

1	Quantitative Risk Assessment of Vehicles Hit by Landslides: A G	Case Study
2		in Kennedy
2		Road (Wan
3	Meng Lu ¹ , Jie Zhang ^{2*} , Lulu Zhang ³ and Limin Zhang ⁴	Chai - Hong
4		Kong)

Abstract: Landslides threaten the safety of vehicles on highways. Nevertheless, a rigorous 5 quantitative highway landslide risk assessment seems difficult. Using a case study in Hong Kong, 6 this paper presents a method for quantitative risk assessment for highway landslides. The suggested 7 8 method consists of three parts, i.e., analysis of annual failure probability of the slope, the spatial 9 impact analysis and the consequence analysis. In the case study, the annual failure probability of the 10 slope is analyzed based on historical failure data in Hong Kong. The spatial impact of the landslides is estimated based on empirical correlations with the geometry of the slope. The consequence is 11 assessed based on probabilistic modeling of the traffic on the highway. Based on the suggested 12 method, the annual failure probability of the slope, the distance from the slope and the road and the 13 density of vehicles on the road can significantly affect the landslide risk and the suggested method 14 15 can be used to quantify the effects of these factors. The suggested method can be also potentially used to analyze the highway landslide risk in other regions. 16

17

Key words: Landslides; Vehicles; Risk assessment; Historical failure data; Probabilistic modeling 18

Research Assistant, Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education and Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China. E-mail: lumeng@tongji.edu.cn

² Professor, Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education and Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China. E-mail: cezhangjie@tongji.edu.cn

Professor, State Key Laboratory of Ocean Engineering and Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail: lulu zhang@sjtu.edu.cn

⁴ Professor, Department of Civil Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China. E-mail: cezhangl@ust.hk

1 Introduction

21	With a total land area of about 1100 km ² , Hong Kong is one of the most densely populated regions in
22	the world with a population of about 7.5 million (GovHK, 2019). Throughout the territory of Hong
23	Kong, there are more than 57, 000 registered man-made slope features (Cheung and Tang, 2005).
24	With an average annual rainfall of about 2400 mm, rainfall induced landslides are one of the major
25	natural hazards threatening the public safety in Hong Kong (GEO, 2017). In particular, slope failures
26	along highways have resulted in serious fatalities, damaged vehicles and disruption to the traffic. For
27	example, in August 1994, a public light bus on the Castle Peak Road was hit by landslide debris,
28	causing three persons trapped inside the bus and one man killed. In August 1995, the slope along
29	Shum Wan Road failed, induced by large rainfall, which resulted in two fatalities and five injuries. In
30	August 1997, the landslide along Ching Cheung Road resulted in the closure of the highway for more
31	than three weeks (GEO, 2017). Similar phenomena have indeed also been reported in many other
32	parts of the world (Bil et al., 2015), such as Italy (Donnini et al., 2017) and India (Negi et al., 2013).
33	There are many uncertainties in the assessment of the hazard of moving vehicles hit by
34	and what about the probability that the sliding mass reaches the road?? landslides, such as the occurrence of landslides, the travel distance of the landslide and the presence
35	of the moving vehicles at the moment of landslides. Risk assessment is a framework in which both
36	the uncertainties and the consequence of a hazard can be addressed, which is now increasingly been
37	used for landslide risk management (e.g. Lessing et al., 1983; Fell, 1994; Dai et al., 2002; Remondo
38	et al., 2008; Erener, 2012; Vega and Hidalgo, 2016). Indeed, landslide risk assessment has been
39	accepted as an effective tool for the planning of land use in Hong Kong. Nevertheless, the risk
40	assessment of moving vehicles attacked by landslides is special in that the elements at risk are highly
41	mobile. Several studies have also been conducted on assessing the impact probability of landslides

42	on vehicles (e.g. Budetta, 2004; Peila and Guardini, 2008; Nicolet et al., 2016). Fell et al. (2005)
43	assessed the probability of a falling block hitting a vehicle based on the length of the vehicle and the
44	traffic flow. Dorren et al. (2009) suggested a method to assess the probability of a vehicle hit by a
45	landslide based on the dimension of the landslide and the traffic flow. Michoud et al. (2012) assessed
46	the probability of a vehicle hit by a falling rock considering the dimensions of the vehicle and size of
47	falling rocks. However, few attempts have been made to suggest a rigorous assessment framework of
48	vehicles hit by landslides. As such, implementation of rigorous risk assessment of vehicles hit by
49	landslides is still challenging.
50	Through a case study in Hong Kong, the objective of this paper is to suggest a method to
51	quantitatively assess the risk of vehicles hit by landslides along highways. The structure of this paper
52	is as follows. Firstly, how the annual failure probability of the slope is calculated .
53	the spatial impact of the landslide is analyzed. Thereafter, the consequence of the landslide is
54	analyzed. Finally, the annual risk of vehicles hit by the landslide is calculated. The assessment
55	method provides a convenient and useful tool to investigate the risk of vehicles hit by landslides in
56 21 57	Hong Kong. How is possible to get that the suggested method be adaptable to others territories?
lt wi	2 Engineering Background Il be more proper: particular conditions of case study or something like that
59	Fig. 1 shows the slope under investigation in this study, which is along the Kennedy Road in the Wan
60	Chai district of Hong Kong. Wan Chai is one of the oldest and most traditional cultural areas in Hong
61	Kong and attracts many tourists. According to Transport Department of Hong Kong (TDHK) (2018),
62	Kennedy Road is a major road with three lanes in this region. Fig. 2 shows a typical cross section of
63	Fig. 2 says 25m, the slope. The height of the slope, <i>H</i> , is 26 m and the slope angle is about 45 degrees. As shown in This section should provide to reader some information about geological & geotechnical conditions of the slope with the a im to introduce him in the slope stability concepts

