# **Supplementary Information**

Van Ginkel, Dottori, Alfieri, Feyen and Koks (2020): *Direct flood risk assessment of the European road network: an object-based approach* 

The structure of this supplementary information follows the numbered headings of the main article.

# 2. Method

# **Risk calculation**

The flood risk, in terms of expected annual damage (EAD) in Euro per year, is calculated by integration over the damage per return frequency. This requires several assumptions that significantly impact the outcomes (Olsen et al., 2015). We use the trapezoidal rule to numerically integrate over six known combinations of the return frequency (1:10, 1:20, 1:50, 1:100, 1:200, 1:500  $y^{-1}$ ) and damage, as shown in Figure S1. The integration shown in this figure has two implicit assumptions:

- 1) The damage for events beyond the 1:500 y<sup>-1</sup> event (i.e. return period > 500 y, or frequency < 1/500 y<sup>-1</sup>), is the same as the damage in the 1:500 y<sup>-1</sup> event. In contrast, one could also argue that in theory, the damage for the 1:infinity could go up till infinity (as suggested by the shape of some extreme value distributions), and that the corresponding damage also could go up till infinity. However, the amount of observed discharges underlying the extreme value distribution from which the water depths are sampled do not allow for accurate estimates of events beyond the 1:500 year.
- 2) For events more likely than the 1:10 y<sup>-1</sup> event (i.e. return period < 10 y), no damage will occur. We reason that roads will usually not be constructed such that they flood more than every 10 years. Note that in practice, the 1:10 y<sup>-1</sup> damage is hardly used, because the return period of the flood protection is larger than 10 year almost everywhere in Europe.

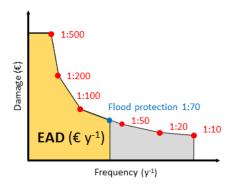
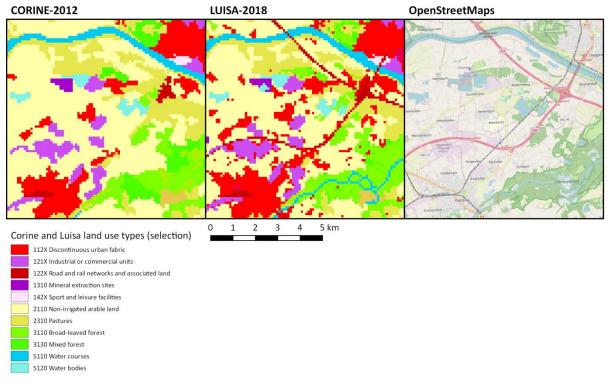




Figure S1 Example of trapezoidal integration (not to scale), for a hypothetical case with flood protection level 1:70 y<sup>-1</sup>

## 2.2 Grid-based exposure and vulnerability



#### Figure S2 Comparison of CORINE, LUISA and OpenStreetMap

Each panel shows the Deggendorf junction of the A92 and A3 and the towns of Deggendorf (top-right) and Platting (bottom left) in Bavaria, Germany. The large river is the Danube River. The CORINE land cover map (left-hand panel) is CORINE-2012, version 18.5 (Büttner et al., 2014). The LUISA land cover map (central panel) is LUISA version 2 (Rosina et al., 2018). The OpenStreetMap extract (right-hand panel) is made on 26 August 2019 (© OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.) with the QuickMapServices plugin of QGIS.

| CORIN | E landcover                                | Land use percentage (%) for which damage is calculated |          |          |                |             |           |          |  |  |  |  |
|-------|--------------------------------------------|--------------------------------------------------------|----------|----------|----------------|-------------|-----------|----------|--|--|--|--|
| Code  | Name                                       | residential                                            | commerce | industry | infrastructure | agriculture | transport | forestry |  |  |  |  |
| 111   | Continuous urban fabric                    | 0                                                      | 0        | 0        | 18             | 0           | 0         | 0        |  |  |  |  |
| 112   | Discontinuous urban fabric                 | 0                                                      | 0        | 0        | 12             | 0           | 0         | 0        |  |  |  |  |
| 121   | Industrial or commercial units             | 0                                                      | 0        | 0        | 21             | 0           | 0         | 0        |  |  |  |  |
| 122   | Road and rail networks and associated land | 0                                                      | 0        | 0        | 54             | 0           | 0         | 0        |  |  |  |  |
| 123   | Port areas                                 | 0                                                      | 0        | 0        | 50             | 0           | 0         | 0        |  |  |  |  |
| 124   | Airports                                   | 0                                                      | 0        | 0        | 69             | 0           | 0         | 0        |  |  |  |  |
| 141   | Green urban areas                          | 0                                                      | 0        | 0        | 10             | 0           | 0         | 0        |  |  |  |  |
| 511   | Water courses                              | 0                                                      | 0        | 0        | 27             | 0           | 0         | 0        |  |  |  |  |
| 522   | Water bodies                               | 0                                                      | 0        | 0        | 30             | 0           | 0         | 0        |  |  |  |  |

Table S1 Blending of Huizinga (2007) damage curves per CORINE land use type, showing only damage to rail and road infrastructures

Table S2 Blending of Huizinga (2007) damage curves per LUISA land use type, showing only damage to rail and road infrastructures

| LUISA | landcover                                               | Land u      | ise perce | ntage (% | á) for wh      | ich dama    | age is cal | culated  |
|-------|---------------------------------------------------------|-------------|-----------|----------|----------------|-------------|------------|----------|
| Code  | Name                                                    | residential | commerce  | industry | infrastructure | agriculture | transport  | forestry |
| 1111  | Urban fabric dense (>50% built-up)                      | 0           | 0         | 0        | 18             | 0           | 0          | 0        |
| 1121  | Urban fabric medium density (30-50% built-up)           | 0           | 0         | 0        | 12             | 0           | 0          | 0        |
| 1122  | Urban fabric low density (10-30% built-up)              | 0           | 0         | 0        | 6              | 0           | 0          | 0        |
| 1123  | Urban f. very low density and isolated (<10% built-up)  | 0           | 0         | 0        | 2              | 0           | 0          | 0        |
| 1211  | Production facilities                                   | 0           | 0         | 0        | 21             | 0           | 0          | 0        |
| 1212  | Commercial service facilities                           | 0           | 0         | 0        | 21             | 0           | 0          | 0        |
| 1213  | Public facilities                                       | 0           | 0         | 0        | 21             | 0           | 0          | 0        |
| 1221  | Road and rail networks and associated land              | 0           | 0         | 0        | 27             | 0           | 0          | 0        |
| 1222  | Major railway stations                                  | 0           | 0         | 0        | 15             | 0           | 0          | 0        |
| 1230  | Port areas                                              | 0           | 0         | 0        | 40             | 0           | 0          | 0        |
| 1241  | Airport areas                                           | 0           | 0         | 0        | 40             | 0           | 0          | 0        |
| 1242  | Airport terminals                                       | 0           | 0         | 0        | 15             | 0           | 0          | 0        |
| 1410  | Green urban areas                                       | 0           | 0         | 0        | 10             | 0           | 0          | 0        |
| 1422  | Leisure and touristic built-up                          | 0           | 0         | 0        | 10             | 0           | 0          | 0        |
| 6011  | Post-flooding or irrigated croplands (or aquatic)       | 0           | 0         | 0        | 5              | 0           | 0          | 0        |
| 6014  | Rainfed croplands                                       | 0           | 0         | 0        | 5              | 0           | 0          | 0        |
| 6190  | Artificial surfaces and assoc. areas (Urban areas >50%) | 0           | 0         | 0        | 8              | 0           | 0          | 0        |

## 2.3 Object-based exposure and vulnerability

OpenStreetMap uses the key "highway" to indicate that an object is any kind of road (rather than a building, tree etc.). The highway-key often has an attribute indicating the type of road. Since many different attribute values are allowed in OSM, these values were mapped to eight different road types in this study, according to Table S3. Keys not included in the list are mapped as 'none'. For 'track' and 'none', no damage is calculated.

| Table S3 OpenStreetMap 'highway' | ' key value mapped to the road types used in this study |
|----------------------------------|---------------------------------------------------------|
|                                  |                                                         |

| Road type | Key value                                                                                                                                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motorway  | Motorway, motorway_link, motorway_junction                                                                                                                                                                                                                |
| Trunk     | Trunk, trunk_link                                                                                                                                                                                                                                         |
| Primary   | Primary, primary_link                                                                                                                                                                                                                                     |
| Secondary | Secondary, secondary_link                                                                                                                                                                                                                                 |
| Tertiary  | Tertiary, tertiary_link                                                                                                                                                                                                                                   |
| Other     | Unclassified, residential, living_street, service, pedestrian, bus_guideway, escape, raceway, road, cycleway,<br>construction, bus_stop, crossing, mini_roundabout, passing_place, rest_area, turning_circle, traffic_island,<br>yes, emergency_bay       |
| Track     | Track, unsurfaced, corridor, trail, footway, path                                                                                                                                                                                                         |
| None      | None, bridleway, steps, proposed, elevator, emergency_access_point, give_way, speed_camera, street_lamp,<br>services, stop, traffic_signals, turning_circle, toll_gantry, stop, disused, dummy, planned, razed, abandoned<br>(and all other unknown tags) |

## **Object-based implementation of the Huizinga damage curves**

The grid-based Huizinga (2007, 2017) infrastructure damage function is expressed in euros damage per inundated area ( $\notin/m^2$ ). The maximum damage for road infrastructure is 25  $\notin/m^2$ . To apply this function in the object-based model, they are multiplied by typical road widths (m) to obtain damage functions per unit road length, as tabulated in Table S4. Road widths were estimated from a sample of roads in the European Union using Google Earth satellite imagery<sup>1</sup>. Roads measurements included road toes and berms, and for motorways and trunk also any (median) space in between the lanes.

