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Abstract. Flood frequency curves are usually highly uncertain since they are based on short data sets of measured discharges
or weather conditions. To decrease the confidence intervals, an efficient bootstrap method is developed in this study. The Rhine
river delta is considered as a case study. We use a hydraulic model to normalize historic flood events for anthropogenic and
natural changes in the river system. As a result, the data set of measured discharges could be extended with approximately 600
years. The study shows that flood events decrease the confidence interval of the flood frequency curve significantly, specifically
in the range of large floods. This even applies if the maximum discharges of these historic flood events are highly uncertain

themselves.

1 Introduction

Floods are one of the main natural hazards to cause large economic damage and human casualties worldwide as a result of
serious inundations with disastrous effects. Design discharges associated with a specific return period are used to construct
flood defences to protect the hinterland from severe floods. These design discharges are commonly determined with the use
of a flood frequency analysis (FFA). The basic principle of an FFA starts with selecting the annual maximum discharges of
the measured data set, or peak values that exceed a certain threshold (Schendel and Thongwichian, 2017). These maximum
or peak values are then used to identify the parameters of a probability distribution. From this fitted distribution, discharges
corresponding to any return period can be derived.

Return periods of design discharges are commonly in the order of 500 years or even more, while discharge measurements
have been performed only for the last 50-100 years. For the Dutch Rhine river delta (used as a case study in this paper), water
levels and related discharges have been registered since 1901 while design discharges have a return period up to 100,000 years
(Van der Most et al., 2014). Extrapolation of these measured discharges to such return periods results in large confidence
intervals of the predicted design discharges. Uncertainty in the design discharges used for flood risk assessment can have major
implications for national flood protection programs since it determines whether and where dike reinforcements are required. A
too wide uncertainty range may lead to unnecessary investments.

To obtain an estimation of a flood with a return period of e.g. 10,000 years with little uncertainty, a discharge data set of at

least 100,000 years is required (Klemes, 1986). Of course, such data sets do not exist. For this reason, many studies try to extend
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the data set of measured discharges with historic and/or paleo flood events. The most common methods in literature to include
historical data into an FFA are based on the traditional methods of frequentist statistics (Frances et al., 1994; MacDonald et al.,
2014; Sartor et al., 2010) and Bayesian statistics (O’Connell et al., 2002; Parkes and Demeritt, 2016; Reis and Stedinger, 2005).

While frequentist statistics are generally applied by decision makers, Bayesian statistics have significantly increased in
popularity in the last decade. Reis and Stedinger (2005) has successfully applied a Bayesian Markov Chain Monte Carlo
(MCMC) analysis to determine flood frequency relations and their uncertainties using both systematic data and historic flood
events. A Bayesian analysis determines the full posterior distribution of the parameters of a probability distribution function
(e.g. GEV distribution). This has as advantage that the entire range of parameter uncertainty can be included in the analysis.
Contrarily, classical methods based on frequentist statistics usually only provide a point estimate of the parameters where after
their uncertainties are commonly described by using the assumption of symmetric normal distributed uncertainty intervals
(Reis and Stedinger, 2005). The study of Reis and Stedinger (2005) shows that confidence intervals of design discharges were
reduced significantly by extending the systematic data set with historic events using the proposed Bayesian framework. This
finding is important for the design of future flood reducing measures since these can then be designed with less uncertainty.

However, Bayesian statistic also has several drawbacks. Although no assumption about the parameter uncertainty of the
distribution function has to be made, the results depend on the parameter priors which have to be chosen a priori. The influence
of the priors on the posterior distributions of the parameters and hence on the uncertainty of flood frequency relations can even
be larger than the influence of discharge measurement errors (Neppel et al., 2010). The prior can be estimated by fitting the
original data with the use of e.g. the Maximum Likelihood method. However, we do not have any measurements in, or near to,
the tail of the frequency distribution functions. In this way, the benefits of the Bayesian method compared to a traditional flood
frequency analysis are at least questionable.

In this study, we propose a systematic approach to include historic flood information into flood safety assessments. The gen-
eral methodology of a flood frequency analysis remains, only the data set of measured discharges is extended with the use of a
bootstrap approach. As a result, this method is close to current practice of water managers. We extend the data set of measured
discharges at Lobith, the German-Dutch border, with historic events to decrease uncertainty intervals of design discharges
corresponding to rare events. A bootstrap method is proposed to create a continuous data set after which we perform a tradi-
tional FFA to stay in line with the current methods used for Dutch water policy. Hence, the results are well understandable by
decision makers since solely the effect of using data sets with different lengths on flood frequency relations and corresponding
uncertainty intervals are presented. The objective of this study is thus to develop a straightforward method to consider historic
flood events in an FFA, while the basic principles of an FFA remain unchanged.