64	this figure, the horizontal distance from the crest of the landslide scar to the side of Kennedy Road
65	close to the slope, l_{ch} , is about 35 m and the horizontal distance from the slope toe to the side of
66	Kennedy Road close to the slope, l_{th} , is about 3 m. The width of Kennedy Road, b_h , is 10 m. Fig. 3
67	shows the plan view of the slope. The landslide scar is about 25 m in length and about 18 m in width.
68	This phrase should be in the begin of this section. On 8 May 1992, the slope failed during an intense rainfall, which hit a car travelling along Kennedy
69	Road and killed the driver (GEO, 1996). According to TDHK (2018), vehicles in Hong Kong are
70	composed of private buses, non-franchised public buses, franchised buses, taxis, private cars, public
71	light buses, private light buses, goods vehicles, special purpose vehicles, government vehicles and
72	motor cycles. The percentage of each type of vehicle with respect to total numbers of vehicles is
73	shown in Table 1 (TDHK, 2018). According to TDHK (2018), the typical length of each type of
74	vehicle is also shown in Table 1. The purpose of this case study is to analyze the risk of vehicles hit
75	by the landslide if this slope fails again.
76	
77	
	3 Methodology
78	3 MethodologyIn general, the risk of a landslide hazard depends on the likelihood of the landslide, the spatial extent
78 79	3 Methodology In general, the risk of a landslide hazard depends on the likelihood of the landslide, the spatial extent and, the consequences of the collision of the landslide and the number of vehicles being hit by the landslide. There are multiple types of
78 79 80	3 Methodology In general, the risk of a landslide hazard depends on the likelihood of the landslide, the spatial extent and, the consequences of the collision of the landslide and the number of vehicles being hit by the landslide. There are multiple types of In a landslide critical zone of the road, the longer vehicles on a highway. The longer the vehicle, the greater the probability that it will be hit by a
78 79 80 81	3 Methodology In general, the risk of a landslide hazard depends on the likelihood of the landslide, the spatial extent and, the consequences of the collision of the landslide and the number of vehicles being hit by the landslide. There are multiple types of In a landslide critical zone of the road, the longer vehicles on a highway. The longer the vehicle, the greater the probability that it will be hit by a landslide. Let <i>P</i> (<i>F</i>) denote the annual probability of slope failure. Suppose there are <i>m</i> possible
 78 79 80 81 82 	3 Methodology In general, the risk of a landslide hazard depends on the likelihood of the landslide, the spatial extent and, the consequences of the collision of the landslide and the number of vehicles being hit by the landslide. There are multiple types of In a landslide critical zone of the road, the longer vehicles on a highway. The longer the vehicle, the greater the probability that it will be hit by a landslide. Let $P(F)$ denote the annual probability of slope failure. Suppose there are <i>m</i> possible spatial impacts and let $P(S = S_i F)$ denote the chance that the spatial impact is S_i when the landslide
 78 79 80 81 82 83 	3 Methodology In general, the risk of a landslide hazard depends on the likelihood of the landslide, the spatial extent and, the consequences of the collision of the landslide and the number of vehicles being hit by the landslide. There are multiple types of In a landslide critical zone of the road, the longer vehicles on a highway. The longer the vehicle, the greater the probability that it will be hit by a landslide. Let $P(F)$ denote the annual probability of slope failure. Suppose there are <i>m</i> possible spatial impacts and let $P(S = S_i F)$ denote the chance that the spatial impact is S_i when the landslide occurs. Let $P(n_j = k S = S_i)$ denote the chance that the <i>k</i> type <i>j</i> vehicle will be hit by the landslide
 78 79 80 81 82 83 84 	3 Methodology In general, the risk of a landslide hazard depends on the likelihood of the landslide, the spatial extent and, the consequences of the collision of the landslide and the number of vehicles being hit by the landslide. There are multiple types of lin a landslide critical zone of the road, the longer vehicles on a highway. The longer the vehicle, the greater the probability that it will be hit by a landslide. Let P(F) denote the annual probability of slope failure. Suppose there are m possible spatial impacts and let P(S = S _i F) denote the chance that the spatial impact is S _i when the landslide occurs. Let P(n _j = k S = S _i) denote the chance that the k type j vehicle will be hit by the landslide when the spatial impact is S _i . The risk associated with the jth type of vehicle, i.e., the expected

It is not possible 0 spatial impacts? and then, i=0

86
$$R_{v_j} = P(F) \times \sum_{i=1}^{m} \left[P(\mathbf{S} = \mathbf{S}_i \mid F) \times \sum_{k=1}^{\infty} kP(n_j = k \mid \mathbf{S} = \mathbf{S}_i) \right]$$
(1)
are there infinite value for types of vehicles?

87 Let n_v denote total types of vehicles. The total risk of vehicles hit by the landslide considering

all types of vehicles, i.e., R_{ν} , can then be calculated as follows:

$$R_{v} = \sum_{j=1}^{n_{v}} R_{vj}$$
 (2)

90 Let n_{pj} denote the average number of persons in a type *j* vehicle. The risk of people hit by the

91 landslide can be calculated as follows:

92
$$R_{pj} = P(F) \times \sum_{i=1}^{m} \left[P(\mathbf{S} = \mathbf{S}_i | F) \times \sum_{k=1}^{\infty} k P(n_j = k | \mathbf{S} = \mathbf{S}_i) \right] \times n_{pj}$$
(3)

93 The total risk of people hit by the landslide considering all types of vehicles can be calculated as

94 follows:

95

89

$$R_p = \sum_{j=1}^{n_v} R_{pj} \tag{4}$$

As can be seen from the above equations, the keys for risk assessment are to evaluate: (1) the

97 annual failure probability of the landslide, i.e., P(F), (2) the spatial impact of the landslide, i.e., P(S =

98 $S_i|F$ and (3) the number of vehicles being hit by the landslide for a given spatial extent, i.e., $P(n_j =$

99 $k | \mathbf{S} = \mathbf{S}_i$). How the above elements are assessed is introduced in the following sections.

