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Abstract 

Over the past decade global flood hazard models have been developed and continuously improved. There is now a significant 

demand for testing of the global hazard maps generated by these models in order to understand their applicability for 

international risk reduction strategies and for reinsurance portfolio risk assessments using catastrophe models. We expand on 

existing methods for comparing global hazard maps and analyse 8 global flood models (GFMs) that represent the current state 15 

of the global flood modelling community. We apply our comparison to China as a case study and, for the first time, include 

industry models, pluvial flooding, and flood protection standards in the analysis. In doing so, we provide new insights into 

how these components change the results of this comparison. We find substantial variability, up to a factor 4, between the 

flood hazard maps in modelled inundated area and exposed GDP across multiple return periods (ranging from 5 to 1500 years), 

and in expected annual exposed GDP. The inclusion of industry models, which currently model flooding at higher spatial 20 

resolution, and which additionally include pluvial flooding, strongly improves the comparison and provides important new 

benchmarks. We find that the addition of pluvial flooding can increase the expected annual exposed GDP by as much as 1.3% 

points. Our findings strongly highlight the importance of flood defenses for a realistic risk assessment in countries like China 

that are characterized by high concentrations of exposure. Even an incomplete (1.74% of area of China) but locally detailed 

layer of structural defenses in high exposure areas reduces the expected annual exposed GDP to fluvial and pluvial flooding 25 

from 4.1 % to 2.8 %. 

1 Introduction 

Floods are one of the most frequent and most devastating kinds of natural disasters. Between 1980 and 2016, floods caused 23 

% of overall economic losses and 14 % of fatalities due to natural hazards worldwide (Munich Re, 2017). In 2016, economic 

losses from flooding amounted to $56 bn globally. Understanding the risk of natural hazards, including flood risk, has therefore 30 

been identified as a priority in recent international risk reduction frameworks, such as the Sendai Framework for Disaster Risk 

Reduction (UNISDR, 2015).  
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In recent years, significant scientific efforts have been carried out to develop global flood risk models (GFMs) (Teng et al., 

2017). In terms of river flooding, these have examined current flood risk at the global scale (e.g., Winsemius et al. 2013) as 

well as future flood risk due to changes in: hazard, as a result of climate change ( Alfieri et al. 2017; Dottori et al., 2018; Arnell 35 

and Gosling 2016; Hirabayashi et al. 2013; Kundzewicz et al. 2014; Ward et al., 2017; Winsemius et al. 2015); exposure, due 

to increasing population, wealth, and urbanisation (Hallegatte et al., 2013; de Moel et al., 2015); and vulnerability (Jongman 

et al., 2015). To date, attention has especially been paid to developing global flood hazard maps. These maps indicate the 

severity of the hazard for different exceedance probabilities across the globe. The hazard severity is generally expressed in 

terms of flood extent and flood depth, on a raster grid with resolutions ranging from 1 arc second to 32 arc seconds. The GFMs 40 

that are used to create these flood hazard maps are simplified global scale models of surface water flows that are driven by 

regional or global climate models or rely on gauged discharge or (gauged) precipitation datasets (Sampson et al., 2015). The 

development of these models has been facilitated by advances in satellite data, numerical algorithms, computing power, and 

coupled modelling frameworks (Ward et al., 2015). The key advantage of GFMs compared to regional or national flood models 

is their global scale, which means that flood hazard maps are now available in data-poor areas that previously lacked hazard 45 

maps (Hagen and Lu, 2011).  

Despite these recent advances, several major challenges still exist. For example, Ward et al. (2015) discuss the quality of 

elevation data, accuracy of boundary conditions used to force inundation models, and the knowledge of river morphology, 

among other things. Bernhofen et al. (2018) also discuss the importance of forcing boundary conditions, especially input flow, 

as well as the influence of morphological features, such as floodplain size and the steepness of the terrain. Another major 50 

challenge for GFMs is to account for the impact that structural flood defenses have on flood hazard, especially in regions with 

high protection standards. 

Due to the aforementioned challenges, and the growing number of GFMs, there is now a significant demand for comparing 

the outputs of different models and assessing their accuracy. This helps in understanding the applicability of GFMs for 

developing international risk reduction strategies and for their use in reinsurance and insurance portfolio risk assessments. 55 

Several such studies have been carried out by comparing or investigating a certain model component (e.g. global hydrological 

model, river routing model, and model resolution) in the GFM framework. For example, Schellekens et al. (2017) conducted 

an inter-model agreement assessment from 10 global hydrological models (GHMs) based on the signal-to-noise ratio in 

monthly mean anomalies of evapotranspiration, runoff, root zone soil moisture and precipitation. The agreement of the GHMs 

was found to be low in snow-dominated regions and tropical rainforest or monsoon areas and high in temperate areas. A study 60 

by Zhao et al. (2017) assessed the ability of GHMs with native routing schemes to capture the timing and amplitude of river 

discharge. The results were compared to the use of a dedicated global river routing model, CaMa-Flood. Generally the use of 

CaMa-Flood improved the accuracy of simulating peak river discharge. Mateo et al. (2017) investigated the applicability of a 

GFM at higher spatial resolutions by validating it against a large past flood event in Thailand. They found that validation 

results improved with higher spatial resolution if multiple downstream connectivity is represented in the river routing model. 65 
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Rather than testing and investigating a certain model component of GFMs, Trigg et al. (2016) compared flood hazard maps 

from 6 different GFMs for the African continent. The study compared the inundated area across hazard maps for multiple 

return periods and assessed how this translates into differences in exposed gross domestic product (GDP) and exposed 

population. They found large differences; for example over the continent of Africa there is around 60 % to 70 % of 

disagreement between the GFMs in terms of inundated area. These differences are mainly present in deltas, arid climate zones, 70 

and wetlands. The study concludes that in order to increase the quality of GFMs there is a demand for more inter-comparison 

studies and stresses the importance of the inclusion of industry models. In reply, Bernhofen et al. (2018) validated the same 6 

GFMs in Africa. The best individual models performed at an acceptable level compared to observations. Further findings were 

that models forced by river gauged flow data outperform models forced by climate reanalysis data. Contrary to previous 

studies, no relationship was found between performance and model spatial resolution. In a follow-up study, Hoch and Trigg 75 

(2019) proposed a global flood model validation framework. The aim of this framework is to understand the drivers of 

deviations between GFMs by providing standard forcing data, validating and benchmarking model results, and by sorting and 

indexing reference output. This framework is in line with the currently developed eWaterCycle II platform, which provides 

the above-mentioned principles for the global hydrological modelling community (www.ewatercycle.org, Hut et al. (2018)). 