Table S4 Typical road with (m) per road type in the European Union

| Road type \ # lanes | 1 | 2  | 3  | 4  | 5  | 6  |
|---------------------|---|----|----|----|----|----|
| Motorway*           | 7 | 14 | 18 | 22 | 26 | 30 |
| Trunk*              | 7 | 12 | 16 | 19 | 23 | 26 |
| Primary             | 5 | 10 | 13 | 17 | 20 | 23 |
| Secondary           | 5 | 9  | 12 | 16 | 19 | 22 |
| Tertiary            | 4 | 7  | 10 | 14 | 17 | 20 |
| Other               | 3 | 6  | 9  | 12 | 15 | 18 |
| Track               | 3 | 6  | 9  | 12 | 15 | 18 |
|                     |   |    |    |    |    |    |

\* Note that in OSM, both directions of motorways and trunks are usually mapped as separate one-way streets, so that for example the total width of a 2 \* 3 lane motorway is 2 \* 18 m = 36 m.

<sup>1</sup> For comparison, note that EU motorway lanes have a typical width of 3.50-3.75 m (European Road Safety Observatory, 2018. *Motorways 2018*. Retrieved from

https://ec.europa.eu/transport/road\_safety/sites/roadsafety/files/pdf/ersosynthesis2018-motorways.pdf , latest accessed 6 August 2019).

## Road construction and road maintenance costs

On the following pages, we list road construction and road maintenance costs in several tables. First, we give a detailed overview of the cost structure of motorways in The Netherlands (Table S5) and list construction costs of new motorways in Europe (Table S6). For motorways, the largest amount of data was available. Second, we therefore put the construction costs of other road types in perspective of the construction costs of motorways, both in relative percentages (% of construction costs of motorways mentioned in the same source) and in an absolute costs (Table S7). Third, we list the maintenance costs of roads (Table S8).

These tables are used to construct the object-specific depth-damage curves.

Table S5 details the cost structure of motorways in The Netherlands for 2018, Dutch price levels. In the other tables, these are corrected to represent 2015, former EU-28 average price levels, as follows. In 2018, Dutch real GDP per capita was 41,600 euro. In 2015, this was 39,200 euro, a factor 0.942 lower. The EU-28 average real GDP per capita in 2015 was 26,700 euro: a factor 0.681 lower than in The Netherlands.

$$Cost_{EU28,2015} = \frac{GDP_{NL,2015}}{GDP_{NL,2018}} * \frac{GDP_{EU28,2015}}{GDP_{NL,2015}} * Cost_{NL,2018} = 0.942 * 0.681 * Cost_{NL,2018}$$

For converted values, see Table S6 and further.

 Table S5 Detailed cost structure of motorway construction in The Netherlands (Netherlands Ministry of Infrastructure and Water Management: Rijkswaterstaat, 2019)

| Road type                                                                  | Lanes | Unit costs <sup>1</sup> |        |
|----------------------------------------------------------------------------|-------|-------------------------|--------|
|                                                                            |       | 10 <sup>6</sup> €/km    | -      |
| Base cost of simple road on ground level: no bridges, tunnels or junctions |       |                         |        |
| Motorway                                                                   | 2*2   | 8.05                    |        |
| Relative costs of extra lanes                                              |       |                         | Factor |
| Motorway                                                                   | 2*2   | 8.05                    | 1      |
| Motorway                                                                   | 2*3   | 10.29                   | 1.28   |
| Motorway                                                                   | 2*4   | 12.16                   | 1.51   |
| Motorway                                                                   | 2*5   | 14.04                   | 1.74   |
| Trunk                                                                      | 2*1   | 5.34                    | 1      |
| Trunk                                                                      | 2*2   | 6.23                    | 1.17   |
| Extra construction costs                                                   |       | Total                   | Factor |
| Motorway: lighting and signalling                                          | 2*2   | 8.05 + 1.8              | 1.22   |
| Motorway: elevating + 1 m                                                  | 2*2   | 8.05 + 1.8              | 1.22   |
| Motorway: elevating + 2 m                                                  | 2*2   | 8.05 + 3.78             | 1.47   |
| Motorway: lighting and signalling and elevating + 2 m                      | 2*2   | 8.05 + 1.8 + 3.78       | 1.69   |
| Trunk: lighting and signalling                                             | 2*2   | 6.23 + 1.73             | 1.28   |
| Trunk: elevating + 1 m                                                     | 2*2   | 6.23 + 1.54             | 1.25   |
| Trunk: elevating + 2 m                                                     | 2*2   | 6.23 + 3.28             | 1.53   |
| Trunk: lighting and signalling and elevating + 2 m                         | 2*2   | 6.23 + 1.73 + 3.28      | 1.8    |

1) Pricelevel 2018.

### Table S6 Motorway construction costs

| Source                          | Country       | Project name                                                         | Road type | Tunnels/<br>bridges | Lane<br>s | Length | Total<br>costs | Unit costs           | To NPV-2015 <sup>1</sup> | To EU-avg<br>GDP <sup>2</sup> | Corrected<br>unit costs |
|---------------------------------|---------------|----------------------------------------------------------------------|-----------|---------------------|-----------|--------|----------------|----------------------|--------------------------|-------------------------------|-------------------------|
|                                 |               |                                                                      |           |                     |           | km     | 106 €          | 10 <sup>6</sup> €/km | -                        | -                             | 10 <sup>6</sup> €/km    |
| European Court of Auditors (2   | 2013)         |                                                                      |           |                     |           |        |                |                      |                          |                               |                         |
| ECA (2013)                      | Spain         | Mediterranean Motorway A7 section Tramo Castell de Ferro–<br>Polopos | Motorway  | yes                 | 2*3       | 3.6    | 28.2           | 7.83                 | 1.055                    | 1.156                         | 9.5                     |
| ECA (2013)                      | Spain         | Mediterranean Motorway A7 section La Herradura- Almunecar            | Motorway  | yes                 | 2*2       | 9.1    | 280            | 30.7                 |                          |                               | 37.5                    |
| ECA (2013)                      | Spain         | Motorway A66 section Caceres North– Aldea del Cano                   | Motorway  |                     | 2*2       | 29.3   | 96.7           | 3.30                 |                          |                               | 4.0                     |
| ECA (2013)                      | Spain         | Motorway A66 section Enlace de Hinojal–Caceres North                 | Motorway  |                     | 2*2       | 21.4   | 88.1           | 4.1                  |                          |                               | 5.0                     |
| ECA (2013)                      | Germany       | Motorway A17 from Dresden to the Czech border                        | Motorway  |                     | 2*2       | 40.8   | 655.5          | 16.1                 | 1.027                    | 0.776                         | 12.8                    |
| ECA (2013)                      | Germany       | Motorway A20 Grimmen-East to Strasburg                               | Motorway  |                     | 2*2       | 91.2   | 367.6          | 4.0                  |                          |                               | 3.2                     |
| ECA (2013)                      | Greece        | Motorway E75/ PATHE section Agios Konstantinos- Kamena Vourla        | Motorway  | yes                 | 2*2       | 20.0   | 378.8          | 18.9                 | 1.018                    | 1.563                         | 30.1                    |
| ECA (2013)                      | Greece        | Motorway A2 Egnatia Odos, section Asprovalta- Nymphopetra            | Motorway  |                     | 2*2       | 31.0   | 184.1          | 5.9                  |                          |                               | 9.4                     |
| ECA (2013)                      | Poland        | Motorway A1, section Sosnica-Belk                                    | Motorway  |                     | 2*3       | 15.4   | 307.9          | 20.0                 | 1.069                    | 2.451                         | 52.3*                   |
| Other European sources          |               |                                                                      |           |                     |           |        |                |                      |                          |                               |                         |
| Heralova et al. (2013)          | Czech<br>rep. | Summary statistics of 74 highway projects in Czech Republic          | Motorway  |                     | -         | -      | -              | 15.1                 | 1.052                    | 1.647                         | 26.2                    |
| Nijland et al. (2014)           | Netherl.      | Motorway A5 'Verlengde Westrandweg'                                  | Motorway  |                     | 2*2       | 7.0    | 295            | 42.1                 | 1.092                    | 0.681                         | 31.3                    |
| Pryzluski et al. (2012)         | Germany       | Average unit replacement cost of motorway                            | Motorway  |                     | -         | -      | -              | 13                   | 1.154                    | 0.776                         | 11.7                    |
| Ministry of Transport<br>(2016) | Germany       | Motorway A23 from Hamburg (Itzehoe-S) to Heide (Itzehoe-N)           | Motorway  |                     | 2*2       | 7.5    | 159            | 21.2                 | 0.986                    | 0.776                         | 16.2                    |
| Ministry of Transport<br>(2016) | Germany       | Motorway A21 from Stolpe (Stolpe) to Kiel (Nettelsee)                | Motorway  |                     | 2*2       | 5.9    | 66.3           | 11.2                 |                          |                               | 8.6                     |
| Ministry of Transport<br>(2016) | Germany       | Motorway A7 Hamburg to Bordesholm                                    | Motorway  |                     | 2*3       | 59.6   | 1548.6         | 25.6                 |                          |                               | 19.9                    |
| Rijkswaterstaat (2019)          | Netherl.      | Construction of simple motorway (unit costs)                         | Motorway  |                     | 2*2       | -      | -              | 8.05                 | 0.942                    | 0.681                         | 5.2                     |
| Rijkswaterstaat (2019)          | Netherl.      | Motorway 2m elevated with electronic signalling (unit costs)         | Motorway  |                     | 2*2       | -      | -              | 13.6                 |                          |                               | 8.7                     |
| Bouwkostenkompas (2015)         | Netherl.      | Motorway (unit costs)                                                | Motorway  |                     | 2*2       | -      | -              | 7.80 <sup>**</sup>   | 1                        |                               | 5.3                     |
| Beyond Europe***                |               |                                                                      |           |                     |           |        |                |                      |                          |                               |                         |
| Carruthers (2013)               | -             | Cost figure 4-lane divided paved road (3.5 mln USD)                  | Motorway  |                     | 2*2       | -      | -              | 4.7                  | 1.047                    | 1                             | 4.9                     |
| Collier et al. (2015)           | -             | New 6L expressway in low- and middle-income countries (5.6 mln USD)  | Motorway  |                     | 2*3       | -      | -              | 6.1                  | -                        | -                             | -                       |
| Collier et al. (2015)           | -             | New 4L expressway in low- and middle-income countries (2.8 mln USD)  | Motorway  |                     | 2*2       | -      | -              | 3.1                  | -                        | -                             | -                       |
| Australia (2017)                | Australia     | Average unit road costs (total cost) road class 1                    | Motorway  |                     | 2*2       | -      | -              | 13.3                 | -                        | 0.64                          | 8.5                     |