It should not be sufficient only a slope failure, because the sliding mass might not reach the road, even a 100ehicle. Why? because that probability of reach de road depends of slope geometry, geotechnical parameters, etc... then how you could explain and include this consideration in your model?

101 3.1 Evaluation of annual probability of the landslide, P(F)

102 The estimation of the probability of occurrence of landslides within a given period of time is

103 fundamental in landslide hazard assessment. Since almost slope failures in Hong Kong are caused by

rainfall infiltration (e.g. Lumb, 1975; Brand, 1984; Finlay et al., 1999), assessing annual probability

105 of rainfall-induced landslides is important. In general, there are two types of methods for evaluating

physically-based models

106	the likelihood of slope failure within a given exposure time: methods through slope stability analysis
107	built on principles of soil mechanics (e.g. Christian et al., 1994; Fenton and Griffiths, 2005; Huang et
108	al., 2010) and empirical methods through statistical analysis of historical slope failure data (e.g. Chau
109	et al., 2004; Tang and Zhang, 2009). Currently, landslide probability analyses via slope stability
110	analyses mainly focus on the likelihood of slope failure for a given rainfall. As an illustration, the
111	statistical methods are used to estimate the annual landslide probability. or landslide susceptibility.
112	In Hong Kong, the failure of a slope is highly correlated to the 24-hour rainfall, i_{24} (Cheung and
113	Tang, 2005). Zhang and Tang (2009) divided the rainfall events in Hong Kong into three categories
114	based on i_{24} , i.e., (1) $i_{24} < 200$ mm/day (small rainfall, denoted as SR), (2) 200 mm $ i_{24} < 400 $
115	mm/day (medium rainfall, denoted as <i>MR</i>) and (3) $i_{24} > 400$ mm/day (large rainfall, denoted as <i>LR</i>).
116	Based on slope failure data observed in Hong Kong during 1984-2002, it is found that the failure
117	This FP is obtained by physically-based methods involving uncertainties? probability of an average slope in Hong Kong when subjected to small rainfall, medium rainfall and
118	These probabilities are related to a which return period of rainfall? large rainfall is 1.09×10^{-4} , 2.61×10^{-3} and 8.94×10^{-3} , respectively (Zhang and Tang, 2009), i.e.,
119	$P(F SR) = 1.09 \times 10^{-4}$, $P(F MR) = 2.61 \times 10^{-3}$ and $P(F LR) = 8.94 \times 10^{-3}$. The above analyses
120	provide the conditional failure probability of a slope for a given type of rainfall. To evaluate the
121	annual probability of slope failure, the probability of each type of rainfall should be analyzed. For
122	such a purpose, Fig. 4 shows the histogram of the yearly maximum i_{24} measured at Hong Kong
123	Observatory Headquarters during 1969 and 2018 (HKO, 2018). As can be seen from Fig. 4, the
124	maximum i_{24} in a year in Hong Kong is mainly in the range of 100 to 350 mm. The generalized
125	extreme value distribution (Hosking et al., 1985) with the following probability density function
126	(PDF) seems to fit the histogram with reasonable accuracy:

127
$$f\left(i_{24}\right) = \frac{1}{\beta} \left[1 + \gamma \left(\frac{i_{24} - \mu}{\beta}\right)\right]^{-\frac{1}{\gamma}} \exp\left\{\left[1 + \gamma \left(\frac{i_{24} - \mu}{\beta}\right)\right]^{-\frac{1}{\gamma}}\right\}$$
(5)

where β , μ and γ are the scale parameter, the location parameter and the shape parameter of the 128 generalized extreme distribution, respectively. The values of β , μ and γ can be calculated based on 129 130 maximum likelihood method and they are equal to -0.17, 66 and 188, respectively. Fig. 5 shows the cumulative distribution function (CDF) of i_{24} obtained based on the fitted generalized extreme value 131 132 distribution. As can be seen from this figure, the probability that the rainfall with yearly maximum i_{24} belongs to small rainfall, medium rainfall and large rainfall is 0.44, 0.55 and 0.01, respectively, i.e., 133 P(SR) = 0.44, P(MR) = 0.55 and P(LR) = 0.01. Based on the total probability theorem, the annual 134 probability of slope failure can be computed as follows: 135 $P(F) = P(F \mid SR) P(SR) + P(F \mid MR) P(MR) + P(F \mid LR) P(LR)$ 136 (6) 137 3.2 Evaluation of spatial impact of the landslide, $P(\mathbf{S} = \mathbf{S}_i | F)$ 138 and indeed it has a probability .. The spatial impact of a landslide depends on whether the landslide can reach the highway and the 139 This is already understood 140 length of the affected road if the landslide can reach the highway. In general, methods to investigate 141 the travel distance of a landslide can be divided into two categories (Hungr et al., 2005), i.e., (1)

142 analytical or numerical methods based on the physical laws of solid and fluid dynamics (Scheidegger,

143 1973), which are often solved numerically (e.g. Hungr and McDougall, 2009; Luo et al., 2019) and

- 144 (2) empirical methods based on field observations (e.g. Budetta and Riso, 2004; Dai and Lee, 2002).
- 145 Since the empirical method is more convenient to apply (Finlay et al., 1999), it is used in this paper.
- 146 As illustrated in Fig. 2, the travel distance of the sliding mass (L) is highly related to the volume (V)
- and height (*H*) of sliding body (e.g. Corominas, 1996; Liang et al., 2017). According to historical and geotechnical, hydraulic and rheological properties of sliding mass

