
Comments by Reviewer 1 

[General reply from the authors]  

We would like to thank the reviewer for taking the time to review our manuscript. We highly 

appreciate her suggestions and comments, which are helpful in improving the manuscript. Below we 

have replied to the various comments made by the reviewer.  

 

[Replies to reviewer comments] 

1. The Authors introduce the bootstrap approach (l. 5-9 p. 3) as a solution to overcome the problem 

of isolated historical events for which confidence intervals are typically not symmetrical. It is not 

clear what the Authors mean by symmetrical confidence intervals; this issue should be explained 

since it is the motivation (together with the easy application of FFA) for reconstructing a continuous 

data set.  

Symmetrical means that the confidence intervals follow a normal distribution. Hence, the 95% 

confidence intervals can be computed with the basic rule of +/- 1.96*standard deviation. However, 

confidence intervals are typically not symmetrical for flood frequency relations. Hence, these 

intervals are difficult to compute if the data of annual maximum discharges is extended with historic 

events in isolation. Therefore, we would like to create a continuous data set such that the method to 

compute confidence intervals remains unchanged compared to traditional FFAs. We removed the 

statement related to the symmetrical confidence intervals from the manuscript since we have 

revised the introduction. We now focus on the differences between Bayesian statistics and 

frequentist statistics and how both methods compute the confidence intervals of the parameters of 

the GEV distribution. See page 2 lines 4-11. The motivation of the study is now stated on page 2 lines 

21-19. 

Further, bootstrap is not necessary for confidence interval estimation (l. 9-10 p. 3) yet still necessary 

for continuous data set reconstruction. 

It is indeed true that a bootstrap approach is not needed to compute the confidence intervals if a 

continuous data set is present. However, a bootstrap method is still needed to create a continuous 

data set as was done in this study. Both are different kind of bootstrap approaches. Using the same 

terminology leads to confusion. The statement about the bootstrap method to compute the 

confidence intervals is removed from the manuscript. Please also see the previous comment. 

 

2. The hydraulic model is used to propagate the discharge for the historic flood events reconstructed 

by Meurs (2006) from Cologne to Lobith; to this aim the Authors state that they use the current 

geometry of the riverbed and floodplain in order to correct the historic floods for anthropogenic 

interventions and natural changes of the river system, which is referred as “normalization” in the 

manuscript (l. 10-14 p.3). This approach is unusual based on my experience (Calenda et al., 2005); 

historical flood events should be simulated by reconstructing the historical conditions (the river 

geometry as in the period the flood occur), that is what Authors would have available if measures 

would have started in the ancient past. In essence, I am not convinced that propagating the ancient 

floods in the current riverbed is the correct approach to solve the “homogenization” problem; 

conversely, this “gives insight in the consequences of an event with the same characteristics of a 



historic flood event translated to present times” (as stated by the Authors themselves at l. 17-18, p. 

3). 

It is indeed true that historic flood events should be reconstructed based on the historical conditions. 

This is exactly what Meurs (2006) has done. Historic flood events were reconstructed near the city of 

Cologne, Germany, based on reconstructed main channel bathymetry. See page 5 lines 14-15. 

However, our aim in this paper was not to make reconstructions of the historic events along the river 

stretch. In this paper, we aimed to predict flood frequency relations for current water policy 

assessments and therefore we would like to have the present-day discharges. This is why 

‘normalization’ is done in the Dutch water policy. Even the measured discharges in e.g. 1920 are 

normalized to present-day discharges since the river system has altered a lot due to human 

interventions resulting in a change of the flood frequency relation. Nowadays, more water is capable 

of flowing through the river system towards Lobith, German-Dutch border, as a result of the 

heightened dikes along the Lower Rhine (see page 3 lines 2-4). Therefore, the historic flood events 

have no predictive value without normalizing it into present-day discharges. This is why we have 

normalized the historic flood events at Cologne, which are based on historical information, to 

present-day discharges at Lobith. To do so, we use the hydraulic model which is based on the current 

geometry. This hydraulic model is described in high detail in Bomers et al. (2019). 

 

3. Based on my opinion the Authors should “naturalize” the estimated discharge, by computing the 

discharge that they would have observed in absence of some anthropogenic change in the riverbed 

or in the catchment (l. 14-16 p.3). This means that are the recent events that should be reported to 

pre-dike conditions and not the opposite (as done in Section 2.3.2). The presence of the dike 

artificially alters the natural regime of the extreme flood events; the anthropogenic alteration of 

flood regime should be of deterministic nature, even if its estimation is characterized by a certain 

degree of uncertainty. 

For flood safety assessments, we are interested in the current flooding regime and not that of the 

pre-dike conditions. It is indeed true that the presence of the dike alters the natural regime of the 

extreme flood events, but we are interested in this change since it determines how much water can 

enter the Netherlands at Lobith nowadays. Therefore, normalization of the historic flood events to 

present-day conditions is of high importance to correctly estimate flood frequency relations of the 

present river system. Why normalization is of high importance is described on page 2 lines 34-35 and 

page 3 lines 1-2. 

 

4. Why do the normalized events almost always lead to a higher discharge than the historic event (l. 

16-17, p. 3)? 

This is because more water is capable of flowing through the river system as a result of the 

heightened dikes along the Lower Rhine. Nowadays, floods occur for higher discharge stages 

compared to the historical time period. Please see page 3 lines 2-4. 

 

5. Section 2. For the sake of clarity, a table summarizing the type of information and the related 

uncertainty for the different time periods should be included. 



A table with the various types of uncertainties for each time period has been added to the revised 

manuscript. See table 1 on page 4. 

 

 

6. L. 14-15, p. 4. The Authors should clarify the distance and the characteristics of the nearby gauging 

locations. 

The following has been added in the manuscript:  

“For the period 1772-1865 water levels were measured at the nearby gauging locations Emmerich 

(Germany) located 10 kilometers in upstream direction, Pannerden located 10 kilometers in 

downstream direction and Nijmegen located 22 kilometers in downstream direction.” See page 4 

lines 5-6. 

However, note that this analysis has been performed by Toonen (2015) and is not part of this paper. 

Therefore, we refer for more information about the characteristics of the 1772-1901 data set to 

Toonen (2015). 

 

7. The procedure discussed in Section 3 is based on a non-parametric approach; alternatively a 

parametric method, based on the same assumption that ancient flood events follow the same 

statistical behavior of those systematically recorded, could have been considered. See Stedinger and 

Cohn (1986) and Francés 

It is indeed true that a non-parametric approach could have been considered. However, in this paper 

we had the preference to create a continuous data set instead. This is because, since recently, the 

Dutch water policy uses a new method in which a continuous data set of 50,000 years based on 

resampled measured weather conditions (e.g. rainfall, temperature, evapotranspiration) is used to 

predict flood frequency relations (Hegnauer et al., 2014, and also described in Chbab (2006)). We 

wanted to use the method of Hegnauer et al. (2014) of creating a continuous data set to test 

whether it also works with resampling measured discharges. This makes the use of HBV and hydraulic 

modelling to translate the weather data into maximum discharges redundant, as was done by 

Hegnauer et al. (2014).   

Furthermore, we wanted to create a continuous data set since the computation of the confidence 

intervals of a flood frequency relation remains unchanged compared to the analysis of just measured 

annual maximum discharges, making the comparison between the two more reasonable an better 

understandable for decision makers. This argument has been added in the introduction on page 2 

lines 25-28. For future work, it is interesting to study how confidence intervals deviate between the 

proposed methodology and a method based on a parametric approach. However, our results are in 

line with the findings of Francés (1998), who also showed that the uncertainty intervals of FFAs 

reduces if historical information is included in the analysis. 

 

8. L. 2-7, p. 9. The Authors states that “the available goodness-of-fit tests for selecting an appropriate 

distribution function are often inconclusive. Those tests are more appropriate for the central part of 

the distribution than for the tail (Chbab et al., 2006), where we are interested in since the tail 

determines the investments required for future flood protection measures.” I agree with the Authors 



that goodness-of-fit tests might be inconclusive, as discussed deeply in Serinaldi et al. (2018); on the 

other hand they provide a first indication on which models, among several competing ones, could be 

excluded due to the poor performance (see, e.g., Laio, 2004). In such a sense, I suggest the Authors 

at least to rephrase the sentence, also because there are different goodness-of-fit test which focus 

on the statistical behavior of the tails, such as the Anderson-Darling test and the Modified Anderson-

darling test (Laio, 2004). 

We agree with you that there are various goodness-of-fit tests, all with their own properties. The 

sentence has been rewritten with in green the new text: 

“A probability distribution function is used to fit the annual maximum discharges to its probability of 

occurrence. Many types of distribution functions and goodness-of-fit tests exist, all with their own 

properties and drawbacks. However, the available goodness-of-fit tests for selecting an appropriate 

distribution function are often inconclusive. This is mainly because each test is more appropriate for 

a specific part of the distribution, while we are interested in the overall fit of the distribution. This is 

because the safety standards expressed in probability of flooding along the Dutch dikes vary from  

10-2 to 10-5.” Please see page 11 lines 4-9. 

 

9. Following the argument of previous comment, I do not believe that restricting the analysis to a 

single probability distribution model (although it is the Generalized Extreme Value distribution 

commonly used in literature to perform an FFA) is a good choice. Since the interest is in evaluating 

how the confidence bounds of extreme quantile estimates reduce when adding the historical 

information (l. 18- 21 p. 9), it should be considered that confidence bounds depend not only on the 

length and information content of the dataset but also on the probability model itself. Hence, results 

could be different if a different model is taken into account. 

You are indeed correct that the uncertainty interval also highly depends on the fitted distribution 

itself. Although not shown, we performed the analysis with other distributions as well (e.g. Weibull 

and Gumbel) and the general conclusion of ‘reduction of the confidence bounds as a result of 

extending the data set of measured discharges’ also holds for these distributions. For the GEV 

distribution we found a reduction of 73% as a result of extending the data set of annual measured 

discharges with historic events, with the Gumbel distribution a reduction of 60% and with the 

Weibull distribution a reduction of 76%. 