| Australia (2017)        | Australia | Average unit road cost (st<br>andardised average cost) road class 6 | Motorway | 2*2 - | <br>18.1 | - |      | 11.5 |
|-------------------------|-----------|---------------------------------------------------------------------|----------|-------|----------|---|------|------|
| Arkansas highway (2014) | USA       | 6 lane freeway urban areas                                          | Motorway | 2*3 - | <br>14.0 | - | 0.68 | 9.5  |
| Arkansas highway (2014) | USA       | 4 lane freeway                                                      | Motorway | 2*2 - | <br>11.8 | - |      | 8.0  |

1) Time pricelevel correction, factor indicating the real GDP-per capita in the reported priceyear compared to the reference year 2015 (EUROSTAT, 2019).

2) Space pricelevel correction, factor indicating the real GDP-per capita of the EU-member state compared to EU-28 average (EUROSTAT, 2019).

\* Omitted from the analysis, seems to be an outlier because the GDP per capita of Poland is disproportionally low compared to the reported construction costs.

\*\* The Bouwkostenkompas gives a low (6.1 million) and a high (7.8 million) estimate. We took the higher estimate, because the consulted experts considered the values in the Bouwkostenkompas rather low. \*\*\* Corrected for representative local currency/euro rate.

#### Table S7 Ratios between average construction costs

| Source                          | Country | Project name          | Road type | Lanes                   | Unit costs           | To NPV-2015 | To EU-avg GDP | Corrected<br>unit costs | % of 2*2<br>motorway | % of 2*2<br>trunk |
|---------------------------------|---------|-----------------------|-----------|-------------------------|----------------------|-------------|---------------|-------------------------|----------------------|-------------------|
|                                 |         |                       |           |                         | 10 <sup>6</sup> €/km | -           | -             | 10 <sup>6</sup> €/km    |                      |                   |
| European Court of Auditors (20) | 13)     |                       |           |                         |                      |             |               |                         |                      |                   |
| ECA (2013)                      | EU avg. | Motorways             | Motorway  | 2*2                     | 10.94                | 1.039       | 1             | 11.4                    | 100%                 | -                 |
|                                 |         | Express road          | Trunk     | 2*2                     | 6.23                 |             |               | 6.5                     | 57%                  | 100%              |
|                                 |         | Two lane              | Trunk     | 2*1                     | 4.16                 |             |               | 4.3                     | 38%                  | 67%               |
| EU-WEATHER                      |         |                       |           |                         |                      |             |               |                         |                      |                   |
| Przyluski et al. (2012)         | Germany | Motorway              | Motorway  | 2*2                     | 13                   | 1.154       | 0.776         | 11.7                    | -                    | -                 |
| cited in Doll et al. (2014)     |         | Federal road          | Trunk     | 2*2 <sup>2</sup><br>2*1 | 3.6                  |             |               | 3.2                     | 28%<br>55%           | -                 |
| COMRISK                         |         |                       |           |                         |                      |             |               |                         |                      |                   |
| De Bruijn et al. (2014)         | Denmark | Roads in Ribe Country | Secondary | 2*1                     | 0.87                 | 0.987       | 0.585         | 0.50                    | -                    | -                 |
|                                 |         |                       | Tertiary  | 2*1                     | 0.50                 |             |               | 0.29                    | -                    | -                 |
|                                 |         |                       | Other     | 2*1                     | 0.15                 |             |               | 0.085                   | -                    | -                 |
| World Bank (ROCKS)              |         |                       |           |                         |                      |             |               |                         |                      |                   |
| Collier et al. (2015)           | global  | New 4-lane expressway | Motorway  | 2*2                     | 2.8*                 | -           | -             | -                       | 100%                 | -                 |
| appendix p. 4                   |         | New 4-lane highway    | Trunk     | 2*2                     | 2.2*                 | -           | -             | -                       | 77%                  | 100%              |
|                                 |         | New 2-lane highway    | Primary   | 1*2                     | 0.75*                | -           | -             | -                       | 26%                  | 34%               |
|                                 |         | New 1-lane road       | Other     | 1                       | 0.09*                | -           | -             | -                       | 3%                   | 4%                |
| Rijkswaterstaat (2019)          |         |                       |           |                         |                      |             |               |                         |                      |                   |

<sup>2</sup> Unclear if this figure refers to 2\*2 or 2\*1 trunk roads.

| Rijkswaterstaat (2019)   | Netherlands   | Autosnelweg               | Motorway  | 2*5 | 14.0      | 0.942 | 0.681 | 9.01     | 174%     | -         |
|--------------------------|---------------|---------------------------|-----------|-----|-----------|-------|-------|----------|----------|-----------|
|                          |               |                           |           | 2*4 | 12.2      |       |       | 7.80     | 151%     | -         |
|                          |               |                           |           | 2*3 | 10.3      |       |       | 6.60     | 128%     | -         |
|                          |               |                           |           | 2*2 | 8.05      |       |       | 5.17     | 100%     | -         |
|                          |               | Autoweg                   | Trunk     | 2*2 | 6.23      |       |       | 4.00     | 77%      | -         |
| Bouwkostenkompas GWW (20 | 15)           |                           |           |     |           |       |       |          | (for max | of range) |
|                          | Netherlands   | 'Snelweg'/'Rijksweg'      | Motorway  | 2*4 | 11.5-14.8 | 1     | 0.681 | 7.8-10.0 | 190%     | -         |
|                          |               | 'Snelweg'/'Rijksweg'      |           | 2*3 | 8.0-10.3  |       |       | 5.5-7.0  | 132%     | -         |
|                          |               | 'Snelweg'/'Rijksweg'      |           | 2*2 | 6.1-7.8   |       |       | 4.2-5.3  | 100%     | -         |
|                          |               | 'Provinciale weg'         | Trunk     | 2*2 | 4.0-5.4   |       |       | 2.8-3.7  | 69%      | 100%      |
|                          |               | Div.                      | Primary   | 2*2 | 2.5-2.8   |       |       | 1.7-1.9  | 36%      | 52%       |
|                          |               | Div.                      | Primary   | 2*1 | 1.8-2.8   |       |       | 1.2-1.9  | 36%      | 52%       |
|                          |               | Div.                      | Secondary | 2*1 | 1.7-1.9   |       |       | 1.2-1.3  | 24%      | 35%       |
|                          |               | Div.                      | Tertiary  | 2*1 | 0.51-1.8  |       |       | 0.35-1.3 | 23%      | 33%       |
|                          |               | Div.                      | Other     | 2*1 | 0.35-2.0  |       |       | 0.24-1.3 | 26%      | 37%       |
| EU MEDPRO project        |               |                           |           |     |           |       |       |          |          |           |
| Carruthers (2013)        | Mediterranean | 4-lane divided paved road | Motorway  | 2*2 | 3.5       | -     | -     | -        | 100%     | -         |
|                          |               | 2-lane paved road         | Primary   | 2*1 | 1.0       | -     | -     | -        | 29%      | -         |
| HIS-SSM (max damages)    |               |                           |           |     |           |       |       |          |          |           |
| De Bruijn et al. (2014)  | Netherlands   | Highways                  | Motorway  | -   | 1.45      | 1.117 | 0.681 | 1.10     | 100%     | -         |
|                          | Netherlands   | Regional roads            | Primary   | -   | 0.89      | 1.117 | 0.681 | 0.75     | 68%      | -         |
|                          | Netherlands   | Other roads               | Other     | -   | 0.03      | 1.117 | 0.681 | 0.02     | 2%       | -         |
| Arkansas highways (2014) |               |                           |           |     |           |       |       |          |          |           |
| Arkansas highways (2014) | USA           | 6-lane freeway            | Motorway  | 2*3 | 13.95     | -     | 0.68  | 9.5      | 118%     | -         |
|                          | USA           | 4-lane freeway            | Motorway  | 2*2 | 11.81     | -     | 0.68  | 8.0      | 100%     | -         |
|                          | USA           | 4-lane divided            | Trunk     | 2*2 | 9.06      | -     | 0.68  | 6.2      | 65%      | 100%      |
|                          | USA           | 2-lane arterial           | Secondary | 2*2 | 4.03      | -     | 0.68  | 2.7      | 29%      | 44%       |
|                          | USA           | 2-lane collector          | Tertiary  | 2*2 | 2.68      | -     | 0.68  | 1.8      | 19%      | 33%       |

