1	
2	A nonstationary analysis for investigating the multiscale
3	variability of extreme surges: case of the English Channel coasts
4	
5	Imen Turki ¹ , Lisa Baulon ^{1,2} , Nicolas Massei ¹ , Benoit Laignel ¹ , Stéphane Costa ³ ,
6	Matthieu Fournier ¹ , Olivier Maquaire ³
7	
8	¹ UMR CNRS 6143 Continental and Coastal Morphodynamics M2C' University of Rouen,
9	76821 Mont-Saint-Aignan Cedex, France.
10	² French Geological Survey, 3 avenue Claude Guillemin, 45060 Orléans Cedex, France
11	³ UMR CNRS 6554 GEOPEN
12 13	Corresponding author: Imen Turki (imen.turki@univ-rouen.fr)
14	Abstract
15	This research examines the nonstationary dynamics of extreme surges along the English
16	Channel coasts and seeks to make their connection to the climate patterns at different time-
17	scales by the use of a detailed spectral analysis in order to gain insights on the physical
18	mechanisms relating the global atmospheric circulation to the local-scale variability of the
19	monthly extreme surges. This variability highlights different oscillatory components from the
20	interannual (~1.5-years, ~2-4-years, ~5-8-years) to the interdecadal (~12-16-years) scales with
21	mean explained variances of ~ 25 - 32 % and ~ 2 - 4 % of the total variability, respectively.
22	Using the two hypotheses that the physical mechanisms of the atmospheric circulation change
23	according to the timescales and their connection with the local variability improves the
24	prediction of the extremes, we have demonstrated statistically significant relationships of ~ 1.5 -
25	years, ~2-4-years, and ~5-8-years and 12-16-years with the different climate oscillations of
26	Sea-Level Pressure, Zonal Wind, North Atlantic Oscillation and Atlantic Multidecadal
27	Oscillation, respectively.

Such physical links have been used to implement the parameters of the time-dependent GEV distribution models. The introduced climate information in the GEV parameters has considerably improved the prediction of the different time-scales of surges with an explained variance higher than 60%. This improvement exhibits their nonlinear relationship with the large-scale atmospheric circulation.

33 Key-Words: Coastal extreme surges, multi-timescale variability, climate oscillations,
34 nonstationary GEV models

35

1. Introduction

Risks assessments has been recognized as an urgent task essential to take effective reduction 36 37 of disasters and adaptation actions of climate change. The increase in coastal flood risk is 38 generally driven by the extreme surges being the result of episodic water fluctuations due to waves and storm surges. High surges are considered as significant hazards for many low-lying 39 coastal communities (e.g. Hanson et al., 2011; Nicholls et al., 2011) and are expected to be 40 intensified with rising global mean sea level (Menendez and Woodworth, 2010). 41 42 Being an alarming problem for the coastal vulnerability, extreme events have gained the 43 attention of the scientists who have reported the dynamics (e.g. Haigh et al., 2010; Idier et al., 2012; Masina and Lamberti, 2013; Tomasin and Pirazzoli, 2008; Turki et al., 2020) and the 44 projections (e.g. vousdoukas et al., 2017) of extreme surges considering the stationary and the 45 nonstationary contributions from tides, waves, sea-level-rise components (e.g. Brown et al., 46

47 2010; Idier et al., 2017), and large-scale climate oscillations (e.g. Colberg et al., 2019; Turki et
48 al., 2019; 2020).

49	Under the assumption of a stationary surges, the concepts of return level and return period
50	provide critical information for infrastructure design, decision-making, and assessing the
51	impacts of rare weather and climatic events (Rosbjerg and Madsen, 1998). However, the
52	frequency of extremes has been changing and is likely to continue changing in the future (e.g.
53	Milly et al., 2008). Therefore, concepts and models that can account for nonstationary analysis
54	of climatic and hydrologic extremes are needed (e.g. Cooley, 2013; Salas and Obeysekera,
55	2013; Parey et al., 2010).
56	Over the last decade, several studies adopted the nonstationary behaviour of extremes to
57	estimate their evolution and their return-periods from rigorous models of Extreme Value
58	Theory (EVT) by incorporating an information related to climate oscillations.
59	In this way, the recurrence of coastal extreme events over the Northern European continent and
60	the persistence of high energetic conditions around the Atlantic have been associated with the
61	deepening of Icelandic Low and the extension/reinforcement of the Azores High. Those facts
62	can be interpreted, at quasi daily timescale, as the preferred excitation of a given atmospheric
63	regime close to the positive phase of the North Atlantic Oscillation. The recent predominance

64	of this regime can be explained partly by the impact of the North Tropical Atlantic Ocean upon
65	the midlatitude atmosphere and by the increase of greenhouse gas concentration induced by
66	human activities.
67	Menendez and Woodworth (2010) have used a nonstationary extreme values analysis together
68	with the NAO (North Atlantic Oscillation) and Arctic Oscillation (AO) indices for improving
69	the estimation of monthly extreme sea-levels along the European coasts.
70	In the Northern Adriatic region, Masina et al. (2013) investigate changes in extreme sea levels
71	applying a nonstationary approach to the monthly maxima and the climate oscillations of NAO
72	and AO (Arctic Oscillation) indices. They have suggested that the increase in the extreme water
73	levels since the 1990s is related to the changes in the wind regime and the intensification of
74	Bora and Sirocco winds after the second half of the 20th century.
75	Then, Marcos et al. (2015) have investigated the decadal and multidecadal changes in sea level
76	extremes using long tide gauge records distributed worldwide. They have demonstrated that
77	the intensity and the occurrence of the extreme sea levels vary on decadal scales in the most of
78	the sites in relation with a common large-scale forcing. In the same way, the study of extreme
79	sea levels along the coastal zones of the North Atlantic Ocean and the Gulf of Mexico has
80	shown that the mean sea level should be considered as the major driver of extremes (Marcos

81	and Woodworth 2017) since the intensity of extreme episodes increases at centennial time
82	scales, together with multidecadal variability. The extreme sea levels along the United States
83	coastline between 1929 and 2013 have been investigated by Wahls and Chambers (2015;
84	2016). Wahls and Chambers (2015) have identified the relation between the multidecadal
85	variations in extreme sea and the changes in mean sea level. Such relation has been mainly
86	pointed toward some regions where storm surges are primarily driven by extratropical cyclones
87	and should contribute in the variation of relevant return water levels required for coastal design.
88	Such extremes have been then investigated in Wahls and Chambers (2016) works aiming to
89	define their relationship with the large-scale climate variability by the use of simple and
90	multiple linear regression models.
01	
91	In the English Channel, the extreme sea levels have been addressed by several works (e.g.
91 92	In the English Channel, the extreme sea levels have been addressed by several works (e.g. Haigh et al., 2010; Idier et al., 2012; Tomasin and Pirazzoli, 2008; Turki et al., 2015a; Turki et
91 92 93	In the English Channel, the extreme sea levels have been addressed by several works (e.g. Haigh et al., 2010; Idier et al., 2012; Tomasin and Pirazzoli, 2008; Turki et al., 2015a; Turki et al., 2019) with the aim of investigating their dynamics at different timescales and their
91 92 93 94	In the English Channel, the extreme sea levels have been addressed by several works (e.g. Haigh et al., 2010; Idier et al., 2012; Tomasin and Pirazzoli, 2008; Turki et al., 2015a; Turki et al., 2019) with the aim of investigating their dynamics at different timescales and their connections to the atmospheric circulation patterns.
91 92 93 94 95	In the English Channel, the extreme sea levels have been addressed by several works (e.g. Haigh et al., 2010; Idier et al., 2012; Tomasin and Pirazzoli, 2008; Turki et al., 2015a; Turki et al., 2019) with the aim of investigating their dynamics at different timescales and their connections to the atmospheric circulation patterns. Haigh et al. (2010) investigated the interannual and the interdecadal extreme surges in the
91 92 93 94 95 96	In the English Channel, the extreme sea levels have been addressed by several works (e.g. Haigh et al., 2010; Idier et al., 2012; Tomasin and Pirazzoli, 2008; Turki et al., 2015a; Turki et al., 2019) with the aim of investigating their dynamics at different timescales and their connections to the atmospheric circulation patterns. Haigh et al. (2010) investigated the interannual and the interdecadal extreme surges in the English Channel and their strong relationship with the NAO index. Their results showed weak

98	along the Southern North Sea. Using a numerical approach, Idier et al. (2012) studied the spatial
99	evolution of some historical storms in the Atlantic Sea and their dependence on tides.
100	Recently, Turki et al. (2019) have examined the multiscale variability of the sea-level changes
101	in the Seine bay (NW France) in relation with the global climate oscillations from the SLP
102	composites; they have demonstrated dipolar patterns of high-low pressures suggesting positive
103	and negative anomalies at the interdecadal and the interannual scales respectively.
104	Despite these important advances, no particular studies exist on sea-level dynamics and
105	extreme events linked to the large-scale climate oscillations along the English Channel
106	coastlines. The aforementioned works of Turki et al. (2015a, 2019) have focused on the
107	multiscale sea-level variability along the French coasts related to the NAO and the Sea-Level
108	Pressure (SLP) patterns; however, they have not addressed the regional behaviour of the
109	extreme sea levels in relation with the global climate oscillations.
110	Then, similar approaches have been used by Turki et al. (2020) to quantify the nonstationary
111	behaviour of extreme surges and their relationship with the global atmospheric circulation at
112	different timescales along the English Channel coasts (NW France) between 1964 and 2012.
113	They have reported that the intermonthly and the interannual variability of monthly extrema

are statistically modelled by nonstationary GEV distribution using the full information relatedto the climate teleconnections.

