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Preliminaries

We would like to thank the three anonymous reviewers for their comments on our manuscript.
We find the comments helpful and constructive. We think that they helped to improve the

manuscript.

In the following pages we set out in detail our responses to the comments and how we acted on

them.



Response to Anonymous Referee #1 (RC1)

Comment C1.1 — Line 1 first word - use ‘The’ instead of ‘An’

Reply: We used an alternative formulation using plural form.

Comment C1.2 — Line 2 - suggest ‘This study investigates hourly...” instead of ‘We study
hourly...’

Reply: We followed the reviewers suggestion.

Comment C1.3 — Line 8 - suggest ‘approximately’ instead of ‘about’

Reply: We followed the reviewers suggestion.

Comment C1.4 — Line 16 - space needed between 2016 and ( - Line 23 - add ‘The’ before

‘aim’

Reply: We corrected the sentence following the reviewers suggestion.

Comment C1.5 — Page 2, line 31 - check Mills et al reference

Reply: We corrected the reference.

Comment C1.6 — Page 3, line 9 - add ‘The’ before ‘aim’

Reply: We corrected the sentence following the reviewers suggestion.

Comment C1.7 — Page 3, line 16 and 17 - change ‘Sect.’” to ‘Section’

Reply: We followed the abbreviation rules as described in the NHESS manuscript preparation
guidelines for authors.

Comment C1.8 — Page 4, line 4/5 - suggest ‘Radar reflectives cannot...” instead of ‘As
from radar reflectives we cannot...’

Reply: Radar reflectivity refers to the amount of radiation reflected back to the receiver by
the precipitation particles

Comment C1.9 — Page 4, line 9 - suggest ‘projects aim to combine the...” instead of
‘projects thus aims at combining the...’

Reply: We followed the reviewers suggestion.

Comment C1.10 — Page 5, line 15 - check brackets in equation

Reply: The used mathematical interval notation refers to a half-open interval. A half-open
interval includes only one of its endpoints, and is denoted by mixing the notations for open
and closed intervals. (0, 1] means greater than 0 and less than or equal to 1, while [0,1) means
greater than or equal to 0 and less than 1.



Comment C1.11 — Page 5, line 29 - is a comma needed at end of equation?

Reply: Yes, because the equation is part of the sentence.

Comment C1.12 — Page 8, line 1/2 - suggest “This allows the performance of the model
for different districts to be assessed.”

Reply: We changed the sentence to “This allows us to compare the performance of the model
in different districts.”, because we want to emphasize that we are interested in the difference
between the individual districts.

Comment C1.13 — Page 9, line 4 - suggest ‘P ranges from <0.001’ instead of ‘It ranges
from below 0.001’

Reply: We reformulated the sentence to “It ranges from less than 0.001 ...”.

Comment C1.14 — Page 9, line 25 - remove comma and include ‘and’ after 0

Reply: We corrected the sentence following the reviewers suggestion.

Comment C1.15 — Page 9, line 26 - clarify what ‘they are’ means
Reply: “They are” was replaced by “Probabilities are”.

Comment C1.16 — Page 9, line 32 - add ‘a’ after ‘as’

Reply: We corrected the sentence following the reviewers suggestion.

Comment C1.17 — Page 13, line 24 - add ‘by’ after ‘increases’

Reply: We changed the sentence to “We found that the probability of weather-related accidents
depends on hourly precipitation to the power of 0.2.” for clarity.

Comment C1.18 — Page 13, line 25 - add ‘the’ after ‘of’

Reply: We corrected the sentence following the reviewers suggestion.

Comment C1.19 — Page 13, line 33 - add ‘a’ after ‘that’

Reply: We corrected the sentence following the reviewers suggestion.

Comment C1.20 — - Page 14, line 3 - ‘road user is rather interested in their individual...’
instead of ‘road used is rather interested in his individual...’

Reply: We corrected the sentence following the reviewers suggestion.



Tables and figures general comments

Comment C1.21 — these should be able to stand on their own so acronyms need defining
a much as possible.

Reply: We followed the reviewers suggestion and defined all relevant acronyms in the figure
and table captions.

Comment C 1.22 — Table 2 - In caption refer to Table 1 for definitions of Formula variations

Reply: We followed the reviewers suggestion.

Comment C1.23 — Table 3 - de-acronym
Reply: We defined the acronyms of the metrics displayed in table 3 as suggested.

Comment C1.24 — Figure 4 - can the 3-hour variations in the AUCSS be explained in the
body of the text?

Reply: The effect is explained in the second paragraph of section 4.2. The repetitive pattern
occurs because hourly data is used for the analysis, but COSMO-DE-EPS is only initialized
every three hours. Thus, the lead times 1, 4, 7, etc. include certain hours of the day, while the
lead times 2, 5, 8, etc. include others. Consequently, there are three sets of lead times that are
associated to different hours of the day, which causes differences in model performance for each
set and leads to the observed three-hourly pattern.

Comment C1.25 — Figure 6 - can the observed data be displayed to compare the model
data to? This would be helpful to see to show that the models are a good representation and
show which model set are better.

Reply: Unfortunately, the contractual obligations for the usage of the German accident data
do not allow us to display information based on accident counts less than three to prevent
the possibility of an identification of the drivers. Since in most districts one or two accidents
occurred, the figure would be largely empty.



Response to Anonymous Referee #2 (RC2)

Comment C2.1 — Table 2. RAD_INT. Please specify the meaning of the symbol P (it is
not specified in Table 1)

Reply: This was a mistake, we replaced P with iz

Comment C2.2 — Page 2, line 30. ”diving habits”
Reply: We corrected the sentence.

Comment C2.3 — Page 9, line 26. mm/h is in italic
Reply: We changed the unit to normal font type.



Response to Anonymous Referee #3 (RC3)

Comment C3.1 — On page 1, lines 17-18, it is mentioned that “weather is one of the most
important factors contributing to road traffic safety”. This is a strong statement that requires
a corresponding reference. To the experience of the reviewer, there is a significant amount of
studies where weather-related variables are not as significant for road crashes as others (such
as behavioral variables), or not at all.

On page 2, lines 11-13, there is a very recent review on that point, and pertinent with the study
in general, which the authors may want to consult:

Ziakopoulos, A., & Yannis, G. (2020). A review of spatial approaches in road safety. Accident
Analysis & Prevention, 135, 105323.

Reply: We agree with the reviewer that the statement that “weather is one of the most
important factors contributing to road traffic safety” might be too strong in the given context.
We modified this part of the introduction. We also thank the reviewer for pointing us to the
interesting review article of Ziakopoulos and Yannis (2020), which we took into account on page
1 line 17 of the revised version of the manuscript.

Comment C3.2 — On page 3, lines 24-27, it is mentioned that “However, almost 8% of
the accidents were indicated as being caused by adverse road conditions, which includes a wet,
snowy or icy road, but also mud or dirt on the road. This class of accidents, which we refer to
as weather-related accidents, is selected to generate the response variable used in the logistic
regression models.” Firstly, it would be informative if the total number of considered accidents is
mentioned (a rough calculation suggests it is about 345,0007). Secondly, and more importantly,
this approach introduces a bias inherent from the subjectivity of crash recording, as it relies on
indicators by policemen. The authors are suggested to elaborate on this bias, its extents and
any implications it might have had on the results.

