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Abstract. The main goal of this research is the activity state verification of existing landslide inventory maps using Persistent 

Scatterer Interferometry (PSI). The study was conducted in Małopolskie municipality, a rural setting with a sparse urbanization 10 

in Polish Flysch Carpathians. PSI have been applied using Synthetic Aperture Radar (SAR) data from ALOS PALSAR, and 

Sentinel 1A/B  from different acquisition geometry (ascending and descending orbit) to increase PS coverage and overcome 

geometric effects due to layover and shadowing. The Line-Of-Sight PSI  measurements were projected to the steepest slope, 

which allows to homogenize the results from diverse acquisition modes and to compare displacement velocities with different 

slope orientations. Additionally, landslide intensity (motion rate) and expected damages maps were generated and verified 15 

during filed investigations. High correlation between PSI results and in-situ damage observations has been confirmed. Activity 

state and landslide-related expected damage map have been confirmed for 43 out of a total of 50 landslides investigated in the 

field. The short temporal baseline provided by Sentinel satellite 1A/B data allows increasing of the PS density significantly. 

The study substantiates usefulness of SAR based landslide activity monitoring for land use and land development, even in 

rural areas. 20 

1 Introduction 

A landslide inventory map (LIM) is a basic geological and cartographic product providing cumulative information about 

landslides. It is the fundamental source for any landslide susceptibility, hazard or risk assessment (Guzzetti et al., 2012). LIM 

presents spatial distribution of past and current landslides, their activity state and additional information about their type, size 

or even failure mechanisms (Van Den Eeckhaut and Hervás, 2012). LIMs are created using consolidated (field mapping or 25 

visual interpretation of stereoscopic aerial photographs) and innovative (remote sensing) techniques (Guzzetti et al., 2012). 

Analysis of panchromatic and multispectral  satellite images have been applied to create LIMs using satellite remote sensing 

(Martha el al., 2010; Martha et al., 2012; Li et al., 2016). 

In the last few decades, differential interferometry SAR (DInSAR) has captured considerable attention in the landslide 

community by offering great support for landslide detection and monitoring (Wasowski and Bovenga, 2014). Nowadays, 30 

abundant interferometric synthetic aperture radar (InSAR) application for landslide studies can be found, e.g., landslide 
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detection (Meisina et al., 2008; Notti et al., 2010; Bianchini et al., 2012; Motagh et al., 2013), landslide characterization (Rosi 

et al., 2018), landslide monitoring (Notti et al., 2010; Meisina et al., 2008; Haghshenas Haghighi and Motagh, 2016; Herrera 

et al., 2013) and landslide activity assessment (Righini et al., 2012; Cigna et al., 2013; Bianchini et al., 2013; Frangioni et al., 

2014; Rosi et al., 2018). This is mainly because SAR satellite data provide valuable information about ground displacement 35 

for wide area coverage with high spatial resolution and great temporal sampling (Bianchini et al., 2013). To overcome some 

DInSAR limitations (Wąsowski and Bovenga, 2014), multi-temporal interferometric techniques (MTInSAR) have been 

developed, e.g., Persistent Scatterer Interferometry (PSI) (Ferretti et al., 2001; Hooper et al., 2004; Kampes, 2006), Small 

BAseline Subset (SBAS) (Berardino et al., 2002; Crosseto at al., 2008) or SqueeSAR (Ferretti et al., 2011). In the literature, 

many diverse MTInSAR techniques exist, which mainly vary with the baseline configuration, the persistent scatterer (PS) 40 

selection criteria and the deformation model used among these techniques. A wider overview of these techniques is provided 

by Sousa et al. (2011) and Crosetto et al. (2016). 

Nevertheless, InSAR techniques have some limitations due to the satellite acquisition geometry. Measured deformations using 

SAR are 1D along the satellite LOS (Line of Sight) direction (Pawluszek-Filipiak and Borkowski, 2019). Therefore, the 

fraction of measured deformation depends on the satellite acquisition geometry, topography of the study area and real direction 45 

of movements. This is crucial for monitoring landslides (Bianchini et al., 2013). Moreover, because of the ambiguous nature 

of SAR observations, it is challenging, if not impossible, to measure “fast” deformation (differential deformation > λ/4 over 

the revisit interval). For example, the maximum measurable deformation for Sentinel 1 and ALOS PALSAR data is 426 and 

468 mm/year, respectively (Jia and Liu, 2016). Therefore, InSAR is a suitable technique for monitoring slow and very slow 

moving landslides with millimetre precision (Del Ventisette et al., 2014; Mirzaee et al., 2017). 50 

In recent decades, new methods for updating landslide inventory maps by exploiting PSI techniques have been examined by 

the scientific community. These methods apply traditional thematic maps (geological, topographical and/or optical images) 

together with field reconnaissance coupled with PSI-delivered ground deformation estimates. PSI techniques are used for (1) 

landslide phenomena identification (Bianchini et al., 2013; Monserrat et al., 2016), (2) landslide boundaries verification or 

modification (Bianchini et al., 2013), (3) landslide velocity and intensity estimation (Bianchini et al., 2012) and (4) activity 55 

state assessment (Bianchini et al., 2012; Cascini et al., 2013; Bianchini et al., 2013; Frangioni et al., 2014; Del Ventisette et 

al., 2014; Kalia, 2018) 

Bianchini et al. (2012) presented an application of PSI measurements in a methodology called “Landslide Hot Spot Mapping.” 