116	In the same context, the present contribution aims to investigate the interannual and the
117	interdecadal dynamics of extreme surges along the English Channel coasts (NW France and
118	SW England) by the use of combining techniques of spectral analyses and probabilistic models.
119	We hypothesize that different large-scale climate variables may be involved in explaining the
120	occurrence of extreme surges, and that this dependence can be a function of each timescale.
121	The rationale behind this hypothesis is based on the following: (1) each timeseries of extreme
122	surges should depend on different timescales; (2) each timescale should be related to a specific
123	large-scale oscillation. Using this hypothesis, the linkages between the local extreme surges
124	and the large-scale climate oscillations are deciphered with the aim to improve the extreme
125	models using the most consistent large-scale oscillations as covariates.

126

127 The overall approach for testing our hypotheses can be described as follows, for a given 128 extreme surge timeseries: i) identify the short to long timescale oscillations characterizing the 129 local variability of the extreme surges; ii) explore the correlation between the local extreme 130 surges and the selected large-scale variable from short to long timescales; iii) select the most

131	appropriate large-scale variable as an explanatory parameter to be used as a covariate in
132	nonstationary GEV models and estimate the extreme surges.
133	The paper is structured as follows. The used hydro-climatic data are presented in section 2,
134	including local extreme surges and large-scale variables. Section 3 explains the methodological
135	approach used. Finally, the sections 4 and 5 report the results related to the multiscale
136	variability of extreme surges along the English Channel and their teleconnections with the
137	large-scale climate oscillations required for their estimation by the use of GEV extreme models.
138	The concluding remarks of these findings are addressed in section 6.
139 140	2. Database description
	I
141	The present research focuses on the dynamics of extreme surges along the English Channel
141 142	The present research focuses on the dynamics of extreme surges along the English Channel coasts (French and the Britannic coasts); It has been conducted in the framework of some
141 142 143	The present research focuses on the dynamics of extreme surges along the English Channel coasts (French and the Britannic coasts); It has been conducted in the framework of some French research programs: RICOCHET (ANR program), RAIV COT (Normandy Region
141 142 143 144	The present research focuses on the dynamics of extreme surges along the English Channel coasts (French and the Britannic coasts); It has been conducted in the framework of some French research programs: RICOCHET (ANR program), RAIV COT (Normandy Region program) and the international project COTEST (CNES-TOSA program) related to the future
141 142 143 144 145	The present research focuses on the dynamics of extreme surges along the English Channel coasts (French and the Britannic coasts); It has been conducted in the framework of some French research programs: RICOCHET (ANR program), RAIV COT (Normandy Region program) and the international project COTEST (CNES-TOSA program) related to the future mission Surface Water and Ocean Topography (SWOT).
 141 142 143 144 145 146 	The present research focuses on the dynamics of extreme surges along the English Channel coasts (French and the Britannic coasts); It has been conducted in the framework of some French research programs: RICOCHET (ANR program), RAIV COT (Normandy Region program) and the international project COTEST (CNES-TOSA program) related to the future mission Surface Water and Ocean Topography (SWOT). The English Channel (Figure 1) is a shallow sea between Northern France and South England,
 141 142 143 144 145 146 147 	The present research focuses on the dynamics of extreme surges along the English Channel coasts (French and the Britannic coasts); It has been conducted in the framework of some French research programs: RICOCHET (ANR program), RAIV COT (Normandy Region program) and the international project COTEST (CNES-TOSA program) related to the future mission Surface Water and Ocean Topography (SWOT). The English Channel (Figure 1) is a shallow sea between Northern France and South England, connecting Atlantic Ocean to North Sea. Melting of retreating glaciers formed a megaflood in

149	Channel at the last Quaternary Period (Collier et al. 2015). English Channel has a complex sea
150	floor due to its characteristics of formation. It is deep and wide on the western side, narrower
151	and shallower towards Strait of Dover. Largest width of the Channel is around 160 km (Figure
152	1). The average depth of the channel is about 120 m. It gradually narrows eastward to a width
153	of 35 km and depth of around 45 m in the Dover Strait. The east to west extent of the Channel
154	is about 500 km. The overall width of shallow depths is wider in the French side of the channel.
155	The extreme storm surges of this area are mostly occurred by low pressure systems from the
156	Atlantic Ocean, propagating eastwards or storm surges propagating south from the North Sea
157	(Law, 1975). The area is exposed to major storms from Atlantic side of the channel, having a
158	maximum fetch of winds, from west to southeast then to northwest.
159	Three tide gauge sites along the French coasts have been used in the present study: (1) Dunkirk
160	station which is a few kilometres away from Belgian borders, (2) Cherbourg station located on
161	the Cotentin Peninsula and at the opening of the Atlantic Sea, (3) Brest station which is a
162	sheltered bay located at the western extremity of metropolitan France and connected to the
163	Atlantic Ocean.
164	Figure 1. Geographical location of the study area and the different tide gauges along the

165 English Channel coasts: Brest, Cherbourg, Dunkirk (NW France); Dover and Weymouth (SW UK).

166	Two tide gauge sites along the Britannic coats have been used: (1) Dover station which is
167	separated from Dunkirk by the North Sean and (2) Weymouth station symmetrically with
168	respect to Cherbourg.
169	The French tide gauges are operated and maintained by the National French Center of
170	Oceanographic Data (SHOM) while the Britannic tide gauges are operated by the British
171	Oceanographic Data Center. All stations are referenced to the hydrographic zero level; they
172	provide time-series of hourly observations measurements until 2018.
173	Available data are summarized as the following: Brest (168 years between 1850 and 2018);
174	Cherbourg and Dunkirk (54 years between 1964 and 2018); Dover (53 years between 1963 and
175	2018); Weymouth (28 years between 1990 and 2018).
176	The hourly measurements suffer from some gaps of daily length distributed along the time-
177	series. These gaps have been processed by the hybrid model for filling gaps developed by Turki
178	et al. (2015b) by using the SLP as covariate in ARMA methods and the memory effects of the
179	previous distribution of surges to estimate the missing values and fill the gaps. This model has
180	been used in the recent works of Turki et al., (2019; 2020).
181	The large-scale atmospheric circulations are represented in this work by four different climate
182	indices which are considered as fundamental drivers in the Atlantic regions (Massei et al.,

183	2017; Turki el al., 2019; 2020): the Atlantic Multidecadal Oscillation (AMO), the North
184	Atlantic Oscillation (NAO), the Zonal Wind (ZW) component extracted at 850hPa, and the
185	Sea-Level Pressure (SLP).
186	Monthly time-series of climate indices have been provided by the NCEP-NCAR Reanalysis
187	fields (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html) until
188	2017. The different indices have been extracted during the same period of the sea-level
189	observations at the four stations Cherbourg, Dunkirk, Dover and Weymouth. For the longest
190	timeseries of Brest (1850 - 2018), the use of climate indices has been limited according to their
191	initial date availability (AMO: 1880 - 2017; NAO: 1865-2017; SLP: 1948-2017; ZW: 1865-
192	2017).

193

3. Methodological Approach

194

3. 1 Extraction of residual sea level: 'surges'

195

196 The total sea-level height, resulting from the astronomical and the meteorological processes, exhibits a temporal non-stationarity which is explained by a combination of the effects of the 197 long-term trends in the mean sea level, the modulation by the deterministic tidal component 198 199 and the stochastic signal of surges, and the interactions between tides and surges. The occurrence of extreme sea levels is controlled by periods of high astronomically generated 200 tides, in particular at inter-annual scales when two phenomena of precession cause systematic 201 variation of high tides. The modulation of the tides contributes to the enhanced risk of coastal 202 flooding. Therefore, the separation between tidal and non-tidal signals is an important task in 203

any analysis of sea-level time-series. By the hypothesis of independence between the 204 astronomical tides and the stochastic residual of surges, the nonlinear relationship between the 205 tidal modulation and surges is not considered in the present analysis. Using the classical 206 harmonic analysis, the tidal component has been modelled as the sum of a finite set of sinusoids 207 at specific frequencies to determine the determinist phase/ amplitude of each sinusoid and 208 predict the astronomical component of tides. In order to obtain a quantitative assessment of the 209 210 non-tidal contribution in storminess changes, technical methods based on MATLAB t-tide package have been applied to the seal level measurements, demodulated from long-term 211 212 components (e.g. mean sea level, vertical local movement), for estimating year-by-year tidal constituents. A year-by-year tidal simulation (Shaw and Tsimplis, 2010) has been applied to 213 the sea-level time-series to determine the amplitude and the phase of tidal modulations using 214 215 harmonic analysis fitted to 18.61-, 9.305-, 8.85-, and 4.425-year sinusoidal signals (Pugh, 1987). The radiational components have been also considered for the extraction of the 216 stochastic component of surges (Williams et al., 2018). 217

218

3.2 Wavelet spectral analysis

The Continuous Wavelet Transform CWT is generally used for data analysis in hydrology, geophysics, and environmental sciences (Labat, 2005; Sang, 2013; Torrence and Compo, 1998). This technique produces the timescale with the means of the Fourier transform contour diagram on which the time is indicated on the x-axis, the timescale (period,) on the y-axis, and the variance (power) on the z-axis.

Then, a wavelet multiresolution analysis has been used to decompose the signal of monthly

225 extreme surges into different internal components corresponding to different timescales. This

226	decomposition consists on applying a series of iterative filtering to the signal by the use of low-
227	pass and high-pass filters able to produce the spectral components describing the total signal.
228	More details are presented in the recent works of Massei et al. (2017) and Turki et al., (2019).
229	In summary, the total signal has been separated into a relatively small number of wavelet
230	components from high to low frequencies that altogether explains the variability of the signal;
231	this will be illustrated later using the hourly measurements and the monthly maxima of surges.
232	The wavelet coherence has been calculated to investigate the relationship between the extreme
233	surges and the climate oscillations by identifying the timescales where the two timeseries co-
234	vary, even if they do not display high power. Here, a significance test has been implemented
235	by the use of a Monte Carlo analysis based on an autocorrelation function of two timeseries
236	(Grinsted et al., 2004).

