
Nat. Hazards Earth Syst. Sci. Discuss.,
https://doi.org/10.5194/nhess-2020-101-AC2, 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive comment on “A nonstationary analysis
for investigating the multiscale variability of
extreme surges: case of the English Channel
coasts” by Imen Turki et al.

Imen Turki et al.

imen.turki@univ-rouen.fr

Received and published: 22 August 2020

Dear Anonymous Reviewer We appreciate the time spent by the editor and the reviewer
to assess the manuscript and we appreciate the constructive comments and sugges-
tions proposed. We have taken into account all comments and we feel the manuscript
has certainly beneïňĄted in terms of both clarity and content. Best Regards Imen Turki
(also on behalf of the co-authors) I present the answser to the comments above. I send
it also in a pdf document.

Answer to Reviewer 2 : Specific comments 1. State of the art. Some key references
about the link between extreme surges and climate variables should be added to the
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bibliography, namely: ** Marcos, M., Calafat, F.M., Berihuete, Á., Dangendorf, S., 2015.
Long term variations in global sea level extremes. J. Geophys. Res. 120(12), 8115-
8134.

** Marcos, M.; Woodworth, P.L., 2017. Spatiotemporal changes in extreme sea levels
along the coasts of the North Atlantic and the Gulf of Mexico. J. Geophys. Res., 122(9),
7031-7048.

** Wahl, T., Chambers, D.P., 2015. Evidence for multidecadal variability in US extreme
sea level records. J. Geophys. Res. 120, 1527–1544.

** Wahl, T.; Chambers,D.P., 2016. Climate controls multidecadal variability in US ex-
treme sea level records. J. Geophys. Res. 121(2), 1274-1290. My second concern
relates to the differences of the present work with the recently published one, namely
Turki et al. (2020). As far as I understood, the time scale 12- 16-years and the British
part of the Channel coasts were not tackled in this published work, but it would be
useful to situate in more details the present study with respect to Turki et al. (2020), for
instance in the introduction.

Thank you for the comments. The proposed references have been revised and added
to the state of the art. The new funding proposed in this research, compared to the
last work of Turki et al., 2020, has been better explained in the state of the art as sug-
gested in line . . .. . .. . .. . .. . .. . ... References Proposed: 1. Introduction (lines 75 -90)
Then, Marcos et al. (2015) have investigated the decadal and multidecadal changes
in sea level extremes using long tide gauge records distributed worldwide. They have
demonstrated that the intensity and the occurrence of the extreme sea levels vary on
decadal scales in the most of the sites in relation with a common large-scale forcing.
In the same way, the study of extreme sea levels along the coastal zones of the North
Atlantic Ocean and the Gulf of Mexico has shown that the mean sea level should be
considered as the major driver of extremes (Marcos and Woodworth 2017) since the
intensity of extreme episodes increases at centennial time scales, together with multi-
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decadal variability. The extreme sea levels along the United States coastline between
1929 and 2013 have been investigated by Wahls and Chambers (2015; 2016). Wahls
and Chambers (2015) have identified the relation between the multidecadal variations
in extreme sea and the changes in mean sea level. Such relation has been mainly
pointed toward some regions where storm surges are primarily driven by extratropical
cyclones and should contribute in the variation of relevant return water levels required
for coastal design. Such extremes have been then investigated in Wahls and Chambers
(2016) works aiming to define their relationship with the large-scale climate variability
by the use of simple and multiple linear regression models. 2. Discussion (lines 624 –
639) Similar works have been carried out by Wahls and Chambers (2016) to investigate
the multidecadal variations in extreme sea levels with the large-scale climate variability.
By the use of climate indices on nearby atmospheric/oceanic variables (winds, pres-
sure, sea surface temperature) as covariates in a quasi-nonstationary extreme value
analysis, the range of change in the 100-year return water levels has been significantly
reduced over time, turning a nonstationary process into a stationary one. As suggested
by Wong (2018), including a wider range of physical process information and consid-
ering nonstationary behavior can better enable modeling efforts to inform coastal risk
management. In his work, he has developed a new approach to integrate stationary
and nonstationary statistical models and demonstrated that the choice of covariate
timeseries should affect the projected flood hazards. By developing a nonstationary
storm surge statistical model with the use of multiple covariate timeseries (global mean
temperature, sea level, the North Atlantic Oscillation index and time) in Norfolk and Vir-
ginia, he has shown that a storm surge model raises the projected 100-year storm
surge return level by up to 23 cm relative to a stationary model or one that employs a
single covariate timeseries. Clarifications related to Turki et al. (2020) works and the
present research 1. Introduction (lines 109 -125) Then, similar approaches have been
used by Turki et al. (2020) to quantify the nonstationary behaviour of extreme surges
and their relationship with the global atmospheric circulation at different timescales
along the English Channel coasts (NW France) between 1964 and 2012. They have
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reported that the intermonthly and the interannual variability of monthly extrema are
statistically modelled by nonstationary GEV distribution using the full information re-
lated to the climate teleconnections. In the same context, the present contribution
aims to investigate the interannual and the interdecadal dynamics of extreme surges
along the English Channel coasts (NW France and SW England) by the use of com-
bining techniques of spectral analyses and probabilistic models. We hypothesize that
different large-scale climate variables may be involved in explaining the occurrence of
extreme surges, and that this dependence can be a function of each timescale. The ra-
tionale behind this hypothesis is based on the following: (1) each timeseries of extreme
surges should depend on different timescales; (2) each timescale should be related to
a specific large-scale oscillation. Using this hypothesis, the linkages between the local
extreme surges and the large-scale climate oscillations are deciphered with the aim
to improve the extreme models using the most consistent large-scale oscillations as
covariates