#### Table S8 Road maintenance costs

| Source                      | Country          | Description                                          | Road type | Lanes | Unit costs          | To NPV-2015 | To EU-avg GDP | Corrected<br>unit costs | % of Huizinga<br>max damage | % of construction costs <sup>1</sup> |
|-----------------------------|------------------|------------------------------------------------------|-----------|-------|---------------------|-------------|---------------|-------------------------|-----------------------------|--------------------------------------|
| Reference                   |                  |                                                      |           |       |                     | -           | -             |                         |                             |                                      |
| Huizinga (2007)             | EU-avg           | Max damage costs                                     | Avg       | -     | -                   | -           | -             | 25 €/m²                 | 100%                        | -                                    |
| Cleaning costs              |                  |                                                      |           |       |                     |             |               |                         |                             |                                      |
| Reese (2003)                | Germany          | Cleaning paved surface per m <sup>2</sup>            | -         | -     | 6 €/m²              | 1.17        | 0.776         | 5.5 €/m²                | 22%                         | 3.1% <sup>3</sup>                    |
| Reese (2003)                | Germany          | Cleaning unpaved surface per m <sup>2</sup>          | -         | -     | 3 €/m²              |             |               | 2.7 €/m²                | 11%                         | -                                    |
| Resurfacing costs           |                  |                                                      |           |       |                     |             |               |                         |                             |                                      |
| Carruthers (2013)           | Mediter.         | Resurfacing a 4-lane road                            | Motorway  | 2*2   | 1,000,000 USD/km    | -           | -             | -                       |                             | 29 %                                 |
|                             |                  | Resurfacing a 2-lane road                            | Primary   | 2*1   | 50,000 USD/km       | -           | -             | -                       |                             | 5.0 %                                |
| Road improvement (fror      | n very poor to v | very good condition)                                 |           |       |                     |             |               |                         |                             |                                      |
| Carruthers (2013)           | Mediter.         | Improvement 4-lane road                              | Motorway  | 2*2   | 350,000 USD/km      | -           | -             | -                       |                             | 10 %                                 |
|                             |                  | Ibid. 2-lane road                                    | Primary   | 2*1   | 150,000 USD/km      | -           | -             | -                       |                             | 10 %                                 |
|                             |                  | Ibid. 1-lane road                                    | Other     | 1*1   | 100,000 USD/km      | -           | -             | -                       |                             | 10 %                                 |
| Tecno Carretas <sup>3</sup> | Spain            | Reference: motorway construction costs               | Motorway  | 2*2   | 4,000,000 €/km      | -           | -             | -                       |                             | 100%                                 |
|                             |                  | Pothole repair costs (minimum estimate)              | -         | -     | 35,000 €/km         | 1.04        | 1.16          | 42,100 €/km             |                             | 0.9%                                 |
|                             |                  | Pothole repair costs (maximum estimate)              | -         | -     | 65,000 €/km         | 1.04        | 1.16          | 78,200 €/km             |                             | 1.6%                                 |
| Work categories World-I     | Bank (ROCKS)     |                                                      |           |       |                     |             |               |                         |                             |                                      |
| Archondo-Callao (2000)      | -                | Reconstruction                                       | -         | -     | 220,287 USD/km      | -           | -             | -                       |                             | 29 % <sup>2</sup>                    |
|                             | -                | Strengthening                                        | -         | -     | 139,371 USD/km      | -           | -             | -                       |                             | 19 %²                                |
|                             | -                | Asphalt mix resurfacing                              | -         | -     | 64,551 USD/km       | -           | -             | -                       |                             | 8.6 % <sup>2</sup>                   |
|                             | -                | Surface treatment resurfacing                        | -         | -     | 25,090 USD/km       | -           | -             | -                       |                             | 3.3 % <sup>2</sup>                   |
|                             | -                | Gravel resurfacing                                   | -         | -     | 18,169 USD/km       | -           | -             | -                       |                             | 2.4 % <sup>2</sup>                   |
| Rijkswaterstaat (2019)      |                  |                                                      |           |       |                     |             |               |                         |                             |                                      |
|                             | Netherlands      | Reference: Dutch motorway (30 m wide)                | Motorway  | 2*2   | 268 €/m²            | 0.942       | 0.681         | 172.2 €/m²              | 689%                        | 100%                                 |
|                             |                  | Major clean-up costs                                 |           | -     | 20 €/m²             |             |               | 12.8 €/m²               | 51%                         | 7.5%                                 |
|                             |                  | Replacement top layer asphalt                        |           | -     | 30 €/m²             |             |               | 19.3 €/m²               | 77%                         | 11%                                  |
|                             |                  | Replacement top and deeper layers asphalt            |           | -     | 90 €/m <sup>2</sup> |             |               | 57.8 €/m²               | 231%                        | 34%                                  |
|                             |                  | Sand replacement after subsidence of road foundation |           | -     | 100 €/m³            |             |               | 64.2 €/m³               | -                           | -                                    |

<sup>&</sup>lt;sup>3</sup> Tecno Carreteras (2012, February 22). Sabemos cuánto nos cuesta tener de forma óptima las infraestructuras y servicios que garantizan nuestra seguridad vial? (latest accessed 23 December 2019).

… … assume 1 meter elevated road … - 100 €/m<sup>2</sup> … … 64.2 €/m<sup>2</sup> 257% 37%

1) Relative to construction costs stated within the same source; 2) compared to development 'New 2L Highway'; 3) Compared to 'Dutch motorway 30 m-wide'



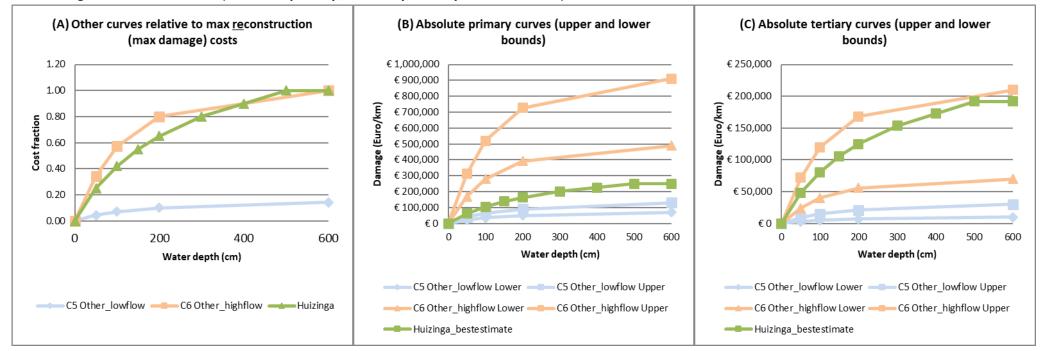

### New damage curves: motorway curves (for OSM's motorways and trunk roads)

Figure S3 Damage curves for motorways and trunks as a percentage of maximum damage (left) and in absolute terms for illustrative\* combinations of damage curves and max damages of motorways (right) \*The selection is based on the assumption that the sophisticated accessories curves (C1 and C2) are best applicable to more expensive roads (the upper 75% of the max damage range); whereas the simple curves (C3 and C4) are best applicable to cheaper roads (the lower 25% of the max damage range). This assumption is also used for sampling the uncertainty space.