Reply: Section 2.1 includes information about total accident numbers as well about numbers
of time steps with at least one accident and their percentages. We reformulated the section
in a more consistent way. Also, we corrected some numbers given in that section, which have
been taken over by mistake from a previous version of the manuscript. Therefore, they did not
correspond to the data used in the present form of the study. Furthermore, we agree with the
reviewer that a discussion of the subjectivity of the police officers decision on the accident cause
is an important aspect. We added a paragraph to the discussion section of the manuscript,
where we address this issue.

Comment C 3.3 — For binary logistic models, the Hosmer-Lemeshow test is also customary
to indicate the degree of correct predictions per population stratum. The authors can examine
the HL for their best predictive models, or at least utilize it in future research.

Reply: The Hosmer-Lemeshow test (HL) is an interesting test we have not been aware of.
It is comparable to the reliability component of the Brier score (BS) decomposition (Murphy,
1973). In both cases it is tested, whether or not the observed event rates match modeled
event rates in certain subgroups of the modeled probabilities. In addition to the reliability, the
BS decomposition includes a second component called “resolution”. The resolution measures
the distance between the observed relative frequency and climatological frequency. Thus, it
indicates the degree to which the forecast can separate different situations. BS is a proper



score which cannot be hedged (Wilks, 2011; Gneiting and Raftery, 2007; Jolliffe, 2008). HL
instead cannot be proper as it can easily be hedged as the following example shows: A forecast
always predicting the average probability is very reliable, but has a very low resolution, which is
taken into account by the BS. The HL does not take resolution into account, but only tests for
reliability. We tested the HL for our models and found that it is not suitable in our case. We find
that our NULL model gets a perfect HL: statistic of virtually 0, because it simply predicts the
district average probabilities. The RAD_INT model, which includes meteorological predictor
variables, gets a worse HL statistic and fails the significance test. We can assume that this
corresponds to a reduction of reliability. However, since the HL does not take into account the
resolution, it does not reward the RAD_INT model for “daring” to predict higher probabilities
under adverse meteorological conditions. As suggested by the reviewer, we will consider the use
of the HL in future studies, however, further research is necessary to test how the HL can be
integrated into the concept of the BS decomposition for an improved consistency.

Comment C3.4 — More importantly, a critical component of the study that is missing is
a table with model coefficients (i.e. the influence of each variable) and their metrics (standard
error, significance). The respective commentary of the effect of each variable is also critical.
The authors should definitely add this part, at least for the best-performing models, as very
useful knowledge and conclusions can be drawn, which are now left in the dark. After all, this
is the main advantage of econometric models (such as logistic regression) vs. machine learning
models, which are black boxes.

Reply: We agree with the reviewer that the model coefficients, standard errors and signif-
icances are important. However, since we use categorical variables and interaction terms the
models in this study are relatively complex. For example, the best fitting model RAD_INT
has 99 parameters, which are required to model the complex diurnal cycle based on 24 hourly
coefficients and its interactions with the other parameters. Our idea was to base the description
of the models in the results section of the article on the graphical representations in Figure 2,
which are easier to read and interpret than a long table. The effect of each variable on the ac-
cident probability is displayed and the standard errors are reflected by the confidence intervals.
Based on the reviewers comment, we decided to include the complete model coefficients, stan-
dard errors and significances of the main models NULL, HOUR, RAD and RAD_INT, which
are described in section 4.1, as supplementary material in the revised version of the paper and
comment on that in the results section of the manuscript. We provide the detailed model in-
formation in CSV format, which will enable the interested reader to look into the model details
and easily reuse it for their own analyses. This enhances the reproducibility of this study.

Technical corrections

Comment C 3.5 — In the abstract, the authors mention “skillful” predictions, which is an
unclear term. Do they mean informed predictions? Furthermore, there is mention of model
hit rates. Is this a percentage of accurate predictions? Please clarify these points so that the
abstract is more comprehensive.

Reply: With skillful we mean that the model has a positive skill score (see Eq. 5) and performs
better than a reference model. We reformulated the abstract to make it more comprehensive.



Comment C3.6 — On page 4, lines 25, it is stated that “7 is the difference between the
time the model is initialized and the time the forecast is valid for”. Shouldn’t a more useful
interval be between model finish and validity headway?

Reply: For the verification of meteorological forecasts the lead time 7 is a standard parameter.
It is used to assess how many hours/days ahead a forecast is useful. In contrast to a parameter
that includes “model finish”, as suggested by the reviewer, the lead time tau is independent of
the wall-clock-time, that actually passes from the start of the computer program to the end.
We added a sentence with an example to the manuscript to make the concept of lead time more
comprehensible for the reader.

Comment C 3.7 — The English language needs minor revisions throughout the paper and in
the abstract to avoid typographical mistakes (e.g. assess instead of asses). Also the authors are
urged to select either “crash” (more widely used) or “accident” and use a single term consistently
throughout the text.

Reply: We thoroughly checked the manuscript for typographical mistakes and use the term
“accident” consistently throughout the text.
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Abstract.

An-impaetImpacts of weather on road accidents has-have been identified in several studies with a focus mainly on monthly
or daily accident counts. We-stuey-This study investigates hourly probabilities of road accidents caused by adverse weather
conditions in Germany on the spatial scale of administrative districts —Meteorelogical-using logistic regression models.
Including meteorological predictor variables from radar-based precipitation estimates, high-resolution reanalysis and weather

forecasts 4

prediction of accident probability compared to models without weather information. For example, the percentage of correctly.
predicted accidents (hit rate) is increased from 6:3-0-0-730% to 70%, while keeping the percentage of wrongly predicted
accidents (false alarm rateeonstant-at0:2) constant at 20%. When using ensemble weather forecasts up to 21 h instead of radar

and reanalysis data, the decline of model performance is negligible. Accident probability has a non-linear relationship with
precipitation. Given an hourly precipitation sum of 1 mm, accident probabilities are about-a WS times larger at

negatlve temperatures compared to pOSlthC temperatures.

The findings are relevant in the context of impaet-based-warningsfor-both-impact-based warnings for road users, road mainte-
nances e ‘ ities, traffic management, as well as rescue forces.

1 Introduction

The road transport system is one of the most complex and dangerous systems that people have to deal with on a daily basis
(Peden et al., 2004). In Germany, for example, road accidents lead to around 396,600 injuries and 3,200 fatalities per year in
2016 (BASt, 2017). Causes for road accidents can be of technical, behavioral-or-behavioural or of environmental nature. Next
to-According to a recent review paper on spatial approaches in road safety studies (Ziakopoulos and Yannis, 2020) , variables

like traffic volume,

meostimportantfactors-contributingto-road-traffie safety—The-speed limit or the number of lanes are frequently considered in
accident analyses. Theofilatos and Yannis (2014) show that also the impact of weather on road accidents has been addressed in
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several studies covering various temporal and spatial scales, foeussing-focusing on different weather parameters and applying
different methods:fer-areviewsee-Theoftlatos-andYannis(2044)-. They find that the effect of precipitation is quite consistent
and generally leads to an increased accident frequency. On the other hand, the impact of other weather parameters on road

safety has not been found straightforward.
Two types of studies can be distinguished regarding the temporal scales. One type of study aims at relating road accidents