 80 

In this study, we expand upon the existing work of global flood hazard map inter-comparison studies. The main aim is to carry 

out a comprehensive comparison of flood hazard maps from 8 GFMs for the country of China, and assess how differences in 

the simulated flood extent between the models lead to differences in simulated exposed GDP and expected annual exposed 

GDP. The purpose of the main aim is to a) to assess the relative differences in the hazard output of a wide variety of global 

flood models, b) to understand and explain these differences from the differences in the models themselves (data, methods, 85 

modelling and output resolution), and c) to provide a simple analysis on the impact of these differences to flood risk. This is 

carried out by addressing the variation in different model structures and the variability between flood hazard maps. Contrary 

to previous studies, we do examine the effect of flood protection standards on flood hazard and include pluvial flooding. We 

further investigate the current differences between flood hazard maps of GFMs, as opposed to a validation study, as the addition 

of the flood protection and pluvial components provide valuable new insights in their effects on the variability in results. Our 90 

comparison uses both publicly available academic GFMs (GLOFRIS, ECMWF, CAMA-UT, JRC, and CIMA-UNEP) as well 

as industry models (Fathom, KatRisk, and JBA) that are applied within the wider re-insurance industry. To our knowledge, it 

is the first comparison study to include industry models, the pluvial flood component, and the role of flood protection on the 

flood hazard and exposure.  

 95 

China is selected as our case study area because it poses many challenges to flood modelling: data scarcity; a variety of flood 

mechanisms spanning many climatic zones; complex topography; strong anthropogenic influence on the flood regimes, for 

example through river training; and a very high concentration of exposure. Moreover, China is prone to severe flood events. 

For example, in June 2016 alone more than 60 million people were affected by floods, resulting in an estimated damage of 

http://www.ewatercycle.org/
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$22 bn (CRED 2016). The combination of data scarcity, modelling challenges, and flood impacts that occur in China fit the 100 

key advantage of GFMs well, i.e. providing hazard maps in data-poor regions. In addition, the shear spatial scale and challenges 

of modelling China (including complex topography and climate variability) provide a unique testbed for assessing the 

differences between the flood hazard maps.  

 

This paper is set up as follows. In Section 2, we describe the data and models used in this study. In Section 3, we describe the 105 

(statistical) methods applied to compare the data from the various models. In Section 4, we present and discuss the results, 

examining differences in flood hazard, exposed GDP, and expected annual exposed GDP between GFMs, the influence of 

incorporating flood protection, and model agreement. Conclusions and outlook are provided in Section 5. In the supplement 

S1, we provide a detailed overview of the models and data used. 

2 Description of flood hazard maps and models 110 

We compare flood hazard maps for different return periods from 8 different GFMs, namely: CaMa-UT (Yamazaki et al. 2011, 

2014, 2015), GLOFRIS (Ward et al. 2013; Winsemius et al. 2013), JRC (Dottori et al., 2016) ECMWF (Balsamo et al., 2015), 

Fathom (Sampson et al., 2015), CIMA-UNEP (Rudari et al. 2015), KatRisk (contact KatRisk for a technical report) and JBA 

(contact JBA for a technical report). The native flood hazard map outputs of each GFM were acquired between November 

2017 and May 2018. Data were downloaded or requested in their original published format (at the time of the study) and no 115 

bespoke or post-processed maps were requested. The acquired flood hazard maps do not include structural flood defences, the 

so called undefended flood hazard maps. The exception is the CIMA-UNEP model, which has readily built in flood protection 

(section 2,2), these hazard maps are considered to be undefended in this study. Noteworthy is that the Fathom and JBA models 

do provide separate defended hazard maps (section 2.2). The hazard maps are either fluvial floods only or fluvial with pluvial 

floods combined (Fathom, KatRisk, and JBA), the so called combined flood hazard maps. The hazard maps cover return 120 

periods (RPs) ranging from 5 to 1500 years and the native flood hazard map output resolutions range from 1 arc second to 32 

arc seconds.  

2.1 Model structures 

From the 8 GFMs, we identified two groups based on the model structure described in Trigg et al. (2016): the cascade model 

structure (CaMa-UT, GLOFRIS, JRC, ECMWF, and KatRisk) and the gauged flow model structure (Fathom, CIMA-UNEP, 125 

and JBA). An overview of the modelling chain of both model structures is shown in Figure 1 and further explained in sections 

2.2.1 and 2.2.2. A concise description of the cascade model structure is provided by Winsemius et al. (2013) and by Sampson 

et al. (2015) for the gauged flow model structure. 

The general model input data used by the GFMs (i.e. river network datasets, digital representations of the earth’s surface like 

digital elevation models (DEM), digital terrain models (DTM) or digital surface models (DSM)) vary in type, resolution and 130 
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corrections applied. CaMa-UT, GLOFRIS, JRC, ECMWF, CIMA-UNEP, Fathom and KatRisk use the HydroSHEDS river 

network (Lehner and Grill, 2013) and SRTM3 DEM (Farr et al., 2007) at either 3 or 30 arc seconds. Urban and vegetation bias 

corrections are applied before use. Additionally, KatRisk applies an algorithmic filtering to clean the DEM and uses manual 

correction to remove blockages of flow pathways. The JBA method uses the Intermap Technologies Inc. NEXTMap 

WORLD30 digital surface model (DSM) for China. The DSM provides global coverage at 1 arc second resolution. On a global 135 

scale, the JBA method uses a bare earth DTM to complement the DSM. The JBA method derives the river network from 

elevation data and applies extensive validation and correction before use. 

The summary of model characteristics in Table 2 shows the model structures, climate forcing datasets, and GHM (when 

applicable), the name and type of river routing models, considered catchment size, type of digital elevation model, downscaled 

model resolution, and the native output resolution of the flood hazard maps. 140 

2.1.1 Cascade model structure 

The defining characteristics of the cascade model structure are the use of climate forcing input datasets for the GHMs. River 

routing models then calculate the continuous river flow along river networks, calculating river and floodplain inundation 

dynamics. This is followed by flood frequency analysis (FFA), which determines flood depth and extent for a given RP or the 

flood volume in the case that downscaling is required. 145 

Following the numeration of Figure 1, the cascade modelling chain starts with: 

[1] Climate forcing datasets that provide precipitation, temperature, and in some cases potential evapotranspiration time series 

as input for GHMs. The datasets (JRA-25, EU-WATCH, ERA-INTERIM, EC-EARTH) vary in modelled time period, time 

step, resolution, and atmospheric processes. The modelled time periods range from 1979 up to present day, with all periods 

spanning more than 30 years to avoid bias by inter-decadal variability. The time step of the climate forcing datasets is 6 hourly 150 

and the horizontal resolutions range between 80 km to 1.125 degrees. The KatRisk model uses gridded daily precipitation 

observations from the US National Weather Service’s Climate Prediction Center (CPC) to establish rainfall-runoff 

relationships in combination with the ERA-Interim dataset that provides other atmospheric variables used to estimate 

evapotranspiration (like wind speed, radiation, and temperature). 