We have added a section to the discussion of the revised manuscript in which it is stated that also for 

other distribution functions a reduction of the confidence interval was found (page 18 lines 1-7. 

However, we will not show the in-depth results of different distribution types, because we think this 

is distracting the reader from the analysis performed and corresponding main findings. Furthermore, 

the GEV distribution has been shown to fit the data of the Rhine river well and therefore this 

distribution was preferred above other distributions. Finally, we would like to highlight that many 

closely-related studies also only focused on the use of a single distribution (e.g. Francés (1998)). 

 

10. L. 10-12 p. 9. Do you the Authors mean that they assume an upper bounded distribution? This 

issue should be clarified. 

Yes, we indeed assume an upper bounded distribution. The GEV distribution has an upper bound as a 

result of the shape parameter which both influences the skewness and kurtosis of the distribution. 

We use a bounded distribution since the maximum discharge that is capable of entering the 



Netherlands at Lobith is limited to a physical maximum value. The crest levels of the dikes along the 

Lower Rhine are not infinitely high. The height of the dikes influences the discharge capacity of the 

Lower Rhine and hence the discharge that can flow towards Lobith. This explanation has been added 

to the revised manuscript (page 11 lines 15-18 and page 12 lines 1-2) such that it becomes clear why 

we use an upper bounded distribution. The effect of wave overtopping and dike breaches on the 

discharges at Lobith are explained in high detail by Bomers et al. (2019). 

 

11. Figure 5 is unnecessary, It could be removed. 

Figure 5 has been removed from the revised manuscript. 

 

12. Figure 6. The largest extreme events are not included in the uncertainty bounds. The 

corresponding sample bounds could be included as well to text the model performance (see 

comment 9). 

Also the largest extreme events are included in the uncertainty bounds (see table 1). However, since 

the upper bound of the measured data set has a value of 29,631 m3/s (table 1) this line was not 

entirely drawn. Since it leads to confusion, the entire line has been plotted in the revised manuscript. 

See the figure below. 

 

 

13. Section 5.2. I am not sure I fully understood the rationale and the approach behind the analysis 

performed here. The historical events are some of the highest events observed in the whole 

observation period. If a sample is reconstructed by simply resampling the events observed in 1901-

2018 (without including the largest historical events but with the same length of that used in 

previous sections), the largest events might only be those observed in the more recent period; as a 



consequence, the fitted model is expected to be characterized by, e.g., a smaller variance, which 

implies narrower uncertainty bounds. I do not see this behavior in figure 7 (upper panel). What I see 

in figure 7 is that the fitted model in the two cases is almost the same, while the uncertainty bounds 

are significantly different. I can explain this only if the reconstructed samples have a very different 

length. Please provide a deeper explanation. 

You are indeed correct that we simply resample the events observed in 1901-2018 without including 

the largest historical events but with the same length. This corresponds with the line ‘QBootstrap ’. This 

data set has a length equal to the 1317-2018 period. If we compare the line with the 1317-2018 data 

set, we indeed see that the uncertainty interval of the QBootstrap is still larger even though the length of 

the two data sets are the same. It must be noted that not only the length influences the uncertainty 

interval, but also the discharges within the data set and resulting variance. 

For the QBootstrap data set, the entire measured data set (1901-2018) is used for resampling. The 

created continuous series (5,000 in total for convergence reasons) has an average variance of 4,19 x 

106 m3/s. For the 1317-2018 data set, only the discharges below a certain threshold in the measured 

time period (1772-2018) are used for resampling. In this study, the perception threshold was chosen 

to be equal to the lowest flood event in the historical time period having a discharge of between 

6,928-10,724 m3/s. Hence, the missing years in the historical time period are filled with relatively low 

discharges, but some of the largest events in the historical time period are larger than ever 

measured. The total variance of the data set decreases (3.35 x 106 m3/s) as a result of the lower 

discharges to create the continuous data set. As a result of the lower variance, also the uncertainty 

bounds are smaller compared to the QBootrstrap data set. This explanation has been added to the 

revised manuscript. Please see page 17 lines 3-10. 

 

14. L. 20-22 p. 14. It is not clear how the extended data set with normalized reconstructed discharges 

can capture the long-term climatic variability (see also previous comments). 

The historic flood events are only normalized for changes in the river system. As a result, the 

normalized discharges still capture the climatic conditions in the historical time period. Although the 

missing years within the historical time period are filled with the measured data set 1772-2018, the 

most extreme events still capture the climatic variability in the period ~1300-2018. This has been 

added on page 17 lines 13-14. 

 

15. L. 35, p. 14. Isn’t it the 1374 event? 

The 1374 flood event is indeed the largest observed discharge (at Cologne) of the last 1,000 years. 

However, in this analysis we consider the largest measured discharge (measurements have been 

performed since 1901), which correspond with the 1926 flood event. We now refer to Figure 1 to 

make this clear, see page 14 line 20. 

 

16. Fig. 8. Adding one event equal to the largest one over a record is expected to affect somewhat 

the estimated model if the record is 100 years while non changes in the model are expected if the 

record is about 700 years. Hence, which is the lesson learned from this analysis? 

The lesson learned is that flood safety assessments become more robust if the data set of annual 

maximum discharges is extended. After the 1993 and 1995 flood events of the Rhine river, the flood 



frequency relation altered significantly resulting in an increase of the design discharge at Lobith of 

1,000 m3/s. Such an increase in the design discharge requires huge investments to cope with the new 

flood safety standards which were set after the 1993 and 1995 floods. Such an increase was not 

found if a longer time series was included in the analysis. Looking at the results, decision makers 

might have taken a different decision. This has been added on page 14 line 26-27. 

 

17. Within the Conclusion Section a detailed list of the limitations of the approach proposed here 

should be provided. 

We now discuss the most important drawbacks and assumptions of the proposed method. Please see 

the discussion section. We focus on: 

- The added value of normalized historic flood events. 

- Resampling the systematic data set 

- The use of a single distribution function and goodness-of-fit test 

- Length of the extended data set and chosen perception threshold 

- Comparison with Bayesian statistics. 
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Comments by reviewer 2 

[General reply from the authors]  

We would like to thank the anonymous reviewer for taking the time to review our manuscript. We 

highly appreciate the suggestions and comments, which are helpful in improving the manuscript. 

Below we have replied to the various comments made by the reviewer.  

 

[Replies to reviewer comments] 

This paper discuss the extension of a flood series, based on hydraulic modelling and the utilisation of 

extend hydrological time series to estimate the frequency of extreme floods at the Rhine gauge 

Lobith. The authors expect a reduced sampling effect. It is widely known that for extreme events the 

empirical exceedance probabilities in short observation series are often overestimated. To solve this 

problem the authors suggest to extend the observed time series. In their case study they propose to 

extent the existing series of observations between 1901-2018 by a linear regression of water levels 

with neighbouring gauges for the period 1772 to 1900 based on a previous study from Toonen 

(Toonen, 2015) and the translation of these water levels into discharges using a stage-discharge 

relationship, which is not specified in detail.  

It is indeed true that the translation of the water levels into discharges for the period 1772-1900 was 

not specified in detail. This is because this has been described in detail by Toonen (2015) who 

performed the analysis. To help the readers of our manuscript, the following will be added in the 

revised manuscript in section 2.2, with in green the new text: 

“For the period 1772-1900, the data presented by Toonen (2015) is used. At Lobith, daily water level 

measurements are available since 1866. For the period 1772-1865 water levels were measured at the 

nearby gauging locations Emmerich, Pannerden and Nijmegen. Toonen (2015) used the water levels 

of these locations to compute the water level at Lobith and associated uncertainty interval with the 

use of linear regression between the different measurement locations. Subsequently, he translated 

these water levels, together with the measured water levels for the period 1866-1900, into 

discharges using stage-discharge relations at Lobith. These relations were derived based on discharge 

predictions adopted from Cologne before 1900 and measured discharges at Lobith after 1900, and 

water levels estimates from the measurement locations Emmerich, Pannerden, Nijmegen and Lobith. 

Since the discharge at Cologne strongly correlates with the discharge at Lobith, the measured 

discharges in the period 1817-1900 could be used to predict discharges at Lobith. Hence, the 

reconstructed water levels were used to derive stage-discharge relations. The 95% confidence 

interval in reconstructed water levels propagates in the application of stage-discharge relations, 

resulting in an uncertainty range of approximately 12% for the reconstructed discharges (Fig. 1). The 

reconstructed discharges in the period 1772-1900 represent the computed maximum discharges at 

the time of occurrence and has not been normalized for changes in the river system.“ 

Please see section 2.2 on page 4 and 5. 

 

The resulting series (1772-2018) is named as the “systematic” time period. The other and even more 

uncertain step consists in an estimation of the peaks of historic floods at Lobith. Here a series of 12 

historic flood events in Cologne since 1342, provided by Meures and Herget is used. As these events 

were estimated more than 150 km upstreams, a (1D-2D) coupled hydraulic model is used to transfer 



these peaks to Lobith: “The reconstructed maximum discharges at Cologne (Meurs, 2006), which are 

not normalized for anthropogenic interventions upstream of Cologne, are used to predict maximum 

discharges at Lobith with the use of a hydraulic model to normalize the data set.” The meaning of 

“normalization” in this context stays unclear. It seems to be the adaptation of these peaks (which 

were roughly estimated by Meures) on to today’s conditions.  

We indeed mean with normalization adapting the historic peaks at Cologne on today’s geometry 

conditions. Hence we will find the maximum discharges at Lobith as a result of the maximum 

discharges at Cologne under current river conditions. Please see page 2 lines 34-35: “In such a way, 

the historic floods are corrected for anthropogenic interventions and natural changes of the river 

system, referred to as normalization in this study.” 