The measured discharges at Lobith (1901-2018) are extended with the continuous reconstructed data set of Toonen (2015)
covering the period 1772-1900. These data sets are extended with the most extreme, older historic flood events near Cologne
reconstructed by Meurs (2006), which are routed towards Lobith. For this routing, a one dimensional-two dimensional (1D-
2D) coupled hydraulic model is used to determine the maximum discharges during these historic events based on the current
geometry. In such a way, the historic floods are corrected for anthropogenic interventions and natural changes of the river

system, referred to as normalization in this study. Normalizing the historic events is of high importance since flood patterns
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most likely change over the years as a result of e.g. dike reinforcements, land use change or decrease in floodplain area (dike
shifts). The normalized events almost always lead to a higher discharge than the historic event. This is because more water
is capable of flowing through the river system as a result of the heightened dikes along the Lower Rhine. Nowadays, floods
occur for higher discharge stages compared to the historical time period. In any case, the normalized events give insight in
the consequences of an event with the same characteristics of a historic flood event translated to present times. To create a
continuous data set, a bootstrap resampling technique is used. The results of the bootstrap method are evaluated against an
FFA based on solely measured annual maximum discharges (1901-2018 and 1772-2018). Specifically, the change in the design
discharge and its 95% confidence interval of events with a return period of 100,000 years is considered because this design
discharge corresponds with the highest safety level used in Dutch flood protection programs (Van Alphen, 2016).

In Section 2 the different data sets used to construct the continuous discharge data set are explained, as well as the 1D-2D
coupled hydraulic model. Next, the bootstrap method and FFA are explained (Section 3 and Section 4 respectively). After that,
the results of the FFA are given (Section 5). The paper ends with a discussion (Section 6) and the main conclusions (Section

.

2 Annual maximum discharges
2.1 Discharge measurements period 1901 - present

Daily discharge observations at Lobith have been performed since 1901 and are available at https://waterinfo.rws.nl. From this
data set, the annual maximum discharges are selected in which the hydrologic time period, starting at the 1% of October and
ending at the 30™ of September, is used. Since changes to the system have been made the last century, Tijssen (2009) has
normalized the measured data set from 1901-2008 for the year 2004. In the 20" century, canalization projects were executed
along the Upper Rhine (Germany) which were finalized in 1977 (Van Hal, 2003). After that, retention measures were executed
in the trajectory Andernach-Lobith. Firstly, the 1901-1977 data set has been normalized with the use of a regression function
describing the influence of the canalization projects on the maximum discharges. Then, again a regression function was used
to normalize the 1901-2008 data set for the retention measures (Van Hal, 2003). This results in a normalized 1901-2008 data
set for the year 2004. For the period 2009-2018, the measured discharges without normalization are used.

During the discharge recording period, different methods have been used to perform the measurements. These different
methods result in different uncertainties (Table 1 and must be included in the FFA to correctly predict the 95% confidence
interval of the FF curve. From 1901 until 1950, discharges at Lobith were based on velocity measurements performed with
floating sticks on the water surface. Since the velocity was only measured at the surface, extrapolation techniques were used
to compute the total discharge. This resulted in an uncertainty of approximately 10% (Toonen, 2015). From 1950 until 2000,
current meters were used to construct velocity-depth profiles. These profiles were used to compute the total discharge, having
an uncertainty of approximately 5% (Toonen, 2015). Since 2000, Acoustic Doppler Current Profiles have been used for which

also an uncertainty of 5% is assumed.
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Table 1. Uncertainties and properties of the various data sets used. The 1342-1772 data set represents the historical discharges (first row in

the table), whereas the data sets in the period 1772-2018 are referred to as the systematic data set (rows 2-7)

Time period | Data source Property Cause uncertainty Location
1342-1772 Meurs (2006) 12 single Reconstruction uncertain caused by main channel | Cologne
events bathymetry, bed friction and maximum occurred

water levels

1772-1865 Toonen (2015) Continuous | Reconstruction uncertainty based on measured Emmerich,
data set water levels of surrounding sites (~ 12%) Pannerden

and Nijmegen

1866-1900 Toonen (2015) Continuous | Uncertainty caused by translation measured water | Lobith
data set levels into discharges (~ 12%)

1901-1950 Tijssen (2009) Continuous | Uncertainty caused by extrapolation techniques to | Lobith
data set translate measured velocities at the water surface

into discharges (10%)

1951-2000 Tijssen (2009) Continuous | Uncertainty caused by translation velocity-depth Lobith
data set profiles into discharges (5%)
2001-2008 Tijssen (2009) Continuous | Measurement errors (5%) Lobith
data set
2009-2018 Measured water levels Continuous | Measurement errors (5%) Lobith
available at data set

https://waterinfo.rws.nl

2.2 Water level measurements period 1772 - 1900

Toonen (2015) studied the effects of non-stationarity in flooding regimes over time on the outcome of an FFA. He extended
the data set of measured discharges of the Rhine river at Lobith with the use of water level measurements. At Lobith, daily
water level measurements are available since 1866. For the period 1772-1865 water levels were measured at the nearby gauging
locations Emmerich, Germany (located 10 kilometers in upstream direction), Pannerden (located 10 kilometers in downstream
direction) and Nijmegen (located 22 kilometers in downstream direction). Toonen (2015) used the water levels of these loca-
tions to compute the water levels at Lobith and their associated uncertainty interval with the use of a linear regression between
the different measurement locations. Subsequently, he translated these water levels, together with the measured water levels
for the period 1866-1900, into discharges using stage-discharge relations at Lobith. These relations were derived based on
discharge predictions adopted from Cologne before 1900 and measured discharges at Lobith after 1900, and water level esti-
mates from the measurement locations Emmerich, Pannerden, Nijmegen and Lobith. Since the discharge at Cologne strongly

correlates with the discharge at Lobith, the measured discharges in the period 1817-1900 could be used to predict discharges
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Figure 1. Maximum discharges (Q) and their 95% confidence interval during the systematic time period (1772-2018)

at Lobith. The 95% confidence interval in reconstructed water levels propagates in the application of stage-discharge relations,
resulting in an uncertainty range of approximately 12% for the reconstructed discharges (Fig. 1) (Toonen, 2015).