[2] The GHMs calculate the surface and atmosphere interactions. GHMs vary in modelled processes, time steps and resolution. 155 

The modelled processes mainly deviate in how runoff, evapotranspiration, and snow schemes are executed. The time steps of 

the GHMs are hourly (CaMa-UT, JRC, ECMWF), 3 hourly (CIMA-UNEP), 6 hourly (KatRisk), or daily (GLOFRIS). The 

GHM resolutions range between 3 arc seconds (CIMA-UNEP, KatRisk), 0.1 degrees (CaMa-UT, JRC, ECMWF) and 0.5 

degrees (GLOFRIS). The GHMs produce specific discharge along river networks, which is then passed through river routing 

models.  160 

[3] A wide range of methods is used to model inundation dynamics. The complexities range from 2D flood volume 

redistribution (GLOFRIS), complex 2D sub-grid topography models (CaMa-UT, ECMWF), towards 2D hydrodynamic models 

(JRC, KatRisk). Main differences between the river routing models are the resolution and the formulation of the shallow water 
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equations. The resolutions range from 3 arc seconds (KatRisk), 0.1 degrees (JRC), 0.25 degrees (CaMa-UT, ECMWF), to 0.5 

degrees (GLOFRIS). The shallow water equations used for calculating the river routing are either local intertia (CaMa-UT, 165 

ECMWF), kinematic wave (GLOFRIS, JRC), or a unit hydrograph approach (KatRisk) where upstream and lateral inflow are 

treated as instantaneous inputs to a linear time-invariant model using the advection-diffusion equation as response function.  

[4] The output of the global river routing model is used to estimate a time series of flood volume (GLOFRIS) or flood depth 

(CaMa-UT, JRC, ECMWF, KatRisk). Applying flood frequency analysis (FFA), annual maxima of local runoff and/or river 

discharge are extrapolated to RPs beyond the observational space using extreme value distributions. All models use Gumbel 170 

extreme value, to estimate peak values for each RP.  

[5] The resulting flood volumes or depths per computation cell are downscaled to increase the output resolution. Either the 

water level is downscaled (CaMa-UT, JRC, ECMWF) or the flood volume is redistributed to the resolution of the digital 

elevation model (GLOFRIS). The KatRisk model does not require further downscaling. The resolutions are 3 arc seconds 

(CaMa-UT, ECMWF) and 30 arc seconds (JRC, GLOFRIS). The native output resolutions are 3 arc seconds (KatRisk), 18 arc 175 

seconds (CaMa-UT, ECMWF) and 30 arc seconds (JRC, GLOFRIS). 

2.1.2 Gauged flow model structure 

Following the numeration of Figure 1, models belonging to the gauged flow model structure use gauged discharge or gauged 

precipitation datasets as input. The modelling approaches differ between using regionalization techniques that depend on 

upstream catchment characteristics (Fathom), models that need to be complemented by hydrologic simulations (CIMA-180 

UNEP), to those that use empirical rainfall-runoff methods (JBA). Based on the output of these methods, the flood flow 

magnitude is calculated through flood frequency analysis for given RPs that force river routing models. The river routing 

models produce flood extents and flood depths for given RPs. The gauged flow models in this study do not require 

downscaling. 

[1] For the water volume input, the CIMA-UNEP and Fathom models use the Global Runoff Data Centre (GRDC, Germany) 185 

river discharge dataset as their main input of discharge observations. This dataset consists of more than 9500 stations that 

collect their data at daily and monthly intervals. Of these 9500 stations, only 39 are located in China. The Fathom model is 

complemented with the United States Geological Survey (USGS) stream gauge dataset. The JBA method uses the Climate 

Research Unit (CRU) TS 3.2 (>4000 weather stations) (Harris et al., 2014) and Climate Forecast System Reanalysis (CFSR) 

v2 precipitation dataset (Saha et al., 2010), which respectively cover the period 1901 to 2011 and 1979 to 2009 with a monthly 190 

and daily temporal resolution. The CFSR data are calibrated using 25 rain gauges in China. For China, 170 river gauges are 

used to enable the modelling of empirical rainfall-runoff relationships to calculate river discharge. 

[2] The CIMA-UNEP and Fathom models follow the assumption that inferences from data-rich catchments can be transferred 

to data poor catchments. Discharge data are first pooled into homogeneous regions based on catchment descriptors of climate, 

upstream annual rainfall and catchment area, after which they are divided into the five classes of the Köppen-Geiger climate 195 

classification (Kottek et al., 2006; Sampson et al., 2015). Regional flood frequency curves are derived using the generalized 
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extreme value distribution and are combined with the index flood to generate return period design flood hydrographs along 

the river network (Sampson et al. 2015; Smith et al. 2015). 

The CIMA-UNEP model is complemented with hydrologic simulations using the EC-Earth climate forcing dataset and the 

continuum model to ensure that results are correct in data-scarce catchments. The JBA model does not require regression 200 

techniques as their precipitation datasets have global coverage.  

[3 and 4] The flood hydrographs are then used to force river routing models that propagate the flow across digital elevation 

models, calculating flood depth and extent without the need for downscaling. As with the cascade models, the river routing 

models of the gauged flow models vary in methods and complexity. JBA uses the RFlow model for all of the large river 

networks in China, except for the downstream end of the Pearl River (Guangzhou area) and the downstream end of the Yangtze 205 

River (Shanghai area), which are modelled with JFlow in a fluvial configuration. Small rivers (catchments < 500km2) as well 

as surface water flooding are modelled using JFlow in a direct-rainfall configuration. The resolutions of the river routing 

models vary between 1 arc second (RFlow, JFlow), 3 arc seconds (CIMA-UNEP), and 30 arc seconds (Fathom). The shallow 

water equations used for calculating the river routing are inertia (Fathom), Mannings equations (CIMA-UNEP), the 

combination of the Normal Depth and Mannings equations (JBA-RFlow model) and the full shallow water equations (JBA-210 

JFlow model).  