2. 4. Multi-scale variability of extreme surges Similar interannual timescales have been
observed along the French coasts of Dunkirk, Le Havre and Cherbourg in Turki et al.,
(2020) works where the intermonthly and the interannual variability of 48-year hourly
surges has been investigated. They have demonstrated that the timescales smaller
than ∼ 1.5-yr are differently manifested between the different sites. These differences
have been associated to the local variability of surges induced by combining the ef-
fects of meteorological and oceanographic forces including changes in atmospheric
pressures and wind velocities in shallow water areas. As demonstrated in Turki et al.
(2020) works, the mean explained variance of the interannual fluctuations (∼ 1.5-yr, ∼
2-4-yr, and ∼ 5-8-yr) is around 25% of the total surges along the French coasts (Table
1). This value is higher than 32% in Weymouth and Dover while the explained variance
of the interdecadal scales (∼ 12-16-yr) is also more important with 3.5% (compared to
2% for the French coasts). 3. 5. Large-scale climate oscillations As proposed by Turki
et al. (2019; 2020), the hypothesis used in the present work is that the multi-timescale
variability of the local extreme surges should be strongly related to different climate
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teleconnections induced by a complex contribution of many physical mechanisms. This
non-linear relationship varies according to each timescale which depends on a specific
large-scale oscillation of atmospheric circulation. 2. Details on the implementation.

The authors focus on extreme surges. To do so, the raw data of tide gauges should be
pre-processed by accounting for the tide. Could the authors provide more details on
how they proceeded? What type of tide data did they used? Similarly, the authors used
climate indices provided by the NCEP-NCAR Reanalysis. Could the authors provide
the web link where they downloaded the data for the climate indices? Besides, the
authors mentioned climate oscillations using SLP and Zonal Wind. Are they directly
available from NCEP-NCAR Reanalysis or are they derived from a pre-processing us-
ing EOF analysis for instance? 3. Model selection in the non-stationnary Extreme
Value Analysis (EVA). Integrating the climate drivers as covariates in EVA is a good
idea, but the selection of the ‘most appropriate’ model deserves more discussion.