The aim of their study was to map and evaluate the state of extremely slow and slow moving landslides. Since then, many 

papers have demonstrated the applicability of PSI results for landslide activity assessment. Cascini et al. (2013) applied the 60 

PSI approach based on Envisat data, together with damages data for slow moving landslide activity assessment, in southern 

Italy. Bianchini et al. (2013) applied the PSI approach, based on ALOS PALSAR data, for updating the landslide inventory in 

Majorca, Spain. Frangioni et al. (2014) applied Envisat data and the PSI-based matrix approach to update the landslide 

inventory in Setta basin, Italy. The same year, Del Ventisette et al. (2014) applied the PSI matrix approach and ERS 1/2 and 

Envisat data to assess landslide activity within the Italian Alps. Commonly used methodology in the abovementioned papers 65 

https://doi.org/10.5194/nhess-2020-112
Preprint. Discussion started: 17 April 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

 

is the PSI matrix approach with diverse SAR sensors, where specific thresholding of the landslide velocity, acquired from 

specific PSI processing, are performed. A detailed description of the PSI-based matrix approach is presented in Cigna et al. 

(2013). Since 2014, when the ESA Copernicus Sentinel 1 satellite was launched, the availability of SAR data has changed for 

almost entire world. The first  articles of using Sentinel-l SAR data for landslide monitoring have been presented by Monserrat 

et al. (2016) and Barra et al. (2016). Recently, Kalia (2018) applied 66 Sentinel acquisitions in a descending orbit mode for 70 

classification of landslide activity on a regional scale using PSI at the Moselle Valley in Germany. 

In reference to the abovementioned papers, the main objectives of the present study are: 

• Updating the pre-existing landslide inventory map in the area of Rożnów Lake in Poland from PSI results derived 

based on ALOS-PALSAR (2007-2010), Sentinel 1A (2014-2016) and Sentinel 1A/B (2017) data; 

• Evaluating the effect of SAR geometry delivered from ascending and descending orbits from ALOS PALSAR and 75 

Sentinel 1 and the sensitivity to measure deformation over the study area; 

• Evaluating the difference in landslide activity updated from three diverse data stacks, namely: L-band (ALOS), C-

band with one satellite (Sentinel 1A, with a revisit interval of 12 days) and C-band with two satellites (Sentinel 1A and 1B 

with a revisit time of 6 days), respectively; 

• Creation of landslide intensity and expected damage maps based on PSI results. 80 

Verification of the objectives and achieved results was done by field investigations. Landslide activity states for 43 out of a 

total of 50 landslides were investigated. Some examples of landslide activity evaluation inspected during the field work are 

presented. 

This study is probably the first investigation of this type in the Carpathians region. Particularly, the study area is located in the 

proximity of  Rożnów Lake. This mostly rural area is also attractive for local tourism and rest. Despite the landslide hazard, 85 

there is pressure on land development and urbanisation (Kroh,  2017). The realisation of the above-listed objectives can 

advance the use of the SAR based approach as a reliable information source for future land use and land development. 

1 Materials and Methods 

2.1 Study area and existing landslide database 

Landslides are common within the area of the Polish Flysch Carpathians. This constitutes a substantial problem for local 90 

communities due to the growing population and number of properties located within the landslide prone areas (Crozier, 1986). 

Around 36% of the Polish Flysch Carpathians are affected by landslides (Gorczyca et al., 2013). Therefore, the area with the 

most active landslides in Poland has been selected for this research. The region is known for its frequent landslide occurrence. 

Within the study area, 506 landslides have been identified over past years with at least one landslide per 1 km2. Landslides in 

the study area were mapped for the first time in the 1930s (Gorczyca et al., 2013). Since then, the study area has been affected 95 

by mass movements several times, mostly triggered by heavy rainfalls. According to historical data, landslides have occurred 

in the study area seven times between 1934 and 1974 (Gorczyca et al., 2013). More recently, landslides have caused 
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catastrophic damage due to abundant rainfall and flooding in 1997 and 2010. This region is rural and, thanks to the breathtaking 

landscapes, the population has grown rapidly in recent decades. 

Moreover, it is also attractive to tourists. Apart from scatterer residential areas, many compact tourist buildings can be found 100 

in deforested areas. These areas are characterized by high elevations and drainage divides, which are characteristically affected 

by landslides. In 2010, catastrophic landslide activity damaged approximately 150 buildings and many roads, transmission 

lines, crops and orchards (Gorczyca et al., 2013). Based on Gorczyca et al. (2013), further landslide activity within the study 

area is likely, thus, it is important to monitor all landslide activity in this region. 

The study area covers the surrounding hills of Rożnów Lake (Fig. 1). This figure shows the landslide distribution within the 105 

study area as well their predefined activity states. The first preliminary results of PSI application in the region of Rożnów Lake 

have been provided by Wojciechowski et al. (2008), Perski et al. (2010) and Perski at al. (2011). Using ERS 1 images, the 

authors showed the potential of this technique for landslide movement detection in rural and challenging terrain for PSI 

analysis. 

[Insert Fig. 1 about here] 110 

Figure 1. Study area. 

2.1.1 Geological and hydrological settings of the study area 

From the geological point of view, the study area is located in the Outer Carpathians of the Magura Nappe, Silesian Nappe 

and Grybów Unit. These geological units are built from flysch rocks, such as clay, sand, gravel, sandstone and shale, of the 

Quaternary and Tertiary periods. The study area is located on the borderline between Beskid Wyspowy Mountain and 115 

Carpathian Foothills. Beskid Wyspowy comprises low mountains and middle foothills with slopes ranging from 10o to 35o 

and elevations from 300 to 340 m. The Magura Nappe is highly susceptible to sliding, especially with respect to hieroglyphic-

beds containing variegated shales (Burtan et al., 1991; Wójcik et al., 2015). Detailed visualization of diverse geological units 

is presented in Fig. 2 and the explanation can be found in the supplementary material. 