2.1.3 Pluvial flood modelling 

In addition to fluvial floods, the JBA, Fathom, and KatRisk models also simulate pluvial floods. Fathom uses a “rain-on-grid” 

method for rivers and catchments smaller than 50 km2, where flow is generated by raining directly on the DEM at 3 arc seconds 

in order to calculate runoff. This method uses Intensity-Duration-Frequency (IDF) relationships to estimate the duration, 215 

intensity and frequency of extreme rainfall before applying the same regression techniques for extrapolation as with the fluvial 

component. The JBA method follows a similar approach by calculating IDF relationships at the centroid of each CFSR tile 

(0.5degree x 0.5degree). Kriging is used to interpolate between the tile centroids to create a continuous rainfall surface for 

each RP and storm duration (three storm durations are included; 1, 3 and 24 hour). The JFlow routing model is run in this 

direct-rainfall approach to model the small rivers (<500 km2) and surface waters. The KatRisk model uses daily precipitation 220 

from the Climate Prediction Centre dataset (Boulder, USA) to simulate rainfall over catchments smaller than 500 km2. The 

precipitation dataset combines all available historical data sources for daily and sub-daily global coverage from 1979 to real-

time, longer for monthly data. The data are checked for errors and to ensure spatial and temporal consistency. A 2D storage 

cell (diffusive wave) model is used to calculate pluvial flood patterns. The runoff is distributed uniformly across a catchment 

and routed according to topography at 3 arc seconds. The flow (surface runoff fraction) is calibrated using river gauged 225 

discharge data. 
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2.2 Defended hazard maps and external flood protection layers 

Of all global flood models considered in this study, three include options for considering the impact of structural flood defenses 

on the hazard maps.  

The CIMA-UNEP hazard maps are the only maps that contain a level of built-in flood protection, which cannot be removed. 230 

They incorporate flood protection standards by creating a defense ellipsoid around large cities, with the size being dependent 

on the GDP. All flooding within this ellipsoid is removed in post-processing and the defenses are assumed to fail above a 

standard of protection of RP200. Hence, this also means that for the CIMA-UNEP model the undefended baseline hazard maps 

are not available for this study. 

Alongside the undefended hazard maps, Fathom also provided flood hazard maps with integrated flood protection. JBA further 235 

provided a dataset of defenses (largely for dense urban areas) that can be superimposed on the flood hazard maps to create a 

defended set of flood maps per return period. 

To allow for comparison between the individual GFMs, we decided to include defenses only in a post-processing step using 

not-built in layers of defenses, meaning that Fathom’s defended maps were not used in this study. Section 3.5 describes the 

post-processing step in more detail. 240 

The two flood protection layers used in this study are: 1) a county level defenses layer, and 2) a city level defenses layer. The 

first layer was created by Du (2018), and describes standards of protection (SoP) on an administrative county level covering 

the whole of China. It can be considered as a kind of policy layer as it makes assumptions about the degree of protection based 

on goods to be protected. This layer was developed by dividing counties into urban or rural areas. The urban area SoPs are 

based on GDP and population datasets from the Chinese government. The GDP dataset is converted into a weighted population 245 

dataset and is then combined with the population dataset to calculate the maximum urban protection for a given county. The 

rural area SoP is based on the assumption that farmland is a key indicator for flood protection due to its importance for 

providing food security for the large population of China. The area of farmland is derived from a governmental land use map 

and is combined with the population dataset to calculate the maximum SoP for each county. The urban and rural areas within 

the counties are then combined to create a nationwide layer of flood protection standards. The SoPs of the layer range from 10 250 

in rural counties (western China) to 200 in urban counties (eastern China).  

The second layer is the high resolution JBA Defended Areas flood protection layer and is from hereon in referred to as the city 

level defense layer. The layer is a national layer that contains SoP polygons with a focus on urban areas. The defended areas 

are determined using a variety of best available third party sources. Some of the defended areas were excluded by JBA as it is 

likely that flooding might occur from surrounding undefended areas. The SoP attributed to each defended area is determined 255 

from the local available data source. Where it was not known, the defended area was attributed with the SoP of either the 

neighboring defense data or the regional average. In total, the layer covers only 1.74% of the area of China. 
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3 Methodology 

We assess the agreement between the flood hazard maps of the 8 GFMs by calculating the inundated area for the whole of 

China and by applying a model agreement index that calculates the agreement on inundation per grid cell. We include a GDP 260 

layer to study how inundated area relates to exposed GDP, the amount of expected annual exposed GDP, and how model 

agreement relates to agreement on the amount of exposed GDP. By including flood protection standards we can assess the 

effects of these layers on the previous mentioned types of analyses, benefitting the knowledge of the importance of including 

such layers in further studies. In addition, we ensure a fair and accurate comparison of the flood hazard through the use of a 

data homogenization scheme. 265 

3.1 Data homogenization 

We acquired the undefended flood hazard maps of the global flood models (GFM) in their native output format. The difference 

in resolutions and output formats require an initial homogenization of the data. Firstly, the hazard maps were masked to the 

case study area extent. The extent includes continental China, excluding Hong Kong, Macau and Taiwan. Thirdly, we 

disaggregated the hazard maps to a 3 arc-second resolution. The chosen resolution is a balance between minimizing the loss 270 

of data quality while maintaining manageable file sizes and processing time. The disaggregation was conducted with the 

nearest-neighbour resampling technique, meaning that a single 30 arc second grid cell is resampled to ten 3 arc second grid 

cells with the same value. The Fathom and KatRisk model outputs did not require resampling as their hazard maps are native 

at 3 arc seconds. The JBA flood hazard maps were aggregated to 3 arc seconds from their native 1 arc second hazard map 

resolution. Fourthly, the hazard maps were converted from representing flood depth, when available, to flood extent by 275 

changing all grid cell values larger than 0 to 1. This decision was made due to the lack of flood depth availability in all flood 

hazard maps. Lastly, 'permanent' waterbodies were removed from the flood hazard maps. The GFMs disagree on the inundation 

of lakes and rivers. To avoid a large positive bias in the hit rate we removed these ‘neutral water bodies’ from the hazard maps 

using an independent dataset. The global surface water 1984-2015 dataset from the Joint Research Centre (Pekel et al., 2016) 

was modified to represent ‘neutral water bodies’ as areas that are inundated 80 percent of the time or more during the 1984 to 280 

2015 period. This percentage of occurrence ensures that permanent lakes and rivers are removed, whilst minimizing the 

removal of floodplain inundation. 