Regarding the extraction of extreme surges, more details related to the classical model
used for calculating tides are provided in the new version. Also, the different climate
indices have been better explained. The selection of the most appropriate GEV model
has been achieved for each frequency component. The use of the climate information
has been differently explained for the different spectral component. More explanations
related to this part has been added in the new version (a new section in the method-
ological approach has been added) Extraction of surges: A new part has been added
in the manuscript (lines 191-213) 3. 1 Extraction of residual sea level: ‘surges’ The to-
tal sea-level height, resulting from the astronomical and the meteorological processes,
exhibits a temporal non-stationarity which is explained by a combination of the effects
of the long-term trends in the mean sea level, the modulation by the deterministic tidal
component and the stochastic signal of surges, and the interactions between tides and
surges. The occurrence of extreme sea levels is controlled by periods of high astro-
nomically generated tides, in particular at inter-annual scales when two phenomena of
precession cause systematic variation of high tides. The modulation of the tides con-
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tributes to the enhanced risk of coastal flooding. Therefore, the separation between
tidal and non-tidal signals is an important task in any analysis of sea-level time-series.
By the hypothesis of independence between the astronomical tides and the stochastic
residual of surges, the nonlinear relationship between the tidal modulation and surges
is not considered in the present analysis. Using the classical harmonic analysis, the
tidal component has been modelled as the sum of a finite set of sinusoids at specific
frequencies to determine the determinist phase/ amplitude of each sinusoid and predict
the astronomical component of tides. In order to obtain a quantitative assessment of
the non-tidal contribution in storminess changes, technical methods based on MATLAB
t-tide package have been applied to the seal level measurements, demodulated from
long-term components (e.g. mean sea level, vertical local movement ), for estimat-
ing year-by-year tidal constituents. A year-by-year tidal simulation (Shaw and Tsimplis,
2010) has been applied to the sea-level time-series to determine the amplitude and the
phase of tidal modulations using harmonic analysis fitted to 18.61-, 9.305-, 8.85-, and
4.425-year sinusoidal signals (Pugh, 1987). The radiational components have been
also considered for the extraction of the stochastic component of surges (Williams et
al., 2018). Detailed information related to Climate Oscillations A new part has been
added in the manuscript (lines 183-189)

Monthly time-series of climate indices have been provided by the NCEP-NCAR Reanal-
ysis fields (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html)
until 2017. The different indices have been extracted during the same period of the
sea-level observations at the four stations Cherbourg, Dunkirk, Dover and Weymouth.
For the longest timeseries of Brest (1850 - 2018), the use of climate indices has
been limited according to their initial date availability (AMO: 1880 – 2017; NAO:
1865-2017; SLP: 1948-2017; ZW: 1865-2017) Selection of the most appropriate
climate oscillation (lines 264-283) 3. 3. 4 Determination of the most appropriate
climate oscillation connected to each timescale extreme surges for GEV models As
suggested previously, the main hypothesis presented in this research is that effects
of the physical mechanisms on the extreme surges varies according to the timescale
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and each scale should be related to a given climate oscillation. This hypothesis has
been supported by two approaches: (1) a spectral approach based on the use of
wavelet techniques (wavelet multiresolution and wavelet coherence as detailed in
section 3.2) for optimizing the physical relationship between climate index and the
extreme surges at each timescale; (2) a Bayesian approach has been used also for
assessing extremes in a changing climate oscillation (NAO, SLP, ZW and AMO) at
each timescale by making inferences from the Likelihood function. In our case where
many parameters of GEV distribution should be optimized by including the most
appropriate climate oscillation, Markov Chain Monte Carlo (MCMC) techniques have
been implemented based on multiple simulations (the number of simulations varying
as a function of the length of the timeseries; it is around 100.000 simulations). For
generating the sequences of simulated values, we have applied the evbayes package
within R software. By the use of this algorithm, a sequence of parameters with a
normal distribution (a mean value equal to the previous value in the chain and a given
variance). The most suitable climate oscillation maximizing the fitting between the
observed and the simulated data is identified when a burn-in-period is reached. 3.1.
Adequacy of GEV. It is not clear to me whether extreme value distributions are applied
to each spectral component. If so, I wonder whether these variables are ‘extreme’, and
whether GEV distribution is appropriate. Could the authors comment on that?

The monthly extreme surges have been calculated from hourly residual sea level. This
signal has been decomposed by the MODWT to study separately the different com-
ponents. Our hypothesis in the present research is the following: The variability of
the local extreme surges should be explained by the global climate patterns described
by a series of physical mechanisms associated to the climate indices. We have used
the hypothesis that each spectral should be explained by a climate mechanism. Such
hypothesis has been justified and validated by (1) the coherence diagrams (see also
Table 2) where we have demonstrated that the effect of each climate index on the
variability of extreme surges varies as a function of the spectral component and (2)
Bayesian approaches applied to each spectral component to select the most appropri-
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ate climate index. This analysis has shown a strong coherence with the first validation
(1).