[Insert Fig. 2 about here] 120 

Figure 2. Geological setting of the study area. 

 From the geological point of view, the study area is located in the Outer Carpathians of the Magura Nappe, Silesian Nappe 

and Grybów Unit. These geological units are built from flysch rocks, such as clay, sand, gravel, sandstone and shale, of the 

Quaternary and Tertiary periods. The study area is located on the borderline between Beskid Wyspowy Mountain and 

Carpathian Foothills. Beskid Wyspowy comprises low mountains and middle foothills with slopes ranging from 10o to 35o 125 

and elevations from 300 to 340 m. The Magura Nappe is highly susceptible to sliding, especially with respect to 

hieroglyphic-beds containing variegated shales (Burtan et al., 1991; Wójcik et al., 2015). Detailed visualization of diverse 

geological units is presented in Fig. 2 and the explanation can be found in the supplementary material. 

2.1.2 Landslide types and distribution 
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Among the study area diverse landslide types exist including translational, rotational or combined rock-debris slides and typical 130 

debris slides (Pawluszek et al., 2018). A lot of landslides are covered by forest and, therefore, their identification and 

monitoring presents a significant challenge. The landslide activity in the study area is mostly associated with hydro-geological 

conditions such as rock stratification and precipitation. These conditions created favorable conditions for landslide activation. 

Catastrophic landslide activity occurred in 2010 due to cumulative rainfalls ranging from 50 to 400 mm over 2 to 5 days 

activating mudslides and debris slides. Activation of deep rockslides required long continuous precipitation of 100 to 500 mm 135 

per month. Most of the landslide scarps within the study area lead down to valley floors or river terraces where the colluvium 

consists of weathering debris, clay with debris and pure clay. Usually, north-facing landslides tend to be complex, while south-

facing landslides tend to be insequent or subsequent slides (classification based on the relationship to the arrangement rock 

layers as described in (Gorczyca et al., 2013). 

2.1.2 Landslide types and distribution 140 

Among the study area diverse landslide types exist including translational, rotational or combined rock-debris slides and typical 

debris slides (Pawluszek et al., 2018). A lot of landslides are covered by forest and, therefore, their identification and 

monitoring presents a significant challenge. The landslide activity in the study area is mostly associated with hydro-geological 

conditions such as rock stratification and precipitation. These conditions created favorable conditions for landslide activation. 

Catastrophic landslide activity occurred in 2010 due to cumulative rainfalls ranging from 50 to 400 mm over 2 to 5 days 145 

activating mudslides and debris slides. Activation of deep rockslides required long continuous precipitation of 100 to 500 mm 

per month. Most of the landslide scarps within the study area lead down to valley floors or river terraces where the colluvium 

consists of weathering debris, clay with debris and pure clay. Usually, north-facing landslides tend to be complex, while south-

facing landslides tend to be insequent or subsequent slides (classification based on the relationship to the arrangement rock 

layers as described in (Gorczyca et al., 2013). 150 

2.1.2 Pre-existing landslide inventory map 

The Landslide Counteracting System (SOPO) project was used for the pre-existing landslide inventory database. LIMs are the 

components of this database. The SOPO project was launched in 2008 under the order of the Ministry of Environment with 

funds from the National Fund for Environmental Protection and Water Management. The purpose of SOPO is to support the 

administration and environmental protection inspectorates, as well as non-governmental organizations, in effectively fulfilling 155 

the duties connected to landslide risk management. The system, in its assumption, provides proper and complete data for 

effective landslide risk management (Pawluszek et al., 2018). Within the SOPO project, all recorded landslide locations and 

their extent have been stored. Moreover, information about activity state as well as detailed geomorphological and geological 

analysis, are presented. Landslides within the study area were mapped during field work in 2010, 2011, 2012, 2013, 2014 and 

2015 (Bąk et al., 2011; Wójcik, et al., 2011; Koluch and Nowicka, 2012). Additional mapping work was also performed on 160 

https://doi.org/10.5194/nhess-2020-112
Preprint. Discussion started: 17 April 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

the basis of topographic maps at 1:10,000 scale and supported by stereoscopic analysis of aerial photographs and LiDAR data 

(Perski et al., 2011; Wojciechowski et al., 2012). 

2. Methods 

The methodology flowchart is presented in Fig. 3. The generation of landslide activity maps integrates the PSI data, the PSI 

post-processed delivered products and landslide inventory map. These three consecutive stages are described in the following 165 

subsections. 

[Insert Fig. 3 about here] 

Figure 3. Methodology. 

2.1 Radar data and PSI processing 

Table 1 presents five different data stacks, which have been processed using PSI. Due to the limitation of traditional DInSAR 170 

techniques related to degradation of radar signals resulting from atmospheric effects and temporal and geometrical 

decorrelation, the PSI approach has found widespread application in landslide studies (Perski et al., 2011; Bianchini et al., 

2012). The PSI approach is based on exploration of stable natural or man-made reflectors which present stable backscattering 

signal over time. Actually, the PSI approach has been previously applied in monitoring Carpathian landslides (Perski et al., 

2010, 2011). However, due to the high temporal decorrelation, resulting from vegetative cover and short wavelength (X-band), 175 

it was only partially successful (Perski et al., 2009; Perski et al., 2011). This is mostly related to low PS density due to the 

TerraSAR-X data application. Therefore, exploitation of C-band (Sentinel-1) and L- band (ALOS PALSAR) data can bring 

more advantages, especially in rural areas (Lu et al., 2018). 

