture products and the S parameter of the SCS-CN 951 

hydrological model 952 

 

Rheraya Issyl 

S Number of events S Number of events 

In-situ [Daily] -0.71 8 - - 

In-situ [Hourly] -0.83 8 - - 

SMA A=8mm -0.32 10 - - 

SMA A=30mm 0.02 10 -0.69 13 

ASCAT -0.55 10 -0,29 13 

ESA-CCI -0,29 8 -0.66 11 

SMOS 0.12 6 -0,59 6 

SMOS-IC -0.81 10 -0.34 13 

ERA5 [Daily] -0.46 10 -0.37 13 

ERA5 [Hourly] -0.80 10 -0.63 13 

     

 953 

 954 

 955 
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Table 6: Performance of the SCS-CN model in term of Nash Coefficient for the Rheraya and Issyl events, 956 

using the daily or hourly time steps for the different soil moisture products.   957 

 958 

 
   Daily Hourly 

 
ASCAT ESA-CCI SMOS 

SMOS-

IC 
ERA5  

In-

situ 
SMA 30mm ERA5  In-situ 

 
  RHERAYA  

Min -0.15 - - -0.04 -0.73 -1.88 - -0.01 0.15 

Mean 0.48 - - 0.58 0.45 0.25 - 0.64 0.54 

Median 0.57 - - 0.63 0.66 0.49 - 0.73 0.61 

Max 0.85 - - 0.84 0.82 0.83 - 0.81 0.71 

 

  ISSYL  

Min - -56041 
-

1938.07 
- - - -96.08 -114.6 - 

Mean - -14138.2 -324.3 - - - -24.77 -16.74 - 

Median - -254.85 -1.8 - - - -2.46 -0.85 - 

Max - -2.10 -0.52 - - - -0.78 0.83 - 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 
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FIGURES 980 

 981 

 982 

 983 

Figure 1:  Location of Rheraya and Issyl basins, the seguias network, the agricultural parcels and the 984 

hydro-meteorological network – PR: Rainfall station in Rheraya, SMPR: Soil moisture measurement+ 985 

Rainfall station in Rheraya, PQI: Rainfall and discharge station in Issyl, QR: Discharge station in 986 

Rheraya. 987 

 988 
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 989 

 990 

Figure 2: Correlation between measurements of soil moisture (5cm depth) and different products of soil 991 

moisture (Rheraya basin). 992 

 993 

 994 

Figure 3: Relationship between S/A and observed soil moisture data between 08/04/2013 and 31/12/2016 995 

for different values of A (Rheraya basin). 996 

 997 
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 998 

Figure 4: Relationship between satellite products of soil moisture and ERA5 with and SMA outputs 999 

between 08/04/2013 and 31/12/2016 over the Rheraya basin. 1000 
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 1001 

Figure 5: Relationship between Satellite products of soil moisture and SMA outputs for 1002 

A=30mm between 18/10/2010 and 20/08/2015 in the Issyl basin 1003 

 1004 

https://doi.org/10.5194/nhess-2020-119
Preprint. Discussion started: 12 May 2020
c© Author(s) 2020. CC BY 4.0 License.



35 

 

 1005 

Figure 6: Validation results of flood events simulated for the Rheraya using different soil moisture 1006 

products with a daily time step. The observed hydrograph (𝑸𝒐𝒃𝒔) is compared to the simulated 1007 

hydrographs using ASCAT, SMOS-IC, ERA5 and in situ data.   1008 

 1009 
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 1010 

Figure 7: Validation of the flood events simulated for the Rheraya using ERA5 and in situ soil moisture 1011 

with hourly time step.  1012 

 1013 
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 1014 

Figure 8: Validation result of flood events for the Issyl using ERA5 with hourly time step 1015 

 1016 

 1017 
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