This suggestion has been considered in the new version by incorporating a new section
3. 4/

Also more clarifications in the section 5.2 Nonstationary modelling of extreme surges
(lines 538-548)

The connections between the climate oscillations and the monthly maxima at the differ-
ent timescales (Figure 9)., presented previously (section 5.1), have been explored as a
first hypothesis for the implementation of the nonstationary GEV models Indeed, multi-
ple simulations of Markov Chain Monte Carlo (MCMC) techniques based on Bayesian
approaches have been employed for extreme surge components (i.e. ∼ 1.5-yr, ∼ 2-
4-yr, ∼ 5-8-yr and ∼ 12-16-yr provided by the multiresolution wavelet decomposition)
to identify the best covariates of climate oscillation to be used for parametrizing the
nonstationary GEV models. The most of simulations has mainly supported the results
outlined in the previous section: the ∼ 1.5-yr of SLP, ∼ 2-4-yr of ZW, ∼ 5-8-yr of NAO
and ∼ 12-16-yr of AMO oscillations are considered as the best covariates for modelling
respectively the ∼ 1.5-yr, ∼ 2-4-yr, ∼ 5-8-yr and ∼ 12-16-yr of monthly extreme surges

3.2. Variable selection.

Table 2 is used to select the most appropriate climate variables to be integrated in
the EVA. Though informative and useful to support discussion, my concern is that this
selection is mainly based on a correlation analysis (Figure 7 and following ones), and I
wonder why the authors did not perform a variable selection for the GEV model directly;
for instance using AIC or selection criteria. See a discussion by Wong (2018)

Thank you for this comment.

Indeed and as suggested in the part 3.1 of the present document, the use of the climate
index as a covariable in the GEV model has been well justified by (1) the wavelet
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coherence (Table 2) and (2) a Bayesian approach has been used also for assessing
extremes in a changing climate oscillation (NAO, SLP, ZW and AMO) at each timescale
by making inferences from the Likelihood function (validation of the first hypothesis).
Once the climate covariate has been selected, the AIC criteria have been used for the
implementation of the best use of climate index onto the GEV parameters. This part
needs to be more explained in the new version. More clarifications related to this point
have been added (lines 541-560 in the new version of the manuscript).

The connections between the climate oscillations and the monthly maxima at the differ-
ent timescales (Figure 9)., presented previously (section 5.1), have been explored as a
first hypothesis for the implementation of the nonstationary GEV models Indeed, multi-
ple simulations of Markov Chain Monte Carlo (MCMC) techniques based on Bayesian
approaches have been employed for extreme surge components (i.e. ∼ 1.5-yr, ∼ 2-
4-yr, ∼ 5-8-yr and ∼ 12-16-yr provided by the multiresolution wavelet decomposition)
to identify the best covariates of climate oscillation to be used for parametrizing the
nonstationary GEV models. The most of simulations has mainly supported the results
outlined in the previous section: the ∼ 1.5-yr of SLP, ∼ 2-4-yr of ZW, ∼ 5-8-yr of NAO
and ∼ 12-16-yr of AMO oscillations are considered as the best covariates for modelling
respectively the ∼ 1.5-yr, ∼ 2-4-yr, ∼ 5-8-yr and ∼ 12-16-yr of monthly extreme surges.
Once the climate covariate has been selected for each timescale, three nonstationary
models have been used by introducing the climate information as a covariate into: (1)
the location parameter (GEV1); (2) both location and scale parameters (GEV2); (3)
all location, scale and shape parameters (GEV3). The structure of the most appropri-
ate nonstationary GEV distribution has been selected by choosing the most adequate
parametrization that minimizes the Akaike information criterion (Akaike, 1974). The
goodness of fit for each model has been checked through the visual inspection of the
quantile-quantile (Q-Q) plots (Figure 10); these plots compare the empirical quantiles
against the quantiles of the fitted model. Any substantial departure from the diagonal
indicates inadequacy of the GEV model. 3.3 Model selection. Furthermore, the results
for Brest in Table 3 may raise some questions:
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- For scale_12-16 years, GEV0 does not seem to be the model that leads to the mini-
mum AIC value (-1258 to be compared to -1980 for GEV1);

- For scale _ 2-4-yr, the AIC values

fro GEV1-3 are very close, which make very hard to identify with high confidence the
most appropriate model. The authors should comment on that. See also Burnham and
Anderson (2004) for further details. Reference: Wong, T. E. (2018). An integration and
assessment of multiple covariates of nonstationary storm surge statistical behavior
by Bayesian model averaging. Advances in Statistical Climatology, Meteorology and
Oceanography, 4(1/2), 53-63.