#### Table S9 Narratives supporting damage curves of motorways and trunks

| Curve 1                                                     | Curve 2                                                    | Curve 3                                                  | Curve 4                                                       |  |  |  |  |
|-------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|
| Road with accessories (lighting, electronic traffic managem | nent systems, etc.)*                                       | Simple road without accessories                          |                                                               |  |  |  |  |
| Low flow                                                    | High flow                                                  | Low flow                                                 | High flow                                                     |  |  |  |  |
| Little structural damage while the top of the               | Before the water reaches the top of the embankment [0-     | Little structural damage while the top of the            | The high flow velocity causes embankment erosion and          |  |  |  |  |
| embankment has not yet been reached [0-100 cm], but         | 100 cm] already some erosion and stability issues arise to | embankment has not yet been reached [0-100 cm].          | stability issues before the water reaches the top of the      |  |  |  |  |
| some damage to electric installations. When the             | the embankment caused by the high flow velocity. When      | When the embankment is overtopped [100-150 cm], a        | embankment [0-100 cm]. When the water starts                  |  |  |  |  |
| embankment is overtopped [100-150 cm] the pavement          | the water starts overtopping the embankment [100-150       | clean-up of the road is required. Well above the         | overtopping the embankment [100-150 cm], the                  |  |  |  |  |
| needs a clean-up, minor asphalt repairs and replacement     | cm] the pavement needs to be resurfaced, and part of       | pavement [150-250 cm], road clean-up costs slowly        | pavement needs a clean-up and some resurfacing. When          |  |  |  |  |
| of some electronic signalling. When the water gets well     | the electronic signalling needs to be replaced. With       | increase up till depths where the water may carry larger | the water is well above the pavement [100-200 cm], road       |  |  |  |  |
| above the pavement [150-250 cm], a larger share of the      | increasing water depths [150-250 cm], more and more of     | objects damaging the road [250-600 cm], requiring a      | clean-up costs slowly increase up till full resurfacing costs |  |  |  |  |
| road accessories is damaged, and a major clean-up is        | the road accessories are damaged, until the curve starts   | clean-up + minor resurfacing works.                      | (30% of construction costs). When the water gets even         |  |  |  |  |
| required. With even higher water levels [250 - 600 cm],     | levelling off [250-600 cm].                                |                                                          | higher [200-600 cm], damage only slowly increases to the      |  |  |  |  |
| the maximum damage to road accessories is reached, and      |                                                            |                                                          | maximum damage of 35% of construction costs.                  |  |  |  |  |
| damage only slowly increases.                               |                                                            |                                                          |                                                               |  |  |  |  |

\*Important assumption here: not all the extra costs for sophisticated roads can be attributed to electronic signalling devices. Some of the extra costs are structural and therefore flood-insensitive. Therefore, the maximum potential damage deviates less than the maximum construction costs, when comparing values for simple and sophisticated roads.



New damage curves: other curves (for OSM's primary, secondary, tertiary and other roads)

Figure S4 Damage curves for other road types, (A) as percentage of max reconstruction (max damage) costs, and in an absolute sense for (B) primary roads and (C) tertiary roads.

Table S10 Narratives supporting damage curves for primary, secondary, tertiary and other roads

| Curve 5                                                                                                                | Curve 6                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Low flow                                                                                                               | High flow                                                                                                           |
| Under low flow conditions, the max damage is limited. With relatively shallow water depths [0-50 cm], the costs are in | Under high flow velocities, significant damage to the road pavement will occur. For shallow water depths [0-50 cm], |
| the order of minor clean-up costs (1.5% of construction costs). The flow velocity is too low to significantly harm the | already some damage to the pavement will occur, comparing to major clean-up costs with small asphalt repair works   |
| pavement. Small cracks in the pavement can wait till the next regular maintenance cycle, because the maintenance       | (11% of road construction costs). For larger water depths, also deeper asphalt layers may erode, and because larger |
| standards for these roads are not so high as for motorways and trunk roads. With increasing water levels, larger       | objects are carried by the stream the costs may add up to 35%, which compares to complete road reconstruction.      |
| objects like trees maybe transported by the flow which may cause some additional damage to the roads as well as an     |                                                                                                                     |
| increase in clean-up costs, which is in the order of a major road-clean-up (5% of construction costs).                 |                                                                                                                     |

### Model implementation of new damage curves

In the model, the damage curves were implemented as being relative to the road construction costs (rather than a cost fraction relative to the maximum damage).

### Step 1: minimum and maximum construction cost per road type

Table S11 Minimum and maximum construction costs per road type (price level: average of the former EU-28, in 2015-euro per km)

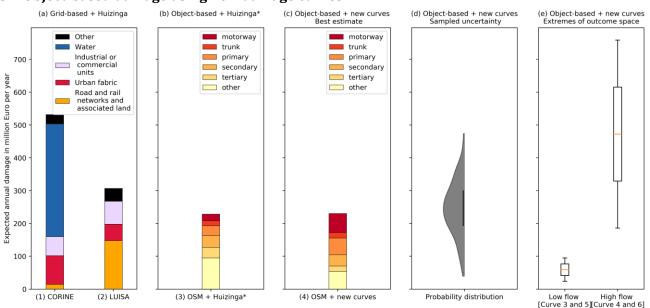
| Road type | Default number of lanes | Minimum construction costs | Maximum construction costs |
|-----------|-------------------------|----------------------------|----------------------------|
| Motorway* | 1*2                     | €1,750,000                 | €17,500,000                |
| Trunk*    | 1*2                     | €1,250,000                 | €3,750,000                 |
| Primary   | 2*1                     | €1,000,000                 | €3,000,000                 |
| Secondary | 2*1                     | €500,000                   | €1,500,000                 |
| Tertiary  | 2*1                     | €200,000                   | €600,000                   |
| Other     | 1*1                     | €100,000                   | €300,000                   |

\* In OpenStreetMap, a 2\*2 motorway or trunk road is mapped as 2 individual unidirectional lines, so that the costs of a 2\*2 motorway are 3.5 million – 35 million euro per km.

### Step 2: correction factors for roads with more (or less) than the default number of lanes

Table S12 Factors for correcting constructing costs deviating from the default number of lanes per road type

| 1    | 2                            | 3                                                                                                | 4                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.75 | 1                            | 1.25                                                                                             | 1.5                                                                                                                                                                                                                                                                                                   | 1.75                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.75 | 1                            | 1.25                                                                                             | 1.5                                                                                                                                                                                                                                                                                                   | 1.75                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.75 | 1                            | 1.25                                                                                             | 1.5                                                                                                                                                                                                                                                                                                   | 1.75                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.75 | 1                            | 1.25                                                                                             | 1.5                                                                                                                                                                                                                                                                                                   | 1.75                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.75 | 1                            | 1.5                                                                                              | 1.75                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                     | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1    | 1.25                         | 1.5                                                                                              | 1.75                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                     | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 0.75<br>0.75<br>0.75<br>0.75 | 0.75       1         0.75       1         0.75       1         0.75       1         0.75       1 | 0.75         1         1.25           0.75         1         1.25           0.75         1         1.25           0.75         1         1.25           0.75         1         1.25           0.75         1         1.25           0.75         1         1.25           0.75         1         1.25 | 0.75         1         1.25         1.5           0.75         1         1.25         1.5           0.75         1         1.25         1.5           0.75         1         1.25         1.5           0.75         1         1.25         1.5           0.75         1         1.25         1.5           0.75         1         1.25         1.5           0.75         1         1.25         1.5 | 0.75         1         1.25         1.5         1.75           0.75         1         1.25         1.5         1.75           0.75         1         1.25         1.5         1.75           0.75         1         1.25         1.5         1.75           0.75         1         1.25         1.5         1.75           0.75         1         1.25         1.5         1.75           0.75         1         1.25         1.5         2 |


## Step 3: curves relative to total construction costs

#### Table S13 Damage as fraction of the construction costs

| C     | urve 1                                      | Cu    | urve 2  | C     | urve 3 | C     | urve 4  | Cu              | urve 5    | Ci        | urve 6 |
|-------|---------------------------------------------|-------|---------|-------|--------|-------|---------|-----------------|-----------|-----------|--------|
|       | Motorways and trunk roads (with embankment) |       |         |       |        |       | (       | Other roads (no | o embankm | ient)     |        |
|       | Sophisticated accessories* Simple roads*    |       |         |       |        |       |         |                 |           |           |        |
| Lo    | w flow                                      | Hig   | gh flow | Lo    | w flow | Hig   | gh flow | Lo              | w flow    | High flow |        |
| Depth | Damage                                      | Depth | Damage  | Depth | Damage | Depth | Damage  | Depth           | Damage    | Depth     | Damage |
| (cm)  | (-)                                         | (cm)  | (-)     | (cm)  | (-)    | (cm)  | (-)     | (cm)            | (-)       | (cm)      | (-)    |
| 0     | 0                                           | 0     | 0       | 0     | 0      | 0     | 0       | 0               | 0         | 0         | 0      |
| 50    | 0.01                                        | 50    | 0.02    | 50    | 0.002  | 50    | 0.015   | 50              | 0.015     | 50        | 0.12   |
| 100   | 0.03                                        | 100   | 0.06    | 100   | 0.004  | 100   | 0.04    | 100             | 0.025     | 100       | 0.2    |
| 150   | 0.075                                       | 150   | 0.1     | 150   | 0.025  | 150   | 0.2     | 200             | 0.035     | 200       | 0.28   |
| 200   | 0.1                                         | 200   | 0.12    | 200   | 0.03   | 200   | 0.25    | 600             | 0.05      | 600       | 0.35   |
| 600   | 0.2                                         | 600   | 0.22    | 600   | 0.04   | 600   | 0.35    |                 |           |           |        |

\* Curves for roads with sophisticated accessories should be combined with average to maximum construction cost estimates, curves for simple roads should be combined with minimum to average maximum construction cost estimates. For reasons of model performance, we first calculated all possible combinations, and then delete unlikely combinations of damage curve and construction cost estimates.

# 3. Results



### 3.2 Object-based damage using new damage curves

#### Figure S5 Figure is similar to Figure 4 of the main article, but with an extra panel (e).

Panel e shows the results of object-based approach with the new damage curves (similar as c), but indicates the extremes of the outcome space, showing the possible outcomes when the min, 1<sup>st</sup> quartile, average, 3<sup>rd</sup> quartile and max damage estimates (boxplots) for all assets are combined with the low-flow curves C3 and C4 (left) and high-flow curves C4 and C6 (right).