[Insert Tab. 1 about here] 

Table 1. Data stacks used and their metadata. 180 

In this work, we exploited the PSI approach introduced by Feretti et al. (2001). This approach utilized more than 20 images to 

separate diverse interferometric components which correspond to deformation components, atmospheric error or topographic 

error due to the difference between digital terrain modelling (DTM) used for topography estimation and real surface 

backscattering elevation. The PSI approach is based on the following steps: (1) interferogram generation with respect  to a 

common master image, (2) PS candidate selection based on amplitude dispersion index, (3) first estimation of atmospheric 185 

phase screen (atmospheric influence) and topographical and displacement components and (4) second estimation of 

interferometric components and final PS points selection. For precise description of the algorithms applied within each step, 

see Ferretti et al. (2000, 2001). 

The present approach was performed for ALOS and Sentinel data stacks independently. Some necessary pre-processing steps 

were applied for raw SAR data, namely, focusing, image cropping and compensating for zero Doppler centroid. SARscape® 190 
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software was used for SAR data processing (Sahraoui et al., 2006). Numerous interferograms were created from single look 

complex (SLC) data in original resolution without applying any pixel averaging. The precise orbital files from the European 

Space Agency (ESA) were used and SRTM 3 sec digital elevation models3 sec with resolution of 90 m were applied for 

topographic phase removal. 

2.2 PS post-processing phase 195 

After PSI processing, all results for the five diverse data sets have been post-processed in order to retrieve the most adequate 

displacement information (see module 2 in Fig. 3). Subsequent post-analysis descriptions are provided in the following 

subsections. 

2.2.1 PS suitability analysis 

PSI measurements provide deformation information in the LOS direction (from the satellite to the ground as determined by 200 

the incident and heading angles). Thus, it is impossible to retrieve 3D displacement from InSAR directly. Horizontal and 

vertical components of movement (assuming no N-S horizontal motion exists within the study area) can be retrieved by 

combining measurements from ascending and descending orbits. However, in mountainous areas, where PS coverage is low 

due to the geometrical conditions and distortions, velocity decomposition can be problematic. Therefore, conversion of LOS 

deformation into the most probable direction (direction of maximum slope), by assuming a pure translational movement 205 

mechanism, is commonly used (Bianchini et al., 2012). In order to assess the sensitivity of InSAR LOS measurements in a 

specific point, we applied R index. This index represents the geometrical visibility of the specific area with respect to the SAR 

system used. R index takes into account morphology of the study area and the acquisition geometry of the particular SAR 

system and is  calculated as ( Notti et al. (2010) ): 

𝑅 =  − sin(𝑆 ∙ sin(𝐴 − 𝛼 + 90) − 𝜗)                                         (1) 210 

where α is the angle of the satellite track from North, ϑ is the incidence angle, S is the slope and A stands for the aspect. The 

calculated R index can take values within the range [-1, +1]. 

Figure 4 provides the visualization of the R values over the study area for ALOS and Sentinel imaging systems. 

 

[Insert Fig. 4 about here] 215 

Figure 4. R index for three diverse satellite geometries (ALOS ascending and Sentinel ascending and descending modes). 

 

R index close to zero shows low SAR sensitivity to measured displacements for specific locations. Based on testes for different 

test sites, Notti et al. (2014) have found out that distinguishing of four classes is the optimal solution.  Therefore, R index has 

been divided into four classes, wherein we used the same interval length for all classes except the first. The first class (R index 220 

<0) represents the location where detection of the PS points is difficult due to geometrical distortions. The Second class (R 

index 0 to +0.33) indicates the location where the slope geometry is not convenient for SAR measurements. The third group 
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(R index 0.33 to 0.66) presents PS on slopes with acceptable geometry for SAR displacement measurements. The fourth group 

(R index 0.66 up to 1) represents high sensitivity of LOS deformation monitoring. This means that, in this location, the slope 

direction is almost perpendicular to the satellite LOS direction and SAR sensors can perfectly measure the deformation over 225 

this location. Summarizing, in further studies, the PS points with R index higher than 0.33 were considered. 

2.2.2 PS velocity projection along the steepest slope 

Deformation retrieved from PSI is 1D measurement in the direction to the satellite. LOS deformations (𝑉𝐿𝑂𝑆) were projected 

along the steepest slope according to the equation: 

𝑉𝑠𝑙𝑜𝑝𝑒 =
𝑉𝐿𝑂𝑆

cos𝛽⁄                                                          (2) 230 

with β as the angle between the steepest slope and the LOS direction. 

Despite the great advantage of the motion represented in the slope direction, this projection has some limitations. First, when 

β=90o, Vslope goes into infinity. Here we followed Herrera et al. (2013) and selected an absolute maximum value of β=72o, 

which is equivalent to cosβ=0.3, so that Vslope cannot be higher than 3.33 times than that of VLOS. In order to remove any 

Vslope exaggeration, we considered only PS points for which cosβ >0.3. 235 

Moreover, we discarded PS points which show Vslope>0 because positives values represent uphill movements and it is not 

representative for small landslide movements, even though positive values exist within landslides, especially in the toe area. 