237

3. 3 Nonstationary extreme value model

Finally, and with the aim of addressing the nonstationary behaviour of extreme surges, the monthly maxima of the surges have been calculated and decomposed with the multiresolution analysis. Then, a nonstationary extreme value analysis based on the GEV distribution with time-dependent parameters (Coles, 2001) has been implemented to model the series of the monthly maxima surges. There are several GEV families which depend on the shape parameter, e.g. Weibull ($\varepsilon < 0$), Gumbel ($\varepsilon = 0$), and Fréchet ($\varepsilon > 0$). The three parameters of the GEV (i.e. location μ , scale ψ , shape ε) are estimated by the maximum likelihood function.

The nonstationary effect was considered by incorporating the selected climate indices (NAO,
AMO, ZW, and SLP) into the parametrization of the GEV models. Akaike Information

247 Criterion (AIC) has been used to select the most appropriate probability function models. The 248 methods of maximum likelihood were used for the estimation of the distribution's parameters. 249 The approach used considers the location (μ), the scale (ψ), and the shape (ϵ) parameters with 250 relevant covariates, which are described by a selected climate index:

251
$$\mu(t) = \beta_{0,\mu} + \beta_{1,\mu} Y_1 + \dots + \beta_{n,\mu} Y_n \quad (1)$$

252
$$\psi(t) = \beta_{0,\psi} + \beta_{1,\psi} Y_1 + \dots + \beta_{n,\psi} Y_n \quad (2)$$

253
$$\varepsilon(t) = \beta_{0,\varepsilon} + \beta_{1,\varepsilon}Y_1 + \dots + \beta_{n,\varepsilon}Y_n \qquad (3)$$

Where $\beta 0, \beta 1, ..., \beta n$ are the coefficients, and Yi is the covariate represented by the climate 254 index. For each spectral component, only one climate index can be used to be introduced into 255 256 the parameters μ , ψ , and ε of the nonstationary GEV model (into one of them, into two of them) or into the three parameters). With the aim of optimizing the best use of the most appropriate 257 climate index (detailed in section 3.4) into the different GEV parameters, a series of sensitivity 258 analyses were implemented for each timescale. The AIC measures the goodness of the fitting 259 of the model (Akaike, 1973) to the relation AIC =-21+2K; where 1 is the log-likelihood value 260 estimated for the fitted model, and K is the number of the model parameters. Higher ranked 261 models should result from lower AIC scores. 262

2633. 4 Determination of the most appropriate climate oscillation264connected to each timescale extreme surges for GEV models

As suggested previously, the main hypothesis presented in this research is that effects of the physical mechanisms on the extreme surges vary according to the timescale and each scale should be related to a given climate oscillation.

269 This hypothesis has been investigated by two approaches:

(1) a spectral approach based on the use of wavelet techniques (wavelet multiresolution and
wavelet coherence as detailed in section 3.2) for optimizing the physical relationship between
the climate index and the extreme surges at each timescale.

The Bootstrap is a resampling technique used to estimate the sampling distribution of an estimator of sample statistics by drawing randomly with replacement from a set of data points.

Here, a bootstrap approach has been applied to assess the statistical significance of the correlation between the spectral component of the extreme surges and the climate oscillation at each timescale. By resampling the timeseries 10.000 times, the extreme surges have been simulated and compared to the original records; the 95% confidence intervals have been considered to extract the best climate information fitting the extreme surges (Villarini et al., 2009).

(2) a Bayesian estimation has been used to make inferences from the Likelihood function. The
reason behind the choice of this approach is overcoming the limitation of short time-series with
small size, the case of Weymouth station where the measurements covers the period from 1991
and 2018. A technique of Markov Chain Monte Carlo (MCMC), implemented in the evbayes
package within R software, has been used basing on multiple simulations (the number of
simulations is varying as a function of the length of the timeseries).

For each spectral component, a sample of 100.000 simulations has been modelled by GEV using a given climate index. The upper and lower quantiles of the posterior probability distribution for the parameters of the MCMC sample are taken. The goodness of fit has been taken as a function of the values of the upper and the lower quantiles; best results have beenconsidered when these values are higher than 92.5% and lower than 5.2%, respectively.

Both approaches have been used to select the most appropriate atmospheric physical mechanism to each timescale of extreme surges. Then and at each timescale (i.e. spectral component), the selected mechanism (i.e. the climate oscillation in this case) has been used as covariate for modelling the extreme surge by nonstationary the implemented GEV models. The best use of the covariate into the different GEV parameters (location, scale and shape) have been investigated by means of AIC criterion.

298 Once the best GEV models defined for each time scale, a series of simulations have been 299 carried out to compare modelled and observed surges.

This Bayesian inference has been also used to calculate: (1) the return levels of the nonstationary simulated surges which were compared to those of the observed ones; (2) the confidence interval (CI) assessing the goodness of this comparison.

Figure 2 summarizes the methodological approach proposed in the present research and the different steps implemented. The statistical methods used to resolve each step are also synthetized in this figure.

306

Figure 2. A summary of the methodological approach implemented in this research.

4. Multi-timescale variability of extreme surges

The variability of the monthly extreme surges along the English Channel coasts has been investigated using the continuous wavelet transform (CWT). In the spectrum of Figure 3, the colour scale represents an increasing power (variance) from red to blue and pink. The CWT diagrams highlight the existence of several scales for all sites with different ranges of

frequencies: the interannual scales of ~ 1.5-yr, ~ 2-4-yr, ~ 5-8-yr and the interdecadal scale of
~ 12-16-yr.

314 The variability of surges is clearly dominated by the interannual frequencies (~ 1.5-yr, ~ 2-4yr, ~ 5-8-yr) explaining a mean variance between 32% and 25% of the total energy (Table 1). 315 In Dover and Weymouth, the low frequencies of ~ 2-4-yr are well-structured with a mean 316 explained variance of 9.5% while it is of 7% for ~ 5-8-yr. These percentages decrease slightly 317 318 for the French sites to 8% and 5%, respectively. At ~ 1.5-yr, the explained variance is higher than 16% and 13% respectively in Britannic and French coasts. The interdecadal frequency of 319 320 \sim 12-16-yr varies between 2% and 4% from the total signal. This frequency is not observed in 321 the shortest timeseries of Weymouth (Table 1). The interannual variability (time-scales higher than ~1 year) seems to be highly represented in 322 the monthly extrema CWT (Figure 3). It's not the case for the monthly mean surges (Figure 323 324 4.a) where most power spectrum is concentrated on the annual cycle with an explained variance higher than 50%. 325

The time-dependent PDF of the monthly mean and maximum surges over a period of 10 years, for illustration purpose, is displayed in Figure 4.b. The ~1-yr component of monthly mean surges is largely manifested with a pronounced variation of the Gaussian curves in time; such

329	variations take wavelengths of approximately ~2-yr and ~4-yr. This result exhibits that the
330	interannual frequencies of ~ 2-yr and ~ 4-yr are modulated within the annual mode for the
331	mean surges while they are implicitly quantified for the monthly maxima.
332	Figure 3. CWT of monthly maxima of surges in Brest, Cherbourg, Dunkirk, Dover and
333	Weymouth.
334 335 336	Figure 4. Multiscale variability of the monthly mean and maximum surges in Brest. (a) CWT of monthly mean surges; (b) Interannual variability of monthly and extreme surges
337	Results have been explored to investigate the nonstationary dynamics of surges at different
338	timescales. We have applied the wavelet multiresolution decomposition of monthly extrema
339	for each site. The process has resulted in the separation of several components with different
340	time-scales. Only the wavelet components, with have been considered in this work. In this
341	research, we are interested in the time-scales higher than 1 year, i.e. traduced by three
342	interannual scales (~ 1.5-yr, ~ 2-4-yr, and ~ 5-8-yr) and an interdecadal scale of ~ 12-16-yr.
343	We focused only on the interannual and the interdecadal scales whose fluctuations correspond
344	to the oscillation periods less than half the length of the record and exhibit a high-energy
345	contribution on the variance of the total signal. The lowest frequency, corresponding to ~ 12-
346	16-yr is easily calculated from the longest record of Brest.

347	Figure 5 shows a series of oscillatory components of surges from interannual to interdecadal
348	scales, not easily quantified by a simple visual inspection of the signal. High similarities
349	between the different sites have been highly observed for the interannual and the interdecadal
350	scales of ~ 5-8-yr and ~12-16-yr while they are less pronounced at the small scales of ~ 1.5-yr.
351	At this timescale, the differences in the extreme surges can be explained by local physical
352	phenomena controlling their dynamics. Such processes are mainly induced by combining the
353	effects of meteorological and oceanographic forces including changes in atmospheric pressures
354	and wind velocities in shallow water areas. Beyond ~ 1.5-yr, the variability of extreme surges
355	at larger scales seems to be quite similar in terms of frequency and amplitude for the five sites.
356	Such large variability reveals the physical effects of a global contribution related to climate
357	oscillations. The extent of the large-scale oscillations is not strictly similar and changes
358	according to the timescale variability since the dynamics of surges is not necessarily related to
359	the same type of atmospheric circulation process. This relationship will be addressed later in
360	the second part of this section.
361	Here, the multiscale variability of extremes has been investigated from the spectral components
362	of surges along the English Channel coasts. This signal has been linearly extracted from the

total sea level, provided by tide gauges, by the use of the classical harmonic analysis and thanks