148	data in Hong Kong, Corominas (1996) found that the travel distance of landslide debris can be in landslide debris is important water content
149	estimated using the following equation: of sliding mass and geometry slope
150	$\log L = 0.085 \log V + \log H + 0.047 + \varepsilon \tag{7}$
151	where ε is a random variable with a mean of zero and a standard deviation of $\sigma = 0.161$.
152	For the slope as shown in Fig. 2, the height is 25 m, i.e., $H = 25$ m. To apply Eq. (7), the
153	landslide volume is needed. Let A_s denote the landslide scar area, which can be related to landslide
154	volume through empirical relationships (e.g. Malamud et al., 2004; Imaizumi and Sidle, 2007;
155	Guzzetti et al., 2008; Guzzetti et al., 2009). In this study, the power relationship suggested by Parker
156	(2011) is used: This formulation is aplicable for back analysis bacause you know landslide scar, but for not ocurred events?
157	$V = 0.106 \times A_s^{1.388} $ (8)
158	Based on Fig. 3, the landslide scar area is estimated to be 450 m ² . Based on Eq. (8), the volume
159	Which was the real value? is estimated about 510 m ³ , which is close to the real volume of sliding mass in the landside event on
160	8 May 1992 (GEO, 1996). Substituting the values of H and V into Eq. (7), it can be obtained that the
161	travel distance of the landslide is lognormally distributed with a mean of 50.7 m and a standard
162	deviation of 12.6 m. Fig. 6 shows the PDF of the travel distance of the landslide. As can be seen from
163	this figure, the value of travel distance of the landslide is mainly in the range of 20 m to 150 m.
164	The spatial extent of the landslide is also related to the length of the affected road. As shown in
165	Fig. 3, when the head or the rear of a vehicle contacts with the landslide mass, the vehicle will be hit
166	by the landslide, i.e., the number of vehicles being hit by landslides depends on the width of the
167	landslide (b_l) and the length of the vehicles (l_v) . The length of affected road, l_a , is the sum of the
168	width of the landslide and the length of vehicles, i.e.,

 $l_a = b_l + 2l_v \tag{9}$

- 170 In this study, the spatial extent of the landslide is characterized by the length of the affected road This term should be defined earlier to introduce to reader in this terminology
- and the runout distance of the landslide, i.e., $S = \{l_a, L\}$. For simplicity, the uncertainty associated
- 172 with the length of the affected road is not considered. In such a case, the uncertainty associated with
- 173 S is fully characterized by the uncertainty associated with the runout distance. In principle, the runout
- 174 distance is a continuous random variable. For simplicity, it can be discretized into a discrete variable.
- 175 Let L_i denote the *i*th possible value of L and let $S_i = \{l_a, L_i\}$. $P(S = S_i | F)$ can be calculated by

176
$$P\left(\mathbf{S} = \mathbf{S}_{i} \mid F\right) = P\left(L = L_{i}\right)$$
(10)

177

- 178 3.3 Evaluation of encounter probability, $P(n_i = k | \mathbf{S} = \mathbf{S}_i)$
- 179 As shown in Fig. 2, the horizontal distance from the crest of the landslide scar to the side of Kennedy
- Road close to the slope is about 35 m, i.e., $l_{ch} = 35$ m. The width of Kennedy Road is about 10 m, i.e.,
- 181 $b_h = 10$ m. The landslide will reach Kennedy Road once $L > l_{ch}$. When $L \ge l_{ch} + b_h$, the Kennedy Road
- 182 will be totally covered by the sliding mass. When $l_{ch} < L < l_{ch} + b_h$, the Kennedy Road will be
- 183 partially affected. Thus, the proportion of vehicles within the affected length of the Kennedy Road

184	which will be hit by the landslide, denote	and as $\alpha(S =$	$= \mathbf{S}_i$) here, can be ca	culated as follows:
		0,	$L_i \leq l_{ch}$	produce fractional
185	$\alpha(\mathbf{S} = \mathbf{S}_i) = \langle$	$\frac{L_i - l_{ch}}{b}$,	$l_{ch} < L_i < l_{ch} + b_h$	which is the meaning(of)
		D_h		these values in the context
		1,	$L_i \geq l_{ch}$	of vehicles number?? It is

In general, the number of vehicles hit by landslides highly depends on the density of vehicles, the spatial extent of the landslide and the size of the vehicles. The presence of the vehicles on a highway can be modeled as a Poisson process with a mean arrival rate of λ (Paxson and Floyd, 1995). Let q denote the number of vehicles passing a given cross section of a road per unit time. Let v

denote the average speed of the vehicles. The mean rate of occurrence of moving vehicles, λ , can be

192
$$\lambda = \frac{q}{v} \tag{12}$$

193 Let w_j denote the proportion of type *j* vehicle in the traffic flow. The mean rate of occurrence of 194 type *j* vehicle can be then written as follows:

195
$$\lambda_j = w_j \times \frac{q}{v_j} \tag{13}$$

As an example, Table 2 shows the data about q and v of the Kennedy road for the morning peak, 196 197 normal period and evening peak, respectively, which are obtained from TDHK (2018). As shown in Fig. 3, the width of the landslide is about 18 m, i.e., $b_l = 18$ m. The length of each type of vehicle, l_v , 198 are shown in Table 1. Based on these data, the mean rate of occurrence of each type of vehicle can be 199 calculated for different periods of a day, as shown in Figs. 7(a)-(c), respectively. It can be seen that 200 the mean rate of occurrence of the vehicles during the morning and evening peak is significantly 201 larger than that in the normal period. Among all types of vehicles, the mean rate of private cars in the 202 affected road is the greatest, followed by goods vehicles, motor cycles and taxis. 203

Let T_1 , T_2 and T_3 denote the morning peak, the normal period and the evening peak, respectively; and l_{aj} denote the length of affected road for type *j* vehicle. Based on the property of a Poisson process, if the spatial impact is $\mathbf{S} = \mathbf{S}_i$ and the slope fails during period T_i , the chance that *k* type *j* vehicles will be hit by the landslide can be computed by

208
$$P\left(n_{j} = k \mid t \in T_{i}, \mathbf{S} = \mathbf{S}_{i}\right) = \frac{\left[\alpha_{j}\left(\mathbf{S} = \mathbf{S}_{i}\right)\lambda_{j}l_{aj}\right]^{k}}{k!}\exp\left[-\alpha_{j}\left(\mathbf{S} = \mathbf{S}_{i}\right)\lambda_{j}l_{aj}\right]$$
(14)

As an example, Figs. 8(a)–(c) shows the distributions of the number of private cars hit by the landslide for the case of $\alpha_i(\mathbf{S} = \mathbf{S}_i) = 1$ when the slope failure occurs during the morning peak, normal

211 period and evening peak, respectively. As can be seen from these figures, the most probable number of private cars hit by the landslide when the slope failure occurs during the morning peak and 212 213 evening peak is both about 3 and its probability is both about 0.20. The most probable number of private cars hit by the landslide when the slope failure occurs during the normal period is about 1 and 214 215 its probability is about 0.37.