Burnham, K. P. and Anderson, D. R.: Multimodel inference: understanding AIC and
BIC in model selection, Sociolog. Meth. Res., 60, 261–304, 2004.

It’s a very interesting comment which needs more clarifications from the authors. More
discussion related to this part has been added basing on the references provided.
Also, the different results presented here still preliminary and represent a first step for
investigating the nonstationary behavior of the different frequencies. In the light of the
present results, the nonstationary behavior is mainly controlled by the high frequencies.

More discussion related to the stationarity of the low frequencies (∼ 12-16 years) ; lines
610 -617.

Here, the effects of AMO on ∼12-16-yr of extreme surges have been largely observed
in Figure 9 for the longer timeseries Brest where the lower frequencies could be easily
identified. At this timescale, the AIC values given by the different GEV models are pretty
close and the difference between the distributions are not statistically significant. The
stationary behavior of ∼12-16-yr surges should be more investigated from additional
applications in light of the available sea level measurements covering a long period of
time, a relevant parameter to characterize the uncertainties in extreme value statistical
modeling of flood hazards. More discussion using the references proposed by the
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reviewer has been added (lines 624 – 666)

Similar works have been carried out by Wahls and Chambers (2016) to investigate the
multidecadal variations in extreme sea levels with the large-scale climate variability. By
the use of climate indices on nearby atmospheric/oceanic variables (winds, pressure,
sea surface temperature) as covariates in a quasi-nonstationary extreme value anal-
ysis, the range of change in the 100-year return water levels has been significantly
reduced over time, turning a nonstationary process into a stationary one.

As suggested by Wong (2018), including a wider range of physical process information
and considering nonstationary behavior can better enable modeling efforts to inform
coastal risk management. In his work, he has developed a new approach to integrate
stationary and nonstationary statistical models and demonstrated that the choice of
covariate timeseries should affect the projected flood hazards. By developing a non-
stationary storm surge statistical model with the use of multiple covariate timeseries
(global mean temperature, sea level, the North Atlantic Oscillation index and time) in
Norfolk and Virginia, he has shown that a storm surge model raises the projected 100-
year storm surge return level by up to 23 cm relative to a stationary model or one that
employs a single covariate timeseries. This study has expanded the previous works
of Turki et al. (2019; 2020) upon a new approach combining spectral and probabilistic
methods to integrate multiple streams of information related to climate teleconnec-
tions. Indeed, each timescale has been simulated separately with the nonstationary
GEV models and expressed as a function of the most suitable climate index improv-
ing its fitting. The estimation of the total signal of surges should be determined by
combining the developed nonstationary GEV models used for the different timescales.
These results should support the hypothesis introduced at the beginning of the present
work suggesting that: (i) the extreme surges should depend on different timescales;
(ii) each timescale should be related to a specific large-scale oscillation. The finding
is in agreement with the previous works of Lee et al. (2017) and Wang et al. (2018)
highlighting the importance of a careful consideration when complex physical mech-
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anisms of different climate indices are included into model structures for estimating
extreme surges. Indeed, this work provides a guidance on incorporating nonstation-
ary processes of large-scale oscillations to different spectral components informed by
the wavelet techniques, the Bayesian approaches and the GEV model probabilities.
The primary contribution of the present research is to present a new approach for:
(1) investigating the multi-timescale variability of the nonstationary extreme surges; (2)
identifying their multi-connection with climate oscillations according to the timescale
and (3) resolve in part the problems of uncertainty of most appropriate climate to use
as covariate for GEV models at each timescale. However, additional models (e.g. sig-
nificance tests and sensitivity analyses and modelling uncertainties) and application
sites (e.g. Mediterranean and pacific ones controlled by other climate oscillations) are
required to expand the developed approach. Also, generating a final robust stochas-
tic model useful for projecting storm surge return levels and assessing the flood risk
management requires further efforts to build on the potentially advantageous approach
presented here by integrating the GEV models associated with the different timescales
through the use of mathematical methods. 4. Correlation. The authors analyze the
significance of the correlation through a visual inspection of the results provided by
wavelet spectral analysis. In lines 339-341, the authors mentioned that they are using
a Monte-Carlo-based approach to identify the most statistically significant correlation:
could the authors provide more details on the implementation. Is it a bootstrap-based
approach? How do they analyse the changes of the correlation at the Monte-Carlo
iterations? Could the authors provide additional results about this significance assess-
ment?