364	to the assumption that the water level is the sum of the mean sea level, tides, and surges. This
365	assumption approximates the quantification of both components in the English Channel where
366	the significant tide-surge interactions (Tomassin & Pirazzoli, 2008) and the effects of the sea-
367	level rise on tides and surges are important (e.g. Idier et al., 2017). Neglecting this nonlinear
368	interaction between the surges, tides, and the sea-level rise suggests some uncertainties in the
369	estimation of the high frequencies of the spectral components between daily and monthly
370	scales, which is not the focus of the present work where the interannual and the interdecadal
371	scales are investigated.
372	Similar interannual timescales have been observed along the French coasts of Dunkirk, Le
373	Havre and Cherbourg in Turki et al., (2020) works where the intermonthly and the interannual
374	variability of 48-year hourly surges has been investigated. They have demonstrated that the
375	timescales smaller than ~ 1.5-yr are differently manifested between the different sites. These
376	differences have been associated to the local variability of surges induced by combining the
377	effects of meteorological and oceanographic forces including changes in atmospheric pressures
378	and wind velocities in shallow water areas. As demonstrated in Turki et al. (2020) works, the
379	mean explained variance of the interannual fluctuations (~ 1.5-yr, ~ 2-4-yr, and ~ 5-8-yr) is
380	around 25% of the total surges along the French coasts (Table 1). This value is higher than 32%

in Weymouth and Dover while the explained variance of the interdecadal scales (~ 12-16-yr) 381 is also more important with 3.5% (compared to 2% for the French coasts). 382 The interdecadal variability (~ 12-16-yr) of extreme surges have been evidenced by Turki et 383 al., (2019) in the Seine bay (NW France). Strong physical relations have been exhibited 384 385 between the interdecadal time of ~ 12-16-yr and the exceptional stormy events produced with surges higher than 10-year return period level. The connections between the low-frequency 386 components and the historical record of the exceptional events suggested that storms would 387 occur differently according to a series of physical processes oscillating at multi-timescales; 388 these processes control their frequency and their intensity (Turki el al., 2019). 389 Table 1. The explained variance expressed as percentage of total variance of monthly extreme surges 390 The lowest frequency of ~ 12-16-yr is not observed in Weymouth. Figure 4 Wavelet details 391 (components) resulting from the multiresolution analysis of surges at the interannual (~ 1.5-392 yr, ~2-4-yr and ~5-8-yr) and interdecadal (~12-16-yr) time scales for all sites (Brest, 393 Cherbourg, Dunkirk, Dover and Weymouth). 394 395 Accordingly, the multiscale variability of extreme surges exhibits a nonstationary behaviour modulated by a non-linear interaction between the different interannual and the interdecadal 396 timescales. Then, assessing the effect of the nonstationary behaviour at different timescales is 397 398 important for improving the estimation of extreme values and the projection of storm surges. 399

400 5. Large-scale climate North-Atlantic oscillations and their link to 401 extreme surges in the English Channel

provided WC, the most significant correlations of extreme surges have been identified with 418 SLP, ZW, NAO and AMO respectively at ~ 1.5-yr, ~ 2-4-yr, ~ 5-8-yr and ~ 12-16-yr. 419 420 2. Each timescale exhibits mainly strong links with its associated climate index (explained 421 variance varying between 55% and 80%) and weak ones with other indices (explained variance varying between 15% and 5%). Table 2 summarizes the contribution of the different climate 422 oscillations in the different interannual and interdecadal timescales of extreme surges. Here, 423 mean values between the different sites are presented. 424 For example, SLP diagrams reveal significant relationships with ~ 1.5-yr surges (well-425 structured forms with high concentration of pink-blue colours in Figure 6); limited correlations, 426 locally positioned in time, have been observed at ~ 2-4-yr and ~ 5-8-yr scales. ZW shows strong 427 correlations with interannual surges at ~ 2-4-yr (blue to pink colour at this scale; Figure 7) and 428 others correlations at smaller and larger timescales of ~ 1.5-yr and ~ 5-8-yr, respectively. 429 Similarly, NAO presents high links with ~ 5-8-yr surges and small relations with ~ 2-4-yr and 430 ~ 1.5-yr (Figure 8). 431

The ~ 1.5-yr scale highlights strong correlations with SLP with an explained variance of 75%;
25% of this scale should be explained by the influence of other climate oscillations (basically

434	ZW and NAO with a mean explained variance of 10% and 6%, respectively; Table 2) and the
435	combining effects of local driven forcing induced by winds and waves.
436	65% of ~ 2-4-yr scale is correlated with ZW while 5% and 12% is explained by the effect of
437	NAO and SLP, respectively. The effects of NAO on the ~ 5-8-yr vary between 55% and 65%;
438	minor influence at this scale has been observed with SLP and ZW explaining a mean variance
439	of 13%. The interannual scales of surges are slightly influenced by AMO oscillations with low
440	values of variance lower than 1% (Table 2).
441 442	Table 2. The mean explained variance expressed as percentage of total variance provided by the wavelet coherence between the extreme surges and the climate Oscillations (SLP, ZW, NAO, AMO)
443	
444	Figure 6. Cross-wavelet correlations between monthly extrema of surges and Sea Level
445	Pressure (SLP).
446	Figure 7. Cross-wavelet correlations between monthly extrema of surges and Zonal Wind
447	(ZW).
448	
449	Figure 8. Cross-wavelet correlations between monthly extrema of surges and North Atlantic
450	Oscillation (NAO).
451	Figure 9. Cross-wavelet correlations between monthly extrema of surges and Atlantic
452	Multidecadal Oscillation (AMO).
453	
454	

At interdecadal scales of ~ 12-16-yr, the extreme surges are mainly controlled by the AMO
oscillations with a mean explained variance of 80% while the effects of NAO are limited to
10% (Figure 9).

Figure 10 displays the spectral components of the four climate oscillations, provided by a multiresolution analysis, together with the spectral components extracted from the extreme surges (Figure 5) with the aim to quantify the different connections between both variables at the

462 interannual and the interdecadal timescales.

For each timescale, a bootstrap approach has been applied to assess the statistical significance of the correlation between the spectral component of the extreme surges and the climate oscillation. By resampling the timeseries 10.000 times, 95% confidence intervals (CI) have been considered to extract the best climate information fitting the extreme surges (Villarini et al., 2009).

468 Results of 95% CI, applied to the maximum values and provided by the bootstrap technique, for the different possible connections between a given scale of extreme surges and a climate 469 470 oscillation, extracted at the scale timescale of extreme surges, are illustrated in Table 3. For 471 each connection, the lower and the upper bounds of the 95% CI, calculated for the maximum values, are calculated (values in the square brackets in Table 3). The width of CI between both 472 bounds reveals the statistical significance of the simulations and the goodness of the 473 correlations. According to these results, the width of CI is important for the small timescales 474 (high frequencies of ~ 1.5-yr and ~ 2-4 yr) with a mean of 0.05 and a maximum of 0.09. It 475 476 decreases for the large timescales (low frequencies of ~ 5-8-yr and ~ 12-16-yr) to 0.012 and 0.022 of mean and maximum values, respectively. 477

The smallest widths are observed for the connection between ~ 1.5 -yr extreme surges and SLP; 478 ~ 2-4 -yr extreme surges and ZW; ~ 5-8 -yr extreme surges and NAO; ~ 12-16 -yr extreme 479 surges and AMO (grey columns in Table 3). For the large timescales (low frequencies), small 480 widths (lower than the mean value 0.012) are also observed with other climate oscillations, 481 different from the most appropriate one showing the most significant correlation with extreme 482 surges. For these scales, the variability of extreme surges is mainly controlled by a given 483 484 physical mechanism, related a climate oscillation, and partly affected by the contribution of other oscillations which could interact with the different large driven forces. Such interaction 485 486 between the different climate oscillations has been also pointed from Table 2. The best correlation of each extreme surge component (i.e. ~ 1.5-yr, ~ 2-4-yr, ~ 5-8-yr and ~ 487 12-16-yr) with the most appropriate climate oscillation (i.e. SLP, ZW, NAO and AMO) is 488 illustrated in Figure 10. The interannual and the interdecadal variability of extreme surges and 489 their multiscale connection with the climate oscillations highlight the nonlinear relationship 490 between large- and local- scales. 491

Table 3 Analysis of the statistical significance of the correlation between the spectral 492 component of the extreme surges and the climate oscillation at each timescale for the 493 different stations. The 95% Confidence Intervals (applied for the maximum values) from 494 495 Bootstrap technique in Square Brackets. The most significant correlations, shown by the most limited (smaller) 95% CI between the lower and the upper bounds, are illustrated by the grey 496 columns. The lowest frequency of ~ 12-16-yr is not observed in Weymouth. 497 498 *Figure 10 Wavelet details of monthly extreme surges (black lines), at the interannual (~ 1.5*yr, ~2-4-yr and ~5-8-yr) and interdecadal (~12-16-yr) time scales for all sites (Brest, 499 *Cherbourg, Dunkirk, Dover and Weymouth), correlated to the spectral component of climate* 500 501 oscillations associated to the different indices SLP, ZW, NAO and AMO (grey line). Only the connection maximizing the correlation coefficient between a selected climate index and the 502 component of surges (from interannual to the interdecadal timescales) is presented (the 503 504 normalized values have been calculated to superpose both signals).

505	Therefore, the interannual and the interdecadal extreme surges have proven to be strongly
506	related to different composites of oscillating atmospheric patterns. Such composites seem to be
507	not necessarily similar for the different timescales. The use of a multiresolution approach to
508	investigate the dynamics of the extreme surges into the downscaling studies proves to be useful
509	for assessing the nonstationary dynamics of the local extreme surges and their nonlinear
510	interactions with the large-scale physical mechanisms related to climate oscillations.
511	Investigating the complex relationships between the climate oscillations and the multi-
512	timescale surges has exhibited a multimodel climate ensemble that should be used to better
513	understand this complexity.
514	The interannual connections between the local hydrodynamics and the climate variability have
515	been investigated in numerous previous works focused on the atmospheric circulation with
516	different related mechanisms (e.g., Feliks et al., 2011; Lopez-Parages et al. 2012; Zampieri et
517	al., 2017). As demonstrated by the recent works of Turki et al. (2019, 2020), the effects of SLP
518	oscillations on the ~ 1.5-yr variability of extreme surges are described by dipolar patterns of
519	high-low pressures with a series of anomalies which are probably induced by some physical
520	mechanisms linked to the North-Atlantic and ocean/atmospheric circulation oscillating at the
521	same timescale.