216 In Eq. (14), the failure time is assumed known. In reality, the slope can fail during any period of 217 a day. Based on the total probability theorem, the probability that k Type j vehicles will be hit for the 218 case of $S = S_i$ can be computed by

219
$$P(n_{j} = k | \mathbf{S} = \mathbf{S}_{i}) = \sum_{i=1}^{3} P(n_{j} = k | t \in T_{i}, \mathbf{S} = \mathbf{S}_{i}) P(t \in T_{i})$$
(15)

220 As an example, Figs. 8(d) shows the probability distribution of the number of private cars hit by the landslide for $\alpha_i(\mathbf{S} = \mathbf{S}_i) = 1$ considering the uncertainty of the failure time. As can be seen from 221 this figure, the most probable number of private cars hit by the landslide considering the uncertainty 222 of the failure time is about 1 and its probability is about 0.32. 223

224

225 3.4 Risk assessment

In the above analyses, equations for evaluating P(F), $P(S = S_i | F)$ and $P(n_i = k | S = S_i)$ are introduced. 226

227 Substituting these equations into Eq. (1), the risk of each type of vehicles hit by the landslide studied

in this paper can then be calculated, which are shown in Figs. 9(a). As can be seen from this figure, 228

the annual risk of private cars hit by the landslide is the greatest with a value of 1.67×10^{-3} vehicles 229 In economic or monetary terms.... which the value of potential losses? per year, followed by the goods vehicles, motor cycles and taxis. The risk associated with each type

have the greatest proportion in the traffic flow and hence it is natural to be associated with the 232 It is suggested to comment if these values correspond to high or low risk values according some risk scale

²³⁰

²³¹ of vehicle is highly correlated with the proportion of vehicles in the traffic flow. The private cars

- 233 greatest risk. In reality, the vehicle that was hit by the studied slope on 8 May 1992 was indeed a
 234 private car. With Eq. (2), the risk of vehicles hit by the landslide considering all types of vehicles can
- 235 be also calculated, which is about 2.48×10^{-3} vehicles per year.
- The passenger capacity of each type of vehicle can be investigated through TDHK (2018) and 236 237 the assumed average number of persons in a vehicle is also shown in Table 1. Submitting these numbers into Eq. (3), the risk of persons hit by the landslide associated with each type of vehicle can 238 239 be computed and the results are shown in Figs. 9(b). As can be seen from this figure, the annual risk of persons hit by the landslide for private cars is the greatest with a value of 8.37×10^{-3} persons per 240 year, followed by non-franchised public buses, franchised buses and goods vehicles. The risk to 241 persons for each type of vehicles highly depends on the proportion of vehicles in the traffic flow and 242 the passenger capacity of vehicles. The non-franchised public buses have the higher proportion in the 243 244 traffic flow and the largest passenger capacity hence it is natural to be associated with the greater risk. Based on Eq. (4), the risk of persons hit by the individual landslide studied in this paper considering 245 all types of vehicles can be also calculated, which is about 1.36×10^{-2} persons per year. 246
- 247

248 4 Discussions

- 4.1 Effect of annual failure probability of the slope
- In the above analysis, the annual failure probability of the slope is 1.58×10^{-3} , which is calculated
- 251 based on historical data in Hong Kong and represents the failure probability of an average slope in under which considerations??
- 252 Hong Kong. To investigate the effect of the failure probability of the slope, Fig. 10 shows the annual
- risk of the slope calculated based on different annual failure probabilities. As can be seen from this
- 254 figure, the annual risk to all types of vehicles increases linearly with the annual failure probability of

255	the slope. When the failure probability of the slope increase from 1.0×10^{-4} to 1.0×10^{-2} , the annual
256	risk to vehicles increases from 1.57×10^{-4} vehicles being hit per year to 1.57×10^{-2} vehicles being hit
257	per year. A similar observation can also be found for the annual risk to persons. Hence, reducing the
258	annual failure probability of a slope is an effective means to reduce the risk of the slope.
do yo	u suggest some kind of measures to reduce the AFP & that it can be consider in your model?
259	What about geotechnical properties of soil and slope geometry that favor that the sliding mass reaches the road?
200	and the economics losses, too!
261	The risk of damaged vehicles due to landslides is highly associated with spatial impact of landslides.
262	The further the road is away from the slope, the less chance the road will be affected by the slope. In
263	the above analysis, the horizontal distance from the crest of the landslide scar to the side of Kennedy
264	Road close to the slope, l_{ch} , is about 35 m and the horizontal distance from the slope toe to the side of
265	Kennedy Road close to the slope, l_{th} , is about 3 m (GEO, 1996). To study the effect of the distance
266	from the road to the slope, the annual risk to different types of vehicles and persons along Kennedy
267	Road are calculated as the distance between the slope and the road varies, and the results are shown
268	in Figure 11. As can be seen from this figure, the annual risk to vehicles along Kennedy Road is
269	reduced as l_{th} becomes larger. When $l_{th} / H = 0.7$, the risk is reduced by half compared the case of $l_{th} / H = 0.7$, the risk is reduced by half compared the case of $l_{th} / H = 0.7$, the risk is reduced by half compared the case of $l_{th} / H = 0.7$, the risk is reduced by half compared the case of $l_{th} / H = 0.7$, the risk is reduced by half compared the case of $l_{th} / H = 0.7$, the risk is reduced by half compared the case of $l_{th} / H = 0.7$, the risk is reduced by half compared the case of $l_{th} / H = 0.7$.
270	$H = 0.1$. When l_{th} / H is 2, the risk is negligible. Thus, increasing the distance between the slope and
271	the road can effectively reduce the risk of landslides.