to weather on a monthly or seasonal time scale (e.g. Fridstrgm et al., 1995; Shankar et al., 1995; Eisenberg, 2004; Bergel-
Hayat and Depireb, 2004; Stipdonk and Berends, 2008). Aim-The aim of these studies is to gain insight into potential policy
measures against the effects of adverse weather on road transport (Shankar et al., 1995). Due to the temporal variability of
weather on monthly time scales, such studies can only account for aggregate-aggregated effects by considering for example
the number of days with precipitation or the number of days with temperatures below the point of freezing (e.g. Fridstrgm
et al., 1995). Other studies focus on daily timescales (e.g. Eisenberg, 2004; Keay and Simmonds, 2005; Caliendo et al., 2007;
Brijs et al., 2008). On such time scales, the link between accident counts and the actual weather conditions on a specific
day can be established. However, the largest variability of traffic volume and accident rates is observed on sub-daily time
scales, with peaks during the rush hours and low values during night time (Martin, 2002). Weather conditions may also change
dramatically within hours. Fer-taking-To take into account the combined effect of weather and traffic volume, a sub-daily time
scale is necessary. Nevertheless, only few studies focus on sub-daily time scales (e.g., Hermans et al., 2006a), possibly due to
the lack of appropriate data sources. To establish robust relationships between accidents and weather parameters on an hourly
time scale a sufficient amount of data is required at a high spatial resolution. However, the analysis of highly resolved accident
data is often subject to restrictions due to data protection directives. The spatial scales covered by the different studies vary
from the national or state level (Hermans et al., 2006a) down to the level of individual cities (Yannis and Karlaftis, 2010) or
specific roads or road segments (Ahmed et al., 2012).

Meteorological data used in accident studies is often derived from measurement stations. Either individual stations are used
(e.g. Knapp et al., 2000) or they are spatially aggregated for the area of interest (e.g. Eisenberg, 2004). In both cases, it might
happen-is possible that not all relevant weather events are captured, because they do not hit a station. Recent studies use radar
data to estimate the impact of precipitation on accidents (e.g. Mills et al., 2019). Jaroszweski and McNamara (2014) argue that
radar data offers significant advantages over traditional station-based analyses, namely a better representation of rainfall due to
a high spatial and temporal resolution.

Different weather parameters with a significant impact on road accidents have been identified. Depending on the study’s
modeting-modeling strategy and the specific formulation of variables characterising weather, magnitude and even the sign
of the weather impact can vary between different studies. The most important weather parameter considered in most studies
is precipitation. On wet roads the tire contact force is reduced (Hays, 2013), which increases the stopping-braking distance
starting at 100 km/h by about 20% compared to dry roads (Cho et al., 2007). Also glare caused by wet shining surfaces can
lead to reduced visibility and increase accident probabilities (Brodsky and Hakkert, 1988). Hermans et al. (2006a) study hourly
erash-accident counts in the Netherlands within a one-year period and found precipitation to be the most important factor

among 17 different variables characterising weather.
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On a monthly basis, snowfall can lead to reduced-numbers-of-aceidentsthe reduction of accident numbers, possibly due to
indirect effects like reduced traffic velumes-oradaption-of-diving-volume or the adaption of driving habits (Fridstrgm and
Ingebrigtsen, 1991). On the other hand, on a daily basis, hewever—the direct effect of snowfall was found to increase the
accident risk. For example, Knapp et al. (2000) find that freeway erash-accident rates increase by a factor of 13 in case of
extreme snow-storms—(Mils-et-al-2619)-snowstorms. Mills et al. (2019) find that injury and non-injury collisions increase by
66 and 137 percent, respectively, during winter storms—Winter-storm events that were characterized by factors like precipitation
and low visibility. The winter storm events were identified by using radar- and station-based observations. Malin et al. (2019)
observe an-a sharp increase of relative accident risk if road surface temperatures drop below the freezing point.

Since the first weather impact models for road accidents (Scott, 1986), various types of models have been used in this
context. Most popular are generalized linear models (GLMs), e.g. Poisson regression for accident counts or logistic regression
for accident probabilities (e.g. Fridstrgm et al., 1995; Caliendo et al., 2007; Keay and Simmonds, 2006), but also other methods
like state-space (Hermans et al., 2006b) or autoregressive models (Brijs et al., 2008; Scott, 1986; Bergel-Hayat and Depireb,
2004) have been applied. Mostly, statistical models for weather impact on road accidents are used in an inferential way; they test
hypotheses for variable relations by means of statistical hypothesis testing for parameters significance of prescribed predictor
variables, also referred to as explanatory medeling-modeling (Shmueli et al., 2010). This contrasts to predictive modeling,
where statistical models are used for prediction of yet unobserved instances of the target variable (e.g., accident counts or
probabilities). In practice, predictive models are built and assessed using cross-validation.

This study follows the predictive modeling approach: We build and asses-assess the skill of logistic regression models for
hourly probabilities of weather-related road accidents at the scale of administrative districts in Germany. Aim-is-to-asses-The
aim is to assess model performance at small spatial and temporal scales, as well as identifying relevant meteorological predictor
variables for optimizing the predictive skill. We thus seek an adequate functional relationship between hourly precipitation and
accident probability under different temperature conditions and district characteristics. Instead of station-based observations,
we use a gridded radar-based precipitation product and a new high-resolution regional reanalysis. Additionally, using ensemble
weather forecasts, we assess the predictive skill of the accident model for feadtimes-lead times of up to 21 hours.

Section 2 describes data and preproecessing-pre-processing approaches. Statistical models and associated verification methods
are described in Sect. 3. Results of model verification and the application of the models in a case study of a snowfall event are

presented in Sect. 4, which is followed by a discussion and conclusions in Sect. 5.

2 Data
2.1 Accident data

A data set with anonymized information from police reports of all heavy road accidents in Germany from 2007 until 2012
is used (Source: Research Data Centre of the Federal Statistical Office and Statistical Offices of the Lander, Statistik der

Strafienverkehrsunfalle, 2007-2012, own calculations). Heavy road accidents include all accidents with injuries, fatalities or

write-offs. Minor accidents are not included in the data set. In total 4;313;069-complete-aceidentreports-are-available for-the
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2,392,329 accidents were reported during the 6-year period under investigation. Most accidents were indicated by the police
as being caused by driver behaviour. However, atmest87.7% (184,201) of the accidents were indicated as being caused by
adverse road conditions, which includes a wet, snowy or icy road, but also mud or dirt on the road. This class of accidents,
which we refer to as weather-related accidents, is selected to generate the response variable used in the logistic regression
models. The location of the individual accidents is available on the level of administrative districts (Landkreise). Because of
several territorial reforms during the study period, all accidents are assigned to boundaries of the 401 administrative districts
as they existed in 2017. For each district an hourly time series is createdfor-the-dichotomeus-variable-aceident beingzere-ifne

which is one if at least one accident happened within the-hour-considered-and-one-an hour and zero otherwise. In total this

AN AN ARARAAANAANAANNRANANNAS

results in +6;775;572-21,076,961 data points, of which 436;559-0.80% (168,404) contain at least one weather-related accident.