3.2 Inundation percentages 

We compared the amount of inundated area between the different flood hazard maps with and without flood protection 

standards. To accurately calculate the inundated area in km2 we implemented the Haversine method (Brummelen, 2013). Using 285 

this method we created a grid containing the accurate size in km2 of each grid cell. Next, we divided the inundated area of the 

flood hazard maps by the total land area of China to express the results as an percentage of inundated area of the total land 

area of China. 
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3.3 Exposed GDP and Expected Annual Exposed GDP 

The exposed GDP was calculated by overlaying the flood hazard maps with a gridded GDP layer created by Kummu et al. 290 

(2018). This layer has a native resolution of 30 arc seconds and represents the year 2015. We first adjusted the resolution of 

the GDP layer to 3 arc seconds using the bilinear resampling technique. Next, we multiplied the homogenized flood extent 

hazard maps with the GDP layer to obtain the exposed GDP value for each inundated grid cell. The results were then divided 

by the total GDP of China to express the exposed GDP as a percentage of the total GDP of China. In addition, we calculated 

the expected annual exposed GDP (EAE-GDP) following the method of Apel et al. (2016). The EAE-GDP is the result of the 295 

flood event probability of exceedance (𝑃) and its exposure (𝐸). 

𝑅 = ∑ ∆𝑃𝑖 ∙ 𝐸𝑖̅
𝑛
𝑖=1            (1) 

∆𝑃𝑖 = 𝑃𝑖+1 − 𝑃𝑖  

∆𝐸𝑖̅ =
1

2
(𝐸𝑖 + 𝐸𝑖+1), 

𝑅 is the EAE-GDP. ∆𝑃 is the change in annual probability of exceedance where 𝑃 =
1

𝑇
 , and T is the return period (RP) (Triet 300 

et al., 2018). 𝐸 is the exposed GDP, 𝑖 the numerator of T under consideration (with 𝑖 = 1 representing RP5 in this study), and 

𝑛 is the number of considered RPs. The RPs that were not represented by the individual GFMs were filled to ensure that the 

lack of especially low RP data does not distort the actual EAE. The data gaps were filled using linear interpolation and 

extrapolation for RP5 to RP1500 based on the exposed GDP percentage results. This can have a large effect on the results of 

GFMs that lack lower RP flood hazard maps as they will likely have an overestimation of exposed GDP due to linear 305 

extrapolation. 

3.4 Model Agreement Index 

The model agreement index (MAI) was introduced by Trigg et al. (2016) as a measure for expressing model agreement on a 

grid cell level. We calculated the MAI for the RPs 20-25, 50, 100 and 500, because these are available for all 8 GFMs. A 

distinction is made between the fluvial and combined hazard maps. Before MAI calculation, the binary hazard maps (data 310 

homogenization processes) were aggregated (stacked), resulting in grid cell values ranging from 0 to 7 for the fluvial hazard 

maps and grid cell values ranging from 0 to 3 for the combined hazard maps. KatRisk’s maps produce fluvial and pluvial flood 

hazard combined and are therefore not included in the fluvial MAI calculation. 

𝑀 =
∑

𝑖

𝑁
∙𝑎𝑖

𝑛
𝑖=2

𝐴
,            (2) 

where 𝑀 is the model agreement index (MAI), 𝑁 is the number of models under consideration, 𝑖 the number of models in 315 

agreement, 𝑎𝑖 the inundated area for the number (𝑖) of models in agreement, and 𝐴 is the total inundated area of all models 

under consideration. 

The MAI formula in Eq. 2 has an output value between 0 (no agreement) and 1 (perfect agreement). The formula only takes 

into account inundated grid cells in order to avoid misrepresentation of model agreement. The large number of non-inundated 



 

11 

 

grid cells would create bias due to a high hit rate. An example of a model agreement grid with MAI calculation is provided in 320 

Table 3. 

3.5 Defended hazard maps 

We assess the influence of flood protection on the inundated area, exposed GDP, EAE-GDP, and MAI using two different 

types of defenses to reflect two typically used strategies for modelling structural defenses. A) a county level and largely policy 

based defense layer and B) a national layer defense layer with a focus on urban areas on a city-scale that delineates defenses 325 

only in areas of highest exposure (described in section 2.2). The undefended hazard maps of all models considered in this study 

were used. For the special case of the CIMA-UNEP flood hazard maps, which include a built-in defense layer, we still super-

impose the defense layers. The defended flood hazard maps are created by masking areas that are protected for a given standard 

of protection (SoP). For example, a grid-cell that is inundated at RP100 and has a protection level of SoP100 is considered to 

be not inundated and is therefore masked in the flood hazard map.  330 

4 Results and Discussion 

4.1 Spatial distribution of floods 

Figure 2 shows the RP100 flood extent for both fluvial (2a) and fluvial with pluvial flooding combined (2b) across China. 

Noticeable are the large inundated areas in the Xinjiang province of northwestern China, the northeastern provinces of 

Heilongjiang, Jilin, and Liaoning, as well as the large deltas located in the east. The latter consists of the large cities of Beijing 335 

and Shanghai (among others), and is therefore a region of high exposure. 

4.2 Inundated area and flood protection 

The comparison of inundated area (expressed as a percentage of the total land area of China) between different models is 

shown in Figure 3 (a-c). The figures show both the fluvial hazard maps and the combined hazard maps (fluvial and pluvial 

floods), with RPs ranging from 5 to 1500. Results are shown for the undefended layers (3a) and the defended layers (3b and 340 

c).  

Focusing first on the undefended fluvial hazard maps in Figure 3a (solid lines), the predicted spread in percentage of inundated 

area ranges between 4.3 % and 9.8 % for RP20, and 5.8 % to 14.2 % for RP500. The CaMa-UT, GLOFRIS and JRC models 

show very similar results across RPs and generally low amounts of percentage of inundated area compared to the other GFMs. 

The ECMWF, Fathom and CIMA-UNEP models show similar results across RPs and moderate amounts of percentage of 345 

inundated area. JBA’s maps produce the highest percentage of inundated area across all RPs.  