272

4.3 Effect of traffic flow 273 What about weather conditions and their relationship to traffic flow and AFP? As can be seen from Fig. 7, since the number of vehicles during different periods in a day is different, 274 the mean rate of occurrence of vehicles in affected road due to the landslide is significantly different. 275 276 The high density of vehicles may pose a huge risk to vehicles and persons due to landslides. To

277	indicate the effect of density of vehicles on the landslide risk, the annual risk to all types of vehicles
278	and persons along Kennedy Road are investigated when the density of vehicles on the highway
279	increases from 0 to 300 vehicles per kilometer and the results are shown in Fig. 12. As can be seen
280	from this figure, there is a linear increasing trend of the annual risk to all types of vehicles and
281	persons as density of vehicles increases. When the density of vehicles is equal to 300 vehicles per
282	kilometer, the annual risk to vehicles and persons can reach 1.01×10^{-2} vehicles being hit per year
283	and 5.52×10^{-2} persons being hit per year, respectively. Therefore, the high density of vehicles will
284	significantly enhance the annual risk to vehicles and persons due to landslides and properly
285	managing transportation and ensuring smooth traffic flow are important to reduce the risk.
286	applicability is for back analysis of landslides, because you need information about landslide scar to estimate
287	5 Summary and Conclusions the volume and then L. Otherwise, you need to take into account more suppositions or to consider more
288	uncertaintities Quantitative assessment the risk of vehicles hit by landslides can help better understand and manage
289	such kind of risk. Using a case study in Hong Kong, this paper suggests a method to assess the risk
290	of highway landslide. For the slope studied in this paper, the annual failure probability is first
291	assessed based on historical slope failure data in Hong Kong. The spatial impact of the landslide is
292	then analyzed using an empirical round out analysis method. The consequence of the landslide is
293	assessed by modeling the traffic on the highway as a Poisson process. For the slope examined in this
294	paper, it is found that different types of vehicles may be associated with different levels of risk. Also,
295	it is found that the annual failure probability of the slope, the distance from the slope and the road
296	and the density of vehicles on the road can significantly affect the landslide risk and the suggested
297	method can be used to quantify the effect of the above factors. The suggested method can also be
298	 potentially used to analyze the highway landslide risk in other regions. Of course, but with which adjustments or considerations? I think that a good contribution of your research can be to establish new guidelines for highways design for purposes of roadway safety in terms of landslide risk reduction hitting vehicles & persons. For this, the methodology can be more detailed looking for include some uncertainties involve in the process providing innovative or novelty

processes or methods.

299

300 Acknowledgements

- 301 This research was substantially supported by the National Key Research and Development Program
- 302 of China (2018YFC0809600, 2018YFC0809601), the National Natural Science Foundation of China
- 303 (41672276, 51538009), the Key Innovation Team Program of MOST of China (2016RA4059), and
- 304 Fundamental Research Funds for the Central Universities.

305

306 **References**

- 307 Bíl, M., Vodák, R., Kubeček, J., Bílová, M., and Sedoník, J.: Evaluating road network damage
- caused by natural disasters in the czech republic between 1997 and 2010, Transportation Research
- 309 Part A, 80, 90–103, 2015.
- 310 Budetta, P., and Riso, R. D.: The mobility of some debris flows in pyroclastic deposits of the
- 311 northwestern Campanian region (southern Italy), Bulletin of Engineering Geology and the
- 312 Environment, 63, 293–302, 2004.
- Brand, E.W.: Landslides in Southeast Asia: A State-of-the-art Report, in: Proceedings of the 4th
 International Symposium on Landslides, Toronto, Vol. 1, pp. 17–59, 1984.
- 315 Budetta, P.: Assessment of rockfall risk along roads, Natural Hazards and Earth System Sciences, 4,
- 316 71-81, 2004.
- 317 Christian, J. T., Ladd, C. C., and Baecher, G. B.: Reliability applied to slope stability analysis,
- Journal of Geotechnical Engineering, ASCE, 120, 2180–2207, 1994.
- 319 Chau, K. T., Sze, Y. L., Fung, M. K., Wong, W. Y., Fong, E. L., and Chan, L. C. P.: Landslide hazard
- analysis for Hong Kong using landslide inventory and GIS, Computers and Geosciences, 30,

321 429–443, 2004.