2.2.3 Velocity thresholding for activity state estimation - PSI based matrix approach 

For the activity and intensity assessment, some representative values have been retrieved from PSI analysis. These values are 

fixed values which are used for: (1) distinction between moving and non-moving landslides and (2) discrimination of extremely 240 

slow from very slow moving landslides. It strictly depends on the study site considering the deformation processes and 

typology (Cigna et al., 2013). Commonly, the average of LOS velocity estimates is applied as representative of velocity 

(Bianchini et al., 2012). However, different thresholds are applied to assess the landslide activity. These values can vary with 

respect to SAR data wavelength and projection of the velocity. For VLOS, some authors (Righini et al., 2012; Herrera et al., 

2013) utilized 2 mm/yr as the velocity threshold for landslide activity assessment for C-band data and 5 mm/yr for Vslope 245 

(Cigna et al., 2013, Bianchini et al., 2013). These changes are mostly correlated with different velocity distribution patterns. 

For the LOS velocity, distribution is almost normal (Gaussian), while for SLOPE is second negatively skewed as a result of 

the PS reduction (Bianchini et al., 2013). Therefore, for activity state estimation, we applied 5 mm/yr as the Vslope threshold. 

Based on the pre-existing landslide inventory map and PSI post-processed results, we applied the PSI-based matrix approach 

(Fig. 5). According to the PSI matrix (Fig. 5), the presented approach employs a simplified version of the official categorization 250 

of the landslide activity state presented in the landslide glossary WP/WLI, (1993). Four diverse activity states have been 

determined (Fig. 5): (1) reactivated = active after being inactive, (2) active continuous = currently moving, (3) dormant = 

inactive, but possible to be reactivated and (4) stabilised = not active anymore. 
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[Insert Fig. 5 about here] 

Figure 5. PSI based matrix activity assessment (based on Cigna et al., 2013). 255 

2.2.4 Landslide intensity estimation 

Based on the representative values of deformation, landslide intensity was assessed relying on the Cruden and Varnes (1996) 

intensity scale.  This scale is based on PSI velocities consisting of three categories: negligible, extremely slow and very slow 

(Fig. 6). In reference to Cruden and Varnes (1996), landslides with sufficient information are divided into negligible (mean 

velocity 5 mm/yr), extremely slow (mean velocity between 5 and 16 mm/yr) and very slow (mean velocity between 16 mm/year 260 

and 1.6 m/yr). It is also worth to mention, that some researchers use slightly lower thresholding (e.g. Bianchini et al., 2012) 

with the argumentation that PSI underestimates movements in comparison to the real movements.    

 

[Insert Fig. 6 about here] 

Figure 6. Classification of PSI delivered movement rates for landslide intensity scale estimation. Vp and Vh are present or 265 

historical PSI estimated movements, respectively. 

3. Results  

3.1 Landslide activity state and intensity map generation 

The landslide activity and intensity maps integrate the post-processing derived products (R and Vslope) with the existing 

landslide inventory. For the assessment of landslide activity, the previously described PSI matrix-based approach was applied. 270 

Results of the activity assessment are presented in Fig. 7. However, the activity state has been presented only for landslides 

where sufficient PS points have been found. At least four PS points within a landslide body were set up as the threshold. A 

number of landslides in the study area are complex landslides. Such landslides are divided into parts and represented in SOPO 

databases as separate objects. In this case, the mentioned threshold is related to each landslide object.    

 275 

[Insert Fig. 7 about here] 

Figure 7. PS points after post processing phase (on the left) and landslide activity state assessment (on the right) for three 

diverse data stacks processing results. 

 

In Fig. 8, the landslide intensity scale was estimated based on the abovementioned classification (subsection 3.4). 280 

[Insert Fig. 8 about here] 

Figure 8. Landslide intensity scale estimation based on ALOS, Sentinel 1A and Sentinel 1A/B delivered PSI results. 
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After the post-processing phase, 3898, 5260 and 10,798 PS points were found within the landslide boundaries for ALOS 

PALSAR, Sentinel 1A and Sentinel 1A/B data stacks, respectively. This allowed us to estimate the activity state and intensity 285 

scale for 128, 130 and 205 landslides using ALOS, Sentinel 1A and Sentinel 1A/B data, respectively. 

Fig. 9 presents, in the form of pie chart some statistics to landslide activity state assessment depicted in Fig. 7.  The left column 

of pie charts in Fig. 9  corresponds to the maps shown in Fig. 7 (a), (c), (e) respectively. From the total number of landslides 

and landslides objects (according to SOPO database), 23%, 20% and 38% have been updated by PSI approach for ALOS, 

Sentinel-1A and Sentinel-1A/B data respectively. Percentages of particular activity states within updated landslides are 290 

illustrated in the right column of pie charts in Fig. 9. These pie charts correspond to the maps in Fig 7 (b), (d), (f). Note, that 

the last maps show also activity state updated based on PSI-matrix. Therefore there are also landslides, which activity state 

has been updated based on historical or pre-existing data (SOPO database) if insufficient number of PS were detected on the 

landslide object (compare also Fig. 5).        

 295 

[Insert Fig. 9 about here] 

Figure 9. Percentage of updated landslides 

 

3.2. Possible hazard assessment 

Based on a literature review, a downstream investigation was performed and additional thresholds were set up in order to 300 

assess possible hazards related to buildings and infrastructure located in landslide areas. For this purpose, we applied the 

method proposed by Mansour et al. (2011), i.e., the threshold of 10 to 100 mm/yr as a minimum landslide velocity which can 

cause moderate damage to infrastructure and buildings. Velocity rates higher than 100 mm/yr can cause major damage to 

infrastructure and buildings. Landslide with velocity below 10mm we classified as landslide with minor expected damages. 