The reconstructed discharges in the period 1772-1900 represent the computed maximum discharges at the time of occurrence
and these have not been normalized for changes in the river system. They thus represent the actual occurred annual maximum
discharges. Toonen (2015) argues that, based on the work of Bronstert et al. (2007) and Vorogushyn and Merz (2013), the effect
of recent changes in the river system on discharges of extreme floods of the Lower Rhine is small. Hence, it is justified to use
the presented data set of Toonen (2015) in this study as normalized data. Fig. 1 shows the annual maximum discharges for the
period 1772-2018 and their 95% confidence intervals. This data represents the systematic data set and consists of the measured

discharges covering the period 1901-2018 and the reconstructed data set of Toonen (2015) covering the period 1772-1900.
2.3 Reconstructed flood events period 1300 AD - 1772

Meurs (2006) has reconstructed maximum discharges during historic flood events near the city of Cologne, Germany. The
oldest event dates back to 1342. Only flood events caused by high rainfall intensities were reconstructed because of the different
hydraulic conditions of flood events caused by ice jams. The used method is described in detail by Herget and Meurs (2010),
in which the 1374 flood event was used as a case study. Historic documents providing information about the maximum water
levels during the flood event were combined with the reconstruction of the river cross section at that same time. Herget and
Meurs (2010) calculated mean flow velocities near the city of Cologne at the time of the historic flood events with the use of

the Manning’s equation:

Qp _ ApRp2/351/2n—1 (1)
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where Q,, represents the peak discharge (m?/s), A, the cross-sectional area (m*) during the highest flood level, R, the hydraulic
radius during the highest flood level (m), S the slope of the main channel and 7 its Manning’s roughness coefficient (s/m'’3).
However, the highest flood level as well as the Manning’s roughness coefficient are uncertain. The range of maximum water
levels were based on historical sources, whereas the range of Manning’s roughness coefficients were based on the tables
of Chow (1959). Including these uncertainties in the analysis, Herget and Meurs (2010) were able to calculate maximum
discharges of the specific historic flood events and associated uncertainty ranges (Fig. 4).

In total 13 historic flood events that occurred before 1772 were reconstructed. Two of the flood events occurred in 1651.
Only the largest flood of these two is considered as data point. This results in 12 historic floods that are used to extend the
systematic data set. The reconstructed maximum discharges at Cologne (Meurs, 2006) are used to predict maximum discharges
at Lobith with the use of a hydraulic model to normalize the data set. Although Cologne is located roughly 160 km upstream
of Lobith, there is a strong correlation between the discharges at these two locations. This is because they are located in the
same fluvial trunk valley and only have minor tributaries (Sieg, Ruhr and Lippe rivers) joining in between (Toonen, 2015).
This makes the reconstructed discharges at Cologne applicable to predict corresponding discharges at Lobith. The model used
to perform the hydraulic calculations is described in Section 2.3.1. The maximum discharges at Lobith of the 12 historic flood

events are given in Section 2.3.2.
2.3.1 Model environment

In this study, the 1D-2D coupled modelling approach as described by Bomers et al. (2019a) is used to normalize the data set
of Meurs (2006). This normalization is performed by routing the reconstructed historical discharges at Cologne over modern
topography to estimate the maximum discharge at Lobith in present times. The study area stretches from Andernach to the
Dutch cities of Zutphen, Rhenen and Druten (Fig. 2). In the hydraulic model, the main channels and floodplains are discretized
by 1D profiles. The hinterland is discretized by 2D grid cells. The 1D profiles and 2D grid cells are connected by a structure
corresponding with the dimensions of the dike that protects the hinterland from flooding. If the computed water level of a 1D
profile exceeds the dike crest, water starts to flow into the 2D grid cells corresponding with inundations of the hinterland. A
discharge wave is used as upstream boundary condition. Normal depths, computed with the use of the Manning’s equation,
were used as downstream boundary conditions. HEC-RAS (v. 5.0.3) (Brunner, 2016), developed by the Hydrologic Engineering
Centre (HEC) of the US Army Corps of Engineers, is used to perform the computations. For more information about the model

set-up, see Bomers et al. (2019b).
2.3.2 Normalization historic flood events

We use the hydraulic model to route the historical discharges at Cologne, as reconstructed by Meurs (2006), to Lobith. However,
the reconstructed historical discharges were uncertain. Therefore, also the discharges at Lobith are uncertain. To include this
uncertainty in the analysis a Monte Carlo analysis (MCA) is performed in which, among others, the upstream discharges
reconstructed by Meurs (2006) are included as random parameters. These discharges have large confidence intervals (Fig.

4). The severe 1374 flood, representing the largest flood of the last 1,000 years with a discharge of 23,000 m%/s, even has a
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confidence interval of more than 10,000 m®/s. To include the uncertainty as computed by Meurs (2006) in the analysis, the
maximum upstream discharge is varied in the MCA based on its probability distribution. However, the shape of this probability
distribution is unknown. Herget and Meurs (2010) only provided the maximum, minimum and mean value of the reconstructed
discharges. We assumed normally distributed discharges since it is likely that the mean value has a higher probability of
occurrence than the boundaries of the reconstructed discharge range. However, we found that the assumption of the uncertainty
distribution has a negligible effect on the 95% uncertainty interval of the FF curve at Lobith. Assuming uniformly distributed
uncertainties only led to a very small increase in this 95% uncertainty interval.