ALARARKAIRAS

2.2 Radar-based precipitation data

Gridded hourly precipitation sums derived from the RADOLAN data set (Bartels et al., 2004) are available from the German
Meteorological Service at a spatial resolution of 1 x 1 km . The RADOLAN combines radar refleetivitiesreflectivity, measured
by the 16 C-band Doppler radars of the German weather radar network, and ground-based precipitation gauge measurements.
As from radar reflectivitiesreflectivity we cannot directly infer the precipitation amount at the ground but only the amount
of reflection in the lower troposphere, observations from rain gauges are used to calibrate the precipitation amounts estimated
from the radar reflectivities-reflectivity in an online-procedure typically used for nowcasting. Before calibration, a statistical
clutter filtering is applied and orographic shadowing effects are corrected for. The RADOLAN projects-thts-project aims at

combining the benefits of high spatial resolution of the radar network with the accuracy of gauge-based measurements.
2.3 Reanalysis data

A reanalysis produced by a novel convective-scale regional reanalysis system for Central Europe (COSMO-REA2; Wahl
et al., 2017) is used to generate meteorological predictor variables for the logistic regression models. The reanalysis results
from the integration of COSMO-REA?2 (a physical model for the atmosphere) with various heterogeneous observational data
assimilated. COSMO-REA2 was developed within the framework of the Hans-Ertel Center for Weather Research (https://
www.hans-ertel-zentrum.de). It contains different gridded atmospheric and surface variables for Central Europe at a spatial
resolution of 2 km and at hourly time steps. Deep convection is explicitly resolved by the model, while shallow convection is
parameterized using the Tiedke scheme (Tiedtke, 1989). In addition to conventional station-based observations, radar-derived
rain rates are assimilated using latent heat nudging. On hourly to daily time scales, the assimilation of radar information

substantially improves the parameterized precipitation compared to other reanalysis datasets (Wahl et al., 2017).
2.4 Ensemble weather forecasts

Weather forecasts are used to study the predictability of accident probabilities based on weather forecasts with an ensemble

prediction system (EPS). We use the regional high-resolution ensemble forecasting system COSMO-DE-EPS, which run op-
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erationally at the German Meteorological Service (DWD) before May 2018 with a spatial resolution of 2.8 km for the area of
Germany. The COSMO-DE-EPS is initiated every 3 h with a feadtimelead time 7 of +up to 21 h. 7 is the difference between the
time the model simulation is initialized and the time the forecast is valid for. For example, if the model simulation is initialized
at 0 UTC, 7 = 21 h corresponds to the forecast for 21 UTC. For each initialization time 20 ensemble members are available,
generated using different global model forecasts as initial and lateral boundary conditions and variations of parameterizations
for unresolved processes as described in detail in Gebhardt et al. (2011) and Peralta et al. (2012). The spread of the ensemble
members allows an estimation of the forecast uncertainty. Similar to COSMO-REA?2, precipitation rates derived from radar
observations are assimilated at forecast initialization using latent heat nudging (Stephan et al., 2008).

For our study, a post-processed product of the archived COSMO-DE-EPS forecasts for the years 2011 and 2017 was provided
by the DWD. Instead of archiving the forecast data on the original model grid, area averages of 21 x 21 grid boxes (56 x 56km)
around 758 DWD owned gauge stations are stored. This drastically reduces the large amount of data, which facilitates their

processing.

3 Methods
3.1 Data preparation

We aggregate the different meteorological variables to the level of administrative districts. For the station-based COSMO-
DE-EPS forecasts a weighted mean of all available stations in the vicinity of the districts was calculated using the probability
density function of a bi-variate circular symmetric normal distribution as the weighting function. A standard deviation of 25 km
proved to be most appropriate, as it corresponds well to the average district area.

For a fair comparison of RADOLAN and COSMO-REA?2 with COSMO-DE-EPS forecasts, the same aggregation is applied
to the gridded RADOLAN and COSMO-REA?2 products: the areal averages around the 758 gauge stations is computed as
described in section 2.4 and the data is aggregated to the district level by applying the weighting function, as described above.

3.2 Logistic regression

Logistic regression models are used to model the probability of a certain event based on independent predictor variables (e.g.
Menard, 2002). Here, we model hourly accident probabilities. If P; is the probability that an accident occurs in a 1h time-

interval (¢ — 1h, ], the logistic model equation is
P =1/{1+exp[-(a+ X B)]}, e))

where « is the intercept term, Xy = (X;1,... X4, ) the set of n predictor variables, and 3 = (1, ..., 8,,) are the corresponding
parameters. o and the 3; are estimated using maximum likelihood. If the effects of the two predictor variables X; and X;; are
not additive (i. e. the effect of X;; on P; depends on the state of X;;), interaction terms can be added to the model equation. If
Xy and X, are continuous variables, for example, this can be achieved by adding 3;; Xy; X;; to the linear term in Eq. 1, with

Bi; quantifying the combined effect of X;; and X;. For more detailed description of interactions, see Wood (2017).
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The parameters of the logistic regression model can be easily converted to the odds ratio OR = exp 3;. The odds ratio for a

given term Xy; describes the change of the odds of the event to occur in case of a unit change in Xy;.
3.3 Assessing model performance

Parameter estimates 3; associated to individual predictor variables Xy; can be tested for being significantly different from 0
using the p-values of a two-tailed z-test (Dobson and Barnett, 2008).
Different logistic models are compared with information criteria. The most popular is the Akaike Information Criterion

(AIC; Akaike, 1974) defined as
AIC = 2k — 2log(L), )

where £ is the number of parameters used in the model and L is value of the likelihood at its maximum. Fitted to the same data
the model with lower AIC is to be preferred. The AIC penalizes models with more parameters to prevent overfitting.
The Brier Score (BS) is a proper score to measure accuracy of probabilistic forecasts for binary events, as they result from a

logistic regression model. Based on Brier (1950) the BS can be defined as

1 < )
BS = = > (fr—o00)?, 3)
t=1

where f; is the forecast probability, o; is the observed outcome of the event (o; € {0,1}), ¢ lables the events and N is the total
number of events. However, Benedetti (2010) has shown that the Brier Score may not be suitable when forecasting very rare

(or very frequent) events. He suggests the use of the logarithmic score (or absolute score)

N

Ls:%Z(Otlnfw(1—0t>1n<1—ft))7 @

t=1

where a = —(21n2)~ 1 is simply a scaling factor, making LS comparable in size to BS. The LS is frequently used in the field of
statistical mechanics and information theory and fulfills three basic desiderata (i.e. additivity, exclusive dependence on physical
observations, and strictly proper behavierbehaviour).

By defining a threshold u, a probabilistic forecast (0 < f; < 1) can be transformed into a binary forecast, which is either
positive (accident) or negative (no accident) if the forecast probability falls above (f > u) or below the threshold (f < u) ,
respectively. The true positive rate (TPR, or hit rate) is the number of correctly predicted positive events divided by the total
number of positive events. The false positive rate (FPR, or false alarm rate) is the number of incorrectly predicted negative
events divided by the total number of negative events. The receiver operating characteristic (ROC) curve is a common way to
illustrate the performance of a logistic regression model as a binary classifier, by plotting the TPR against the FPR for various
thresholds 0 < u < 1 (Hanley and McNeil, 1982). The area under the ROC curve (AUC) is frequently used for measuring the
ability of a model to discriminate between positive and negative events. The AUC ranges between 0.5 and 1, which compares

to random guessing and perfect discrimination, respectively. For a given FPR the corresponding TPR can be identified based
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on the ROC curve. In this study, we compare the TPR of different models while selecting u so that the FPR is kept constant at
0.2.

A skill score SS'is a relative measure of how much a forecast Sy outperforms a reference forecast .S,., defined as
SS=(S;—8.)(Sp,— S, 6)

where S, is the score of a perfect forecast. In this study we use the BS to compute the Brier Skill Score (BSS, S, gs = 0), the
LS to compute the Logarithmic Skill Score (LSS, S, 1.5 = 0) and the AUC to compute a skill score based on the ROC curve
(AUCSS, S, avc =1).

While AIC penalizes large numbers of model parameters to avoid overfitting, in cross-validation techniques model parameter
are estimated on a training data set and scores are computed on an independent testing data set. Here, we use a yearly cross-
validation approach. Model parameters are estimated on a data set with one year of data left out and scores are calculated for
this respective year. This is repeated several times until for all years a score has been estimated. The score is then averaged
over all years and used for model comparison.