522	The SLP fields combined with the baroclinic instability of wind stress have been related to the
523	Gulf Stream path as given by NCEP reanalysis (Frankignoul et al., 2011); the dominant signal
524	is a northward (southward) displacement of the Gulf Stream when the NAO reaches positive
525	(negative) extrema. Daily mean SLP fields have been used by Zampieri et al. (2017) to analyse
526	the influence of the Atlantic sea temperature variability on the day-by-day sequence of large-
527	scale atmospheric circulation patterns over the Euro-Atlantic region. They have associated the
528	significant changes in certain weather regime frequencies to the phase shifts of the AMO. For
529	hydrological applications, several works have investigated the multiscale relationships between
530	the local hydrological changes and the climate variability. Lavers et al. (2010) associated the
531	7.2-yr timescales to SLP patterns which are not exactly reminiscent of the NAO and define
532	centers of action which are shifted to the North.
533	Regarding the ZW (u850), results have shown its correlation with the interannual scales of ~2-
534	4-yr extreme surges as suggested also in the recent findings of Turki et al. (2020). Its influence
535	has been proven also at smaller (~1.5-yr) and larger scales (5-8-yr). Additionally, to extreme
536	surges, the interaction between the ZW and the temperature at different timescales has been
537	highlighted in some previous researches (e.g., Andrade et al., 2012; Seager et al. 2003;
538	Woodworth et al., 2007). Along UK and Northern English Channel coats, Changes in trends

539	of extreme waters and storm surges have been explained by variations of energy pressure and
540	ZW variability additional to thermosteric fluctuations linked to NAO (Woodworth et al., 2007).
541	Andrade et al. (2012) have used the component of ZW at 850 hPa to investigate the positive
542	and the negative phases of the extreme temperatures in Europe and their occurrence in relation
543	with the large-scale atmospheric circulation. They suggested that both phases are commonly
544	connected to strong large-scale changes in zonal and meridional transports of heat and
545	moisture, resulting in changes in the temperature patterns over western and central Europe
546	(Corte-Real et al., 1995; Trigo et al., 2002). The physical connections between ZW and the
547	extreme events from 11 Global Climate Model runs have been demonstrated by the studies
548	from Mizuta (2012) and Zappa et al (2013); they have suggested the complex relationship
549	between the climate oscillation and the jet stream activity. They have found a slight increase
550	in the frequency and strength of the storms over the central Europe and decreases in the number
551	of the storms over the Norwegian and Mediterranean seas.
552	The NAO is considered as an influencing climate driver for the large-scale atmospheric
553	circulation, as suggested by other researches (e.g. Marcos et al., 2009; Philips et al., 2013).
554	The existence of long-term oscillations originating from large-scale climate variability and thus

controlling the interannual extreme surges has been highlighted from investigating the low

556	frequencies of the sea levels along the English Channel. This is in agreements with the results
557	recently demonstrated by Turki et al. (2020) and the present finding exhibiting the strong links
558	between NAO oscillations and the ~ 5-8-yr extreme surges along the English Channel coasts.
559	The physical mechanisms related to the effects of the continuous changes in NAO patterns on
560	the sea-level variability have been addressed in several studies (e.g., Marcos et al., 2005;
561	Tsimplis et al., 1994). At the interannual scales, the key role of NAO on the sea-level variability
562	has been explained by some previous works: Philips et al. (2013) investigated the influence of
563	the NAO on the mean and the maximum extreme sea levels in the Bristol Channel/Severn
564	Estuary. They have demonstrated that when high NAO winters increase in the positive phase,
565	wind speeds also escalate while increasing the negative NAO warmers results in low wind
566	speeds. Then, the correlation between the low/high extreme surges and the NAO in the Atlantic
567	has demonstrated a proportionality between NAO values and the augmentation in the winter
568	storms. Feliks et al. (2011) defined significant oscillatory timescales of ~ 2.8-yr, ~ 4.2-yr, and
569	~ 5.8-yr from both observed NAO index and NAO atmospheric marine boundary layer
570	simulations forced with SST; they have suggested that the atmospheric oscillatory modes
571	should be induced by the Gulf Stream oceanic front.

Strong correlations between the monthly extreme surges and the AMO oscillations have been 572 identified at the timescale of 12-16-yr (Figure 8 and Figure 9; in particular for Brest). Since the 573 period of 1990's, the AMO and the extreme surges oscillate in opposition of phase. This shift 574 should be explained by a substantial change in European climate manifested by cold wet and 575 hot dry summers in the northern and the southern Europe, respectively; as discussed by Sutton 576 and Dong (2012). They have demonstrated that the patterns, identified from the European 577 578 climate change around 1990's, are synchronised with changes related to the North Atlantic Ocean. 579

Other weak links with the AMO have been identified at the interannual timescales of ~5-8-yr. 580 along the studied sites. In agreement of previous works (e.g., Enfield et al., 2001; Zampieri et 581 al., 2013; 2017), the effects of the AMO oscillations are mainly manifested at the interannual 582 timescales to control the variability of hydrological (e.g. rainfall) and oceanographic (e.g. 583 surges) variables. Generally, the climate oscillations of AMO are associated to the SST 584 585 variability with a time cyclicity of about 65-70-years (e.g. Delworth and Mann, 2000; Enfield et al., 2001). During the warming periods of the 1990's, the AMO shifts from the negative to 586 the positive phases in the Northern Hemisphere corresponding to cold and warm periods (e.g. 587 Gastineau et al., 2012; Zhang et al., 2013). This shift can be responsible on changes in the 588 hydrodynamic conditions (e.g. Zampieri et al., 2013). 589

The influence of the AMO oceanic low frequencies in the modulation of the mechanisms of the atmospheric teleconnections at the interannual timescales has been investigated in many previous works (e.g Enfield et al. 2001). At decadal timescales, the existing relationships between the winter NAO and the AMO variability is more complex (e.g. Peings and Magnusdottir, 2014).

The effects of the AMO-driven climate variability on the seasonal weather patterns have been 595 investigated by Zampieri et al. (2017) in Europe and the Mediterranean. They have 596 demonstrated significant changes in the frequencies of weather regimes involved by the AMO 597 shifts which are in phase with seasonal surface pressure and temperature anomalies. Such 598 regimes, produced in Spring and Summer periods, are differently manifested in Europe with 599 anomalous cold conditions over Western Europe (Cassou et al., 2005; Zampieri et al., 2017). 600 In summary, four atmospheric oscillations have proven to be significantly linked to the 601 interannual and interdecadal variability of extreme surges. This physical link varies according 602 to the timescale exhibiting a nonlinear interaction of the same oscillations with other scales. 603 604 Such nonlinear behavior depends on the dynamics of the different sequences of the atmospheric and water vapour transport patterns during the month prior to the sea-level observations (e.g. 605 Lavers et al., 2015). As suggested by Turki et al. (2020), the atmospheric circulation acts as a 606 regulator controlling the multiscale variability of extreme surges with a nonlinear connection 607 between the large-scale atmospheric circulation and the local scale hydrodynamics. This multi-608 609 timescale dependence between the local extreme dynamics and the internal modes of climate oscillations is still under debate. Understanding these physical links, even their complexities, 610 are useful to improve the estimation of the extreme values in coastal environments; which is 611 the objective of the next part. 612

613

5.2 Nonstationary modelling of extreme surges

614	In this part, stationary and nonstationary extreme value analyses based on GEV distribution
615	with time-dependent parameters (Coles, 2001) have been implemented to model separately the
616	different spectral components of extreme surges. Four GEV stationary (GEV0) and
617	nonstationary (GEV1, GEV2 and GEV3) models have been applied to each timescale and each
618	site. The GEV distribution uses the maximum likelihood method by parametrizing the location,
619	scale, and shape of the model. We have used the 'trust region reflective algorithm' for
620	maximizing the log-likelihood function (Coleman and Li, 1996).
621	The connections between the climate oscillations and the monthly maxima at the different
622	timescales (Figure 9)., preliminary presented in section 5.1, have been explored for the
623	implementation of the nonstationary GEV models. Indeed, multiple simulations of Markov
624	Chain Monte Carlo (MCMC) techniques based on Bayesian approaches have been employed
625	for extreme surge components (i.e. ~ 1.5-yr, ~ 2-4-yr, ~ 5-8-yr and ~ 12-16-yr provided by the
626	multiresolution wavelet decomposition) to identify the best covariates of climate oscillation for
627	parametrizing the nonstationary GEV models. The most of simulations has mainly supported
628	the results outlined in the previous section: the ~ 1.5-yr of SLP, ~ 2-4-yr of ZW, ~ 5-8-yr of
629	NAO and ~ 12-16-yr of AMO oscillations are considered as the best covariates for modelling
630	respectively the ~ 1.5-yr, ~ 2-4-yr, ~ 5-8-yr and ~ 12-16-yr of monthly extreme surges.

631	Once the climate covariate has been selected for each timescale, three nonstationary models
632	have been used by introducing the climate information as a covariate into: (1) the location
633	parameter (GEV1); (2) both location and scale parameters (GEV2); (3) all location, scale and
634	shape parameters (GEV3). The structure of the most appropriate nonstationary GEV
635	distribution has been selected by choosing the most adequate parametrization that minimizes
636	the Akaike information criterion (Akaike, 1974). The goodness of fit for each model has been
637	checked through the visual inspection of the quantile-quantile (Q-Q) plots (Figure 11); these
638	plots compare the empirical quantiles against the quantiles of the fitted model. Any substantial
639	departure from the diagonal indicates inadequacy of the GEV model.
640	At the interannual scales and for all sites, results provided by the nonstationary GEV1-3 reveal
641	a better performance (the lowest values of AIC) of extreme estimation compared to the
642	stationary models of GEV0 and give the most appropriate distributions by the use of the climate
643	large-scale covariates for specific oscillating components of extreme surges. Nevertheless, this
644	improvement from the stationary to the nonstationary models has not been clearly observed for
645	the interdecadal scales where the extreme estimation, provided by the different GEV models,
646	is very similar (Table 3). The lowest values of AIC have been shown by GEV3 for ~1.5-yr,
647	GEV2 for ~2-4-yr and GEV1 for ~5-8-yr (Table 4). The Q-Q plots for the all timescales of all

timescales of the monthly maxima in Brest are illustrated in Figure 11; they confirm the

649 suitability of the selected models.