Not only the maximum discharges at Cologne are uncertain, also the discharge wave shape of the flood event. The shape
of the upstream flood event may influence the maximum discharge at Lobith. Therefore, the upstream discharge wave shape
is varied in the MCA. We use a data set of approximately 250 potential discharge wave shapes that can occur under current
climate conditions (Hegnauer et al., 2014). In such a way, a broad range of potential discharge wave shapes, e.g. a broad peak,
a small peak, or two peaks, are included in the analysis. For each run in the MCA, a discharge wave shape is randomly sampled
and scaled to the maximum value of the flood event considered (Fig. 3). This discharge wave represents the upstream boundary
condition of the model run.

The sampled upstream discharges, based on the reconstructed historic discharges at Cologne, may lead to dike breaches in
present times. Since we are interested in the consequences of the historic flood events in present times, we want to include these
dike breaches in the analysis. However, it is highly uncertain how dike breaches develop. Therefore, the following potential

dike breach settings are included in the MCA (Fig. 3):
1. Dike breach threshold

2. Final dike breach width
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3. Dike breach duration

The dike breach thresholds (i.e. the critical water level at which a dike starts to breach) are based on 1D fragility curves
provided by the Dutch Ministry of Infrastructure and Water Management. A 1D fragility curve expresses the reliability of a
flood defence as a function of the critical water level (Hall et al., 2003). The critical water levels thus influence the timing
of dike breaching. For the Dutch dikes, it is assumed that the dikes can fail due to failure mechanisms wave overtopping and
overflow, piping and macro-stability, where as the German dikes only fail because of wave overtopping and overflow (Bomers
et al., 2019b). The distributions of the final breach width and the breach formation time are based on literature and on historical
data (Apel et al., 2008; Verheij and Van der Knaap, 2003). Since it is unfeasible to implement each dike kilometer as potential
dike breach location in the model, only the dike breach locations that result in significant overland flow are implemented. This
results in 33 potential dike breach locations whereas overflow (without dike breaching) is possible to occur at every location
throughout the model domain (Bomers et al., 2019b).

So, for each Monte Carlo run an upstream maximum discharge and discharge wave shape is sampled. Next, for each of the
33 potential dike breach locations the critical water level, dike breach duration and final breach widths are sampled. With this
data, the Monte Carlo run representing a specific flood scenario can be run (Fig. 3). This process is repeated until converge
of the maximum discharge at Lobith and its confidence interval is found. For a more in depth explanation of the Monte Carlo
analysis and random input parameters, we refer to Bomers et al. (2019b).

The result of the MCA is the normalized maximum discharge at Lobith and its 95% confidence interval for each of the 12
historic flood events. Since the maximum discharges at Cologne are uncertain, also the normalized maximum discharges at
Lobith are uncertain (Fig. 4). Fig 4 shows that the extreme 1374 flood with a maximum discharge of between 18,800 m®/s and
29,000 m>/s at Cologne, reduces significantly in downstream direction as a result of overflow and dike breaches. Consequently,
the maximum discharge at Lobith turns out to be between 13,825 and 17,753 m?/s. This large reduction in the maximum

discharge is caused by the major overflow and dike breaches that occur in present times. Since the 1374 flood event was much
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Figure 4. Maximum discharges and their 95% confidence intervals of the reconstructed historic floods at Cologne (Herget and Meurs, 2010)

and simulated maximum discharges and their 95% confidence intervals at Lobith for the 12 historic flood events

larger than the current discharge capacity of the Lower Rhine, the maximum discharge at Lobith decreases. The reconstruction
of the 1374 flood over modern topography is presented in detail in Bomers et al. (2019c). On the other hand, the other 11 flood
events were below this discharge and hence only a slight reduction in discharges was found for some of the events as a result
of dike breaches whereas overflow did not occur. Some other events slightly increased as a result of the inflow of the tributaries
Sieg, Ruhr and Lippe rivers along the Lower Rhine. This explains why the 1374 flood event is much lower at Lobith compared
to the discharge at Andernach, while the discharges of the other 11 flood events are more or less the same at these two locations
(Fig. 4). The reduction in maximum discharge of the 1374 flood event in downstream direction shows the necessity to apply
hydraulic modelling since the use of a linear regression analysis based on measured discharges between Cologne and Lobith
will result in an unrealistic larger maximum discharge at Lobith.

The reconstructed discharges at Lobith are used to extend the systematic data set presented in Fig. 1. In the next section,

these discharges are used in an FFA with the use of a bootstrap method.

3 Bootstrap method

The systematic data set covering the period 1772-2019 is extended with 12 reconstructed historic flood events that occurred in
the period 1300-1772. To create a continuous data set, a bootstrap method based on sampling with replacement is used. The
continuous systematic data set (1772-2018) is resampled over the missing years from the start of the historical period to the

start of the systematic record. Two assumptions must be made such that the bootstrap method can be applied:

1. The start of the continuous discharge series since the true length of the historical period is not known.
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2. The perception threshold over which floods were recorded in the historical times before water level and discharge mea-

surements were conducted.