To understand the behaviour of the model, the predicted accident probabilities of the regression models can be compared
to non-parametric estimates for accident frequencies within bins of specific parameter ranges. For example, a predicted acci-
dent probability for negative temperatures and a precipitation amount of 1 mm/h at 7:00 local time can be compared to the
relative accident frequency for all time steps that showed negative temperatures and precipitation amounts in an interval of
1£0.1 mm at 7:00. The uncertainty of model probability forecasts is estimated by computing the 95% confidence interval
based on asymptotic standard errors. The uncertainty related to the nen-parameterie-non-parametric estimates of the accident
frequency is estimated by using a bootstrapping approach. The observed accident frequency is computed 10,000 times af-
ter drawing random samples with replacement from the available data. The range between the 0.025 and 0.975 quantile of
the resulting distribution of values can be used to construct a 95% confidence interval around the average observed accident

frequency.
3.4 Model description
3.4.1 Models without weather information

The models NULL and HOUR predict the accident probabilities for each district without using weather information (see Table 1
and Table 2 for a detailed description of predictor variables and models, respectively). The simplest model is the NULL model,
using only the intercept and the time average accident probability P for each district as a predictor. P is transformed into
7 using the inverse logistic function. By using P in the logistic regression equation, a linear relationship between P and the
hourly accident probability is established. By introducing P’ we can distinguish between different districts using a single model
parameter. Alternatively, we could include an individual intercept parameter for each district. However, this would require the
estimation of 401 parameters. By adding interaction terms, the number of parameters would increase even more, making the

model inapplicable.
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The model HOUR includes an additional categorical variable H specifying the time of day in hours (local time), which
describes the diurnal cycle additionally to the average accident probability of each district. These two models are used as

reference models to assess the benefit of adding weather information.
3.4.2 Models using radar and reanalysis data

Accident, radar and reanalysis data overlap in time for the years from 2007 to 2012. For this time period, a binary predictor
variable with hourly resolution for the near surface temperature Trg4 (temperature at 2 m height) is derived from COSMO-
REA2, which distinguishes between temperatures above and below 0°C. Furthermore, a continuous variable Prg4p with the
hourly precipitation sum in mm/h is used. In model RAD the model HOUR is extended by adding Trza and (Prgap)®2
as direct effects. Different combinations of exponents have been tested to transform the precipitation, but 0.2 lead to the best
results in terms of model skill. In the model RAD_INT the two-point interaction terms between Pl, H,Trpa and (Prga D)O'2
are added to the model equation. Model parameter estimates result from using data from all districts simultaneously. However,
the skill scores are calculated for each district individually within the eress-validation—cross-validation procedure. This allows
to-asses-us to compare the performance of the model for-in different districts.

Additionally, we fit the models to the individual districts, yielding models RAD_IND and RAD_INT_IND!, respectively. On
the one hand, these models capture the district specific characteristics; on the other hand, the amount of available data points
for each model is strongly reduced, which complicates the estimation of model parameters, in particular for districts with low

accident numbers. These models are used to quantify the benefit of having one model for all districts.
3.4.3 Models using weather forecast data

The overlapping time period of accident data and COSMO-DE-EPS data are the years 2011 and 2012. For this time period
temperature and precipitation is aggregated to district level as before for all 20 ensemble members. This is done separately for
all forecast feadtimes-lead times 7, ranging between 1 h after forecast initialization and 21 h after initialization.

The COSMO-DE-EPS provides hourly forecast data, but is initialized only every three hours. Therefore, not all hours are
available for all leadtimeslead times. E.g. a leadtime-lead time of 6 h is only available at 0, 3, 6, 9, 12, 15, 18, 21 UTC, while a
leadtime-lead time of 7 h is only available at 1, 4, 7, 10, 13, 16, 19, and 22 UTC. Furthermore, the logistics regression model
uses local time, which has to take into account daylight savings time. Both effects complicate an explicit use of the hour as a
predictor variable in combination with COSMO-DE-EPS data. Therefore, to facilitate the incorporation of a diurnal cycle in
the model, a twe-step-two-step procedure is applied. First, the model HOUR is used to forecast the average diurnal cycle of
accident probabilities Py for each district. Then Py is transformed into Py; using the inverse logistic function. Second, Pj; is
used to replace the terms P +H (compare HOUR and EPS_HOUR in Table 2, for example).

Three different ways to incorporate the ensemble information in the models are used.

VINT refers to the use of interaction terms in the model equation, while IND refers to estimating model parameters for each district individually.
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1. Deterministic forecasts: In case of the model EPS_MEM;_INT an individual set of parameters is estimated for each
ensemble member and each leadtimelead time. Skill scores are calculated for each of the resulting sets of parameters

separately, thus treating the ensemble members as single deterministic forecasts.

2. Meteorology-averaged ensemble: In case of the model EPS_MEAN_INT the parameters are estimated using the ensem-

ble mean of the meteorological variables, which results in a single set of parameters for each leadtimelead time.

3. Probability-averaged ensemble: In case of the model EPS_PMEAN_INT accident probabilities are predicted using the
models EPS_MEM;_INT for the individual ensemble members, but the ensemble mean of the predicted probabilities is

calculated before using it to compute the scores in the cross-validation procedure.

The models EPS_HOUR, EPS_RAD_INT correspond to the models HOUR, RAD_INT, but are fitted separately to the data
available for each leadtime-lead time, to allow a direct comparison to the models using COSMO-DE-EPS data.

4 Results
4.1 Models using radar and reanalysis data

The time average hourly probability that at least one weather-related accident occurs in an administrative district is referred
to as P. It ranges from belew-less than 0.001 for smaller districts with fessfew inhabitants to more than 0.05 for densely
populated cities. The NULL model simply gives P for each district and serves as a reference model. As expected, the AUC is
0.5, indicating that the model is not able to distinguish between accident and non-accident cases (Table 3).

In model HOUR all parameters of the categorical variables H are significantly different from zero with p-values below
0.001, indicating that the diurnal cycle is an important aspect of the accident characteristics. The average AUC of all districts
is 0.62, indicating that the introduction of the hour as a predictor improves the model.

The introduction of temperature and precipitation as direct effects in the model RAD leads to a further improvement of the
scores, compared to NULL and HOUR. With an AUC of about 0.81 and an AUCSS of 0.49 (HOUR as reference) temperature
and precipitation can be considered useful in terms of binary classification of accident events. The TPR increases from 0.3 for
HOUR to 0.7 for RAD. The interaction terms in RAD_INT slightly improve all scores except for the TPR.

Fig. 1 shows that the variability of the AUCSS values of the different districts is relatively large, compared to the differences
between the models. However, there is no evident systematic relationship between the skill of the model and the geographic
location of the district or the district specific topography (not shown).

Fig. 2 shows the medeHed-modeled accident probabilities (solid lines) predicted by the RAD (left) and RAD_INT (right)
versus precipitation (top), hour (middle) and P (bottom) together with the 95% confidence intervals estimated from the standard
errors (shaded). Additionally, the accident probabilities estimated non-parametrically (number of time steps with accidents
divided by total number of time steps) are shown (markers) together with the 95% confidence intervals estimated using a
bootstrapping approach (vertical lines). Model and non-parametric probabilities are shown for positive (red) and negative

(blue) temperatures.