650 651 652 653 654 655 656 657	Figure 11 (a). The quantile plot between observed and modelled extreme surges by the use of the best GEV models, at different time scales, case of Brest. (b). The Return level of extreme surges estimated for Brest using the best GEV models. The 95% confidence interval is presented with the dashed black line. (c) Fifty-year return level of monthly values using the original data (grey circles) and the best nonstationary GEV model at Brest (solid black line). The lower and the upper limits of the 95% confidence interval calculated using the Bayesian method (dashed black line). The associated confidence area is plotted with grey shaded area.
658	Accordingly, the nonstationary GEV models have exhibited high improvements at the
659	interannual scales where the AIC scores have significantly decreased by introducing the
660	climate information into the parametrization of the model. Such consideration varies as a
661	function of the spectral components, it concerns all parameters for the smallest scale of ~1.5-
662	yr, both location and scale parameters for ~2-4-yr and only the location parameter for largest
663	scale of ~5-8-yr.
664	Then, the large-scale oscillations introduced for the implementation of GEV parameters depend
665	on the time scale for all sites exhibiting a high nonstationary behaviour of the small interannual
666	scales (~1.5-yr) which decreases at the large interannual scales (~5-8-yr) and get non-
667	significant at the interdecadal scales (~ 12-16-yr).

668	The use of the time-varying GEV parameters at the interannual scales (~ 1.5-yr and ~ 2-4-yr)
669	exhibits the relationship between the mode and the standard deviation of the GEV distributions
670	associated with the location and the scale parameters, respectively.
671	The different implications of both parameters for estimating the interannual extreme surges
672	reveal cyclic variations and timescale modulations related to the large-scale climate
673	oscillations. As documented in the previous works (e.g., Menendez et al., 2009; Masina and
674	Lamberti., 2013), the location and the scale parameters used for improving the nonstationary
675	estimation of the extreme water levels highlight a series of annual and semi-annual evolutions.
676	They have reported that the seasonal cycles of the location parameter are related to tow maxima
677	of water levels, in early March and September produced during equinoctial spring tides, while
678	the seasonal cycles of the scale parameter are associated to an increase of storms during wintry
679	episodes. Here, we focus on the stochastic signal of surges at scales larger than one year. The
680	SLP and the ZW frequencies, introduced in the location and the scale parameters of
681	nonstationary GEV models, determine an enhancement in the prediction of the interannual
682	scales. The shape parameter, implied for the estimation of the ~1.5-yr extreme surges, derives
683	from its determination of the upper tail distribution behaviour. The time-varying shape
684	parameter uses the ~1.5-yr SLP exhibiting altering negative and positive oscillations.

Despite its critical significance, the shape GEV parameter has revealed its relationships with 685 basin attributes in hydrological applications and regional flood frequency analysis (e.g., Tyralis 686 687 et al., 2019). The dependence of the shape parameter on the climate oscillations has been demonstrated in several extreme frameworks related to hydrological and oceanographic 688 applications (e.g., Menendez et al., 2009; Masina et al., 2013; Turki et al., 2020). Regarding 689 the stationarity of the surge timescale, the ~12-16-yr window sliding matches have been 690 691 quantified in the previous part exhibiting a substantial cyclic variability consequence of an altering periods of positive and negative correlations. The modelling of the interdecadal 692 693 extreme surges involves a stationary behavior of the ~12-16-yr.

Th stationary behavior of low frequencies has been outlined by Zampieri et al. (2017). They have demonstrated a stationary trend of the SST anomalies associated with the AMO over the Euro-Atlantic region. According to their works, the low-frequency variability of the European Climate is influenced by the AMO shift induced by the phase opposition between the negative NAO distribution and the Atlantic patterns.

Here, the effects of AMO on ~12-16-yr of extreme surges have been largely observed in Figure
9 for the longer timeseries Brest where the lower frequencies could be easily identified.

At this timescale, the AIC values given by the different GEV models are pretty close and the difference between the distributions are not statistically significant. The stationary behavior of ~12-16-yr surges should be more investigated from additional applications in light of the available sea level measurements covering a long period of time, a relevant parameter to characterize the uncertainties in extreme value statistical modeling of flood hazards.

The return levels of the multiscale extreme surges, provided by the best GEV models (Table
3), have been simulated. The example of Brest is illustrated in Figure 10.b for the interannual
(nonstationary GEV models) and the interdecadal (GEV stationary model) scales. The 95%

confidence interval is also plotted in this graph through a dashed black line. Accordingly, the
use of GEV distribution with time-dependent parameters for each timescale should improve
the evaluation of the return values and reduce the uncertainty of the quantile estimates.

Similar works have been carried out by Wahls and Chambers (2016) to investigate the multidecadal variations in extreme sea levels with the large-scale climate variability. By the use of climate indices on nearby atmospheric/oceanic variables (winds, pressure, sea surface temperature) as covariates in a quasi-nonstationary extreme value analysis, the range of change in the 100-year return water levels has been significantly reduced over time, turning a nonstationary process into a stationary one.

718

As suggested by Wong (2018), including a wider range of physical process information and 719 considering nonstationary behaviour can better enable modelling efforts to inform coastal risk 720 721 management. In his work, he has developed a new approach to integrate stationary and nonstationary statistical models and demonstrated that the choice of covariate timeseries should 722 affect the projected flood hazards. By developing a nonstationary storm surge statistical model 723 724 with the use of multiple covariate timeseries (global mean temperature, sea level, the North Atlantic Oscillation index and time) in Norfolk and Virginia, he has shown that a storm surge 725 model raises the projected 100-year storm surge return level by up to 23 cm relative to a 726 stationary model or one that employs a single covariate timeseries. 727

This study has expanded the previous works of Turki et al. (2019; 2020) upon a new approach combining spectral and probabilistic methods to integrate multiple streams of information related to climate teleconnections. Indeed, each timescale has been simulated separately with the nonstationary GEV models and expressed as a function of the most suitable climate index improving its fitting. The estimation of the total signal of surges should be determined by combining the developed nonstationary GEV models used for the different timescales.

These results should support the hypothesis introduced at the beginning of the present work
suggesting that: (i) the extreme surges should depend on different timescales; (ii) each
timescale should be related to a specific large-scale oscillation.

The finding is in agreement with the previous works of Lee et al. (2017) and Wang et al. (2018) highlighting the importance of a careful consideration when complex physical mechanisms of different climate indices are included into model structures for estimating extreme surges. Indeed, this work provides a guidance on incorporating nonstationary processes of large-scale oscillations to different spectral components informed by the wavelet techniques, the Bayesian approaches and the GEV model probabilities.

The primary contribution of the present research is to present a new approach for: (1) 743 investigating the multi-timescale variability of the nonstationary extreme surges; (2) 744 745 identifying their multi-connection with climate oscillations according to the timescale and (3) resolve in part the problems of uncertainty of most appropriate climate to use as covariate for 746 GEV models at each timescale. However, additional models (e.g. significance tests and 747 sensitivity analyses and modelling uncertainties) and application sites (e.g. Mediterranean and 748 pacific ones controlled by other climate oscillations) are required to expand the developed 749 approach. 750

Also, generating a final robust stochastic model useful for projecting storm surge return levels and assessing the flood risk management requires further efforts to build on the potentially advantageous approach presented here by integrating the GEV models associated with the different timescales through the use of mathematical methods.

755 756

6. Summary and Concluding remarks

757	The dynamics of extreme surges together with the large-scale climate oscillations have been
758	investigated by the use of hybrid methodological approach combining spectral analyses and
759	nonstationary GEV models. Results have demonstrated that the interannual variability of
760	extreme surges (~ 1.5-yr, ~2-4-yr and 5-8-yr) is around 25% for the French coasts and higher
761	than 32% for the Britannic coasts; the interdecadal variability (~12-16-yr) varies between 2%
762	and 4%. The fluctuations of extreme surges at ~1.5-yr are differently manifested between the
763	different sites of the English Channel exhibiting a local variability of surges induced by the
764	effects of meteorological and oceanographic forces including changes in atmospheric pressures
765	and wind velocities in shallow water areas. Similar fluctuations have been observed at larger
766	scales of the interannual and the interdecadal variability. Changes in extreme surges (~1.5-yr,
767	~2-4-yr, ~5-8-yr and ~12-16-yr) have been proven to be significantly linked to atmospheric
768	oscillations (SLP, ZW, NAO and AMO, respectively) according to the timescale with a
769	nonlinear interaction between different oscillations at the same scale. This exhibits the complex
770	physical mechanisms of the global atmospheric circulation acting as a regulator and controlling
771	the local variability of extreme surges at different timescales. The connections between the
772	multiscale extreme surges and the internal modes of climate oscillations have been explored to
773	improve the estimation of extreme values by the use of nonstationary GEV models. The

774	simulated extreme surges have highlighted that introducing the climate oscillations for the
775	implementation of GEV parameters depends on the timescale for all sites; a high nonstationary
776	behaviour of the small interannual scales (~1.5-yr) decreases at the larger scales (~5-8-yr) and
777	seems to be non-significant at the interdecadal scales (~ 12-16-yr).
778	The conclusion of this research suggests that the physical mechanisms driven by the
779	atmospheric circulation, including the Gulf Stream gradients, play a key role in coastal extreme
780	surges. Establishing a strong connection of the large-scale climate oscillations with extreme
781	surges and flooding risks improve the estimation of the return levels.
782	This finding presents a handful of a new approach potentially useful as a first step forward for
783	(1) understanding the physical relation of downscaling from the global climate patterns to the
784	local extreme surges; (2) inferring the future projections of sea level change and extreme
785	events. Future work should build on this new approach to (1) improve the stochastic modelling
786	of the multi-timescale extreme surges; (2) incorporate others climate mechanisms known to be
787	important at local and regional scales for specific applications; (3) generate a robust tool for
788	the storm surge projections and the flood risk assessments based on the different timescale
789	models connected to their specific climate drivers.