This thresholding has been adopted as an additional criterion in order to support environmental planning and management 305 

strategies to areas which can be characterised by high landslide hazard and, consequently, should be addressed to potential 

damages protection. In Fig. 10, possible damages caused by mass movements in the study area are presented for three diverse 

PSI processing results. 

[Insert Fig. 10 about here] 

Figure 10. Expected damages from landslides based on Mansour et al. (2011) and PSI results from ALOS, Sentinel 1A and 310 

Sentinel 1A/B data 

 

https://doi.org/10.5194/nhess-2020-112
Preprint. Discussion started: 17 April 2020
c© Author(s) 2020. CC BY 4.0 License.



11 

 

3.3 Field validation 

The confidence degree of landslide activity maps can be validated throughout their comparison with external independent 

sources, such as damage inventories, in situ measurements, field checks, etc. This evaluation aims at assessing whether 315 

measured displacements represent landslide dynamics. It is worthwhile to emphasise that the reality of the PSI-velocity 

estimation, itself, is not assessed due to the lack of external field measurements, but whether this measurement is related to 

landslide activity or not. For this reason field verification was performed.  

Due to the abundant number of landslide located within the study area (506), only 50 landslides, which are expected to produce 

moderate damage, were investigated in the field. Activity states have been confirmed for 43 landslides, which indicates around 320 

86% success rate. However, even if no evidence was found in the field, it does not mean that the landslide is not active. 

Landslide damage, especially in agricultural areas and to buildings, are immediately repaired and, therefore, not always visible 

to people living there. Some examples of field verification and descriptions of investigated landslides are presented in the 

following subsection. The field work was performed on November, 2018 and was led by an experienced landslide expert. 

Landslide “Just-Tęgoborze,” SOPO ID 23374 325 

The landslide “Just-Tęgoborze” is a group of rock and debris slides occurring below St. Just pass. This landslide is located on 

the southern and eastern slopes. The landslide was developed on clay of various genesis and from the marginal Magura Nappe 

formations. The upper part is founded on the outcrops of the Magura sandstones and the lower part on the slate sandstones of 

the sub-Magura units. It has been documented as active for the last 50 years. The activity state is regularly confirmed by road 

damage. Essential movements occurred in June 2010 as a result of abundant rainfall. In addition, many residential buildings 330 

have been damaged. Landslides tend to develop and increase activity over a large area. Presented landslides are very difficult 

to stabilise due to the activity, considerable thickness of the colluvium and slate shales occurrence in the ground (Wójcik et 

al., 2011). This landslide was assessed as active (in 2010), dormant (2014-2016) and reactivated (in 2017) based on the PSI-

base matrix approach. Within the landslide area, there were moderate damages in 2010 and 2017 and minor damages in 2016 

based on Mansour et al. (2011). In Fig. 11, the extent of the Just-Tęgoborze landslide and PS points are presented together 335 

with photographs taken during the field verification. 

[Insert Fig. 11 about here] 

Figure 11. Just-Tęgoborze landslide activity evaluation during field trip. 

 

Landslide ”Zbyszyce” SOPO ID 73253 340 

The Zbyszyce landslide is located in the Zbyszyce village in the Gródek nad Dunajcem commune on the northwestern slope 

of the Dąbrowska hill (581 m above sea level). It covers the whole slope up to the bottom of the Dunajec River Valley, where 

the river forms a delta. The landslide is located on the overlapping area of Magura and Dukla Nappes. The Magura units 
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occupy the largest area under colluvial sediments and are represented by thin and medium-sized dominant sandstones and clay 

and mud shale layers of larchwort belonging to stratiflycam (Santon-Paleocene). Above them, in the dorsal parts, there are 345 

speckled slates overfilled with thin sandstones (Paleocene-Eocene). In the south and southeastern directions, these settlements 

are also flat on the pieces, which belong to the Dukla unit. In the southern part of the landslide, there are thick-walled Cergowa 

sandstones (from Oligocene) and in the eastern part sandstones and shales of the Lower Krosno layers (Perski and Wójcik, 

2010a;  Wojciechowski et al., 2012).  

In addition to the discontinuities associated with the slides, the geological structure of the landslide is marked by faults. The 350 

Zbyszyce landslide has been active for at least 60 years. The communal road crossing the landslide is constantly destroyed in 

the middle and lower parts. This landslide was assessed as active (in 2010), dormant (2014-2016) and reactivated (in 2017) 

based on the PSI-based matrix approach. Within the landslide area, there were expected moderate damages (in 2010 and 2017) 

and minor damages (in 2016). In Fig. 12, the extent of the Zbyszyce landslide and PS points are presented together with 

photographs taken during the field verification and documentation of active landslide conditions. 355 

 

[Insert Fig. 12 about here] 

Figure 12. Zbyszyce landslide activity evaluation during field trip. 

Landslide “Lipie-Jelna” SOPO ID 73194 

The Landslide “Lipie-Jelna” landslide is located between the towns of Lipie and Jelna. The landslide is a rock and debris slide. 360 

The landslide material consists of clays, sandstones and shales from the Quaternary period. It is an old landslide with main 

scarps located more or less parallel to the extent of the landslides, ending with a 3 m landslide crown. The landslide area covers 

the whole area of the slope. When reactivated, this landslide covered about 80% of the landslide area. It tends to develop uphill 

and its activity depends on weather conditions. Many building cracks, as well as damage to roads and cultivated fields exist 

within the area of the landslide (Wójcik and Krawczyk, 2010). This landslide has been assessed as active based on all PSI 365 

results with moderate damage caused by landslide activity. In Fig. 13, the extent of the Lipie-Jelna landslide is presented 

together with photographs taken during the field verification. 