10

15

20

25

30

35

The modeHed-modeled accident probabilities as a function of Prrap are shown for 7:00 local time for a district with
an average probability for weather-related accidents of P = 0.01 (Fig. 2, top row). Non-parametric probability estimates are
calculated for precipitation bins with a width of 0.1 mm/h including only districts with P = 0.01 & 0.002. In general, acci-
dent probabilities are lowest at Prgap = 0 --and show a steep increase with increasing precipitation with a decreasing slope
at higher precipitation rates. Probabilities are higher at temperatures below 0°C. At Prraptmmn/f-they-Prrapl mm/h
probabilities are about 5 times higher if temperatures are below 0°C. For RAD the modeHed-modeled probabilities fit well to
the non-parametric probability estimates at Prr4p < 0.5 mm/h, but overestimate probabilities at higher precipitation rates. In
contrast, the model RAD_INT shows reduced probabilities, which fit much better to the non-parametric probability estimates.
The curved shape of the functional relationship between precipitation and probability is realized by taking precipitation to
the power of 0.2. The value 0.2 was found to be the best choice after testing a series of different exponents, other functional
relationships as log 1 + Pr, as well as categories of precipitation.

The modelled-probabilities-as-modeled probabilities as a function of H are shown for Prr4p = 0 mm/h (solid lines) and
Prrap = 0.5 mm/h (dashed lines) for P = 0.01 (Fig. 2, middle row). Non-parametric probability estimates are calculated
using time steps with Prr4p = 0 mm/h (circles) and Prrap = 0.5 £0.25 mm/h (triangles) including only districts with
P =0.01+0.002. In general, accident probabilities show a pronounced diurnal cycle with maximum probabilities during
morning and afternoon rush hours. RAD overestimates the observed probabilities in particular during the morning hours with
precipitation at negative temperatures. The model RAD_INT is able to capture the observed diurnal cycle more precisely.

The modelled-modeled probabilities as function of P are shown for Prp4p = 0 mm/h (solid lines) and Prrap = 0.5 mm/h
(dashed lines) at H =7 h (Fig. 2, bottom row). Non-parametric probability estimates are calculated using time steps with
Prrap =0 mm/h (circles) and Prgrap = 0.5+ 0.25 mm/h (triangles) including districts with P = 0.01 4 0.002. In general,
the probabilities show afr—-a monotonic increase with P, which justifies the introduction of P as a predictor to distinguish
between different districts. The predictions of RAD and RAD_INT are relatively similar and lie mostly within the confidence

intervals of the observed probabilities.

Tr-a-nextstepFor a more detailed insight into the modeling results we provide the full model coefficients, standard errors
and p-values of the models NULL, HOUR, RAD and RAD_INT as supplementary material to this article. In case of RAD,
which hat 27 coefficients, almost all model coefficients have p-values below 0.001 and we can reject the null hypothesis that the
coefficients are zero. Only one of the 23 coefficients of the categorical variable HOUR is not significant. In case of RAD_INT,
which has 99 coefficients due to the introduction of interaction terms, 34 coefficients have p-values below 0.001. 29 have
p-values greater than 0.1 and are thus not significantly different from zero. These non-significant coefficients all belong to
the categorical variable HOUR or are included in an interaction term with this variable. This might indicate the diurnal cycle
could be modeled sufficiently with less than the 23 coefficients used here. However, we do not expect a large impact of such a

reduction on the metrics that have been discussed earlier.

Next, we compare the models RAD and RAD_INT, which are fitted to all districts simultaneously, to the models RAD_IND
and RAD_INT_IND, which are fitted to all districts individually. Fig. 3 shows the difference of the AUCSS between RAD and
RAD_IND (red) and between RAD_INT and RAD_INT_IND (black) as a function of P. P provides a-direct information about

10
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how many accident cases were available in the time series used for training the models. In general, the AUCSS differences
are mostly negative, indicating that the models fitted to each district individually perform poorer than the models including
all districts. The AUCSS differences decrease with increasing P,ie. increasing accident numbers. Furthermore, the AUCSS
differences are larger for the more complex models with interaction terms. The results are similar for the LSS (not shown).
Based on the results of this section, we can conclude that RAD_INT should be preferred over RAD, since it achieves the
best scores and better represents the functional relationship between probability and precipitation as well as the diurnal cycle.

Furthermore, RAD_INT preforms better than RAD_INT_IND, which is fitted to each district individually.
4.2 Models using weather forecast data

The model RAD_INT showed the best performance among the models predicting accident probability using radar and reanal-
ysis data (Sect. 4.1). In this section the model formulation of RAD_INT is modified to allow the use of COSMO-DE-EPS
ensemble weather forecasts. To facilitate the medeling-modeling procedure, the variables H and P are combined into a single
variable Py; by using the model HOUR, which effectively results in a district-specific diurnal cycle of accident probabilities

(see Sect. 3.4.3 for details). Py, precipitation and temperature are used as predictor variables, including their interaction terms.

me-For each lead time from 1 to 21 h,
a new set of model parameters is estimated using only those time steps, which-are-where COSMO-DE-EPS data is available
for the specific teadtimelead time. For a small number forecasts the COSMO-DE-EPS data is missing or incomplete.

The model EPS_RAD_INT uses Trr4 and Prrap and serves as an-tuppertimita reference, representing the best available
model based on reanalysis and radar data. The AUCSS of EPS_RAD_INT as a function of leadtimeshows-a-repetitive-lead
time shows a three-hourly cyclic pattern with maximum values of around 0.5 at leadtimes-lead times 1, 4, 7, etc. and 0.47
in between (Fig. 4, orange line). This repetitive-pattern—can-be-explained-by-different-datatime steps-that-go-into-the-meo de
- ‘ cyclic pattern occurs because
UTC. 3 UTC, 6 UTC. etc. As a consequence, there are three sets of lead times that are associated to different sets of hours of
the day, which correspond to the repetitive three-hourly pattern in the AUCSS. Apparently, the model performs differently for

these three sets of hours, possibly due to different traffic characteristics during the specific hours.
The model EPS_MEMIi_INT is estimated for each of the 20 ensemble members individually, which therefore results in 20

deterministic forecasts with 20 individual AUCSS values per teadtimelead time. The AUCSS drops from 0.48 at teadtimelead
time 1 h to below 0.45 at feadtime-lead time 21 h (gray-grey lines). The spread between the AUCSS of the different ensemble

members increases with increasing leadtimelead time. The model EPS_MEAN_INT is based on the ensemble mean of the
meteorological variables (meteorology-averaged ensemble) and shows a slightly higher AUCSS (black solid line) than all the

deterministic forecasts.
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The model EPS_PMEAN_INT, which is based on the ensemble mean of the accident probabilities of the 20 versions
of EPS_MEMIi_INT (probability-averaged ensemble), shows again a slightly higher AUCSS (black dashed line) than the
meteorology-averaged ensemble. As expected, the AUCSS values of all models based on weather forecast data are lower
than the AUCSS of EPS_RAD_INT based on radar and reanalysis data. However, the differences are relatively small. The LSS
shows a similar behaviour regarding the leadtime-lead time dependence as the AUCSS (not shown).

4.3 Case study

The models RAD_INT and EPS_PMEAN_INT are used in a case study with adverse winter weather conditions on Dec. 3rd,
2012. At temperatures below the freezing point the fronts of a low pressure system lead to snowfall in large parts of Germany.
These weather conditions lead to a total number of 280 accidents classified by the police as caused by road condition. The
majority of the accidents occurred in southern and western Germany>.