 

There are extreme uncertainties connected with this approach: the river reach changed in its 

hydraulic characteristics over 700 years, the water levels in Cologne dating back several hundreds of 

years are uncertain, the discharges as well and so on. It is a big surprise that the authors are able to 

specify in Fig. 3 95% confidence intervals for the maximum discharges in Cologne and Lobith for 

these 12 events. It stays unclear how these intervals were estimated.  

The 95% confidence interval for the maximum discharges in Cologne were taken from Meurs (2006). 

His method is shown by Herget and Meurs (2010) in detail, using the 1374 flood event as a case 

study. The following has been added in the revised manuscript in section 2.3 with in green the new 

text (see page 5 lines 11-18 and page 6 lines 1-6): 

“Meurs (2006) has reconstructed maximum discharges during historic flood events near the city of 

Cologne (Germany). The oldest event dates back to 1342. The used method is described in detail by 

Herget and Meurs (2010), in which the 1374 flood event was used as a case study. Historic 

documents providing information about the maximum water level during the flood event were 

combined with the reconstruction of the river cross section at that same time. Herget and Meurs 

(2010) calculated mean flow velocities near the city of Cologne at the time of the historic flood 

events with the use of the empirical Manning’s equation: 

𝑄𝑝 = 𝐴𝑝𝑅𝑝
2/3𝑆1/2𝑛−1 

where Qp represents the peak discharge, Ap the cross-sectional area during the highest flood level, Rp 

the hydraulic radius during the highest flood level, S the slope and n the Manning’s roughness 

coefficient. 

However, the highest flood level as well as Manning’s roughness coefficient are uncertain. The range 

of maximum water levels was based on historical sources, whereas the range of Manning’s 

roughness coefficients were based on the tables of Chow (1959). With this information, Herget and 

Meurs (2010) were able to calculate maximum discharges of the specific historic flood events and 

associated uncertainty range (Fig. 3).” 

 

The reconstructed historic discharges and their uncertainties were used as input data of the 1D-2D 

coupled model to compute resulting discharges at Lobith. This is a valid method since there is a 

strong correlation between the discharge at Cologne and Lobith for in channel flow conditions, even 

though Cologne is located roughly 160 km upstream of Lobith since they are located in the same 

fluvial trunk valley and only have minor tributaries (Sieg, Ruhr and Lippe) joining in between (Toonen, 



2015). This has been added in the revised manuscript (page 6 lines 10-13) to clarify the applicability 

of using historical discharge reconstructions at Cologne to determine corresponding present-day 

maximum discharges at Lobith. 

With the 1D-2D coupled model, a Monte Carlo analysis was performed for each historic flood event 

in which the following parameters were considered to be random: maximum upstream discharge 

(based on the uncertainty range of each historic flood event as reconstructed by Herget and Meurs 

(2010)), dike breach thresholds, dike breach formation time and final breach width. The method of 

this analysis is discussed in detail by Bomers et al. (2019). As a result of the uncertain upstream 

discharge and breach characteristics, also the discharge at Lobith for each historic event is uncertain. 

Therefore, many model runs are performed for each event until convergence in model results is 

reached. Hence, the expected discharge at Lobith and expected 95% confidence intervals were 

computed (Fig. 3). The hydraulic modelling approach to normalize the historic flood events is now 

explained in more detail in the revised manuscript. Please see section 2.3.2 and Figure 3. 

 

The authors propose a bootstrap sampling method to fill the gaps between the historic floods with 

annual flood peaks from the systematic data set, that have an expected value lower than the 

sampled perception threshold which is set as the smallest flood among the historic peaks. This is 

approach seems to be critical as it does not add any information to the statistical analysis. The todays 

conditions are modified by the first extension to the part of the series until 1772. With the sampling 

the authors accept that the flood series consist of independent and identically distributed random 

variables, which is not certain.  

Indeed, we assume independent and identically distributed random variables. The authors are aware 

of this assumption. However, please note that to perform a flood frequency analysis we always have 

to assume that the discharge observations are independent and stationary (Khaliq et al., 2006). 

Although the assumption is highly uncertain, it must be noted that up till now no consistent large-

scale climate change signal in observed flood magnitudes has been identified (Blöschl et al., 2017) 

justifying the assumption of independent and identically distributed random variables. We have 

added this in the discussion section. See page 17 lines 21-24. 

 

By definition bootstrapping is any test or metric that relies on random sampling with replacement. 

Here the wording “resampling of the non-systematic time series below the perception threshold” 

would be more appropriated. This has been done 5000 times and also the historical floods are varied 

within their 95% confidence intervals (however these were estimated!). The systematic series were 

not changed.  

Maybe this was not fully clear to the reviewer, but also the systematic data set was changed. For 

each year within the historical period of which no data is available, an annual maximum discharge of 

the systematic data set below the perception threshold was randomly drawn (See step 5 in Fig. 4). 

This corresponds with the bootstrap method. As a result, each created continuous data set is 

different. We have now explained step 5 in more detail on page 10 lines 25-27 

Furthermore, the values within the systematic data set were varied within their 95% confidence 

intervals. The study described the uncertainties of the systematic data set, which vary for different 

time periods as a result of different measurement methods used. Please see Fig. 1 in the manuscript 



and Section 2.1. Table 1 has been added to the manuscript in which all types of uncertainties are 

described for the various data sets used to extend the data set of maximum discharges. 

  

The GEV was estimated for each of these samples, the distributions were averaged (!) and their 95% 

percent confidence bounds were estimated. Table 1 specifies these 95% bounds with the 2-sigma-

reach, this would be only justified if the quantiles would be normal distributed. I suppose that this is 

not the case.  

Indeed, the confidence bounds of the discharges are not normally distributed. The caption of the 

table stating 2-sigma is not correct. If you look at the numbers of the uncertainty bounds you can 

already see that the confidence bounds are not normal distributed since the upper bound is much 

further away from the average value than the lower bound, specifically for a return period of 100,000 

years. The caption has been changed accordingly in the revised manuscript (see table 2). 

 

In total the value of this resampling study stays unclear for me as it does not extend the information 

content. The information, derived from the systematic series are used in a simulation study, but the 

basic assumption that the floods between 1772 and 1900 are reconstructed correctly adds 

uncertainty to it. 

We indeed assume that the 1772-1900 flood were reconstructed correctly, but not without 

uncertainty (Figure 1). We have included this uncertainty in the analysis. The 95% bounds of the 

1772-1900 data set are determined by Toonen (2015) and explained in more detail on page 4 lines 9-

12 and page 5 lines 1-2. He found an uncertainty interval of approximately 12%. This has been added 

explicitly to the revised manuscript to avoid further misunderstanding. Furthermore, we have added 

a table describing the uncertainties of the various data sets used to extend the systematic data set 

(see table 1). 

 

There are at least two other options to consider historic floods in statistics:  

REIS D. S., JR.; STEDINGER J. R. (2005): Bayesian MCMC flood frequency analysis with historical 

information. In: Journal of Hydrology, 313, pp. 97–116 (cited by the authors)  

Wang, Q. J. (1990): Unbiased estimation of probability weighted moments and partial probability 

weighted moments from systematic and historical flood information and their application to 

estimating the GEV distribution. In: Journal of Hydrology 120 (1-4), S. 115–124 

Both methods combine the information from the systematic data with historic floods without 

assumption that these observations are representative for the historic series. In both methods, it is 

assumed that the historic floods are representative for today’s conditions. These events are used to 

improve the estimation of the upper tail only. The systematic part of the series stays untouched. In 

this way the uncertainty of assumptions of a large part of the time series is avoided. The statement 

of the authors: “Most studies found that the confidence intervals of design discharges were reduced 

significantly by extending the systematic data set with historic events.” does not mean that an 

artificially extended systematic dataset would be beneficial if it was expanded with uncertain 

assumptions about past flood conditions and their adaptation to the current situation.  



We agree with you that we add uncertainty to the data set by adding historical flood events to the 

measured data set and by using a resampling method to create a continuous data set. However, it 

must be noted that many of the uncertainties of the historic flood events are included in the analysis, 

as well as the uncertainty of the systematic data set (1772-2018). An overview of the uncertainties 

considered is now given in table 1. The 95% confidence intervals of the flood frequency relations are 

hence based on these uncertainties.  

It is true that our method influences the flood frequency curve in the domain of the systematic data 

set (discharges with high probability of occurrence). However, as far as we know this is always the 

case if the parameters of the (GEV) distribution are recomputed as a result of new data availability. If 

we have a look at the figure below, we find that the design discharge with a return period of 100 

years decreases from ~12,080 m3/s to ~11,630 m3/s by extending the systematic 1901-2018 data set 

towards 1317 using the bootstrap method. This decrease in design discharge corresponds with a 

change of 3.7% indicating that resampling the systematic data set of the historical time period only 

has a little effect on the shape of the flood frequency curve corresponding with high probability of 

occurrence. This justifies the use of the bootstrap method. Furthermore, we would like to highlight 

that we are typically interested in correct prediction of the tail, rather than the discharges with large 

probability of occurrence, since the tail (high return periods) is of high importance to design flood 

protection measures. We have added this information in the discussion section on page 19 lines 4-

12. 

 

 

My summary: The manuscript has some weakness with regard to uncertainty assessments 

(confidence intervals) where the methodology is not sufficient described. The assumption of a 

symmetrical interval seems to be arbitrarily. Nevertheless the topic is interesting, the manuscript 

should be consider the existing state of the art in this field and compare its results with well-

established existing methods. I suggest to reject the manuscript for major revisions. 

We agree with the reviewer that we did not provide enough details about the considered 

uncertainties of the various data sets used. We have provided a detail explanation of the computed 

95% confidence intervals of the following data sets in the revised manuscript (see section 2): 

 Reconstructed historic flood events at Cologne by Meurs (2006) 

 Corresponding historic discharges at Lobith using a hydraulic model 

 Reconstructed discharges for the period 1772-1900 by Toonen (2015) 



 Measured discharges for the period 1901-2018 

Furthermore, we have added more information about why we propose this method instead of a 

Bayesian method in the introduction on page 2 lines 4-23. We would like to highlight that our 

method is systematic. We can extend our data set with historical data and keep the method of a 

flood frequency analysis the same. In this way, we can make a clear comparison on the effect of 

extending the data set with multiple other sets on the confidence bounds of flood frequency analysis 

(page 2 lines 24-30). 