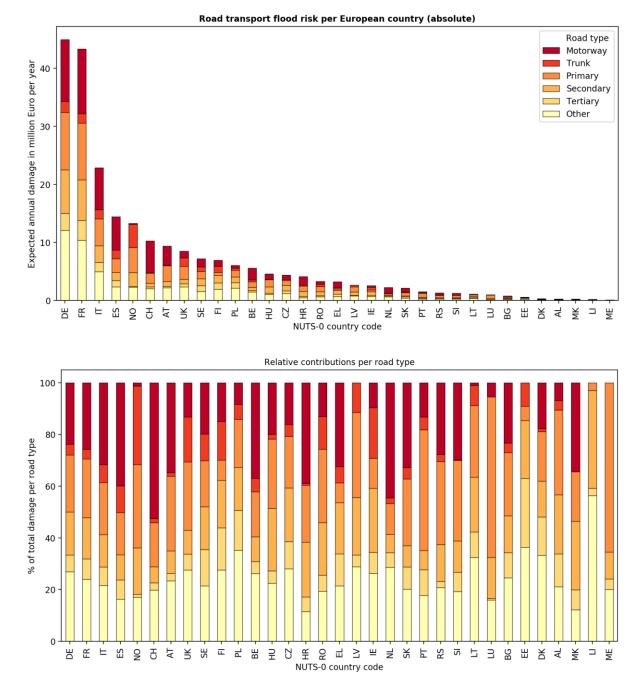



Figure S6 Flood risk per European country in the object-based approach with the new damage curves

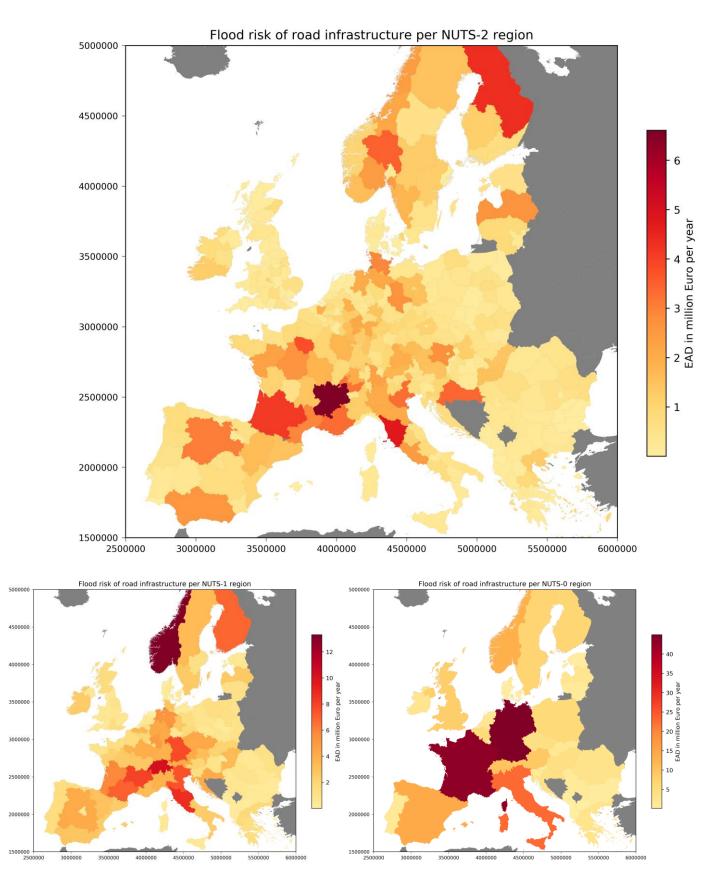



Figure S7 EAD to road infrastructure in the EU28 at different levels of aggregation using the NUTS-classification All maps are shown in the EPSG:3035 – ETRS89 / LAEA Europe coordinate reference system.

## Table S14 Top-20 NUTS-3 regions with the largest expected annual damage

| NUTS-3<br>code | NUTS-3 name            | EAD (million<br>€/y) |
|----------------|------------------------|----------------------|
| CH012          | Valais                 | 2.62                 |
| FI1D7          | Lappi                  | 2.31                 |
| NO060          | Trøndelag              | 2.19                 |
| FRK26          | Rhône                  | 2.08                 |
| NO021          | Hedmark                | 2.06                 |
| ITI14          | Firenze                | 1.83                 |
| ITI17          | Pisa                   | 1.69                 |
| DE600          | Hamburg                | 1.69                 |
| ITI43          | Roma                   | 1.62                 |
| FRI12          | Gironde                | 1.58                 |
| SE232          | Västra Götalands län   | 1.52                 |
| NO022          | Oppland                | 1.42                 |
| ES243          | Zaragoza               | 1.40                 |
| FRJ23          | Haute-Garonne          | 1.40                 |
| NO032          | Buskerud               | 1.36                 |
| DEF0E          | Steinburg              | 1.31                 |
| FR105          | Hauts-de-Seine         | 1.29                 |
| AT126          | Wiener Umland/Nordteil | 1.24                 |
| FRK24          | Isère                  | 1.24                 |
| FI1D9          | Pohjois-Pohjanmaa      | 1.23                 |

## Table S15 Top-20 NUTS-3 regions with the largest expected annual damage as share of the NUTS-3 GDP

| NUTS-3 code | NUTS-3 name                     | EAD (million €/y) | GDP (million €/y) <sup>4</sup> | EAD/GDP (%) |
|-------------|---------------------------------|-------------------|--------------------------------|-------------|
| HR032       | Ličko-senjska županija          | 0.46              | 388                            | 0.120       |
| HR04A       | Brodsko-posavska županija       | 0.50              | 896                            | 0.056       |
| HR04D       | Karlovačka županija             | 0.41              | 979                            | 0.042       |
| HR04C       | Vukovarsko-srijemska županija   | 0.42              | 1040                           | 0.040       |
| LV009       | Zemgale                         | 0.69              | 1884                           | 0.037       |
| FI1D7       | Lappi                           | 2.31              | 6348                           | 0.036       |
| DEF0E       | Steinburg                       | 1.31              | 4056                           | 0.032       |
| BG311       | Видин                           | 0.09              | 295                            | 0.032       |
| NO073       | Finnmark                        | 1.10              | 3695                           | 0.030       |
| HR04E       | Sisačko-moslavačka županija     | 0.36              | 1238                           | 0.029       |
| LV008       | Vidzeme                         | 0.45              | 1590                           | 0.028       |
| AL013       | Kukës                           | 0.05              | 186                            | 0.027       |
| HU333       | Csongrád                        | 0.94              | 3460                           | 0.027       |
| SI031       | Pomurska                        | 0.37              | 1471                           | 0.025       |
| HR046       | Međimurska županija             | 0.25              | 1011                           | 0.025       |
| DEF05       | Dithmarschen                    | 1.02              | 4081                           | 0.026       |
| NO021       | Hedmark                         | 2.06              | 8275                           | 0.025       |
| DEB1C       | Cochem-Zell                     | 0.43              | 1787                           | 0.024       |
| HU322       | Jász-Nagykun-Szolnok            | 0.63              | 2721                           | 0.023       |
| DEE01       | Dessau-Roßlau, Kreisfreie Stadt | 0.54              | 2347                           | 0.023       |

<sup>&</sup>lt;sup>4</sup> Eurostat (2020). Gross domestic product (GDP) at current market prices by NUTS 3 regions. Retrieved from <u>https://ec.europa.eu/eurostat</u> at 2 March 2020.

Table S16 Top-20 NUTS-2 regions with the largest expected annual damage

| NUTS-2<br>code | NUTS-2 name                | EAD (million<br>€/y) |
|----------------|----------------------------|----------------------|
| FRK2           | Rhône-Alpes                | 6.61                 |
| ITI1           | Toscana                    | 4.73                 |
| FI1D           | Pohjois- ja Itä-Suomi      | 4.35                 |
| FRI1           | Aquitaine                  | 4.14                 |
| FRJ2           | Midi-Pyrénées              | 4.13                 |
| FR10           | Ile-de-France              | 3.79                 |
| NO02           | Hedmark og Oppland         | 3.47                 |
| HR04           | Kontinentalna Hrvatska     | 3.38                 |
| FRLO           | Provence-Alpes-Côte d'Azur | 3.33                 |
| ITH3           | Veneto                     | 3.30                 |
| CH01           | Région lémanique           | 3.21                 |
| ES41           | Castilla y León            | 3.06                 |
| DEF0           | Schleswig-Holstein         | 2.93                 |
| FRJ1           | Languedoc-Roussillon       | 2.93                 |
| AT12           | Niederösterreich           | 2.72                 |
| DEE0           | Sachsen-Anhalt             | 2.68                 |
| FRB0           | Centre - Val de Loire      | 2.65                 |
| LV00           | Latvija                    | 2.64                 |
| ES61           | Andalucía                  | 2.53                 |
| ITI4           | Lazio                      | 2.46                 |