The differences and similarities in results cannot be explained by differences in model structure alone. The GFMs with the 

closest resemblance in model structure and model components (Table 2) are the CaMa-UT and ECMWF models and the results 

differ up to a factor 2. These models use different climate forcing datasets (JRA Reanalysis, ERA-Interim) and GHMs 
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(MATSIRO-GW, HTESSEL), the rest of the model structure is similar. From the resemblance in model structures of the 350 

CaMa-UT and ECMWF models it can be inferred that the difference in global climate forcing and GHM have large effects on 

the percentage of inundated area.  

The difference in inundated area between low and high RPs is small for the majority of models (figure 3a), with the exception 

of the Fathom and JBA models. The CaMa-UT and ECMWF models show a similar increment across the different RPs (though 

there is a large absolute difference between the two models), which is possibly caused by the similar output resolution (18 arc 355 

seconds) and considered catchment size (500 km2). GFMs with higher output resolutions and smaller considered catchment 

sizes tend to have larger increments between different RPs in the results, such as the JBA model. Moreover, the high output 

resolution and  the inclusion of catchments of very small size in the JBA model are likely the reason for the hazard maps to 

predict inundation percentages significantly higher than the other models.  

For the 6 GFMs (excluding JBA and KatRisk) that were used in the study of Trigg et al (2016), the undefended fluvial hazard 360 

map percentages of area inundated in our study for China are similar to those found in Africa by Trigg et al. For example. the 

inundation percentages range between 3 % to 8.2 % for RP20 and 3.5 % to 9.5 % for RP500 and the results are highest for the 

ECMWF and Fathom models in both studies. However, the results based on the CIMA-UNEP model are very different, with 

a relatively high percentage of inundation (double) in our study compared to the study of Trigg et al. (2016). However, it 

should be noted that the output resolution of the CIMA-UNEP hazard maps used in our study (32 arc seconds or ~1km) is 365 

lower than the resolution used by Trigg et al. (2016) (3 arc seconds or ~90m). Rudari et al. (2015) tested the role of output 

resolution on the hazard maps of CIMA-UNEP. They found that aggregating data from 3 arc seconds to 32 arc seconds has 

major implications; for 22 case study areas investigated in East-Asia, they found an increase of inundation amount by a factor 

2 on average. Their findings correspond well with the difference in CIMA-UNEP results between both studies and further 

underline the large influence of output resolution on flood hazard maps. 370 

The combined hazard maps shown in Figure 3a (Fathom, KatRisk, and JBA models, dashed lines) show less variation for a 

given RP than the undefended fluvial hazard maps. The values vary between 8.0 % and 10.5 % for RP20, and 15.2 % to 17.7 

% for RP500. The difference in inundated area between the JBA fluvial and combined hazard maps is relatively stable across 

increasing RPs. However, this is not the case with the Fathom model that shows larger differences with increasing RP. The 

higher amounts of inundation percentage due to the addition of pluvial floods (2 % points Fathom and 0.9 % points JBA for 375 

RP100) highlight the importance of including pluvial floods in flood hazard assessments at a large scale. 

Next, we examine the defended flood hazard map results shown in Figures 3b-c. The defended county level flood hazard map 

results in Figure 3b are based on the assumption of complete protection against RP10 (rural areas) and up to RP200 (in urban 

areas), and no protection against RP250 floods and higher. The results show percentage of inundated area for RP20 ranging 

between 0.2 % and 1.5 %. The effect of including flood protection is largest for low RPs and becomes smaller with increasing 380 

RP. The results for RP100 vary between 4.4 % and 12.7 %. Compared to the undefended hazard maps the spread of results is 

reduced from 6.2 % points to 1.3 % points for RP20 and from 8.8 % points to 8.3 % points for RP100. The small difference 
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between undefended and defended county level maps at RP100 is explained by the presence of flood protection in the 

economically prosperous and densely populated counties in eastern China, leaving more counties prone to flooding.  

The defended city level hazard map results in Figure 3c do not assume complete protection against a given RP flood. The 385 

results are similar to the results of the undefended flood hazard maps because of the coverage of 1.74 % of China for this flood 

protection layer.  

4.3 Exposed GDP and flood protection 

The exposed GDP results (expressed as percentage of the total GDP of China) for the fluvial and combined hazard maps are 

shown in Figures 3d-f, for RPs ranging from 5 to 1500 years, with and without flood protection. Results for the undefended 390 

exposed GDP (Figure 3d) vary between 13.9 % and 27.8 % for RP20 and between 17.9 % and 33.4 % for RP100. Multiple 

similarities are found between the inundated area (Figure 3a) results and the exposed GDP (Figure 3d) results. The CaMa-UT, 

GLOFRIS and JRC models have the lowest percentages for both types of results per RP. Similarly, the combined hazard maps 

of the KatRisk, Fathom and JBA models have the highest percentages. The main difference is for the ECMWF model, which 

has the highest percentages of exposed GDP between RP5 and RP100 as this is different from the inundated area results in 395 

which the inundated area is close to the average of all GFM results. Additionally, the Fathom model estimates relatively low 

exposed GDP percentages compared to the fluvial percentage of inundated area, which were close to the average. These results 

depict that a high amount of inundated area does not necessary lead to a high amount of exposed GDP and vice versa. 

The high exposed GDP percentages of the ECMWF model are caused by the inundation of densely populated deltas in eastern 

China. Inundated area alone does not give an adequate representation of the difference between models in terms of their use 400 

for assessing the impacts of floods. This is further illustrated by the relatively low exposed GDP percentages of the Fathom 

model, which is due to simulated inundation in large parts of the sparsely populated regions of western China. The CIMA-

UNEP results show a large increase in exposed GDP percentage between RP500 and RP1000 of 12.1 % points, caused by the 

exceedance of the built in level of flood protection of large cities.  

The defended county level exposed GDP results in Figure 3e vary between 0.1% and 0.2% for RP20 and between 8.8% and 405 

17.6% for RP100. Compared to the undefended exposed GDP results (Figure 3d), the effect of including county level flood 

protection standards is larger for exposed GDP than inundated area. Generally, the variability between models in exposed GDP 

is very small between RP20 and increases towards RP100. At RP250 and higher the variability of results increases more due 

to floods exceeding the design values of the defenses for the large cities (where GDP is concentrated) in the delta areas. This 

has a larger effect on the exposed GDP of the fluvial hazard maps of the CaMa-UT, GLOFRIS, JRC, and Fathom models than 410 

on the combined hazard maps of KatRisk, Fathom and JBA models. 