Assuming that the historical period starts with the first known flood (in this study: 1342) will significantly underestimate the
true length of this period. This underestimation influences the shape of the FF curve (Hirsch and Stedinger, 1987; Schendel
and Thongwichian, 2017). Therefore, Schendel and Thongwichian (2017) proposed the following equation to determine the
length of the historical period:

M=L+7L+]Ij_1 )

where M represents the length of the historical period (years), L the number of years from the first historic flood to the start of
the systematic record (431 years), N the length of the systematic record (247 years) and k the number of floods exceeding the
perception threshold in both the historical period as well as in the systematic record (28 in total). Using equation 2 results in a
length of the historical period of 455 years (1317-1771).

The perception threshold is considered to be equal to the discharge of the smallest flood present in the historic period,
representing the 1535 flood with an expected discharge of 8,826 m®/s (Fig. 4). We follow the method of Parkes and Demeritt
(2016) assuming that the perception threshold was fairly constant over the historical period. However, the maximum discharge
of the 1535 flood is uncertain and hence also the perception threshold is uncertain. Therefore, the perception threshold is treated
as a random uniformly distributed parameter in the bootstrap method which boundaries are based on the 95% confidence
interval of the 1535 flood event.

The bootstrap method consist of creating a continuous discharge series from 1317-2018. The method includes the following

steps (Fig. 5):
1. Combine the 1772-1900 data set with the 1901-2018 data set to create a systematic data set.

2. Select the flood event with the lowest maximum discharge present in the historic time period. Randomly sample a value

in between the 95% confidence interval of this lowest flood event. This value is used as perception threshold.
3. Compute the start of the historical time period (equation 2).
4. Of the systematic data set, select all discharges that have an expected value lower than the sampled perception threshold.

5. Use the data set created in Step 4 to create a continuous discharge series in the historical time period. Randomly draw
an annual maximum discharge of this systematic data set for each year within the historical period of which no data is

available following a bootstrap approach.

6. Since both the reconstructed as well as the measured discharges are uncertain due to e.g. measurement errors, these
uncertainties must be included in the analyses. Therefore, for each discharge present in the systematic data set and in the

historical data set, its value is randomly sampled based on its 95% confidence interval.

7. Combine the data sets of Steps 5 and 6 to create a continuous data set starting from 1317-2018.

10
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Figure 5. Bootstrap method to create a continuous discharge series

The presented steps in the bootstrap method are repeated 5,000 times in order to create 5,000 continuous discharge data sets

resulting in convergence in the FFA. The FFA procedure itself is explained in the next section.

4 Flood frequency analysis

An FFA is performed to determine the FF relation of the different data sets (e.g. systematic record, historical records). A
probability distribution function is used to fit the annual maximum discharges to its probability of occurrence. Many types
of distribution functions and goodness-of-fit tests exist, all with their own properties and drawbacks. However, the available
goodness-of-fit tests for selecting an appropriate distribution function are often inconclusive. This is mainly because each test
is more appropriate for a specific part of the distribution, while we are interested in the overall fit since the safety standards
expressed in probability of flooding along the Dutch dikes vary from 10 to 107, Furthermore, we highlight that we focus on
the influence of extending the data set of measured discharges on the reduction in uncertainty of the FF relations rather than on
the suitability of the different distributions and fitting methods.

We restrict our analysis to the use of a Generalized Extreme Value (GEV) distribution since this distribution is commonly
used in literature to perform an FFA (Parkes and Demeritt, 2016; Haberlandt and Radtke, 2014; Gaume et al., 2010). Addition-
ally, several studies have shown the applicability of this distribution on the flooding regime of the Rhine river (Toonen, 2015;
Chbab et al., 2006; Te Linde et al., 2010). The GEV distribution has an upper bound and is thus capable of flattening off at
extreme values by having a flexible tail. We use a bounded distribution since the maximum discharge that is capable of entering
the Netherlands is limited to a physical maximum value. The crest levels of the dikes along the Lower Rhine, Germany, are not

infinitely high. The height of the dikes influences the discharge capacity of the Lower Rhine and hence the discharge that can

11



Table 2. Discharges [m®/s] and their 95% confidence interval corresponding to several return periods for the 1901, 1772 and 1317 data sets

and the data set of Toonen (2015)

Data Qio Qioo Q1,000 2.5% Qiaso  97.5% | 2.5%  Qiooooo 97.5%
1901-2018 || 9,264 12,036 14,050 | 10,594 14,215 20,685 | 11,301 16,649 29,270
1772-2018 || 9,106 11,442 13,008 | 11,053 13,130 16,027 | 11,858 14,813 19,576
1317-2018 8,899 11,585 13,655 | 12,514 13830 15,391 | 14,424 16,562 19,303

flow towards Lobith. Using an upper bounded distribution yields that the FF relation converges towards a maximum value for
extremely large return periods. This value represents the maximum discharge that is capable of occurring at Lobith.

The GEV distribution is described with the following equation:

Fla) = exp{~[¢——F]%) 3

5 where i represents the location parameter indicating where the origin of the distribution is positioned, o the scaling parameter
describing the spread of the data, and £ represents the shape parameter controlling the skewness and kurtosis of the distribution,
both influencing the upper tail and hence the upper bound of the system. The maximum likelihood method is used to determine
the values of the three parameters of the GEV distribution (Stendinger and Cohn, 1987; Reis and Stedinger, 2005).