790 Acknowledgments

791	The research programs 'RICOCHET', 'RAIV COT', 'REVE COT' and CNES-TOSCA
792	'COTEST' are acknowledged for finding this research. elated to the future mission of Surface
793	Water and Ocean Topography (SWOT). We also acknowledge the National Navy
794	Hydrographic Service (SHOM), the British Oceanographic Data Center and the National
795	Center for Environmental Prediction for providing sea level and atmospheric data.
796	References
797	Akaike, H.: Information theory as an extension of the maximum likelihood principle. In:
700	Patrov P. N. and Caski F. (Eds.). Second International Symposium on Information Theory.
796	renov, B. N., and Csaki, F. (Eds.), Second International Symposium on information Theory,
799	Akademiai Kiado, Budapest, pp. 267–281, 1974.
800	Andrade, C., Leite, S. M., and Santos, J. A.: Temperature extremes in Europe: overview of
801	their driving atmospheric patterns. Natural Hazards Earth System Sciences, 12, 1671-1691,
802	https://doi.org/10.5194/nhess-12-1671-2012, 2012.
803	Bell, R., G., and Goring, D., G.: Seasonal Variability of Sea Level and Sea-surface Temperature
804	on the North-east Coast of New Zealand. Estuarine, Coastal and Shelf Science, 46 (2), 307-
805	319, https://doi.org/10.1006/ecss.1997.0286, 1998.
806	Bessoumoulin, P.: Les tempêtes en France. Annales des Mines. 9-14, 2002.
807	Brown, J., Souza, A., and Wolf, J.: Surge modelling in the eastern Irish Sea: Present and future
808	storm impact, Ocean Dynamics 60(2), 227-236, doi:10.1007/s10236-009-0248-8, 2010.

- 809 Carter, D. J. T., and Challenor, P.G.: Estimating return values of environmental parameters.
- 810 Quarterly Journal of the Royal Meteorological Society, 107, 259-266, 1981.
- 811 Caspar, R., Costa, S., Lebreton, P., and Letortu, P.: Storm surges of the 10-11 march 2008 on
- the Albâtre Coast (Haute-Normandy, France): meteo-marine determination. NOROIS, p.115-
- 813 132, https://doi.org/10.4000/norois.3273, 2010
- 814
- Cassou, C., Terray, L., and Phillips, A.S.: Tropical Atlantic influence on European heat waves.
 Journal of Climate, 18, 2805–2810, 2005.
- 817 Ciasto, L.M., and Thompson, D.W.J.: North Atlantic Atmosphere-Ocean Interaction on
- 818 Intraseasonal Time Scales. Journal of Climate, 17, 1617 1621, 2004.
- ey, D. et al.: "Bayesian spatial modelling of extreme precipitation return levels". Journal of
- American Statistical Association, 102: 824-840, 2007.
- 821 Colberg, F., McInnes, K.L., Grady, J., and Hoeke, R.: Atmospheric circulation changes and
- their impact on extreme sea levels around Australia. Natural Hazards Earth System Sciences,
- 823 19, 1067–1086. <u>https://doi.org/10.5194/nhess-19-1067-2019</u>, 2019.
- 824 Coleman, T. F., Li, Y.: An interior trust region approach for nonlinear minimization subject
- to bounds. SIAM Journal on Optimization, 6(2), 418-445. doi:10.1137/0806023, 1996.
- 826 Coles, S.: An Introduction to Statistical Modelling of Extreme Values, Springer, London, U.827 K., 2001.
- 828 Collier, J.S., Oggioni, F., Gupta, S., García-Moreno, D., Trentesaux, A., and De Batist, M.:
- 829 Streamlined Islands and the English Channel Megaflood Hypothesis. Global and Planetary
- 830 Change, 135, 190–206. https://doi.org/10.1016/j.gloplacha.2015.11.004, 2015.
- 831 Corte-Real, J., Zhang, Z., and Wang, X.: Large-scale circulation regimes and surface climatic
- anomalies over the Mediterranean. International Journal of Climatology, 15, 1135–1150,
- 833 https://doi.org/10.1002/joc.3370151006, 1995.

- 834 Enfield, D.B., Mesta-Nunez, A.M., and Trimble, P.J.: The Atlantic multidecadal oscillation
- and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters,
 28 (10), 2077–2080, 2001.
- 837 Delworth, T.L., and Mann, M.E.: Observed and simulated multidecadal variability in the
- Northern Atlantic. Climate Dynamics. 16, 661–676, 2002.
- 839 Feliks, Y., Ghil, M., and Robertson, A.W.: The atmospheric circulation over the North Atlantic
- as induced by the SST field. Journal of Climate, 4 (2), 522–542,
 http://dx.doi.org/10.1175/2010JCLI3859.1, 2001.
- 842 Frankignoul, C., N. Sennechael, Y., Kwon, O., and Alexander, M.A.: Influence of the
- 843 Meridional Shifts of the Kuroshio and the Oyashio Extensions on the Atmospheric Circulation.
- S44 Journal of Climate, 24, 762 777, https://doi.org/10.1175/2010JCLI3731.1, 2011.
- Gastineau, G., D'Andrea, F., and Frankignoul, C.: Atmospheric response to the North Atlantic
 Ocean variability on seasonal to decadal time scales. Climate Dynamics, 2012.
- Grinsted A, Moore J, Jevrejeva S: Application of the crosswavelet transform and wavelet
 coherence to geophysical time series. Nonlinear Processes in Geophysics 11(5): 561–566,
 2004.
- Gupta, S., Collier, J.S., Andy, P.F., and Potter, G.: Catastrophic Flooding Origin of Shelf
 Valley Systems in the English Channel. Nature, 448 (7151): 342–45.
 https://doi.org/10.1038/nature06018, 2007.
- Haigh, I., Nicolls, R., and Wells, N.: Assessing changes in extreme sea levels: Application to
- the English Channel 1900-2006. Continental Shelf Research, 30, 1042-1055.
 https://doi.org/10.1016/j.csr.2010.02.002, 2010.

- Haigh, I., Nicolls, R., and Wells, N.: Mean sea level trends around the English Channel over
 the 20th century and their wider context. Continental Shelf Research, 29, 2083-2098.
 https://doi.org/10.1016/j.csr.2009.07.013, 2009.
- Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Dorfee-Morlot, J., Herweijer, C., and
- 860 Chateau, J.: A global ranking of port cities with high exposure to climate extremes. Climate
- 861 Change, 104(1), 89-111, 10.1007/s10584-010-9977-4, 2011.
- Idier, D., Dumas, F., and Muller, H.: Tide-surge interaction in the English Channel. Natural
 Hazards Earth System Sciences, 12, 3709–3718. doi:10.5194/nhess-12-3709-2012, 2012.
- Idier, D., Paris, F., Le Cozannet, G., Boulahya, F., and Dumas, F.: Sea-level rise impacts on
- the tides of the European Shelf, Continental Shelf Research, 56-71.
 https://doi.org/10.1016/j.csr.2017.01.007, 2017.
- 867
- Labat, D.: Recent advances in wavelet analyses: Part 1. A review of concepts. Journal of
 Hydrology, 314 (1–4), 275–288. http://dx.doi.org/10.1016/j.jhydrol.2005.04.003, 2005.
- 870 Lavers, D.A., Hannah, D.M., and Bradley, C.: Connecting large-scale atmospheric circulation,
- river flow and groundwater levels in a chalk catchment in southern England. Journal of

872 Hydrology, 523, 179–189. <u>http://dx.doi.org/10.1016/j.jhydrol.2015.01.060</u>, 2015.

873

Lavers, D.A., Prudhomme, C., and Hannah, D.M.: Large-scale climate, precipitation and
British river flows: Identifying hydroclimatological connections and dynamics. Journal of
Hydrology, 395 (3–4), 242–255. https://doi.org/10.1016/j.jhydrol.2010.10.036, 2010.

877

Lee, B. S., Haran, M., and Keller, K.: Multi-decadal scale detection time for potentially
increasing Atlantic storm surges in a warming climate, Geophysical Research Letters., 44,
10617–10623, https://doi.org/10.1002/2017GL074606, 2017.

- 881
- López-Parages, J., and Rodríguez-Fonseca, B.: Multidecadal modulation of El Niño influence
 on the Euro-Mediterranean rainfall. Geophysical Research Letters, 39:L02704,
 https://doi.org/10.1029/2011GL050049, 2012.
- Marcos, M., Calafat, F. M., Berihuete, A., and Dangendorf, S: Long-term variations in global
 sea level extremes. Journal of Geophysical Research, Oceans, 120, 8115- 8134,
 doi:10.1002/2015JC011173, 2015.

888

Marcos, M., and Woodworth, P. L: Spatiotemporal changes in extreme sea levels along the
coasts of the North Atlantic and the Gulf of Mexico. Journal of Geophysical Research, Oceans,

891 122, 7031-7048, doi:10.1002/2017JC013065, 2017.

- Masina M., and Lamberti A.: A nonstationary analysis for the Northern Adriatic extreme sea
 levels, Journal of Geophysical Research, 118, https://doi.org/10.1002/jgrc.20313, 2013.
- 894 Massei, N., Durand, A., Deloffre, J., Dupont, J., Valdes, D., and Laignel, B.: Investigating
- possible links between the North Atlantic Oscillation and rainfall variability in northwestern
- France over the past 35 years. Journal of Geophysical Research Atmosphere, 112, 1–10,
 https://doi.org/10.1029/2005JD007000, 2007.
- 898 Massei, N., Laignel, B., Deloffre, J., Mesquita, J., Moyelay, A., and Lafite, R., Durant, A.:
- 899 Long-term hydrological changes of the Seine River flow [France] and their relation to the North
- Atlantic Oscillation over the period 1950-2008. International Journal of Climatology, 29,
- 901 https://doi.org/10.1002/joc.2022, 2009.
- 902 Massei, N., Dieppois, B., Hannah. D. M., Lavers, D.A., Fossa, M., Laignel, B., and Debret, M.:
- 903 Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale

atmospheric circulation: Application to the Seine river catchment, France. Journal of
Hydrology, 546; 262-275, https://doi.org/10.1016/j.jhydrol.2012.04.052, 2017.