The results of the city level defended exposed GDP in Figure 3f vary between 9.4 % and 18.5 % for RP20 and between 17.3 

% and 32.5 % for RP100. Contrary to the small effect of city level defenses on the inundated area results, the impact is large 

for the exposed GDP results in respect to the small coverage of China (1.74 %). For example, the ECMWF model has a lower 

exposed GDP of 15.8 % for the city defended scenario as compared to 27.8 % for the undefended scenario at RP5. The city 415 
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defended results show less variability for the lower RPs than for the undefended exposed GDP. The variability among the 

GFMs increases between RP50 and RP100 from 9.6 % to 15.2 % because the highest assumed level of flood protection for 

this layer is RP100. 

These results highlight the importance of including locally detailed flood protection data for the correct representation of 

exposed GDP. Adding information from a policy layer can further improve the risk assessment on a country wide scale, but 420 

needs careful validation of the uniform per county total protection assumptions. Also, ideally, flood protection standards are 

already incorporated within the river routing models of the various GFMs instead of incorporation during post-processing. 

4.4 Expected Annual Exposure 

The expected annual exposed GDP (EAE-GDP) results shown in Table 4 are expressed as a percentage of the total GDP of 

China. Generally, these results reflect the findings of the per RP comparison in the previous sections. The CIMA-UNEP model 425 

simulates much lower EAE-GDP than the other models for the undefended and defended county level EAE-GDP, which is 

due to the large difference in inundation percentages, caused by incorporated flood protection, between RP25 and RP50. 

Extrapolation of these results to RP5 leads to very low exposed GDP percentage estimates and therefore results in a low EAE-

GDP value. This is not the case for the defended county level EAE-GDP due to all models agreeing on low amounts of exposed 

GDP for RP20 and RP25. The agreement between GFMs causes the defended county level variation to be small, at 0.29 % 430 

point.  

4.5 Model Agreement 

The model agreement maps shown in Figures 2a-b depict the model agreement at the grid cell level for undefended fluvial and 

combined hazard maps for RP100. The areas with highest model agreement are mainly situated next to large rivers or deltas 

in eastern and northwestern China. Comparing the results of both flood type hazard maps, it appears that the combined flood 435 

hazard maps (Figure 2b) have higher model agreement for these flood hotspots. Furthermore, the combined hazard maps show 

an increased level of detail due to higher native output resolutions. An overview of the model agreement index (MAI) for the 

whole of China is provided in Table 5.  

The MAI scores for RP100 are 0.29 for the fluvial hazard maps and 0.38 for the 3 combined hazard maps. The change in MAI 

between RPs is the largest between RP20(-25) and RP50 for both undefended flood type hazard maps and reduces slightly at 440 

higher RPs. Comparing the results of the undefended and county level defended hazard maps, the defended hazard maps have 

lower MAI scores for both flood types below RP500, and there is no difference between MAI scores for the defended and 

undefended maps at RP500 and above as no flood defenses are in place. The city-scale defended hazard maps are not included 

in the MAI results section due to the small change in inundated area and therefore model agreement. 

Model disagreement occurs mainly at the floodplain edges and on the modelling of smaller streams and rivers due to differences 445 

in considered catchment size of the GFMs. This effect is more pronounced for smaller RPs.  
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The average MAI scores on a province level shown in Figures 4a-b show the spatial differences of model agreement in China. 

MAI scores are higher (0.30-0.60) in the northwestern and eastern provinces for the fluvial hazard map in Figure 4a. The same 

map shows that model agreement is low in western China, the provinces in the south, and especially the Island of Hainan, with 

MAI scores between 0.10 and 0.30. The combined hazard map results in Figure 4b show a different spatial distribution of MAI 450 

scores. The scores are highest in the northern provinces (0.50-0.65), some of the southern provinces (0.50-0.55), and the eastern 

provinces (0.55-0.60). The delta areas in the eastern and northeastern regions, and the provinces in western China, have lower 

MAI scores (0.35-0.50) than the previously mentioned regions. 

These results indicate the importance of modelled catchment size and output resolution of the GFMs for the hazard maps. For 

example, the fluvial hazard maps of the JRC model only include catchments larger than 5000 km2, while the Fathom model 455 

includes catchment sizes of 50 km2 and larger for their fluvial hazard maps. This mismatch between models results in lower 

MAI scores. This is further illustrated by the low MAI score for the relatively small island of Hainan in the south of China, 

which is not modelled by all GFMs. A plausible cause of the combined hazard maps having higher model agreement in the 

mountainous parts of China is again the similarity in modelled catchment size and output resolution as they capture smaller 

headwater catchments. For the end-user the higher MAI in these regions demonstrates more robustness in results and therefore 460 

shows that the selection of GFM should be considered based on the location of interest. 

4.6 Limitations 

The comparison of flood hazard maps is based on flood extent, where every grid cell is considered as fully inundated at more 

than 0 cm of flood depth. In this study we did not test the effect of this assumption on the results. A possible effect is the 

overestimation of flood extent by coarse resolution models as for example a grid cell with a small amount of inundation can 465 

be disaggregated to multiple inundated grid cells and therefore misrepresent the native flood hazard maps. A future study 

would benefit from testing multiple inundation thresholds for converting flood depth to flood extent or by adding methods to 

compare inundation depth. 

An additional limitation is the lack of RPs, especially the lower RPs, that shape the EAE-GDP results. Linear extrapolation of 

exposed GDP results to RP5 can misrepresent how GFMs simulate low RP floods. This affects the EAE-GDP, because the 470 

results of low RP floods have a larger weight on the results than high RP floods. Future studies should test multiple 

extrapolation and or interpolation methods.  

Our study has focused solely on the inter-comparison of the outputs of the 8 GFMs and has not attempted a validation against 

past flood event footprints or results of regional flood maps. Therefore, results can currently only be interpreted relative to one 

another. In addition, this study does not portray a complete picture of a full flood risk assessment and should not be interpreted 475 

as such. The hazard component shows high amounts of uncertainty, as illustrated by relevance of the flood defense assumptions 

which are larger than the variability between GFMs. The modelling of vulnerability and exposure would even add more levels 

of uncertainty to the outcome of a flood risk assessment.  
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5 Conclusions and Outlook 480 

The main of this study aim was to carry out a comprehensive comparison of flood hazard maps from 8 GFMs for the country 

of China, and assess how differences in the simulated flood extent between the models lead to differences in simulated exposed 

GDP and expected annual exposed GDP.  

The main findings of this study are: 

- Variations up to a factor 4 between the flood hazard map outputs of GFMs in terms of inundated area and exposed 485 

GDP. 