The FFA is performed for each of the 5,000 continuous discharge data sets created with the bootstrap method (Section 3),
10 resulting in 5,000 fitted GEV curves. The average of these relations is taken to get the final FF curve and its 95% confidence

interval. The results are given in the next section.

5 Results

5.1 Flood frequency relations

In this section the FFA results (Fig. 6) of the following data sets are presented:
15 — 1901 data set; measured discharges covering the period 1901-2018.

— 1772 data set; as above and extended with the data set of Toonen (2015), representing the systematic data set and covering
the period 1772-2018.

— 1317 data set; as above and extended with 12 reconstructed historic discharges and the bootstrap resampling method to

create a continuous discharge series covering the period 1317-2018.

20 If the data set of measured discharges is extended, we find a large reduction in the confidence interval of the FF curve (Fig.
6 and Table 2). Only extending the data set with the data of Toonen (2015) reduced this confidence interval with 5,200 m3/s

for the floods with a return period of 1,250 years (Table 2). Adding the reconstructed historic flood events in combination with
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Figure 6. Fitted GEV curves and their 95% confidence intervals of the 1901, 1772 and 1317 data sets

a bootstrap method to create a continuou

compared to the results of the 1901 data

s data set, results in an even larger reduction in the confidence interval of 7,400 m3/s

set. For the discharges with a return period of 100,000 years, we find an even larger

reduction in the confidence intervals (Table 2).

Furthermore, we find that using only

data sets. This is in line with the work of Toonen (2015). Surprisingly however, we find that the 1772 data set predicts the
00 years (Table 2), while we would expect that the 1317 data set predicts the lowest

lowest discharges for return periods > 1

values according to the findings of Toonen (2015). The relatively low positioning of the FF curve constructed with the 1772
data, compared to our other 1317 and 1901 data sets, might be explained by the fact that the data of Toonen (2015) covering
the period 1772-1900 has not been normalized. This period has a relative high flood intensity (Fig. 1). However, only two
flood events exceeded 10,000 m?/s. A lot of dike reinforcements along the Lower Rhine were executed during the last century.

Therefore, it is likely that before the 20" century, flood events with a maximum discharge exceeding 10,000 m*/s resulted in

the 1901 data set results in larger design discharges compared to the two extended

13



10

15

20

25

30

dike breaches and overflow upstream of Lobith. As a result, the maximum discharge of such an event decreased significantly.
Although Toonen (2015) mentions that the effect of recent changes in the river system on discharges of extreme floods of
the Lower Rhine is small, we argue that it does influence the flood events with maximum discharges slightly lower than the
current main channel and floodplains capacity. Currently, larger floods are possible to flow in downstream direction without
the occurrence of inundations compared to the 19" century. Therefore, it is most likely that the 1772-1900 data set of Toonen

(2015) underestimates the flooding regime of that specific time period influencing the shape of the FF curve.
5.2 Hypothetical future extreme flood event

After the 1993 and 1995 flood events of the Rhine river, the FF relation used in Dutch water policy was recalculated taking
into account the discharges of these events. All return periods were adjusted. The design discharges with a return period of
1,250 years, which was the most important return period at that time, increased with 1,000 m>3/s (Parmet et al., 2001). Such
an increase in the design discharge requires more investments in dike infrastructure and floodplain measures to re-establish
the safety levels. Parkes and Demeritt (2016) found similar results for the river Eden, UK. They showed that the inclusion of
the 2015 flood event had a significant effect on the upper tail of the FF curve, even though their data set was extended from
1967 to 1800 by adding 21 reconstructed historic events to the data set of measured data. Schendel and Thongwichian (2017)
argues that if the flood frequency relation alters after a recent flood, and if this change can be ambiguously attributed to this
event, the data set of measured discharges must expanded since otherwise the FF results will be upward biased. Based on their
considerations, it is interesting to see how adding a single extreme flood event influences the results of our method.

Both the 1317 and 1901 data sets are extended from 2018 to 2019 with a hypothesized flood in 2019. We assume that in
2019 a flood event has occurred that equals the largest measured discharge so far. This corresponds with the 1926 flood event
(Fig. 1), having a maximum discharge of 12,600 m3/s. No uncertainty of this event is included in the analysis. Fig. 7 shows
that the FF curve based on the 1901 data set changes significantly as a result of this hypothesized 2019 flood. We calculate
an increase in the discharge corresponding with a return period of 100,000 years of 1,280 m>/s. Contrarily, the 2019 flood has
almost no effect on the extended 1317 data set. The discharge corresponding to a return period of 100,000 years only increased
slightly with 180 m>/s. Therefore, we conclude that the extended data set is more robust to changes in FF relations as a result
of future flood events. Hence, we expect that the changes in FF relations after the occurrence of the 1993 and 1995 flood events
would be less severe if the analysis was performed with an extended data set as presented in this study. Consequently, decision
makers might have taken a different decision since less investments were required to cope with the new flood safety standards.

Therefore, we recommend to use historical information about the occurrence of flood events in future flood safety assessments.