## Table S17 Data of the Deggendorf flood event, used for validating the damage estimates

| Data                                                                                 | Туре      | Title                        | Source and credits                                   |
|--------------------------------------------------------------------------------------|-----------|------------------------------|------------------------------------------------------|
| Rehabilitation costs Deggendorf                                                      | Grant     | A3/ A92, Sanierung           | EU Solidarity Fund, data retrieved from Bayerisches  |
| Motorway: € 3,806,968.03                                                             | agreemen  | Hochwasserschäden            | Staatsministerium für Wohnen, Bau und Verkehr (19    |
| • • •                                                                                | t         | Autobahnkreuz Deggendorf     | March 2019)                                          |
| Construction of a temporary sand barrier                                             | Video     | 05.06.13 Hochwasser          | https://www.youtube.com/watch?v=rPDrgbwvv1Q          |
| along the A3 motorway                                                                |           | Dammbau auf der A3 DEG       | (latest accessed 29 August 2019)                     |
|                                                                                      |           |                              | bushidofighter89 / Youtube                           |
| Milling of small asphalt strips at the                                               | Video     | Aufräumarbeiten an der A3:   | https://www.youtube.com/watch?v=OPVtO-2XNIY          |
| overleaf                                                                             |           | Scheuer bedankt sich bei     | (latest accessed 29 August 2019)                     |
| Map showing the extent of the asphalt                                                |           | Helfern I pnp.de             | Passauer Neue Presse / Youtube                       |
| works                                                                                |           |                              |                                                      |
| Cleaning activities: logs, plastic bags, plastic                                     |           |                              |                                                      |
| containers, wooden pallets                                                           |           |                              |                                                      |
| Water depth and inundation extend                                                    | Video     | Luftaufnahmen vom            | https://www.youtube.com/watch?v=NF60x1ALNHI          |
|                                                                                      |           | HOCHWASSER in                | (latest accessed 29 August 2019)                     |
|                                                                                      |           | DEGGENDORF und               | Niederbayern TV / donauTV / Youtube                  |
|                                                                                      |           | Umgebung                     |                                                      |
|                                                                                      | Video     | Hochwasser Deggendorf 2013   | https://www.youtube.com/watch?v=iXBwHnVceXg          |
|                                                                                      | -         | A3 A92 kurz vor Vollsperrung | (latest accessed 1 October 2019)                     |
| Water depth and inundation extend                                                    | Photo     | The swollen Danube river has | https://media.gettyimages.com/photos/the-swollen-    |
|                                                                                      |           | flooded the motorways A3     | danube-river-has-flooded-the-motorways-a3-and-a92    |
|                                                                                      |           | and A92                      | and-picture-id170028902? (latest accessed 29 August  |
|                                                                                      |           |                              | 2019)                                                |
| Material at the AD after the investation                                             | E Dhata'a | Event DELL Flood Lit         | Joerg Koch / Getty Images                            |
| Water depth at the A3 after the inundation                                           | 5 Photo's | Event DEU: Flood Hit         | https://www.gettyimages.nl/fotos/autobahn-           |
| (June 7, 2013): 50-100 cm (at inner lane,                                            |           | Germany: Danube and Inn      | flood?events=170142879 (latest accessed 29 August    |
| truck wheels are completely submerged, at the outer side of the road the water depth |           |                              | 2019)<br>Joerg Koch / Getty Images                   |
| is larger)                                                                           |           |                              | Joerg Koch / Getty mages                             |
| Temporary sand barrier A3 is overtopped                                              |           |                              |                                                      |
| and eroded                                                                           |           |                              |                                                      |
| Debris on the A3: gas tank, wood, round                                              |           |                              |                                                      |
| hay bale in plastic cover                                                            |           |                              |                                                      |
| Sand bags on the A92 near the small                                                  |           |                              |                                                      |
| depression. Sand and mud on the A92 after                                            |           |                              |                                                      |
| the event                                                                            |           |                              |                                                      |
| Water depth at the A3 after the inundation                                           | Photo     | Trucks stand on the flooded  | https://stock.adobe.com/ee/editorial/trucks-stand-or |
| (June 5, 2013)                                                                       |           | motorway A3 near the         | the-flooded-motorway-a3-near-the-eastern-bavarian-   |
|                                                                                      |           | eastern Bavarian city of     | city-of-deggendorf/155930701 (latest accessed 29     |
|                                                                                      |           | Deggendorf                   | August 2019)                                         |
|                                                                                      |           |                              | REUTERS / Wolfgang Rattay / stock.adobe.com          |
| Water depth at the A3 after the inundation                                           | Photo     | The Autobahn A3 has been     | https://previews.agefotostock.com/previewimage/me    |
|                                                                                      |           | flooded by the Danube after  | dibigoff/7859334682d1f108f989b259d0064ab7/pah-       |
|                                                                                      |           | the bursting of a dam in     | 40011758.jpg                                         |
|                                                                                      |           | Deggendorf                   | Armin Weigel / dpa / AGEFotostock                    |
| A92 is submerged at small depression                                                 | Photo     | The A92 motorways stands     | https://media.gettyimages.com/photos/the-a92-        |
|                                                                                      |           | submerged in the floodwater  | motorway-stands-submerged-in-the-floodwater-of-      |
|                                                                                      |           | of the river                 | the-river-a-picture-id1042250004                     |
|                                                                                      | <b>_</b>  |                              | Getty Images / Picture Alliance                      |
| Strips of replaced asphalt at the A3                                                 | Satellite | lat: 48.8150°, lon: 12.9527° | Comparison of map (24 September 2014 with 8 July     |
| Clearly, the road is not completely repaved                                          | imagery   | lat: 48.8184°, lon: 12.9399° | 2011)                                                |
| (old repairs are still visible)                                                      |           |                              | Maxar Technologies / Google Earth                    |
| Replaced strips of asphalt at the A3 (west                                           |           |                              |                                                      |
| of the junction) and on the junction. The                                            |           |                              |                                                      |
| strip replacements at the A3 east of the                                             |           |                              |                                                      |
| junction seemed to exist already in 2011                                             |           |                              |                                                      |

# 4. Discussion

Table S18 Reported road repair and emergency costs from flooding of the Missouri River in Iowa, USA (Vennapusa et al., 2013)

| County               | Road name                                                      | Road repair<br>activities                                                       | Road type | Lanes*<br>* | Length | Emergency<br>unit costs* | Permane<br>nt unit<br>costs* | Total unit<br>costs* |
|----------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|-----------|-------------|--------|--------------------------|------------------------------|----------------------|
|                      |                                                                |                                                                                 |           |             | km     | 10 <sup>6</sup> €/km     | 10 <sup>6</sup> €/km         | 10 <sup>6</sup> €/km |
| Motorway             | vs                                                             |                                                                                 |           |             |        |                          |                              |                      |
| Monona               | I-29N and I-29S<br>between MP 105 and<br>110                   | Sand bags and<br>pumps to avoid<br>flooding                                     | Motorway  | 2*2 + e     | 8.0    | 162,871                  | 0                            | 162,871              |
| Monona               | I-29 between MP 107<br>and 110                                 | Emergency<br>response and<br>major cleanup                                      | Motorway  | 2*2 + e     | 4.8    | 107,891                  | 116,056                      | 223,946              |
| Fremont              | I-29 from MP 0 to 1.8                                          | Major repair                                                                    | Motorway  | 2*2 + e     | 2.9    | 46,784                   | 135,051                      | 181,836              |
| Multiple<br>counties | I-29 from MP 0 to 71.6                                         | Replacement of<br>underground<br>electric wiring and<br>one damaged<br>luminary | Motorway  | 2*2 + e     | 115.2  | 0                        | 2,586                        | 2,586                |
| Fremont              | I-29S from MP 1.8 to<br>10.1                                   | Repair                                                                          | Motorway  | 2*2 + e     | 13.4   | 33,677                   | 88,117                       | 121,794              |
| Fremont              | I-29S from MP 10.1 to<br>15.5                                  | Repair                                                                          | Motorway  | 2*2 + e     | 8.7    | 14,438                   | 134,525                      | 148,963              |
| Fremont              | I-29S MP 15.5 to 20                                            | Repair                                                                          | Motorway  | 2*2 + e     | 7.2    | 467                      | 76,658                       | 77,125               |
| Fremont              | I-29S between MP 20<br>and 25                                  | Minor repair                                                                    | Motorway  | 2*2+e       | 8.0    | 0                        | 53,754                       | 53,754               |
| Fremont              | IA2W between MP 0<br>and 8                                     | Major repair                                                                    | Motorway  | 2*2 + e     | 12.9   | 319,763                  | 68,683                       | 388,446              |
| Pottawat<br>tamie    | I-29N between MP<br>43.6 and 46                                | Major cleanup                                                                   | Motorway  | 2*2 + e     | 3.9    | 65,340                   | 0                            | 65,340               |
| Pottawat<br>tamie    | I-29S between MP 57<br>and 62                                  | Major repair                                                                    | Motorway  | 2*2 + e     | 8.0    | 110,559                  | 174,827                      | 285,386              |
| Pottawat<br>tamie    | I-29N between MP 62<br>to 66.4                                 | Repair                                                                          | Motorway  | 2*2 + e     | 7.1    | 9,147                    | 308,815                      | 317,962              |
| Pottawat<br>tamie    | I-29N between MP<br>66.4 and 71.6                              | Minor repair                                                                    | Motorway  | 2*2 + e     | 8.4    | 7,900                    | 134,278                      | 142,178              |
| Pottawat<br>tamie    | I-680W between MP<br>0.0 to 3.1                                | Complete reconstruction                                                         | Motorway  | 2*2 + e     | 5.0    | 5,746,455                | 0                            | 5,746,455            |
| Pottawat<br>tamie    | I-680E from MP 0.0 to 3.1                                      | Cleanup                                                                         | Motorway  | 2*2 + e     | 5.0    | 17,957                   | 0                            | 17,957               |
| Other                |                                                                |                                                                                 |           |             |        |                          |                              |                      |
| Harrison             | US30W between MP 0<br>and 4                                    | Minor repair                                                                    | Primary   | 2*1         | 6.4    | 0                        | 67,206                       | 67,206               |
| Harrison             | US30E between MP 1<br>and 3                                    | Sand bags to avoid flooding                                                     | Primary   | 2*1         | 3.2    | 1,344,535                | 0                            | 1,344,535            |
| Fremont              | 220th St. (J34) West<br>from 195th Ave. (L31)                  | Repair                                                                          | Secondary | 2*1         | 0.9    | 60,802                   | 0                            | 60,802               |
| Fremont              | 195th Ave. South from<br>230th St. to IA2                      | Major repair                                                                    | Secondary | 2*1         | 3.4    | 8,192                    | 109,494                      | 117,686              |
| Fremont              | Waubonsie Ave. (J10)<br>South from east of<br>200th Ave. (L31) | Cleanup and minor repair                                                        | Secondary | 2*1         | 3.1    | 11,091                   | 0                            | 11,091               |
| Monona               | IA175 between MP 0.0 to 0.7                                    | Emergency<br>response and<br>major repair                                       | Secondary | 2*1         | 1.1    | 5,962,832                | 698,679                      | 6,661,511            |
| Fremont              | 310th St. (J64) from<br>west of I-29 to 240th<br>Ave.          | Major repair                                                                    | Tertiary  | 2           | 6.5    | 166,381                  | 163,280                      | 329,661              |