 

[Insert Fig. 13 about here] 

Figure 13. Lipie-Jelna landslide activity evaluation during field trip. 370 
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Landslide “Wola Kurowska” SOPO ID 73254 

The Wola Kurowska landslide is located on the eastern slope of the ridge, 418.8 m above sea level and on the eastern part of 

the provincial road. There is a rock and debris slide that probably was created in late Holocene. The landslide is built of clay, 

sandstone and shale. The main scarp of the landslide is heavily obliterated. The landslide is developed in the Magura Nappe 375 

and the Silesian Nappe. As a result of continual rainfall in 2010, 20 m of provincial road and two buildings with agricultural 

areas were damaged. This landslide was probably active earlier as is indicated by the ruins of older buildings (Perski and 

Wójcik, 2010b). This landslide was assessed as active (in 2010), dormant (2014-2016) and reactivated (in 2017) based on the 

PSI-based matrix approach. There are expected moderate damages in 2010 and 2017 and minor damages in 2016 due to 

landslide activity. In Fig. 14, the extent of the Wola Kurowska landslide is shown together with photographs taken during the 380 

field verification. It is clearly visible correlation between the assessed landslide activity and damages. 

 

[Insert Fig. 14 about here] 

Figure 14. Wola Kurowska landslide activity evaluation during field trip. 

Landslide “Bartkowa-Posadowa” SOPO ID 72917 385 

The Bartkowa-Posadowa landslide is a rock and debris slide covering almost all parts of the slope. Characteristic landslide 

features are destroyed and transformed by intensive agricultural activity. This is a frontal landslide which means the width is 

greater than the length. The main slope has the tendency to develop up the slope which causes damage to the commune road. 

On this road, there are transverse faults and a drop of up to 0.5 m, and the depressions are repaired by leveling the surface. 

Other communal roads have also been destroyed.  390 

During the field check, numerous forms (scarps, cracks) characteristic of active landslides were found. The landslide is active 

over almost the whole area. There are more than 20 residential buildings with visible damage to walls and floors. It is not 

possible to stabilise the entire landslide, as well as fragments of landslides and current landslide processes, due to the depth of 

the slip surface (up to 22 m) (Chowaniec et al., 2012). Destroyed buildings are not suitable for renovation, and residents should 

be resettled. This landslide was assessed as active (in 2010), dormant (2014-2016) and reactivated (in 2017) based on the PSI-395 

based matrix approach. There were moderate damages in 2010 and 2017 and minor damages in 2016 based on Mansour et al. 

(2011). In Fig. 15, the extent of Bartkowa-Posadowa landslide is visualised together with photographs taken during the field 

verification. 

 

[Insert Fig. 15 about here] 400 

Figure 15. Bartkowa-Posadowa landslide activity evaluation during field trip. 
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4 Discussion 

The outcomes of conducted investigations suggest that the PSI technique has great potential in the field of landslide activity 

and intensity assessment. Moreover, PSI results can be applied in security management for assessing potential hazards related 405 

to landslide occurrence. However, PSI application needs to be carefully evaluated. Even if the use of the PSI technique can 

overcome some of the limitations of conventional monitoring techniques (e.g., large coverage of the area to be monitored, high 

costs, terrain inaccessibility, installation problems and maintenance), in many cases, assessment of landslide activity might 

become very challenging. This is mostly connected with PS density in rural areas, where temporal decorrelation affects PS 

density. However, it was demonstrated that increasing the temporal sampling rate in view of launching the second Sentinel 1 410 

satellite provides higher PS density and, ipso facto, more landslides could be investigated by means of PSI. We were able to 

investigate the landslide activity states of 130 and 205 landslides by using one Sentinel satellite and two satellites, respectively. 

It is significant progress in comparison to the first attempts with the application of PSI technique using TerraSAR-X and ERS-

1 data in this study area (Perski et al., 2010, 2011) that failed due to disturbing vegetation cover.  

From another point of view, application of two sentinel datasets from ascending and descending orbits using only one Sentinel 415 

satellite (C-band) allowed us to achieve similar PS density in comparison to one ascending dataset of ALOS PALSAR (L-

band).For both sensors, ALOS and Sentinel 1 in ascending geometry, the slope movement in a NE-SW direction represents 

only a small percentage of the real occurred displacements in LOS displacement rates measured with the interferometric 

analysis. This means that many landslides which are facing mostly north-east or north-west slopes cannot be monitoring using 

interferometry with ascending acquisition geometry. For these slopes, descending geometry is more suitable, thus deformation 420 

monitoring from both acquisition modes should be combined. Therefore, the projection of the VLOS along the steepest slope 

permits us to homogenise landslide velocity achieved from PSI processing from diverse orbit modes. Moreover, many of the 

observed landslides have sensitivity lower than one, which means that the real displacement rate can be much higher than those 

observed by interferometric techniques. 