6 Discussion

We developed an efficient bootstrap method to include historic flood events in an FFA. We used a 1D-2D coupled hydraulic
model to normalize the data set of Meurs (2006) for modern topography. An advantage of the proposed method is that any

kind of historical information (e.g. flood marks, sediment depositions) can be used to extend the data set of annual maximum
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Figure 7. Fitted GEV curves and their 95% confidence intervals of the 1901 and 1317 data sets if they are extended with a future flood event

discharges as long as the information can be translated into discharges. Another great advantage of the proposed method is
the computational time to create the continuous data sets and to fit the GEV distributions. The entire process is completed
within several minutes. Furthermore, it is easy to update the analysis if more historical information about flood events becomes

available. However, the method is based on various assumptions and has some drawbacks. These assumptions and drawbacks

are discussed below.
6.1 Added value of normalized historic flood events

The results have shown that extending the systematic data set with normalized historic flood events can significantly reduce
the confidence intervals of the FF curves. This is in line with the work of O’Connell et al. (2002) who claim that the length
of the instrumental record is the single most important factor influencing uncertainties in flood frequency relations. However,

reconstructing historic floods is time consuming, especially if these floods are normalized with a hydraulic model. Therefore,
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the question arises whether it is required to reconstruct historic floods to extend the data set of measured discharges. Another,
less time consuming, option might be to solely resample the measured discharges in order to extend the length of the data set.
Such a method was applied by Chbab et al. (2006) who resampled 50 years of weather data to create a data set of 50,000 years
of annual maximum discharges.

To test the applicability of solely using measured discharges, we use the bootstrap method presented in Section 3. A data
set of approximately 700 years (equal to the length of the 1317 data set) is created based on solely measured discharges in
the period 1901-2018. The perception threshold is assumed to be equal to the lowest measured discharge such that the entire
data set of measured discharges is used during the bootstrap resampling. Again, 5,000 discharge data sets are created to reach
convergence in the FFA. This data is referred to as the Qpoosirap data set.

We find that the use of the Qpootsirap data set, based on solely resampling the measured discharges of the 1901 data set, results

in lower uncertainties of the FF curve compared to the 1901 data set (Fig. 8). This is because the length of the measured data
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set is increased through the resampling method. Although the confidence interval decreases after resampling, the confidence
interval of the Qpootstrap data set is still larger compared to the 1317 data set, including the normalized historic flood events
(Fig. 8). This is because the variance of the Qpoosirap data set, which is equal to 4.19 x 106 m3/s, is still larger than the variance
of the 1317 data set. For the Qpootsirap data set, the entire measured data set (1901-2018) is used for resampling, while for the
1317 data set only the discharges below a certain threshold in the systematic time period (1772-2018) are used for resampling.
The perception threshold was chosen to be equal to the lowest flood event in the historical time period having a discharge of
between 6,928-10,724 m?/s. Hence, the missing years in the historical time period are filled with relatively low discharges.
Therefore, the variance of the 1317 data set is relatively low (3.35 x 10® m?/s) as a result of the lower discharges to create the
continuous data set. As a result of the lower variance, also the uncertainty intervals are smaller compared to the Qpootstrap data
set.

Furthermore, the FF curve of the Qpootstrap data set is only based on a relatively short data set of measured discharges and
hence only based on the climate conditions of this period. Extending the data set with historic flood events gives a better
representation of the long-term climatic variability in flood events since these events only have been normalized for changes
in the river system and thus still capture the climate signal. We conclude that reconstructing historic events, even if their
uncertainty is large, is worth the effort since it reduces the uncertainty intervals of design discharges corresponding to rare

flood events which is crucial for flood protection policy-making.
6.2 Resampling systematic data set

The shape of the constructed FF curve strongly depends on the climate conditions of the period considered. If the data set is
extended with a period which only has a small number of large flood events, this will result in a significant shift of the FF curve
in downward direction. This shift can be overestimated if the absence of large flood events only applies to the period used to
extend the data set. Furthermore, by resampling the measured data set, we assume that the flood series consist of independent
and identically distributed random variables. This might not be the case if climate variability plays a significant roll in the
considered time period resulting in a period of e.g. extreme low or high flows. However, up till now no consistent large-scale
climate change signal in observed flood magnitudes has been identified (Bloschl et al., 2017).

In Section 5, we found that extending the data set from 1901 to 1772 resulted in a shift in downward direction of the FF
curve. This is because in the period 1772-1900, a relatively small number of floods exceeded a discharge larger than 10,000
m?/s. Since no large flood events were present in the period 1772-1900, this data set has a lower variance compared to the 1901
data set. Using both the 1772 and 1901 data sets for resampling purposes influences the uncertainty of the FF curve. To identify
this effect, we compared the results if solely the measured discharges (1901-2018) are used for resampling purposes and if the
entire systematic data set (1772-2018) period is used. We find that using the entire systematic data set results in a reduction in
the 95% confidence intervals compared to the situation in which solely the measured discharges are used caused by the lower
variance in the period 1772-1900. However, the reduction is at maximum 12% for the return period of 100,000 years. Although
the lower variance in the 1772-1900 data set might be explained by the fact that these discharges are not normalized, the lower

variance may also be caused by the natural variability in climate.
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6.3 Distribution function and goodness-of-fit test

In Section 5, only the results for a GEV distribution were presented. We found that the uncertainty interval of the flood event
with a return period of 100,000 years was reduced with 73% by extending the data set of approximately 120 years of annual
maximum discharges to a data set with a length of 700 years. Performing the analysis with other distributions yield similar
results. A reduction of 60% is found for the Gumbel distribution and a reduction of 76% for the Weibull distribution. This
shows that, although the uncertainty intervals depend on the probability distribution function used, the general conclusion of
reduction in uncertainty of the fitted FF curve holds.