Although the maximum likelihood method only gives a point estimate of the (GEV) parameters, as 

sample size increases, maximum likelihood estimators become unbiased minimum variance 

estimators with approximate normal distributions. This is used to compute confidence bounds for 

the GEV parameter estimates. We would like to highlight that, although the Bayesian method is 

capable of predicting parameter uncertainty without the assumption of being normally distributed, 

the results are influenced by the prior. The influence of the prior, which has to be defined by the 

modeler, on the posterior distribution of the parameters and hence on the uncertainty of flood 

frequency relations can even be larger than the influence of discharge measurement errors, as was 

found by Neppel et al. (2010). The disadvantage is thus that we have to choose the prior in the 

Bayesian method correctly such that the tail will be correctly predicted. However, we do not have 

any measurements in, or near to, the tail and consequently it is reasonable to estimate the prior by 

fitting the original data with the use of e.g. the Maximum Likelihood method. In this way, the 

benefits of the Bayesian method compared to a traditional flood frequency analysis are at least 

questionable. We have added a this to the discussion in section 6.5 and the introduction on page 2 

lines 14-20. 

We are aware that there is a strong debate between the ‘Bayesians’ and the ‘Frequentist’ in 

literature and discussion forums. With this paper, we do not want to get into this discussion. Rather, 

we wanted to show a novel and systematic approach which is easy to understand for practitioners to 

include historic flood information into flood safety assessments. The general methodology of a flood 

frequency analysis remains in this proposed bootstrap methodology, only the data set of measured 

discharges is extended. As a result, this method is close to current practice of water managers. We 

have added the reasons why we set up a bootstrap method in the introduction of the revised 

manuscript and compared the methodology with the Bayesian statistics briefly in the discussion in 

section 6.5. 

 

 

REFERENCES: 

Bomers, A., Schielen, R.M.J., Hulscher, S.J.M.H. (2019) Consequences of dike breaches and dike 

overflow in a bifurcating river system. In: Natural Hazards. doi: 10.1007/s11069-019-03643-y. 

Böschl, G., Hall, J., Parajka, J., Perdigão, R.A.P., Merz, B., et al. (2017) Changing climate shifts timing of 

European floods. In: Science 357, pp. 588–590. doi:10.1126/science.aan2506. 

Frances, F. (1998) Using the TCEV distribution function with systematic and non-systematic data in a 

regional flood frequency analysis. In: Stochastic Hydrology and Hydraulics 12, pp. 267-283.  



Khaliq, M.N., Ouarda, T.B., Ondo, J.C., Gachon, P., Bobée, B. (2006) Frequency analysis of a sequence 

of dependent and/or non-stationary hydro-meteorological observations: A review. In: Journal of 

Hydrology 329, pp. 534–552. doi:10.1016/j.jhydrol.2006.03.004 

Neppel, L., Renard, B., Lang, M., Ayral, P.a., Coeur, D., Gaume, E., Jacob, N., Payrastre, O., Pobanz, K., 

Vinet, F.,(2010) Flood frequency analysis using historical data: accounting for random and systematic 

errors. In: Hydrological Sciences Journal 55, pp. 192–208. doi:10.1080/02626660903546092 

  



Comments by reviewer 3 

[General reply from the authors]  

We would like to thank the anonymous reviewer for taking the time to review our manuscript. We 

highly appreciate the suggestions and comments, which are helpful in improving the manuscript. 

Below we have replied to the various comments made by the reviewer.  

 

[Replies to reviewer comments] 

In this paper, the authors present a method/case study to reconstruct a continuous times series of 

annual maximum discharges in order to estimate return times for flood discharges for the Rhine at 

Lobith. The study uses modern data from 1901 onwards, discharges reconstructed from water level 

measurements back to 1772 and information from historical flood events back to the 1300. 

Extending a time series with this information leads to a reduction of uncertainty and to more stable 

return times. The paper is well structured and written, and the topic is of relevance for flood risk 

estimation.  

However, there general problem I have with this manuscript is that the authors refer to and use data 

from many other studies, especially the one from Toonen (2015). It is difficult to follow the article for 

reader if one is not familiar with these studies because it requires reading many secondary sources to 

gain insight on how all the different data(-sets) were collected and obtained, e.g. how was the 

regression analysis by Toonen (2015) performed, how were the historical floods in Cologne by Herget 

and Meurs (2010) reconstructed, etc. This paper includes a lot of different data sets (systematic, 

historical, plus various bootstrapped time series), it would be beneficial for readers to include a table 

with a short description and overview of the properties of these data sets and to name them 

consistently throughout the paper.  

Thank you for this remark, we fully agree with you. In the revised manuscript we have provided more 

knowledge about how the discharges at Lobith were reconstructed by Toonen (2015) (page 4 lines 9-

12 and page 5 lines 1-2) as well as the reconstructions at Cologne performed by Herget and Meurs 

(2010) (page 6 lines 1-6).  Furthermore, the following table has been added to the revised manuscript 

as also suggested by Elena Volpi (first reviewer): 



 

The term “normalize” is used in different contexts (e.g. for historical floods, for the 1900-2008 data 

set, for the data set of Toonen (2015) which is not normalized but used as normalized data). I find 

this confusing since it does not become clear what is actually meant by this and what has been done 

to “normalize” each of these data sets. A more thorough explanation on this matter would be useful.  

With the term ‘normalize’ we mean that we translate the historic flood events (water levels, 

discharges) to present-day discharges at Lobith as a result of changes in the river system and 

hinterland. Please see also page 2 lines 34-35 where an explanation of the term is given. In the 

revised manuscript we will explain in more detail how the normalization was done for the various 

data sets used in this manuscript. The following text has been added with in green te new text: 

 

Regarding the 1901-2008 data set (page 3 lines 16-24): 

“Daily discharge observations at Lobith have been performed since 1901 and are available at 

https://waterinfo.rws.nl. From this data set, the annual maximum discharges are selected in which 

the hydrologic time period, starting at the 1st of October and ending at the 30th of September, is 

used. Since changes to the river system have been made the last century, Tijssen (2009) has 

normalized the measured data set from 1901-2008 to the conditions of  the year 2004. In the 20th 

century, canalization projects were executed along the Upper Rhine (Germany) which were finalized 

in 1977 (RIZA, 2003). After that, retention measures were executed in the trajectory Andernach-

Lobith. Firstly, the 1901-1977 data set has been normalized with the use of a regression function 

describing the influence of the canalization projects on the maximum discharges. Then, again a 

regression function was used to normalize the 1901-2008 data set for the retention measures (RIZA, 

2003). This results in a normalized 1901-2008 data set for the year 2004.” 

 



Regarding the Toonen (2015) data set (page 5 lines 3-5): 

“The reconstructed discharges in the period 1772-1900 represent the computed maximum 

discharges at the time of occurrence and have not been normalized for changes in the river system 

and thus they represent the actual occurred annual maximum discharges.” 

 

Regarding the Herget and Meurs (2010) data set (page 6 lines 17-19): 

“In this study, the 1D-2D coupled modelling approach as described by Bomers et al. (2019) is used to 

normalize the data set of Meurs (2006). This normalization is performed by routing the reconstructed 

historical discharges at Cologne over modern topography to estimate the maximum discharges at 

Lobith in present times.” 

 

In section 2.2 the authors describe the Toonen (2015) data set which uses a linear regression to 

compute water levels at Lobith. This method leads to a reduced variance of this data set (c.f. table 1). 

How would this affect the bootstrapping later on, if samples from the so called “systematic time 

period” with different variances (1772-1900, 1901- 2018) are drawn?  

The Toonen (2015) data set indeed has a lower variance compared to the 1901-2018 data set. To 

identify the effect of using both data sets for resampling purposes, we have performed an additional 

FFA in which now only the 1901-2018 data set is used for resampling. The results are presented in 

the figure below in which the purple line indicates the situation in which only the 1901-2018 data set 

is used for resampling and the blue line represents the reference situation in which the 1772-2018 is 

used for resampling. 

We can see that using the 1772-2018 results in a reduction of the confidence intervals caused by the 

lower variance in the 1772-1900 data set. This reduction is at maximum 12% for the return period of 

100,000 years. This finding has been added to the discussion on page 17 lines 27-34.  

However, do note that the lower variance in the 1772-1900 period compared to the 1901-2018 

period is most probably a result of natural variability in climate. It is this variability that we want to 

include in the analysis since also climate variability will exist in the future. If the lower variance was 

caused by e.g. the removal of a dam construction upstream, it would be reasonable to solely use the 

1901-2018 data set for resampling purposes. 



 

 

From my point of view, the section 2.3.2 presenting the normalization of historical flood events 

leaves some open questions which need to be addressed. Using a coupled 1D/2D model to route the 

discharges from Cologne to Lobith seems a reasonable approach given the circumstances of the data, 

but the dike breach model and the underlying assumptions need more explanation. Is it valid to 

assume dike breach parameters from today’s river geometry for historical times? Is there any 

historical evidence that there were dike breaches in the past, especially the 1374 event? Especially 

the reduction of the 1374 flood peak from Cologne to Lobith needs some sound 

justification/explanation. Why is this reduction only occurring for this specific event? Were there also 

dike breeches for the other historical events?  

Please note that de 1D-2D coupled model is only based on the current geometry and current dike 

strengths. This is because only then normalization can be performed. So, whether dike breaches 

occurred during the historical flood events between Andernach and Lobith may be interesting from 

historical point of view (e.g. a reconstruction of this flood in historical times), but is not directly 

relevant for this study, as we are interested what will happen nowadays. Therefore, we use so-called 

fragility curves showing at which water level the dikes in the studied area will start to breach. We 

now provide more insights in the 1D-2D coupled modelling approach in section 2.3.2 and particularly 

about the dike breach parameters (please also see figure 3). 