Indeed, a bootstrap approach has been applied to assess the statistical significance of
the correlation between the spectral component of the extreme surges and the climate
oscillation at each timescale. By resampling the timeseries 10.000 times, 95% confi-
dence intervals have been considered to extract the best climate information fitting the
extreme surges (Villarini et al., 2009).
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Villarini, G., F. Serinaldi, J. A. Smith, and W. F. Krajewski (2009), On the stationarity
of annual flood peaks in the continental United States during the 20th century, Water
Resour. Res., 45, W08417, doi:10.1029/ 2008WR007645.

This part has been added in the manuscript (lines 415 -420). For each timescale,
a bootstrap approach has been applied to assess the statistical significance of the
correlation between the spectral component of the extreme surges and the climate
oscillation. By resampling the timeseries 10.000 times, 95% confidence intervals have
been considered to extract the best climate information fitting the extreme surges
(Villarini et al., 2009). 5. Typo. Line 70: “investigates” should be “investigate” Line 467:
“covariable” should be covariate All typos have been checked and corrected.

Please also note the supplement to this comment:
https://nhess.copernicus.org/preprints/nhess-2020-101/nhess-2020-101-AC2-
supplement.pdf

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-
2020-101, 2020.
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BREST

CHERBOURG

DUNKIRK

DOVER

WEYMOUTH

Fig. 1. Figure 1 Geographical location of the study area and the different tide gauges along the
English Channel coasts: Brest, Cherbourg, Dunkirk (NW France); Dover and Weymouth (SW
UK).
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~ 5-8 years

~ 1.5 year ~ 1.5 year ~ 1.5 year
~ 2-4 years

~ 1.5 year~ 1.5 year

~ 2-4 years

~ 2-4 years
~ 2-4 years

~ 2-4 years
~ 5-8 years~ 5-8 years ~ 5-8 years

~ 12-16 years

~ 12-16 years~ 12-16 years~ 12-16 years

~ 5-8 years

Fig. 2. Figure 2. CWT of monthly maxima of surges in Brest, Cherbourg, Dunkirk, Dover and
Weymouth.
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a)

b)

~ 1 year

Fig. 3. Figure 3. Multiscale variability of the monthly mean and maximum surges in Brest. (a)
CWT of monthly mean surges; (b) Interannual variability of monthly and extreme surges
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~ 12 – 16 years~ 2 -4 years ~ 5 – 8 years~ 1.5 year 
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Fig. 4. Figure 4 Wavelet details (components) resulting from the multiresolution analysis of
surges at the interannual (∼ 1.5-yr , ∼2-4-yr and ∼5-8-yr) and interdecadal (∼12-16-yr) time
scales for all sites (
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~ 1.5 year ~ 1.5 year ~ 1.5 year

~ 1.5 year ~ 1.5 year

Fig. 5. Figure 5. Coherence-wavelet diagrams between monthly extrema of surges and Sea
Level Pressure (SLP).
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~ 2-4 year~ 2-4 year~ 2-4 year

~ 2-4 year ~ 2-4 year

~ 2-4 year

Fig. 6. Figure 6. Coherence-wavelet diagrams between monthly extrema of surges and Zonal
Wind (ZW).
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~ 5-8 year ~ 5-8 year ~ 5-8 year

~ 5-8 year ~ 5-8 year

Fig. 7. Figure 7. Coherence-wavelet diagrams between monthly extrema of surges and North
Atlantic Oscillation (NAO).
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~ 12-16 year
~ 12-16 year ~ 12-16 year

~ 12-16 year

Fig. 8. Figure 8. Coherence-wavelet diagrams between monthly extrema of surges and Atlantic
Multidecadal Oscillation (AMO).

C21

Fig. 9. Figure 9 Wavelet details of monthly extreme surges (black lines), at the interannual
(∼ 1.5-yr , ∼2-4-yr and ∼5-8-yr) and interdecadal (∼12-16-yr) time scales for all sites (Brest,
Cherbourg, Dunkirk
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Fig. 10. Figure 10. a. The quantile plot between observed and modelled extreme surges by
the use of the best GEV models, at different time scales, case of Brest. b. The Return level of
extreme surges estimated
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