- The GFMs that were assessed by Trigg et al. (2016) for the African continent showed similar results to this study, 

with the exception of the CIMA-UNEP model.  

- The difference in the CIMA-UNEP model results between these studies underline the importance of the native output 

resolution of the flood hazard maps, which is in line with previous findings of Rudari et al. (2015). 490 

- The GFMs with the closest resemblance in model structure and model components, i.e. the CaMa-UT and ECMWF 

models, differ up to a factor 2. Their model setup deviates in terms of the used climate forcing datasets and GHMs, 

highlighting the large effect of these model inputs on the results.  

- Higher model agreement is found for combined hazard maps than for fluvial hazard maps. This is due to greater 

similarity in the native output resolution and the considered catchment size of the three models (Fathom, JBA, and 495 

KatRisk) that include pluvial flooding. Furthermore, the spatial distribution of model agreement differs between both 

types of flood hazard maps on a province level.  

- Pluvial flooding (both flooding of headwater catchments and off floodplain flooding) is a highly important form of 

flooding (for China). Depending on the minimum catchment size used for modelling fluvial floods, adding pluvial 

flooding can increase the expected annual exposed GDP by as much as 1.3% points. 500 

- Incorporation of external flood protection standards in the flood hazard maps reduces the variability of inundation 

and exposed GDP between GFMs. Knowledge of structural defenses in high exposure areas is key in adequately 

assessing the overall risk of a country. County level (policy level) defense knowledge can help to further improve the 

results, but needs to be checked carefully.  

- The inclusion of industry models that currently model flooding at higher resolution both on the grid as well as on the 505 

catchment level and that additionally include pluvial flooding component strongly improved the inter-model 

comparison and provides important new benchmarks for flood exposure. 

GFMs are complex modeling chains, with assumptions and uncertainties in the input data, the individual model components 

and their parameterization. In our study we can draw some preliminary conclusions on the impact of certain modelling 

decisions on the flood hazard map outputs. However, we cannot conclude on GFM quality or the quality of an individual model 510 

component. For the latter, a systematic comparison framework is required, in which each of these modeling components and 
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parameters would be tested individually and in unison. The proposed model comparison framework of Hoch and Trigg (2019) 

could therefore greatly benefit our current understanding of global flood hazard. 

Based on our conclusions we advise practitioners to follow the flowchart in Figure 5 when selecting flood hazard maps. The 

order of the flowchart does not indicate the relative importance of each component. First, a selection should be made based on 515 

the inclusion of (external) flood protection standards. Second, the practitioner should include pluvial floods when relevant in 

the study area. Third, the minimum catchment size and modeled resolution should fit the case study area and the required level 

of detail of the hazard maps. Fourth, the type of forcing product should be evaluated based on origin (re-analyses, gauged, 

radar, satellite) and quality. Fifth, the model structure and specifications should be selected based on the GHM and river routing 

model characteristics.  520 

In the future, multiple improvements are expected that can greatly benefit GFMs and their use for risk assessment. In terms of 

climate data, the ERA5 climate reanalysis dataset (the successor of ERA-Interim) has been released, leading to an increase of 

spatial and temporal resolution, among other aspects. GFMs can greatly benefit from next generation DEMs, which will 

increase model resolution, result in better parameterization of hydrodynamic modelling, and have the potential for capturing 

flood defenses. Improvements on current DEMs have been made by the creation of the Merit DEM (Yamazaki et al., 2019), 525 

which better captures river networks.  

This study highlights the importance of pluvial flooding as a main contributor to flood risk that, if unaccounted for, can lead 

to a strong underestimation of the total flood risk. For future studies we recommend to further complete the comparison with 

coastal flooding that is increasingly available as either integrated component to the global flood models under investigation or 

as separate hazard global layers (Couasnon et al., 2019). Further, we can illustrate the effect of flood defenses on overall flood 530 

risk and the strong sensitivity to this parameter that dominates most other input and modelling uncertainties.  
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Table 1: Technical specification of the flood hazard maps of the 8 GFMs.  

*1 CIMA-UNEP: defenses are readily built-in, see section 3.5 for more information. 

*2 Fathom: Defended hazard maps contained very limited flood defenses, not included in this study.                  655 
*3 JBA: Includes not readily built-in flood protection layer, see section 3.5 for more information. 

  

 

Figure 1: Two types of model structures as introduced by Trigg et al. (2016), with the cascade model structure in blue and the gauged flow 

model structure in red.  660 
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Table 2: Summary of the main model characteristics of the 8 GFMs. 670 

  

 

 

 

Table 3: M (MAI) calculation based on an example grid with a river indicated in bold with value 0. 675 
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Figure 2: Aggregated flood hazard maps for both flood types, where the numbers and corresponding colors indicate the number of models 

in agreement on the inundation of a grid cell. 2a: Aggregated undefended fluvial flood hazard maps of 7 GFMs for RP100. 2b: Aggregated 680 
undefended combined (fluvial and pluvial) flood hazard maps of 3 GFMs for RP100. 
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Figure 3: Results of multiple return period fluvial and combined hazard maps of 8 GFMs. The results of the fluvial hazard maps (_F) are represented by a continuous line and those of the combined 

hazard maps (_FP) by an interrupted line. The RPs range from 5 to 1500 and are displayed on a logarithmic horizontal axis. 3a: Percentage of inundated area of China of undefended fluvial and 

combined hazard maps. 3b: Percentage of inundated area of China of county level defended fluvial and combined hazard maps. 3c: Percentage of inundated area of China of city level defended 

fluvial and combined hazard maps. 3d: Exposed GDP percentage of China of undefended fluvial and combined hazard maps. 3e: Exposed GDP percentage of China of county level defended 

fluvial and combined hazard maps. 3f: Exposed GDP percentage of city level defended fluvial and combined hazard maps. 
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Table 4: EAE-GDP results of the 8 GFMs for the undefended, county level defended, and city level defended exposed GDP scenarios. The values are expressed as 

EAE-GDP percentages of China.  

  

 

Table 5: MAI results for the undefended and county level defended fluvial and combined hazard maps for multiple RPs. 5 
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Figure 4: The spatial distribution of average MAI results on a province level for RP100 in China. 4a: Undefended fluvial hazard map MAI scores (7 GFMs). 4b: 10 
Undefended combined hazard map MAI scores (3 GFMs). 
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Figure 5: Flowchart describing practitioners flood hazard map selection criteria. 

 