Concerning the 1374 flood event, this event results in a large reduction of the maximum discharge 

because major overflow and dike breaches occur in present times. Since the 1374 flood event was 

much larger than the current discharge capacity of the Lower Rhine, the maximum discharge at 

Lobith decreases. On the other hand, the remaining flood events were below this discharge and 

hence only a slight reduction in discharges were found for some of the events as a result of dike 

breaches whereas overflow did not occur. Other events slightly increased as a result of the inflow of 

the tributaries Sieg, Ruhr and Lippe rivers along the Lower Rhine. This explains why the 1374 flood 

event is much lower at Lobith compared to the discharge at Andernach, while the discharges of the 



remaining flood events are more or less the same at these two locations. This information has been 

added to the revised manuscript on page 8 lines 21-22 and page 9 lines 1-7. 

 

What exactly is meant by “the upstream discharge shape is varied” (p.6, line 12)? There is a lot of 

uncertainty in this, which somehow contradicts the aim of the paper to reduce uncertainty.  

Of the historic flood events at Cologne, only the peak value was known. The corresponding shape of 

the discharge wave was unknown. However, this shape may affect the maximum discharge at Lobith. 

Therefore, we want to include this uncertainty in the analysis. Although it is indeed true that we 

wanted to reduce uncertainty in flood frequency relations, it does not mean that we want to ignore 

known uncertainties in the reconstructions.  

We used a data set of 250 potential discharge shapes that can occur under current climate conditions 

(Hegnauer et al., 2014). See the figure below for an example of three potential discharge shapes: e.g. 

a broad peak, a small peak or a discharge wave with two peaks. For each run in the Monte Carlo 

analysis, we randomly sampled a shape and scaled this shape to the maximum value of the flood 

event. This represents the upstream boundary condition of the model run. We now provide more 

information about the upstream discharge wave shapes on page 7 lines 8-14. Please also see figure 3. 

 

 

Furthermore, it would be interesting to know if any of 12 historical flood events where winter events, 

where ice draft/ice jams could/did play a role.  

All flood events were winter events, except for the flood event in 1342 that took place in July. 

However, the flood events caused by ice jams were excluded from the analysis by Herget and Meurs 

(2010) because of the different hydraulic conditions. All flood events considered are thus caused by 

high rainfall intensities. This has been added on page 5 lines 12-13. 

 

Furthermore, assuming a normal distribution of uncertainties is valid for discharge measurements, 

but is this also the case for the estimation of historical extreme floods? Or is any discharge values in 

the uncertainty range equally possible? The reconstruction of the events in Cologne is based on the 

Manning equation and the uncertainty range results from different roughness coefficients. But do all 

of these follow a normal distribution? 

Herget and Meurs (2010) only provided the maximum, minimum and mean value of the roughness 

coefficients. They did not provide any insights in the distribution of this uncertainty. We assumed 



that they were normal distributed since it is likely that the mean value has a higher probability of 

occurrence than the boundaries of the considered range. This assumption results in a normal 

distribution of the maximum discharge at Andernach and consequently to a normal distribution of 

the maximum discharge at Lobith.  

However, we performed the resampling bootstrap method in a different way. During the resampling 

we assumed uniformly distributed uncertainties and we re-performed the analysis with normally 

distributed ones. The difference between the two is given in the figure below. We find that assuming 

normally distributed uncertainties results in slightly smaller uncertainty bounds which can be 

explained by the lower variance. However, this effect is only very little justifying the assumption of 

normally distributed uncertainties. This has been added on page 7 lines 3-7. 

 

 

Section 3: The bootstrap method to create continuous times series is a reasonable approach, 

however it would also be possible, to use the maximum likelihood method and incorporate the 

uncertainty range of the historical discharges as well as the discharges lower the perception 

threshold in the parameter estimation. From my point of view this approach is straight forward and 



should yield similar results. Could the authors explain/discuss the benefit of the bootstrapping 

approach?  

We have created a continuous data set by incorporating the uncertainty range of the historical 

discharges as well as the discharges lower than the perception threshold. Next, we have used the 

maximum likelihood method to fit each continuous data set (we have 5,000 in total) to a GEV 

distribution (please see figure 5 and the explanation of the bootstrap method in section 3). We do 

not understand the difference between our method and the method suggested by the reviewer. If 

our method was not fully understood by reading the manuscript, we will make this clearer in the 

revised manuscript. 

 

In Section 4, the authors state that there are many distributions and fitting methods for flood 

frequency analysis and that the only use the GEV with maximum likelihood method. It seems 

justified, that only one combination is used to quantify the reduction of the uncertainty, but in 

practice there are many different distributions and parameter estimation methods - which again 

cause higher uncertainties in the estimation of return times, especially for the upper tail extremes. 

The authors should include a comment and if possible a quantification of this effect on this in the 

discussion.  

You are indeed correct that the use of various kinds of distributions and parameter estimation 

methods influence the uncertainty in the flood frequency relations. We have performed the analysis 

with the Gumbel and Weibull distribution as well and these results are now shown in the discussion. 

We will also highlight that using the combination of multiple distributions in the analysis increases 

the uncertainties in the estimation of return periods. We have added this in the discussion of the 

revised manuscript in section 6.3. 

 

In Section 5.2., the authors argue that the reconstruction of historical flood events is complicated 

and time consuming and that this can be overcome by bootstrapping. However, the information from 

rare and large historical flood events is still required as is stated at the end of the section. This 

sounds like an inconsistency in the line of argumentation. Furthermore, this whole section is 

somewhere between results and discussion. I suggest that the authors try to separate more clearly 

between results and discussion.  

We indeed argue that reconstructing historic flood events is time consuming. Therefore, we studied 

whether it is also possible to only use the 1901-2018 measured data set in a bootstrap approach. 

However, we find that the uncertainty interval of this FF curve is larger than for the FF curve in which 

the normalized historic flood events are considered. We thus show that, although it is time 

consuming to normalize the historic flood events, it is worth the effort since it reduces uncertainties 

in FF relations. Since this was not fully clear, we have rewritten the paragraph in the revised 

manuscript. Furthermore, we have rewritten the paragraph in a more discussion style and replace 

this section towards the discussion section. Please see section 6.1. 

 

In the discussion, the effect of a hypothetical future extreme flood on the robustness of return times 

is addressed, which is somehow obvious from my point of view. This aspect does not add much value 

to the paper and can either be omitted or be moved to the results section.  



We have moved this section towards the results. We believe that it shows the robustness of the 

method since using an extended data set in flood management avoids that a flood frequency curve 

changes after the occurrence of a future flood event. As a results, the FFA does not have to be 

performed again, while this is necessary if only the data set of measured discharges is used. 

Therefore, decision makers might have taken another decision. Please see page 14 lines 26-27. 

 

Some specific comments:  

Page 3, line 3f.: Why are uncertainties not symmetrical due to missing continuous data? Don’t these 

result from the non-linearity of the rating curves?  

The sentence about the symmetrical uncertainties stated in the introduction was not fully correct. 

Indeed, uncertainties are in general not symmetrical for flood frequency relations. This is indeed the 

result of the non-linearity of the rating curves. However, the introduction have been revised 

significantly and as a result the sentence related to the symmetrical uncertainties have been 

removed. 

Page 4, line 7f.: ACDP-measurements are in general not free of uncertainties, this assumption is not 

correct.  

Indeed, the ACDP-measurements are in general not free of uncertainties. Since we had no reference 

regarding this uncertainty, we used the uncertainties as suggested by Toonen (2015). He mentioned 

that only the discharges slightly exceeding the bank-full discharge have an uncertainty range of 5%. 

In the revised manuscript we now include this uncertainty for all ACDP-measurements (see page 3 

lines 31-32 and table 1). However, since all annual maximum discharges in the period 2000-2018 

where between 4,000 and 8,000 m3/s, the 5% uncertainty was already included in the analysis and 

hence the results will not change. 

Page 11, line 2: Where does this confidence interval of 7400m3 /s come from?  

This value represents the reduction in the confidence interval if the 1901 data set is extended 

towards 1317 for the discharges corresponding with a return period of 1,250 years. We have 

rewritten the text such that this becomes clearer. Please see page 12 line 22 and page 13 lines 1-2. 

Page 15, line 1: Same as above, modern discharge measurements are not free of measurement 

errors!  

Please see above and page 3 lines 31-32 and table 1. 

Page 15, line 5f.: See above, this is not a novel results and can more or less be expected. 

Furthermore, the statement that “flood managers can be less nervous” sounds awkward and is not 

really correct, since the uncertainty caused by different distributions/parameter estimation methods 

is not addressed.  

This section has been moved to the results. It is indeed true that we did not include the uncertainty 

caused by different distributions and parameter estimation methods. We have removed the 

statement from the manuscript and added in the discussion the effects of using a combination of 

different distributions on the uncertainty intervals. Please see section 6.3. 

Figure 2: Should be replaced by a “conventional” map, including national boundaries, a scale bar etc. 

Readers from outside of Europe might not be familiar with this region. 



The figure has been replaced by the following figure such that now the national boundaries, scale 

bar, north arrow, names and model boundary are given. Please see figure 2 

 

Table 1: The results of Toonen (2015) can be omitted in this table from my point of view. 

The results of Toonen (2015) are omitted from the table. 

Figure 6 and 7: The colours/line styles of the different curves are difficult to distinguish and should be 

changed to make these figures better to read.  

The colours are adapted as follow: 



 

References: To my knowledge, Meurs 2006 is a diploma thesis, not a PhD thesis. 

You are correct, it is indeed a diploma thesis. This has been adapted in the revised manuscript. 
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List of all relevant  changes made in de manuscript 

 Introduction has significantly been changed. We now provide more information about the 

differences between the Bayesian approach and the frequentist statistics. Also the reasons 

why we set up a bootstrap method are now better described. 

 More information about the data sets used is given as well as the uncertainties involved. 

 More information about the hydraulic model has been added in which we now describe in 

more detail how the normalization steps of the historical flood events are performed. 