Menendez M., and Woodworth P. L.: Changes in extreme high-water levels based on a quasiglobal tide-gauge data set, Journal of Geophysical Research, 115, C10011.
http://dx.doi.org/10.1029/ 2009JC005997, 2010.

- Milly, P.C.D, et al.: Stationarity is dead: whither water management? Science 319:573-574,2008.
- Mizuta, R.: Intensification of extratropical cyclones associated with the polar jet change in the
 CMIP5 global warming projections. Geophysical Research Letters, 39, L19707, 1-6,
 https://doi.org/10.1029/2012GL053032, 2012.
- 914

Nakamura, M., and Yamane, S.: Dominant anomaly patterns in the near-surface baroclinicity
and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin.
Journal of Climate, 22, 880–904. https://doi.org/10.1175/2010JCLI3017.1, 2009.

- 918
- 919 Nakamura, H., Sampe, T., Goto, Ohfuchi, A. W., and Xie, S-P.: On the importance of
 920 midlatitude oceanic frontal zones for the mean state and dominant variability in the
 921 tropospheric circulation. Geophysical Research Letters, 35, L15709,
 922 <u>https://doi.org/10.1029/2008GL034010</u>, 2008.

Nicholls, R. J., Marinova, N., Lowe, J. A., Brown, S., Vellinga, P., De Gusmao, D., Hinkel, J.,
and Tol, R. S.: Sea-level rise and its possible impacts given a "beyond 4 C world" in the twentyfirst century, Philosophical Transactions of the Royal Society A, 369, 161–181.
https://doi.org/10.1098/rsta.2010.0291, 2011.

Parey, S.: "Different ways to compute temperature return levels in the climate change context.
Environmetrics , 21:698–718, 2010.

- Philips, M. R., Rees, E. F., and Thomas, T.: winds, sea level and North Atlantic Oscillation
 (NAO) influences: An evaluation; Global Planetary Change, 100, 145-152,
 http://dx.doi.org/10.1016/j.gloplacha.2012.10.01, 2013.
- 932 Peings, Y., and Magnusdottir, G.: Forcing of the wintertime atmospheric circulation by the
- 933 multidecadal fluctuations of the North Atlantic Ocean. Environmental Research Letters, 9
- 934 (2014), 034018, 2014.
- 935 Pirazzoli, P.A.: A review of possible eustatic, isostatic and tectonic contributions in eight late-
- Holocene relative sea-level histories from the Mediterranean area. Quaternary Science Review,
- 937 24 (18-19), 1989-2001, <u>https://doi.org/10.1016/j.quascirev.2004.06.026</u>, 2005.
- 838 Rosbjerg, R. and Madsen, H.: Design with uncertain design values, Hydrology in a Changing
- 939 Environment", Wiley, 155–163, 1998.
- Pugh, D.J.: Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. John
 Wiley, Chichester, 472 pp, 1987.
- 942
- Salas, J.D., and Obeysekera, J.: Revisiting the concepts of return period and risk for
 nonstationary hydrologic extreme events. Journal of Hydrologic Engineering,
 doi:10.1061/(ASCE)HE.1943-5584.0000820, 2013.
- Sang, Y.F.: A review on the applications of wavelet transform in hydrology time series
 analysis. Atmospheric Research 122, 8–15. <u>http://dx.doi.org/10.1016/j. atmosres.2012.11.003</u>,
 2013.
- 949 Sutton, R.S., and Dong, B.: Atlantic Ocean influence on a shift in European climate in the
- 950 1990s. Nature Geosciences, 5, 788–792, 2012.
- Seager, R., Harnik, N., Kushnir, Y., Robinson, W., and Miller, J.: Mechanisms of hemispherically
 symmetric climate variability. Journal of Climate, 16, 2960–2978, 2003.
- 953

Shaw, A.G.P., Tsimplis, M.N.: The 18.6 yr nodal modulation in the tides of Southern European
Coastal and. Continental Shelf Research 30 (2), 138—151,
http://dx.doi.org/10.1016/j.csr.2009.10.006, 2010.

957

- Tyralis, H., Papacharalampous, G., and Tantanee, S.: How to explain and predict the shape
 parameter of the generalized extreme value distribution of streamflow extremes using a big
 dataset. Journal of Hydrology 574:628–645. doi:10.1016/j.jhydrol.2019.04.070, 2019.
- 962
- Tomasin A., and Pirazzoli P.A.: Extreme Sea Levels in the English Channel: Calibration of
 the Joint Probability Method. Journal of Coastal Research 24 4C 1-13 West Palm Beach,
 Florida July 2008, https://doi.org/10.2112/07-0826.1, 2008.
- Torrence, C., and Compo, G.P.: A practical guide to wavelet analysis. B. American
 Meteorological Society, 79, 61–78. http://dx.doi.org/10.1175/1520-0477(1998);
 079<0061:APGTWA>2.0.CO;2, 1998.
- 969 Trigo, R. M., Osborn, T. J., and Corte-Real, J.: The North Atlantic Oscillation influence on
- 970 Europe: climate impacts and associated physical mechanisms. Climate Research, 20, 9–17.
 971 10.3354/cr020009, 2002.
- 972 Trisimplis, M. N., and Josey, S. A.: Forcing of the Mediterranean Sea by atmospheric
 973 oscillations over the North Atlantic. Geophysical Research Letters, 28, 803-806, 2001.
- 974 Turki, I., Laignel, B., Kakeh, N., Chevalier, L., and Costa, S., 2015a. Methodology for Filling
- gaps and Forecast in sea level: application to the eastern English Channel and the North
- Atlantic Sea (western France), Ocean Dynamics, https://doi.org/ 10.1007/s10236-015-0824-z,
 2015a.
- 978 Turki, I., Laignel, B., Chevalier, L., Massei, N., and Costa, S.: On the Investigation of the Sea
- 279 Level Variability in Coastal Zones using SWOT Satellite Mission: example of the Eastern

- 980 English Channel (Western France). IEEE Journal of Selected Topic in Applied Earth
- 981 Observations and Remote Sensing, http://dx. doi.org/10.1109/JSTARS.2015.2419693, 2015b.
- 982 Turki, I., Massei, N., and Laignel, B.: Linking Sea Level Dynamic and Exceptional Events to
- 283 Large-scale Atmospheric Circulation Variability: Case of Seine Bay, France. Oceanologia, 61
- 984 (3), 321-330, <u>https://doi.org/10.1016/j.oceano.2019.01.003</u>, 2019.
- 985 Turki, I., Massei, N., Laignel, B., and Shafiei, H.: Effects of global climate oscillations in the
- 986 intermonthly to the interannual variability of sea levels along the English Channel Coasts (NW
- 987 France). Oceanologia (2020) 000, 1-17, <u>https://doi.org/10.1016/j.oceano.2020.01.001</u>, 2020.
- Villarini, G., F. Serinaldi, J. A. Smith, and W. F. Krajewski :On the stationarity of annual flood
 peaks in the continental United States during the 20th century, Water Resources. Research.,
 45, W08417, doi:10.1029/2008WR007645, 2009;
- 991
- Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen, L.: Extreme sea 992 levels the rise along Europe's 993 on coasts. Earth's Future, 5. 504-323, https://doi.org/10.1002/2016EF000505, 2017. 994
- 995
- Wahl, T., and D. P. Chambers: Climate controls multidecadal variability in U. S. extreme sea
 level records. Journal of Geophysical Research, Oceans, 121, 1274-1290,
 doi:10.1002/2015JC011057, 2016.
- Wahl, T., and D. P. Chambers: Evidence for multidecadal variability in US extreme sea level
 records. Journal of Geophysical Research, Oceans, 120, 1527-1544,
 doi:10.1002/2014JC010443, 2018;
- Wong, T. E., Klufas, A., Srikrishnan, V., and Keller, K.: Neglecting model structural
 uncertainty underestimates upper tails of flood hazard. Environmental Research Letters, 13,
 074019, https://doi.org/10.1088/1748-9326/aacb3d, 2018.

- Williams, J., Irazoqui Apecechea, M., Saulter, A., and Horsburgh, K. J.: Radiational tides: their
 double-counting in storm surge forecasts and contribution to the Highest Astronomical Tide,
 Ocean Sciences., 14, 1057-1068, https://doi.org/10.5194/os-14-1057-2018, 2018.
- 1008
- Zampieri, M., Scoccimarro, E., and Gualdi, S.: Atlantic influence on spring snowfall over the
 Alps in the past 150 years. Environmental Research Letters, 8 (034026), 2013.
- 1011 Zampieri, M., Toreti, A., Schindler, A., Escoccimarro, E., and Gualdi, S.: Atlantic multi1012 decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring
 1013 and summer. Global and Planetary Change 151, 92-100,
 1014 https://doi.org/10.1016/j.gloplacha.2016.08.014, 2017.
- 1015
- Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P., and Stephenson, D. B.: A multimodel
 assessment of future projections of North Atlantic and European cyclones in the CMIP5 climate
- 1018 models. Journal of Climate, 26, 5846-5862, https://doi.org/10.1175/JCLI-D-12-00573.1, 2013.
- 1019 Zhang, R., Delworth, T.L., Sutton, R., Hodson, D.L.R., Dixon, K.W., Held, I.M., Kushnir, Y.,
- 1020 Marshall, J., Ming, Y., Msadek, R., Robson, J., Rosati, A.J., Ting, M.F., and Vecchi, G.A.:
- Have aerosols caused the observed Atlantic multidecadal variability? Journal of Atmospheric
 Sciences, 70, 1135–1144, 2013.
- 1023