\* Obtained by multiplication of original data with 1.609 mile/km; 1.29 Euro/USD (January 2012 exchange rate); and 1.039 (2015/2012 GDP growth correction)

\*\* e = emergency lane

# References

Archondo-Callao, R., Roads works costs per km from World Bank Reports (presentation). April, 2000.

Arkansas Highways: Estimated Costs per mile: Revised July, 2014.

Australian Government Department of Infrastructure, Regional Development and Cities: Road Construction Cost and Infrastructure Procurement Benchmarking: 2017 update, Research Report 148, Canberra, Australia, 2017.

Bouwkostenkompas: Grond-, weg- & waterbouw, IGG Bointon de Groot, The Hague, The Netherlands, 2019.

Bruijn, K. de, Wagenaar, D., Slager, K., Bel, M. de and Burzel, A.: Updated and improved method for flood damage assessment, Deltares, Delft, 2014.

Büttner, G., Soukup, T. and Kosztra, B.: CLC2012. Addendum to CLC2006 Technical Guidelines, European Environment Agency, Copenhagen, Denmark, 35 pp., 2014.

Carruthers, R.: What prospects for transport infrastructure and impacts on growth in southern and eastern Mediterranean countries?, MEDPRO report No. 3, 2013.

Collier, P., Kirchberger, M. and Soderbom, M.: The Cost of Road Infrastructure in Low and Middle Income Countries, The World Bank, Washington D.C., 2015.

European Court of Auditors: Are EU Cohesion Policy funds well spent on roads? Special Report No 5/2013, Luxembourg, 2013.

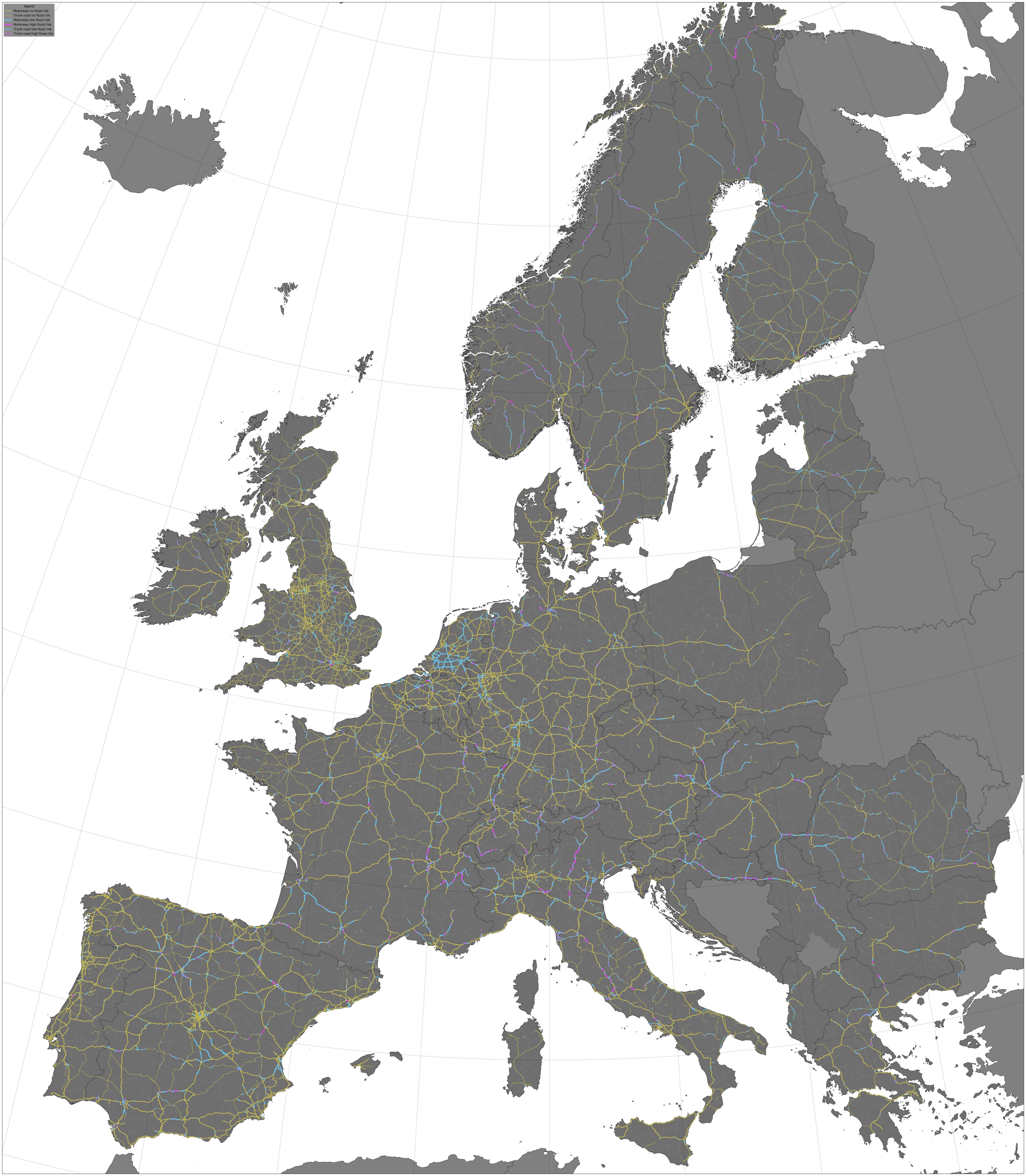
German Ministry of Transport and Digital Infrastructure: Verkehrsinvestitionsbericht für das Berichtsjahr 2016, Bundesministerium für Verkehr und digitale Infrastruktur, Berlin, Germany.

Heralova, R. S., Hromada, E. and Johnston, H.: Cost structure of the highway projects in the Czech Republic, Procedia Eng., 85, 222–230, doi:10.1016/j.proeng.2014.10.547, 2014.

Huizinga, H. J.: Flood damage functions for EU member states, HKV Consultants, Lelystad, The Netherlands, 2007.

Nijland, H., Wortelboer-van Donselaar, P. M., Korteweg, J. A. C. and Snellen, D.: 'Met de kennis van nu': leren van evalueren Een casestudy: A5 Verlengde Westrandweg, Netherlands Environmental Assessment Agency, The Hague., 2010.

Olsen, A. S., Zhou, Q., Linde, J. J. and Arnbjerg-Nielsen, K.: Comparing methods of calculating expected annual damage in urban pluvial flood risk assessments, Water (Switzerland), 7(1), 255–270, doi:10.3390/w7010255, 2015.


Pryzluski, V., Hallegatte, S., Tomozeiu, R., Cacciamani, C., Pavan, V. and Doll, C.: Weather Trends and Economy-Wide Impacts Deliverable 1 within the research project WEATHER (Weather Extremes: Impacts on Transport Systems and Hazards for European Regions), Karlsruhe, Germany, 2012.

Reese, S., Markau, H., Sterr, H.: Mikroskalige Evaluation der Risiken in überflutungsgefährdeten Küstenniederungen, Forschungs- und Technologiezentrum Westküste, E34893, Kiel, Germany.

Rijkswaterstaat Dutch Ministry of Infrastructure and Water Management: Kengetallen wegaanleg van Rijkswegen ten behoeve van COACCH (personal communication), 14 november 2019.

Rosina, K., Batista e Silva, F., Vizcaino, P., Marín Herrera, M., Freire, S. and Schiavina, M.: Increasing the detail of European land use/cover data by combining heterogeneous data sets, Int. J. Digit. Earth, 8947, doi:10.1080/17538947.2018.1550119, 2018.

Vennapusa, P. K. R., White, D. J. and Miller, D. K.: Western Iowa Missouri River Flooding — Geo-Infrastructure Damage Assessment, Repair and Mitigation Strategies, Iowa State Univ., InTrans Project Reports 97, 2013. Figure S8 (next page): Flood risk of motorways and trunk roads of the European road network Road geometries © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