 The discussion section has been altered a lot. More information about the assumptions and 

drawbacks are given. 
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Abstract. Flood frequency curves are usually highly uncertain since they are based on short data sets of measured discharges

or weather conditions. To decrease the confidence intervals, an efficient bootstrap method is developed in this study. The Rhine

river delta is considered as a case study. We use a hydraulic model to normalize historic flood events for anthropogenic and

natural changes in the river system. As a result, the data set of measured discharges could be extended with approximately 600

years. The study shows that flood events decrease the confidence interval of the flood frequency curve significantly, specifically5

in the range of large floods. This even applies if the maximum discharges of these historic flood events are highly uncertain

themselves.

1 Introduction

Floods are one of the main natural hazards to cause large economic damage and human casualties worldwide as a result of

serious inundations with disastrous effects. Design discharges associated with a specific return period are used to construct10

flood defences to protect the hinterland from severe floods. These design discharges are commonly determined with the use

of a flood frequency analysis (FFA). The basic principle of an FFA starts with selecting the annual maximum discharges of

the measured data set, or peak values that exceed a certain threshold (Schendel and Thongwichian, 2017). These maximum

or peak values are then used to identify the parameters of a probability distribution. From this fitted distribution, discharges

corresponding to any return period can be derived.15

Return periods of design discharges are commonly in the order of 500 years or even more, while discharge measurements

have been performed only for the last 50-100 years. For the Dutch Rhine river delta (used as a case study in this paper), water

levels and related discharges have been registered since 1901 while design discharges have a return period up to 100,000 years

(Van der Most et al., 2014). Extrapolation of these measured discharges to such return periods results in large confidence

intervals of the predicted design discharges. Uncertainty in the design discharges used for flood risk assessment can have major20

implications for national flood protection programs since it determines whether and where dike reinforcements are required. A

too wide uncertainty range may lead to unnecessary investments.

To obtain an estimation of a flood with a return period of e.g. 10,000 years with little uncertainty, a discharge data set of at

least 100,000 years is required (Klemeš, 1986). Of course, such data sets do not exist. For this reason, many studies try to extend
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the data set of measured discharges with historic and/or paleo flood events. The most common methods in literature to include

historical data into an FFA are based on the traditional methods of frequentist statistics (Frances et al., 1994; MacDonald et al.,

2014; Sartor et al., 2010) and Bayesian statistics (O’Connell et al., 2002; Parkes and Demeritt, 2016; Reis and Stedinger, 2005).

While frequentist statistics are generally applied by decision makers, Bayesian statistics have significantly increased in

popularity in the last decade. Reis and Stedinger (2005) has successfully applied a Bayesian Markov Chain Monte Carlo5

(MCMC) analysis to determine flood frequency relations and their uncertainties using both systematic data and historic flood

events. A Bayesian analysis determines the full posterior distribution of the parameters of a probability distribution function

(e.g. GEV distribution). This has as advantage that the entire range of parameter uncertainty can be included in the analysis.

Contrarily, classical methods based on frequentist statistics usually only provide a point estimate of the parameters where after

their uncertainties are commonly described by using the assumption of symmetric normal distributed uncertainty intervals10

(Reis and Stedinger, 2005). The study of Reis and Stedinger (2005) shows that confidence intervals of design discharges were

reduced significantly by extending the systematic data set with historic events using the proposed Bayesian framework. This

finding is important for the design of future flood reducing measures since these can then be designed with less uncertainty.

However, Bayesian statistic also has several drawbacks. Although no assumption about the parameter uncertainty of the

distribution function has to be made, the results depend on the parameter priors which have to be chosen a priori. The influence15

of the priors on the posterior distributions of the parameters and hence on the uncertainty of flood frequency relations can even

be larger than the influence of discharge measurement errors (Neppel et al., 2010). The prior can be estimated by fitting the

original data with the use of e.g. the Maximum Likelihood method. However, we do not have any measurements in, or near to,

the tail of the frequency distribution functions. In this way, the benefits of the Bayesian method compared to a traditional flood

frequency analysis are at least questionable.20

In this study, we propose a systematic approach to include historic flood information into flood safety assessments. The gen-

eral methodology of a flood frequency analysis remains, only the data set of measured discharges is extended with the use of a

bootstrap approach. As a result, this method is close to current practice of water managers. We extend the data set of measured

discharges at Lobith, the German-Dutch border, with historic events to decrease uncertainty intervals of design discharges

corresponding to rare events. A bootstrap method is proposed to create a continuous data set after which we perform a tradi-25

tional FFA to stay in line with the current methods used for Dutch water policy. Hence, the results are well understandable by

decision makers since solely the effect of using data sets with different lengths on flood frequency relations and corresponding

uncertainty intervals are presented. The objective of this study is thus to develop a straightforward method to consider historic

flood events in an FFA, while the basic principles of an FFA remain unchanged.

The measured discharges at Lobith (1901-2018) are extended with the continuous reconstructed data set of Toonen (2015)30

covering the period 1772-1900. These data sets are extended with the most extreme, older historic flood events near Cologne

reconstructed by Meurs (2006), which are routed towards Lobith. For this routing, a one dimensional-two dimensional (1D-

2D) coupled hydraulic model is used to determine the maximum discharges during these historic events based on the current

geometry. In such a way, the historic floods are corrected for anthropogenic interventions and natural changes of the river

system, referred to as normalization in this study. Normalizing the historic events is of high importance since flood patterns35
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most likely change over the years as a result of e.g. dike reinforcements, land use change or decrease in floodplain area (dike

shifts). The normalized events almost always lead to a higher discharge than the historic event. This is because more water

is capable of flowing through the river system as a result of the heightened dikes along the Lower Rhine. Nowadays, floods

occur for higher discharge stages compared to the historical time period. In any case, the normalized events give insight in

the consequences of an event with the same characteristics of a historic flood event translated to present times. To create a5

continuous data set, a bootstrap resampling technique is used. The results of the bootstrap method are evaluated against an

FFA based on solely measured annual maximum discharges (1901-2018 and 1772-2018). Specifically, the change in the design

discharge and its 95% confidence interval of events with a return period of 100,000 years is considered because this design

discharge corresponds with the highest safety level used in Dutch flood protection programs (Van Alphen, 2016).

In Section 2 the different data sets used to construct the continuous discharge data set are explained, as well as the 1D-2D10

coupled hydraulic model. Next, the bootstrap method and FFA are explained (Section 3 and Section 4 respectively). After that,

the results of the FFA are given (Section 5). The paper ends with a discussion (Section 6) and the main conclusions (Section

7).

2 Annual maximum discharges

2.1 Discharge measurements period 1901 - present15

Daily discharge observations at Lobith have been performed since 1901 and are available at https://waterinfo.rws.nl. From this

data set, the annual maximum discharges are selected in which the hydrologic time period, starting at the 1st of October and

ending at the 30th of September, is used. Since changes to the system have been made the last century, Tijssen (2009) has

normalized the measured data set from 1901-2008 for the year 2004. In the 20th century, canalization projects were executed

along the Upper Rhine (Germany) which were finalized in 1977 (Van Hal, 2003). After that, retention measures were executed20

in the trajectory Andernach-Lobith. Firstly, the 1901-1977 data set has been normalized with the use of a regression function

describing the influence of the canalization projects on the maximum discharges. Then, again a regression function was used

to normalize the 1901-2008 data set for the retention measures (Van Hal, 2003). This results in a normalized 1901-2008 data

set for the year 2004. For the period 2009-2018, the measured discharges without normalization are used.

During the discharge recording period, different methods have been used to perform the measurements. These different25

methods result in different uncertainties (Table 1 and must be included in the FFA to correctly predict the 95% confidence

interval of the FF curve. From 1901 until 1950, discharges at Lobith were based on velocity measurements performed with

floating sticks on the water surface. Since the velocity was only measured at the surface, extrapolation techniques were used

to compute the total discharge. This resulted in an uncertainty of approximately 10% (Toonen, 2015). From 1950 until 2000,

current meters were used to construct velocity-depth profiles. These profiles were used to compute the total discharge, having30

an uncertainty of approximately 5% (Toonen, 2015). Since 2000, Acoustic Doppler Current Profiles have been used for which

also an uncertainty of 5% is assumed.
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Table 1. Uncertainties and properties of the various data sets used. The 1342-1772 data set represents the historical discharges (first row in

the table), whereas the data sets in the period 1772-2018 are referred to as the systematic data set (rows 2-7)

Time period Data source Property Cause uncertainty Location

1342-1772 Meurs (2006) 12 single Reconstruction uncertain caused by main channel Cologne

events bathymetry, bed friction and maximum occurred

water levels

1772-1865 Toonen (2015) Continuous Reconstruction uncertainty based on measured Emmerich,

data set water levels of surrounding sites (∼ 12%) Pannerden

and Nijmegen

1866-1900 Toonen (2015) Continuous Uncertainty caused by translation measured water Lobith

data set levels into discharges (∼ 12%)

1901-1950 Tijssen (2009) Continuous Uncertainty caused by extrapolation techniques to Lobith

data set translate measured velocities at the water surface

into discharges (10%)

1951-2000 Tijssen (2009) Continuous Uncertainty caused by translation velocity-depth Lobith

data set profiles into discharges (5%)

2001-2008 Tijssen (2009) Continuous Measurement errors (5%) Lobith

data set

2009-2018 Measured water levels Continuous Measurement errors (5%) Lobith

available at data set

https://waterinfo.rws.nl

2.2 Water level measurements period 1772 - 1900

Toonen (2015) studied the effects of non-stationarity in flooding regimes over time on the outcome of an FFA. He extended

the data set of measured discharges of the Rhine river at Lobith with the use of water level measurements. At Lobith, daily

water level measurements are available since 1866. For the period 1772-1865 water levels were measured at the nearby gauging

locations Emmerich, Germany (located 10 kilometers in upstream direction), Pannerden (located 10 kilometers in downstream5

direction) and Nijmegen (located 22 kilometers in downstream direction). Toonen (2015) used the water levels of these loca-

tions to compute the water levels at Lobith and their associated uncertainty interval with the use of a linear regression between

the different measurement locations. Subsequently, he translated these water levels, together with the measured water levels

for the period 1866-1900, into discharges using stage-discharge relations at Lobith. These relations were derived based on

discharge predictions adopted from Cologne before 1900 and measured discharges at Lobith after 1900, and water level esti-10

mates from the measurement locations Emmerich, Pannerden, Nijmegen and Lobith. Since the discharge at Cologne strongly

correlates with the discharge at Lobith, the measured discharges in the period 1817-1900 could be used to predict discharges
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Figure 1. Maximum discharges (Q) and their 95% confidence interval during the systematic time period (1772-2018)

at Lobith. The 95% confidence interval in reconstructed water levels propagates in the application of stage-discharge relations,

resulting in an uncertainty range of approximately 12% for the reconstructed discharges (Fig. 1) (Toonen, 2015).