For the district of Stuttgart, which was located within the affected area, the RADOLAN data shows low precipitation amounts
in the early morning and higher precipitation amounts of up to 0.3 mm/h in the afternoon (Fig. 5a). The COSMO-DE-EPS
forecast, which was initialized on Dec. 3rd, 2012 at 00:00 UTC (02:00 h local time), shows ensemble mean precipitation
amounts of more than 0.6 mm/h in the afternoon and a large spread between the ensemble members.

The temperature in COSMO-REA2 is below 0°C until 19:00 h and then changes to warmer conditions (Fig. 5b). All ensemble
members of COSMO-DE-EPS predict the change to positive temperatures two hours earlier than observed.

The accident probability of EPS_RAD_INT shows the combined effect of the average diurnal cycle, RADOLAN precipita-
tion and COSMO-REA2 temperature (Fig. 5c). It shows a peak of 0.07 in the morning during rush hour at low precipitation
amounts at freezing temperatures, a drop to 0.02 at noon when RADOLAN shows no precipitation, a maximum peak of 0.22
in the afternoon, when precipitation is strongest. In general, the accident probability of EPS_PMEAN_INT matches well with
EPS_RAD_INT. However, it slightly overestimates the morning peak and overestimates the afternoon peak due to the too
intense and persistent precipitation.

The hourly accident probability P is useful for authorities to assess how likely the oeeurenee-occurrence of an accident
is in a certain district at a certain point in time. However, it does not reflect the risk of an individual road user, as it does not
distinguish whether P changes due to weather-related effects, due to a change in traffic density along the diurnal cycle, or due to
the district characteristic. For example, a road user travelling-traveling from a district with a high average accident probability
P to a district with a low P would observe a decrease of P, also if the weather conditions remain the same. Therefore, to
estimate the impact on an individual road user, we compare P to F, the probability under conditions without precipitation
and positive temperatures (Fig. 5c, dotted line). The fraction P/ P, gives the amplification of the actual predicted probability
P compared to warm and dry conditions (Fig. 5d). In case of the forecast for Dec. 3rd, 2012, the amplification factor ranges
between 50 in the afternoon when the precipitation amount is high and 5 around noon when precipitation amount is low. This

factor could be a potential weather impact forecast product.

2Due to regulations regarding anonymization and data protection we are not allowed to show accident counts less than three, which prevents us from

showing accident counts for single hours or days at the district level.
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On Dec. 3rd, 2012 at 17:00 h local time, the COSMO-DE-EPS overestimates the precipitation amount in large parts of
western and southern Germany, compared to RADOLAN (Fig. 6). The area with temperatures below 0°C is captured relatively
well, compared to COSMO-REA?2. The accident probability P is largest where high precipitation amounts and freezing tem-
peratures occur. Spatially, P is relatively inhomogeneous, which reflects the large differences in average accident probability
between the individual districts. P/ Py, representing the increase in accident probability of individual drivers, is spatially more

homogeneous.

5 Summary, discussion and conclusions

Police reports of heavy road accidents in Germany were used to construct hourly time series based on weather-related accidents
caused by adverse road conditions for German administrative districts. Different meteorological datasets aggregated to district
level were used in logistic regression models to predict hourly accident probabilities. Models of different complexity were
compared after calculating different skill scores using a yearly cross-validation approach. The best model with respect to these
scores included district-specific average accident probability, the hour of the day, hourly precipitation and temperature, as well
The model reached a hit rate (TPR) eould
be-inereasedfrom-0-3-to-of 0.7, while-when the false alarm rate (FPR) was kept-constant-fixed at 0.2. With the same false
alarm rate, a model without meteorological parameters only reached a hit rate of 0.3. It was shown that the probability of

weather-related accidents increases non-linearly with increasing hourly precipitation. Given an hourly precipitation of 1 mm,

as their interaction terms.

the accident probability is approximately 5 times higher at negative temperatures, compared to positive temperatures. In a case
study it was shown that the model is able to reasonably capture the spatial and temporal development of accident probabilities
during adverse winter weather conditions. When using ensemble weather forecasts to predict accident probabilities, the skill
of the logistic regression model remains almost constant for a forecast leadtime-lead time of up to 21 h. Furthermore, the
use of ensemble forecasts leads to a higher skill compared to a setting, where ensemble members are treated as individual
deterministic forecasts. These findings are in line with the results of Pardowitz et al. (2016), who show that the use of ensemble

information improves predictions of storm damage probabilities.

The target variable of this study were weather-related road accidents. The accidents included in the analysis were indicated
by the police as being caused by adverse road conditions, which includes a wet, snowy or icy road, but also mud or dirt on
the road. Thus, the categorization of the accident cause is based on the subjective decision of the police at the location of the
accident. This might introduce a bias to the results whose direction or extent is hard to estimate. For example, a large number
of accidents that occur during adverse weather conditions are likely to be unrelated to the weather but are caused only by
inattention of the driver. Police officers might still categorize these accidents as being weather-related in unclear situations.
It should be kept in mind that this could lead to an overestimation of weather-related accident probabilities in the models

It is known that the main parameters affecting accident probability are traffic flow and density. In an optimal case one

would used-use measurements of these variables as a model predictor for accident probability. However, traffic measurements
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are not continuously available for all administrative districts. Additionally, measurements of traffic flow are mainly available
for highways and federal roads and might not be representative for municipal roads, where the majority of the accidents
occur. Furthermore, in an operational setting, where the model is applied for predicting future accident probabilities, traffic
measurements are not available. Therefore, we decided not to directly include traffic measurements in the models. Instead, the
hour of the day was used as a categorical predictor variable to capture the average diurnal cycle of accident probability. It was
shown +-that this approach is able to reasonably represent the inner-day variability of accident probability. The introduction of
additional factors like a-at weekends or holidays did not lead to a significant improvement of the model.

It is a challenging task to combine accident data, which is available for the area of administrative districts, with meteo-
rological data, which is usually available in the form of point observations or gridded data. Different ways of aggregating
meteorological data to district level were tested and the approach based on distance-weighted averaging, which is presented in
this study, showed the best results.

The temperature at 2 m height was used in this study to include the effect of negative temperatures in the statistical model
in a relatively simple approach. It has the benefit, that the temperature at 2 m height is a weH-established-well-established
meteorological parameter, which is measured at most stations and available in all weather forecasting models. However, it
might not reflect the conditions at the road surface, which can deviate from the conditions at 2 m height. Also, the choice of
0°C as a fixed threshold is a simplified approach, since ground frost or snowfall could also occur at higher 2 m temperatures. By
using non-linear approaches like generalized additive models (Wood, 2017) a smooth transition between positive and negative
temperatures could be established in future studies. Furthermore, it might be detrimental that area averaged temperatures are
used, which does not fully represent topographic variations within the area of a certain district. A more complex approach
could make use of a road surface model, which includes the combined effects of precipitation, evaporation, and road surface
temperatures in a more sophisticated way (e.g. Juga et al., 2013).

In addition to the weather parameters presented in this study, other parameters like snow fall amount or combined measures
of cloud cover and sun angle to describe the impact of sun glare were tested as potential predictor variables. Furthermore,
advanced predictor selection techniques like genetic algorithms (Calcagno et al., 2010) and the least absolute shrinkage and
selection operator (Tibshirani, 1996) were applied, to find optimal combinations of parameters. However, none of the results
were able to significantly improve the skill of the best models presented in this study, as measured by the cross-validation
approach.

We found that the probability of weather-related accidents inereases-approximately-depends on hourly precipitation to the
power of 0.2. This exponent should not be understood as a universal relationship. Instead, it is likely to depend on different
aspects of the road system (e.g. how fast is the water able to leave the road surface) or the average car characteristics (e.g. the
share of cars equipped with assistance systems, or the type tires). It may even change in time, as road and car qualities improve.