In summary, the PSI analysis for both sensors, namely ALOS PALSAR and Sentinel images, reveals quite satisfactory 425 

performance for assessing the landslide activity in the rural areas in the Polish Flysch Carpathians. ALOS PALSAR, thanks to 

the L-band sensor with high penetration capacity, and Sentinel 1, thanks to its high temporal sampling (6 days), offers a great 

advantage in monitoring ground displacements from satellites. However, based on the abovementioned limitation connected 

with underestimation of displacement rate, it is recommended that achieved results be evaluated with in situ methods or field 

validation. These methods should be complementary to each other. The results retrieved by SAR interferometry can be 430 

considered as the initiation of the field inventory. Therefore, in in this study, landslide activity states were evaluated by field 

reconnaissance. All landslides presented as examples of field verification, based on Mansour’s thresholding, are expected to 

generate moderate damage to buildings and infrastructure. This fact was confirmed in the field, where the evidence of landslide 

activity was found by observing ground and infrastructure damage. In this context, the results of our investigations can leverage 
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the application of the PSI approach in land use and land development studies. It can also support mentioned by Kroch (2107) 435 

reduction of the urbanization pressure in the Roznowskie Lake region.   

 5. Conclusions 

In this research, landslide activities were studied based on PSI analysis conducted on datasets delivered from three SAR-

satellites, namely, ALOS PALSAR, Sentinel 1A and Sentinel 1A/B. The landslide monitoring was carried out in the area of 

the Polish Flysch Carpathians in Małopolskie municipality, which has been widely affected by landslides for decades. 440 

The landslide activity states and intensities were assessed based on the PSI-based matrix approach. The PSI analysis consisted 

of five diverse PSI processing for ALOS ascending mode and Sentinel ascending and descending modes (2014-2016), and for 

Sentinel ascending and descending modes (2017). Deformation in LOS direction were projected onto the steepest slopes. This 

allowed us to combine ascending and descending results together as one PSI result. Additionally, for each PSI result, potential 

damage maps were created based on Mansour at al. (2013) criteria. Landslide activity states were also evaluated in situ. Some 445 

examples of field evaluation have been presented together with general landslide characteristics. 

In general, applying the PSI approach in rural areas is challenging. However, the results of this study prove that increasing the 

temporal sampling rate in view of launching the second Sentinel 1 satellite, provides higher PS density and, therefore, this 

technique can deliver useful information for landslide activity assessment. Sentinel 1A and Sentinel 1A/B were used for 130 

and 205 landslides, respectively.  450 

From another point of view, application of two Sentinel datasets from ascending and descending orbits, using only one Sentinel 

satellite (C band), allows us to achieve similar PS density in comparison to one ascending dataset of ALOS PALSAR (L-

band). Overall, the outcomes of this work justify the potential of the PSI approach for landslide activity and intensity 

assessment. We have shown that this technique can be beneficial for downstream applications related to landslides. 
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Table 1. Data stacks used and their metadata. 
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 Data stack 

1 

Data stack 

2a 

Data stack 

2b 

Data stack 

3a 

Data stack 

3b 

Satellite ALOS 

PALSAR 

Sentinel 1A Sentinel 1A Sentinel 

1A+1B 

Sentinel 

1A+1B 

Wavelength L-band C-band C-band C-band C-band 

Repeat cycle [days] 46 12 12 6 6 

No. of images 22 56 52 60 53 

Orbit mode ascending ascending descending ascending descending 

Spanning interval 31/01/2008-

27/12/2010 

29/11/2014-

24/12/2016 

8/12/2014-

21/12/2016 

5/01/2017-

31/12/2017 

2/01/2017-

22/12/2017 

Polarization VV VV VV VV VV 
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Incidence angle 38.7 39.05 33.71 33.04 33.71 
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 Figure 1: Study area. 
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Figure 2: Geological setting of the study area.
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 Figure 3. Methodology.
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Figure 4. R index for three diverse satellite geometries (ALOS ascending and Sentinel ascending and descending modes). 630 
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Figure 5. PSI based matrix activity assessment (based on Cigna et al., 2013). 

 

 635 

Figure 6. Classification of PSI delivered movement rates for landslide intensity scale estimation. Vp and Vh are present or historical PSI estimated 

movements, respectively.   
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Figure 7. PS points after post processing phase (on the left) and 

landslide activity state assessment (on the right) for three diverse data stacks processing results.. 
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 Figure 8. Landslide 640 
intensity scale estimation based on ALO (a) S, Sentinel 1A (b) and Sentinel 1A/B (c) delivered PSI results 
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 Figure 8. Landslide intensity scale 

estimation based on ALO (a) S, Sentinel 1A (b) and Sentinel 1A/B (c) delivered PSI results.
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 Figure 8. Landslide intensity scale 

estimation based on ALO (a) S, Sentinel 1A (b) and Sentinel 1A/B (c) delivered PSI results 645 
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 Figure 9. Percentage of updated landslides 
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 Figure 10. Expected damages 

from landslides based on Mansour et al. (2011) and PSI results from ALOS (a), Sentinel 1A (b) and Sentinel 1A/B (c) data
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 Figure 10. Expected damages 

from landslides based on Mansour et al. (2011) and PSI results from ALOS (a), Sentinel 1A (b) and Sentinel 1A/B (c) data 650 
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Figure 10. Expected 

damages from landslides based on Mansour et al. (2011) and PSI results from ALOS (a), Sentinel 1A (b) and Sentinel 1A/B (c) data 
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Figure 11. Just-Tęgoborze 

landslide activity evaluation during field trip.
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Figure 12. 655 
Zbyszyce landslide activity evaluation during field trip.
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Figure 13. Lipie-Jelna 

landslide activity evaluation during field trip. 

https://doi.org/10.5194/nhess-2020-112
Preprint. Discussion started: 17 April 2020
c© Author(s) 2020. CC BY 4.0 License.



38 

 

Figure 14. 

Wola Kurowska landslide activity evaluation during field trip.660 
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Figure 15. Bartkowa-Posadowa landslide activity evaluation during field trip. 
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