The reconstructed discharges in the period 1772-1900 represent the computed maximum discharges at the time of occurrence

and these have not been normalized for changes in the river system. They thus represent the actual occurred annual maximum

discharges. Toonen (2015) argues that, based on the work of Bronstert et al. (2007) and Vorogushyn and Merz (2013), the effect5

of recent changes in the river system on discharges of extreme floods of the Lower Rhine is small. Hence, it is justified to use

the presented data set of Toonen (2015) in this study as normalized data. Fig. 1 shows the annual maximum discharges for the

period 1772-2018 and their 95% confidence intervals. This data represents the systematic data set and consists of the measured

discharges covering the period 1901-2018 and the reconstructed data set of Toonen (2015) covering the period 1772-1900.

2.3 Reconstructed flood events period 1300 AD - 177210

Meurs (2006) has reconstructed maximum discharges during historic flood events near the city of Cologne, Germany. The

oldest event dates back to 1342. Only flood events caused by high rainfall intensities were reconstructed because of the different

hydraulic conditions of flood events caused by ice jams. The used method is described in detail by Herget and Meurs (2010),

in which the 1374 flood event was used as a case study. Historic documents providing information about the maximum water

levels during the flood event were combined with the reconstruction of the river cross section at that same time. Herget and15

Meurs (2010) calculated mean flow velocities near the city of Cologne at the time of the historic flood events with the use of

the Manning’s equation:

Qp =ApRp
2/3S1/2n-1 (1)
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where Qp represents the peak discharge (m3/s), Ap the cross-sectional area (m2) during the highest flood level, Rp the hydraulic

radius during the highest flood level (m), S the slope of the main channel and n its Manning’s roughness coefficient (s/m1/3).

However, the highest flood level as well as the Manning’s roughness coefficient are uncertain. The range of maximum water

levels were based on historical sources, whereas the range of Manning’s roughness coefficients were based on the tables

of Chow (1959). Including these uncertainties in the analysis, Herget and Meurs (2010) were able to calculate maximum5

discharges of the specific historic flood events and associated uncertainty ranges (Fig. 4).

In total 13 historic flood events that occurred before 1772 were reconstructed. Two of the flood events occurred in 1651.

Only the largest flood of these two is considered as data point. This results in 12 historic floods that are used to extend the

systematic data set. The reconstructed maximum discharges at Cologne (Meurs, 2006) are used to predict maximum discharges

at Lobith with the use of a hydraulic model to normalize the data set. Although Cologne is located roughly 160 km upstream10

of Lobith, there is a strong correlation between the discharges at these two locations. This is because they are located in the

same fluvial trunk valley and only have minor tributaries (Sieg, Ruhr and Lippe rivers) joining in between (Toonen, 2015).

This makes the reconstructed discharges at Cologne applicable to predict corresponding discharges at Lobith. The model used

to perform the hydraulic calculations is described in Section 2.3.1. The maximum discharges at Lobith of the 12 historic flood

events are given in Section 2.3.2.15

2.3.1 Model environment

In this study, the 1D-2D coupled modelling approach as described by Bomers et al. (2019a) is used to normalize the data set

of Meurs (2006). This normalization is performed by routing the reconstructed historical discharges at Cologne over modern

topography to estimate the maximum discharge at Lobith in present times. The study area stretches from Andernach to the

Dutch cities of Zutphen, Rhenen and Druten (Fig. 2). In the hydraulic model, the main channels and floodplains are discretized20

by 1D profiles. The hinterland is discretized by 2D grid cells. The 1D profiles and 2D grid cells are connected by a structure

corresponding with the dimensions of the dike that protects the hinterland from flooding. If the computed water level of a 1D

profile exceeds the dike crest, water starts to flow into the 2D grid cells corresponding with inundations of the hinterland. A

discharge wave is used as upstream boundary condition. Normal depths, computed with the use of the Manning’s equation,

were used as downstream boundary conditions. HEC-RAS (v. 5.0.3) (Brunner, 2016), developed by the Hydrologic Engineering25

Centre (HEC) of the US Army Corps of Engineers, is used to perform the computations. For more information about the model

set-up, see Bomers et al. (2019b).

2.3.2 Normalization historic flood events

We use the hydraulic model to route the historical discharges at Cologne, as reconstructed by Meurs (2006), to Lobith. However,

the reconstructed historical discharges were uncertain. Therefore, also the discharges at Lobith are uncertain. To include this30

uncertainty in the analysis a Monte Carlo analysis (MCA) is performed in which, among others, the upstream discharges

reconstructed by Meurs (2006) are included as random parameters. These discharges have large confidence intervals (Fig.

4). The severe 1374 flood, representing the largest flood of the last 1,000 years with a discharge of 23,000 m3/s, even has a
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Figure 2. Model domain (blue river branches) of the 1D-2D coupled model

confidence interval of more than 10,000 m3/s. To include the uncertainty as computed by Meurs (2006) in the analysis, the

maximum upstream discharge is varied in the MCA based on its probability distribution. However, the shape of this probability

distribution is unknown. Herget and Meurs (2010) only provided the maximum, minimum and mean value of the reconstructed

discharges. We assumed normally distributed discharges since it is likely that the mean value has a higher probability of

occurrence than the boundaries of the reconstructed discharge range. However, we found that the assumption of the uncertainty5

distribution has a negligible effect on the 95% uncertainty interval of the FF curve at Lobith. Assuming uniformly distributed

uncertainties only led to a very small increase in this 95% uncertainty interval.

Not only the maximum discharges at Cologne are uncertain, also the discharge wave shape of the flood event. The shape

of the upstream flood event may influence the maximum discharge at Lobith. Therefore, the upstream discharge wave shape

is varied in the MCA. We use a data set of approximately 250 potential discharge wave shapes that can occur under current10

climate conditions (Hegnauer et al., 2014). In such a way, a broad range of potential discharge wave shapes, e.g. a broad peak,

a small peak, or two peaks, are included in the analysis. For each run in the MCA, a discharge wave shape is randomly sampled

and scaled to the maximum value of the flood event considered (Fig. 3). This discharge wave represents the upstream boundary

condition of the model run.

The sampled upstream discharges, based on the reconstructed historic discharges at Cologne, may lead to dike breaches in15

present times. Since we are interested in the consequences of the historic flood events in present times, we want to include these

dike breaches in the analysis. However, it is highly uncertain how dike breaches develop. Therefore, the following potential

dike breach settings are included in the MCA (Fig. 3):

1. Dike breach threshold

2. Final dike breach width20
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Figure 3. Random input parameters considered in the Monte Carlo analysis

3. Dike breach duration

The dike breach thresholds (i.e. the critical water level at which a dike starts to breach) are based on 1D fragility curves

provided by the Dutch Ministry of Infrastructure and Water Management. A 1D fragility curve expresses the reliability of a

flood defence as a function of the critical water level (Hall et al., 2003). The critical water levels thus influence the timing

of dike breaching. For the Dutch dikes, it is assumed that the dikes can fail due to failure mechanisms wave overtopping and5

overflow, piping and macro-stability, where as the German dikes only fail because of wave overtopping and overflow (Bomers

et al., 2019b). The distributions of the final breach width and the breach formation time are based on literature and on historical

data (Apel et al., 2008; Verheij and Van der Knaap, 2003). Since it is unfeasible to implement each dike kilometer as potential

dike breach location in the model, only the dike breach locations that result in significant overland flow are implemented. This

results in 33 potential dike breach locations whereas overflow (without dike breaching) is possible to occur at every location10

throughout the model domain (Bomers et al., 2019b).

So, for each Monte Carlo run an upstream maximum discharge and discharge wave shape is sampled. Next, for each of the

33 potential dike breach locations the critical water level, dike breach duration and final breach widths are sampled. With this

data, the Monte Carlo run representing a specific flood scenario can be run (Fig. 3). This process is repeated until converge

of the maximum discharge at Lobith and its confidence interval is found. For a more in depth explanation of the Monte Carlo15

analysis and random input parameters, we refer to Bomers et al. (2019b).

The result of the MCA is the normalized maximum discharge at Lobith and its 95% confidence interval for each of the 12

historic flood events. Since the maximum discharges at Cologne are uncertain, also the normalized maximum discharges at

Lobith are uncertain (Fig. 4). Fig 4 shows that the extreme 1374 flood with a maximum discharge of between 18,800 m3/s and

29,000 m3/s at Cologne, reduces significantly in downstream direction as a result of overflow and dike breaches. Consequently,20

the maximum discharge at Lobith turns out to be between 13,825 and 17,753 m3/s. This large reduction in the maximum

discharge is caused by the major overflow and dike breaches that occur in present times. Since the 1374 flood event was much
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Figure 4. Maximum discharges and their 95% confidence intervals of the reconstructed historic floods at Cologne (Herget and Meurs, 2010)

and simulated maximum discharges and their 95% confidence intervals at Lobith for the 12 historic flood events

larger than the current discharge capacity of the Lower Rhine, the maximum discharge at Lobith decreases. The reconstruction

of the 1374 flood over modern topography is presented in detail in Bomers et al. (2019c). On the other hand, the other 11 flood

events were below this discharge and hence only a slight reduction in discharges was found for some of the events as a result

of dike breaches whereas overflow did not occur. Some other events slightly increased as a result of the inflow of the tributaries

Sieg, Ruhr and Lippe rivers along the Lower Rhine. This explains why the 1374 flood event is much lower at Lobith compared5

to the discharge at Andernach, while the discharges of the other 11 flood events are more or less the same at these two locations

(Fig. 4). The reduction in maximum discharge of the 1374 flood event in downstream direction shows the necessity to apply

hydraulic modelling since the use of a linear regression analysis based on measured discharges between Cologne and Lobith

will result in an unrealistic larger maximum discharge at Lobith.