In this work we showed two ways of medeHing-modeling probabilities in different districts: first, by creating a model that
distinguishes between different districts based on their average accident probability and, second, by creating a model for each

district individually. We found that to first approach lead to higher skill scores, particularly for districts with low accident
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numbers. Including additional district-specific parameters describing the characteristics of the road network or topographic
conditions could help to further refine the model.

This study shows that a skillful relationship between meteorological parameters and weather-related road accidents can
be established. Forecasts of probabilities of weather-related road accidents, as presented in this study, might be useful for
authorities (traffic management, police or emergency services) on the one hand and road users on the other hand. However,
it is reasonable to provide the information about accident risk in different, user specific formats, which were introduced in
Sect. 4.3. Authorities might be primarily interested in aggregated risk information for their region of interest, e.g. the occurrence
probability of accidents in an administrative district. On the other hand, a road used-user is rather interested in his individual
risk. The individual risk is better reflected through an amplification of risk compared to certain reference conditions (e.g. warm
and dry weather).

It was shown that impact-based warning can lead to a-better actions of the recipients (Weyrich et al., 2018). Furthermore,
Hemingway and Robbins (2019) state that information about weather impacts can be helpful for operational meteorologists
when issuing weather warnings. This was found using a prototype impact model for predicting the risk of road disruption due
to the wind-induced overturning of vehicles. In this context, the accident model presented in this study can be considered a

useful tool for reduction of road traffic risk.
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Table 1. Descriptions of predictor variables used in different logistic regression models for hourly probabilities of weather-related road

accidents in Germany administrative districts.

Name Description

P Temporal average of accident probability of in an administrative district

P =—log(1/P)—1 P transformed using the inverse logistic function.

H A categorical variable for the hour of the day

Prrap Hourly precipitation in mm from RADOLAN data aggregated to district level
Preps,: Hourly precipitation in mm from i ensemble member of COSMO-DE-EPS aggre-

gated to district level
Preps,m Ensemble mean of hourly precipitation in mm calculated from COSMO-DE-EPS

ensemble members aggregated to district level

TrEA A binary variable indicating whether the COSMO-REA?2 near surface temperature
aggregated to district level is above or below 0°C

Teps,i As Trg 4 but derived from the i ensemble member of COSMO-DE-EPS

Tepsm As TrEa but derived from the ensemble mean of COSMO-DE-EPS

Pu Accident probability as predicted by model HOUR (see Table 2) based on P and H

Py’ = —log(1/Pr) -1 Py transformed by the inverse logistic function
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Table 2. Description of different logistic regression models for hourly probabilities of weather-related road accidents in Germany adminis-
trative districts and their degrees of freedom (Df). Formulas are written using the statistical formula notation system as used in programming

languages as R and Python, with colons indicating interaction terms. See Tab. 1 for a definition of variables.

Name Formula Df

models using radar and reanalysis data (2007-2012)

NULL y~1+P 2
HOUR y~1+P +H 25
RAD y~1+P +H+Trga+ (Prrap)®? 27
RAD_INT

-/

RAD_IND As RAD but without ﬁ/, fitted to all 401 districts individually 401 x 29
RAD_INT_IND As RAD_INT but without ﬁ/, fitted to all 401 districts individually 401 x 73

models using radar, reanalysis and weather forecast data (2011-2012)

EPS_HOUR y~1+ P 2

EPS_RAD_INT y~1+P}+Trea+ (Prrap)® 2+ Pl : Trea + Pl : (Prrap)’? +Trpa: 6
(PTRAD)OQ

EPS_MEM;_INT y ~1+Py+Tppsi+(Prpps:)’*+Py : Tepsi+Piy : (Preps:)’?+Tepsi: 6
(Preps,i)°?

EPS_MEAN_INT y~14+ Py +Tepsm+ (Prepsm)®? + Py : Teps.m+ Py : (Prepsm)®?4+ 6

Tepsm : (Preps,m)’?
EPS_PMEAN_INT As EPS_MEM;_CON_INT, but using ensemble mean probabilities for verification 20X 6
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Table 3. Verification measures for models using radar and reanalysis data; Akaike information criterion (2067-2642AIC), area under receiver

operating characteristic curve (AUC), true positive rate (TPR), logarithmic score (LR) and Brier score (BS). Scores computed in a yearly

cross-validation approach for each administrative district are shown as averages-an average of all districts. Skill scores of AUC, LS and BS
are computed with the model HOUR as reference (see Tab. 2). The best value of each score is underlined.

Model ‘ NULL HOUR RAD RAD_INT ‘ RAD_IND RAD_INT_IND

AIC ‘ 1885238 1856974 1629688 1624719 ‘ - -

AUC 0.5000 0.6157 0.8056 0.8097 0.7977 0.7740
TPR - 0.3252 0.6715 0.6707 0.6644 0.6366
LS 0.0324 0.0319 0.0280 0.0279 0.0282 0.0302
BS 0.0079 0.0079 0.0077 0.0077 0.0077 0.0077
AUCSS | -0.3053 0.0000 0.4923 0.5033 0.4714 0.4095
LSS -0.0147 0.0000 0.1194 0.1211 0.0969 -0.0144
BSS -0.0012 0.0000 0.0205 0.0208 0.0203 0.0124
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Figure 1. Distribution of the cross-validated area under receiver operating characteristic curve skill score (AUCSSvatues-) of 401 administra-
tive districts is shown for different logistic regression models for weather-related accident probabilities. The probability density is smoothed

by a kernel density estimator (shading). The median is indicated by vertical dashed lines.
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Figure 2. Comparison of modeled probabilities of weather-related road accidents with non-parametric probability estimates. Probabilities
(lines) and 95% confidence intervals based on standard errors (shading) of model RAD (left) and RAD_INT (right) are displayed as a function
of hourly precipitation (top), hour of the day (middle) and the temporal average accident probability of the administrative district (bottom)
for different parameter settings (see legends for details). Non-parametric estimates of probabilities (markers) and 95% confident intervals

based on bootstrapping (vertical lines) are shown for corresponding parameter ranges.
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Impact of fitting model to individual districts
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Figure 3. Differences of area under receiver operating characteristic curve skill score (AUCSS) values between the models RAD_IND and
RAD (red) and RAD_INT_IND and RAD_INT (black). AUCSS differences are shown for each of the 401 administrative districts vs. the

average accident probability P of the respective districts (dots).
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Figure 4. Area under receiver operating characteristic curve skill score (AUCSS) values of different models for hourly probabilities of

weather-related road accidents using radar, reanalysis and weather forecast data from 2011-2012 as a function of feadtimelead time.
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Figure 5. Application of the models EPS_RAD_INT and EPS_PMEAN_INT to a adverse winter weather event on 3rd Dec. 2012. Time
series are shown for the district of Stuttgart using the COSMO-DE-EPS forecast initialized at 00 UTC. a) Hourly precipitation aggregated
to district level, b) percentage of ensemble members with temperatures below 0°C, c) probability of weather-related road accidents and d)

relative accident probability.
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Figure 6. Model results for adverse winter weather conditions on 3rd Dec. 2012 at 17:00 local time based on models EPS_RAD_INT (top)
and EPS_PMEAN_INT using the COSMO-DE-EPS forecast with a leadtime-lead time of 16 h initialized at 00 UTC (bottom). From left to
right: hourly precipitation at district level, fraction of ensemble members with temperatures below 0°C, probability of weather-related road

accidents, and relative accident probability.
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