- 322 Cheung, R. W. M., and Tang, W. H.: Realistic assessment of slope reliability for effective landslide
- hazard management, Geotechnique, 55, 85–94, 2005.
- 324 Corominas, J.: The angle of reach as a mobility index for small and large landslides, Canadian
- 325 Geotechnical Journal, 33, 260–271, 1996.
- 326 Donnini, M., Napolitano, E., Salvati, P., Ardizzone, F., Bucci, F., and Fiorucci, F., et al.: Impact of
- event landslides on road networks: a statistical analysis of two Italian case studies, Landslides, 14,
 1–15, 2017.
- 329 Dai, F. C., Lee, C. F., and Ngai, Y. Y.: Landslide risk assessment and management: an overview,
- 330 Engineering Geology, 64, 65–87, 2002.
- 331 Dorren, L., Sandri, A., Raetzo, H., and Arnold, P.: Landslide risk mapping for the entire Swiss
- 332 national road network, in: Malet, J. P., Remaître, A., and Bogaard, T. (Eds.), Landslide Processes:
- 333 From Geomorphologic Mapping to Dynamic Modelling, Utrecht University and University of
- 334 Strasbourg, Strasbourg, pp. 6–7, 2009.
- 335 Dai, F., and Lee, C.: Landslide characteristics and slope instability modeling using GIS, Lantau
- 336 Island, Hong Kong, Geomorphology, 42, 213–228, 2002.
- 337 Erener, A.: A regional scale quantitative risk assessment for landslides: Case of kumluca watershed in
- 338 Bartin, Turkey, Landslides, 10, 55–73, 2012.
- 339 Fenton, G. A., and Griffiths, D. V.: A slope stability reliability model, in: Proceeding of the K.Y. Lo
- 340 Symposium (on CD), London, Ontario, 2005.
- 341 Finlay, P. J., Mostyn, G. R., and Fell, R.: Landslide risk assessment: prediction of travel distance,
- 342 Canadian Geotechnical Journal, 36, 556–562, 1999.
- 343 Fell, R., Ho, K. K. S., Lacasse, S., and Leroi, E.: A framework for landslide risk assessment and
- 344 management, in: Hungr, O., Fell, R., Couture, R., and Eberhardt, E. (Eds.), Landslide Risk
- 345 Management, Taylor and Francis, London, pp. 3–26, 2005.

- 346 Fell, R.: Landslide risk assessment and acceptable risk, Canadian Geotechnical Journal, 31, 261–272,
- 347 1994.
- 348 GovHK: Hong Kong-the Facts, Retrieved from www.gov.hk, 2019.
- 349 Gao, L., Zhang, L. M., and Chen, H. X.: Likely scenarios of natural terrain shallow slope failures on
- Hong Kong Island under extreme storms, Natural Hazards Review, 18, B4015001, 2017.
- 351 GEO (Geotechnical Engineering Office): Highway slope manual, Civil Engineering and
 352 Development Dept., Government of Hong Kong SAR, Hong Kong, 2017.
- 353 GEO (Geotechnical Engineering Office): Investigation of some major slope failures between 1992
- and 1995, Civil Engineering and Development Dept., Government of Hong Kong SAR, Hong
 Kong, 1996.
- 356 Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., and Rossi, M.: Distribution of
- landslides in the Upper Tiber River basin, central Italy, Geomorphology, 96, 105–122, 2008.
- 358 Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D.: Landslide volumes and landslide
- 359 mobilization rates in Umbria, central Italy, Earth and Planetary Science Letters, 279, 0–229, 2009.
- 360 Huang, J., Griffiths, D. V., and Fenton, G. A.: System reliability of slopes by RFEM, Soils and
- 361 Foundations, 50, 343–353, 2010.
- Hosking, J. R. M., Wallis, J. R., and Wood, E. F.: Estimation of the generalized extreme-value
 distribution by the method of probability-weighted moments, Technometrics, 27, 251–261, 1985.
- Hungr, O., and McDougall, S.: Two numerical models for landslide dynamic analysis, Computers
 and Geosciences, 35, 978–992, 2009.
- 366 Hungr, O., Corominas, J., and Eberhardt, E.: Estimating landslide motion mechanism, travel distance
- 367 and velocity, in: Hungr, O., Fell, R., Couture, R., and Eberhardt, E. (Eds.), Landslide Risk
- 368 Management, Taylor and Francis, London, pp. 99–128, 2005.
- 369 HKO (Hong Kong Observatory): Climate Statistics, Retrieved from www.hko.gov.hk, 2018.

- 370 Imaizumi, F., and Sidle, R. C.: Linkage of sediment supply and transport processes in Miyagawa
- Dam catchment, Japan, Journal Geophysical Research, 112, F03012, 2007.
- 372 Lessing, P., Messina, C. P., and Fonner, R. F.: Landslide risk assessment. Environmental Geology, 5,
- 373 **93–99**, 1983.
- 374 Luo, H. Y., Zhang, L. L., and Zhang, L. M.: Progressive failure of buildings under landslide impact,
- 375 Landslides, 16, 1327–1340, 2019.
- 376 Lighthill, M., J.: On kinematic waves ii. a theory of traffic flow on long crowded roads, Proceedings

of the Royal Society, A Mathematical Physical & Engineering Sciences, 229, 317–345, 1955.

- Lumb, P.: Slope failures in Hong Kong. Quarterly Journal of Geology, 8, 31–65, 1975.
- 379 Michoud, C., Derron, M. H., Horton, P., Jaboyedoff, M., Baillifard, F. J., Loye, A., Nicolet, P.,
- 380 Pedrazzini, A., and Queyrel, A.: Rockfall hazard and risk assessments along roads at a regional
- scale: example in Swiss Alps, Natural Hazards and Earth System Sciences, 12, 615–629, 2012.
- Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their
 statistical properties. Earth Surface Processes and Landforms, 29, 687–711, 2004.
- 384 Nicolet, P., Jaboyedoff, M., Cloutier, C., Crosta, G. B., and Lévy, S.: Brief communication: on direct
- impact probability of landslides on vehicles, Natural Hazards and Earth System Sciences, 16,
 995–1004, 2016.
- Negi, I. S., Kumar, K., Kathait, A., and Prasad, P. S.: Cost assessment of losses due to recent
 reactivation of Kaliasaur landslide on National Highway 58 in Garhwal Himalaya, Natural
 Hazards, 68, 901–914, 2013.
- Paxson, V., and Floyd, S.: Wide-area traffic: The failure of Poisson modeling, IEEE/ACM
 Transactions on Networking, 3, 226–244, 1995.
- Parker, R. N., Densmore, A. L., Rosser, N. J., De Michele, M., Li, Y., and Huang, R., et al.: Mass
 wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth, Nature
 Geoscience, 4, 449–452, 2011.