However, by only considering a single distribution function in the analysis, model uncertainty is neglected. One approach to
manage this uncertainty is to create a composite distribution of several distributions each allocated a weighting based on how
well it fits the available data (Apel et al., 2008). Furthermore, the uncertainty related to the use of various goodness-of-fit tests
was neglected since only the Maximum Likelihood function was used to fit the sample data to the distribution function. Using

a composite distribution and multiple goodness-of-fit tests will result in an increase in the uncertainties of FF curves.
6.4 Length of extended data set and considered perception threshold

The measured data set starting at 1901 was extended to 1317. However, the extended data set still has limited length compared
to the maximum return period of 100,000 years considered in Dutch water policy. Preferably, we would like to have a data set
with at least the same length as the maximum safety level considered such that extrapolation in FFAs is not required anymore.
However, the proposed method is a large step to decrease uncertainty.

Furthermore, the systematic data set was used to create a continuous data set using a bootstrap approach. However, preferably
we would like to have a historical continuous record since now the low flows are biased on climate conditions of the last
250 years. Using this data set for resampling influences the uncertainty intervals of the FF curves. If the historical climate
conditions highly deviated from the current climate conditions, this approach does not produce a reliable result. In addition,
the perception threshold influences the variance of the considered data set and hence the uncertainty of the FF curve. Using a
smaller threshold results in an increase in the variance of the data set and hence to an increase in the uncertainty intervals. The
proposed assumption related to the perception threshold can only be used if there is enough confidence that the smallest known

flood event in the historical time is indeed the actual smallest flood event that occurred in the considered time period.
6.5 Comparison with Bayesian statistics

The FFA was performed based on frequentist statistics. The Maximum Likelihood function was used to fit the parameters of
the GEV distribution function. However, only point estimates are computed. To enable uncertainty predictions of the GEV pa-
rameter estimates, the maximum likelihood estimator assumes symmetric confidence intervals. This may result in an incorrect
estimation of the uncertainty which is specifically a problem for small sample sizes. For large sample sizes, maximum likeli-
hood estimators become unbiased minimum variance estimators with approximate normal distributions. Contrarily, Bayesian

statistics provide the entire posterior distributions of the parameter estimates and thus no assumptions have to be made. How-
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ever, a disadvantage of the Bayesian statistics is that the results are influenced by the priors describing the distributions of
the parameters (Neppel et al., 2010). For future work, we recommend to study how uncertainty estimates differ between the
proposed bootstrap method and a method which relies on Bayesian statistics such as Reis and Stedinger (2005).

Moreover, a disadvantage of the proposed bootstrap approach is that, by resampling the systematic data set to fill the gaps
in the historical time period, the shape of the flood frequency curve is influenced in the domain corresponding to events with
small return periods (i.e. up to ~ 100 years corresponding with the length of the 1901 data set). Methods presented by e.g. Reis
and Stedinger (2005) and Wang (1990) use historical information solely to improve the estimation of the tail of the FF curves,
while the systematic part of the curve stays untouched. Table 2 shows the discharges corresponding with a return period of 100
years for both the 1901 data set and the extended 1317 data set following the bootstrap method described in Section 3. We find
that this discharge decreases from 12,075 m3/s to 11,628 m?/s by extending the systematic data set. This decrease in design
discharge with 3.7% indicates that resampling the systematic data set over the historical time period only has a little effect on

the shape of the flood frequency curve corresponding with small return periods justifying the use of the bootstrap method.

7 Conclusions

Design discharges are commonly determined with the use of flood frequency analyses (FFA) in which measured discharges are
used to fit a probability distribution function. However, discharge measurements have been performed only for the last 50-100
years. This relatively short data set of measured discharges results in large uncertainties in the prediction of design discharges
corresponding to rare events. Therefore, this study presents an efficient bootstrap method to include historic flood events in
an FFA. The proposed method is efficient in terms of computational time and set-up. Additionally, the basic principles of the
traditional FFA remain unchanged.

The proposed bootstrap method was applied to the discharge series at Lobith. The systematic data set covering the period
1772-2018 was extended with 12 historic flood events. The historic flood events reconstructed by Meurs (2006) had a large
uncertainty range, especially for the most extreme flood events. The use of a 1D-2D coupled model reduced this uncertainty
range of the maximum discharge at Lobith for most flood events as a result of the overflow patterns and dike breaches along
the Lower Rhine. The inclusion of these historic flood events in combination with a bootstrap method to create a continuous
data set, resulted in a decrease in the 95% uncertainty interval of 72% for the discharges at Lobith corresponding to a return
period of 100,000 years. Adding historical information about rare events with a large uncertainty range in combination with a
bootstrap method has thus the potential to significantly decrease the confidence interval of design discharges of extreme events.

Since correct prediction of flood frequency relations with little uncertainty is of high importance for future national flood
protection programs, we recommend to use historical information in FFA. Additionally, extending the data set with historic
events makes the flood frequency relation less sensitive to future flood events. Finally, we highlight that the proposed method
to include historical discharges into a traditional FFA can be easily implemented in flood safety assessments because of its

simple nature in terms of mathematical computations as well as of its computational efforts.
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