- 395 Peila, D., and Guardini, C.: Use of the event tree to assess the risk reduction obtained from rockfall
- 396 protection devices, Natural Hazards and Earth System Sciences, 8, 1441–1450, 2008.
- 397 Remondo, J., Bonachea, J., and Cendrero, A.: Quantitative landslide risk assessment and mapping on
- the basis of recent occurrences, Geomorphology, 94, 496–507, 2008.
- 399 Scheidegger, A. E.: On the prediction of the reach and velocity of catastrophic landslides, Rock
- 400 Mechanics and Rock Engineering, 5, 231–236, 1973.
- 401 Transport Department of Hong Kong (TDHK): Transport in Hong Kong, Retrieved from
 402 www.td.gov.hk, 2018.
- Vega, J. A., and Hidalgo, C. A.: Quantitative risk assessment of landslides triggered by earthquakes
 and rainfall based on direct costs of urban buildings, Geomorphology, 273, 217–235, 2016.
- 405 Zhang, J., and Tang, W. H.: Study of time-dependent reliability of old man-made slopes considering
- 406 model uncertainty, Georisk: Assessment and Management of Risk for Engineered Systems and
- 407 Geohazards, 3, 106–113, 2009.

409	List of Tables
410	
411	Table 1. Percent, length and passenger capacity of vehicles in Hong Kong
412	Table 2. Number of vehicles passing a given cross section of road per hour and average speed of
413	vehicles on Kennedy Road in a day
414	
415	List of Figures
416	
417	Figure 1. Location of the landslide studied in this paper (© Google Maps 2019)
418	Figure 2. Typical cross section of the slope studied in this paper
419	Figure 3. Plan view of the slope studied in this paper
420	Figure 4. Histogram and fitted PDF of yearly maximum i_{24} in Hong Kong
421	Figure 5. CDF of yearly maximum i_{24} in Hong Kong
422	Figure 6. PDF of travel distance of the landslide studied in this paper
423	Figure 7. Mean rates of different types of vehicles during different periods: (a) morning peak (b)
424	normal period (c) evening peak. (1. Private buses, 2. Non-franchised public buses, 3.
425	Franchised buses, 4. Taxis, 5. Private cars, 6. Public light buses, 7. Private light buses, 8.
426	Goods vehicles, 9. Special purpose vehicles, 10. Government vehicles, 11. Motor cycles)
427	Figure 8. Probability distribution of number of private cars hit by the landslide studied in this
428	paper during different periods for the case of $\alpha_j(\mathbf{S} = \mathbf{S}_i) = 1$: (a) morning peak (b) normal
429	period (c) evening peak (d) considering uncertainty of failure time
430	Figure 9. Annual risk of elements hit by the landslide studied in this paper: (a) vehicles (b)
431	persons. (1. Private buses, 2. Non-franchised public buses, 3. Franchised buses, 4. Taxis,
432	5. Private cars, 6. Public light buses, 7. Private light buses, 8. Goods vehicles, 9. Special
433	purpose vehicles, 10. Government vehicles, 11. Motor cycles, 12. All types of vehicles)
434	Figure 10. Impact of failure probability of the slope on the landslide risk
435	Figure 11. Impact of distance between the landslide and the road on the landslide risk
436	Figure 12. Impact of density of vehicles on the landslide risk
437	

438

Table 1. Percent, length and passenger capacity of vehicles in Hong Kong

439

Vehicles types	Percent (%)	Length (m)	Passenger capacity (persons)
Private buses	0.08	10	55
Non-franchised public buses	0.82	10	55
Franchised buses	0.72	10	55
Taxis	2.30	5	5
Private cars	71.41	5	5
Public light buses	0.50	9	33
Private light buses	0.39	9	33
Goods vehicles	13.77	12	2
Special purpose vehicles	0.23	5	1
Government vehicles	0.74	5	5
Motor cycles	9.24	2	1

1 2 3	Table	2. Number of vehicles pass vel	ing a given cross s hicles on Kennedy	ection of road per l Road in a day	nour and average speed
		Periods in a day	Morning peak (7–9 am)	Normal period	Evening peak (5–7 pm)
	-	q (vehicles per hour)	3000	1500	2800
		v (km per hour)	15	30	15

- 447
- Figure 1. Location of the landslide studied in this paper (© Google Maps 2019) It is suggested a convenient figure, preferently with own authorship. As the figure is, it is not recommended for a scientific publication.

449

452

It is suggested a better figure. As the figure is, it is not proper for a scientific publication.

453 454

455

456

As the figure is, it is not proper for a scientific publication.

459

Figure 4. Histogram and fitted PDF of yearly maximum *i*₂₄ in Hong Kong

461 462

Figure 5. CDF of yearly maximum *i*₂₄ in Hong Kong

466467Figure 6. PDF of travel distance of the landslide studied in this paper

Figure 7. Mean rates of different types of vehicles during different periods: (a) morning peak (b)
normal period (c) evening peak. (1. Private buses, 2. Non-franchised public buses, 3. Franchised
buses, 4. Taxis, 5. Private cars, 6. Public light buses, 7. Private light buses, 8. Goods vehicles, 9.
Special purpose vehicles, 10. Government vehicles, 11. Motor cycles)

477

Figure 8. Probability distribution of number of private cars hit by the landslide studied in this paper during different periods for the case of $\alpha_j(\mathbf{S} = \mathbf{S}_i) = 1$: (a) morning peak (b) normal period (c) evening peak (d) considering uncertainty of failure time

Figure 9. Annual risk of elements hit by the landslide studied in this paper: (a) vehicles (b) persons. 485 (1. Private buses, 2. Non-franchised public buses, 3. Franchised buses, 4. Taxis, 5. Private cars, 6. 486 487 Public light buses, 7. Private light buses, 8. Goods vehicles, 9. Special purpose vehicles, 10. 488 Government vehicles, 11. Motor cycles, 12. All types of vehicles)

Figure 10. Impact of failure probability of the slope on the landslide risk

492 493

495

496 497

Figure 11. Impact of distance between the landslide and the road on the landslide risk

Figure 12. Impact of density of vehicles on the landslide risk