The reconstructed discharges at Lobith are used to extend the systematic data set presented in Fig. 1. In the next section,10

these discharges are used in an FFA with the use of a bootstrap method.

3 Bootstrap method

The systematic data set covering the period 1772-2019 is extended with 12 reconstructed historic flood events that occurred in

the period 1300-1772. To create a continuous data set, a bootstrap method based on sampling with replacement is used. The

continuous systematic data set (1772-2018) is resampled over the missing years from the start of the historical period to the15

start of the systematic record. Two assumptions must be made such that the bootstrap method can be applied:

1. The start of the continuous discharge series since the true length of the historical period is not known.
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2. The perception threshold over which floods were recorded in the historical times before water level and discharge mea-

surements were conducted.

Assuming that the historical period starts with the first known flood (in this study: 1342) will significantly underestimate the

true length of this period. This underestimation influences the shape of the FF curve (Hirsch and Stedinger, 1987; Schendel

and Thongwichian, 2017). Therefore, Schendel and Thongwichian (2017) proposed the following equation to determine the5

length of the historical period:

M = L+
L+N − 1

k
(2)

where M represents the length of the historical period (years), L the number of years from the first historic flood to the start of

the systematic record (431 years), N the length of the systematic record (247 years) and k the number of floods exceeding the

perception threshold in both the historical period as well as in the systematic record (28 in total). Using equation 2 results in a10

length of the historical period of 455 years (1317-1771).

The perception threshold is considered to be equal to the discharge of the smallest flood present in the historic period,

representing the 1535 flood with an expected discharge of 8,826 m3/s (Fig. 4). We follow the method of Parkes and Demeritt

(2016) assuming that the perception threshold was fairly constant over the historical period. However, the maximum discharge

of the 1535 flood is uncertain and hence also the perception threshold is uncertain. Therefore, the perception threshold is treated15

as a random uniformly distributed parameter in the bootstrap method which boundaries are based on the 95% confidence

interval of the 1535 flood event.

The bootstrap method consist of creating a continuous discharge series from 1317-2018. The method includes the following

steps (Fig. 5):

1. Combine the 1772-1900 data set with the 1901-2018 data set to create a systematic data set.20

2. Select the flood event with the lowest maximum discharge present in the historic time period. Randomly sample a value

in between the 95% confidence interval of this lowest flood event. This value is used as perception threshold.

3. Compute the start of the historical time period (equation 2).

4. Of the systematic data set, select all discharges that have an expected value lower than the sampled perception threshold.

5. Use the data set created in Step 4 to create a continuous discharge series in the historical time period. Randomly draw25

an annual maximum discharge of this systematic data set for each year within the historical period of which no data is

available following a bootstrap approach.

6. Since both the reconstructed as well as the measured discharges are uncertain due to e.g. measurement errors, these

uncertainties must be included in the analyses. Therefore, for each discharge present in the systematic data set and in the

historical data set, its value is randomly sampled based on its 95% confidence interval.30

7. Combine the data sets of Steps 5 and 6 to create a continuous data set starting from 1317-2018.
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Figure 5. Bootstrap method to create a continuous discharge series

The presented steps in the bootstrap method are repeated 5,000 times in order to create 5,000 continuous discharge data sets

resulting in convergence in the FFA. The FFA procedure itself is explained in the next section.

4 Flood frequency analysis

An FFA is performed to determine the FF relation of the different data sets (e.g. systematic record, historical records). A

probability distribution function is used to fit the annual maximum discharges to its probability of occurrence. Many types5

of distribution functions and goodness-of-fit tests exist, all with their own properties and drawbacks. However, the available

goodness-of-fit tests for selecting an appropriate distribution function are often inconclusive. This is mainly because each test

is more appropriate for a specific part of the distribution, while we are interested in the overall fit since the safety standards

expressed in probability of flooding along the Dutch dikes vary from 10-2 to 10-5. Furthermore, we highlight that we focus on

the influence of extending the data set of measured discharges on the reduction in uncertainty of the FF relations rather than on10

the suitability of the different distributions and fitting methods.

We restrict our analysis to the use of a Generalized Extreme Value (GEV) distribution since this distribution is commonly

used in literature to perform an FFA (Parkes and Demeritt, 2016; Haberlandt and Radtke, 2014; Gaume et al., 2010). Addition-

ally, several studies have shown the applicability of this distribution on the flooding regime of the Rhine river (Toonen, 2015;

Chbab et al., 2006; Te Linde et al., 2010). The GEV distribution has an upper bound and is thus capable of flattening off at15

extreme values by having a flexible tail. We use a bounded distribution since the maximum discharge that is capable of entering

the Netherlands is limited to a physical maximum value. The crest levels of the dikes along the Lower Rhine, Germany, are not

infinitely high. The height of the dikes influences the discharge capacity of the Lower Rhine and hence the discharge that can
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Table 2. Discharges [m3/s] and their 95% confidence interval corresponding to several return periods for the 1901, 1772 and 1317 data sets

and the data set of Toonen (2015)

Data Q10 Q100 Q1,000 2.5% Q1,250 97.5% 2.5% Q100,000 97.5%

1901-2018 9,264 12,036 14,050 10,594 14,215 20,685 11,301 16,649 29,270

1772-2018 9,106 11,442 13,008 11,053 13,130 16,027 11,858 14,813 19,576

1317-2018 8,899 11,585 13,655 12,514 13830 15,391 14,424 16,562 19,303

flow towards Lobith. Using an upper bounded distribution yields that the FF relation converges towards a maximum value for

extremely large return periods. This value represents the maximum discharge that is capable of occurring at Lobith.

The GEV distribution is described with the following equation:

F (x) = exp{−[ξ x−µ
σ

]
1
ξ } (3)

where µ represents the location parameter indicating where the origin of the distribution is positioned, σ the scaling parameter5

describing the spread of the data, and ξ represents the shape parameter controlling the skewness and kurtosis of the distribution,

both influencing the upper tail and hence the upper bound of the system. The maximum likelihood method is used to determine

the values of the three parameters of the GEV distribution (Stendinger and Cohn, 1987; Reis and Stedinger, 2005).

The FFA is performed for each of the 5,000 continuous discharge data sets created with the bootstrap method (Section 3),

resulting in 5,000 fitted GEV curves. The average of these relations is taken to get the final FF curve and its 95% confidence10

interval. The results are given in the next section.

5 Results

5.1 Flood frequency relations

In this section the FFA results (Fig. 6) of the following data sets are presented:

– 1901 data set; measured discharges covering the period 1901-2018.15

– 1772 data set; as above and extended with the data set of Toonen (2015), representing the systematic data set and covering

the period 1772-2018.

– 1317 data set; as above and extended with 12 reconstructed historic discharges and the bootstrap resampling method to

create a continuous discharge series covering the period 1317-2018.

If the data set of measured discharges is extended, we find a large reduction in the confidence interval of the FF curve (Fig.20

6 and Table 2). Only extending the data set with the data of Toonen (2015) reduced this confidence interval with 5,200 m3/s

for the floods with a return period of 1,250 years (Table 2). Adding the reconstructed historic flood events in combination with
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Figure 6. Fitted GEV curves and their 95% confidence intervals of the 1901, 1772 and 1317 data sets

a bootstrap method to create a continuous data set, results in an even larger reduction in the confidence interval of 7,400 m3/s

compared to the results of the 1901 data set. For the discharges with a return period of 100,000 years, we find an even larger

reduction in the confidence intervals (Table 2).

Furthermore, we find that using only the 1901 data set results in larger design discharges compared to the two extended

data sets. This is in line with the work of Toonen (2015). Surprisingly however, we find that the 1772 data set predicts the5

lowest discharges for return periods > 100 years (Table 2), while we would expect that the 1317 data set predicts the lowest

values according to the findings of Toonen (2015). The relatively low positioning of the FF curve constructed with the 1772

data, compared to our other 1317 and 1901 data sets, might be explained by the fact that the data of Toonen (2015) covering

the period 1772-1900 has not been normalized. This period has a relative high flood intensity (Fig. 1). However, only two

flood events exceeded 10,000 m3/s. A lot of dike reinforcements along the Lower Rhine were executed during the last century.10

Therefore, it is likely that before the 20th century, flood events with a maximum discharge exceeding 10,000 m3/s resulted in
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dike breaches and overflow upstream of Lobith. As a result, the maximum discharge of such an event decreased significantly.

Although Toonen (2015) mentions that the effect of recent changes in the river system on discharges of extreme floods of

the Lower Rhine is small, we argue that it does influence the flood events with maximum discharges slightly lower than the

current main channel and floodplains capacity. Currently, larger floods are possible to flow in downstream direction without

the occurrence of inundations compared to the 19th century. Therefore, it is most likely that the 1772-1900 data set of Toonen5

(2015) underestimates the flooding regime of that specific time period influencing the shape of the FF curve.

5.2 Hypothetical future extreme flood event

After the 1993 and 1995 flood events of the Rhine river, the FF relation used in Dutch water policy was recalculated taking

into account the discharges of these events. All return periods were adjusted. The design discharges with a return period of

1,250 years, which was the most important return period at that time, increased with 1,000 m3/s (Parmet et al., 2001). Such10

an increase in the design discharge requires more investments in dike infrastructure and floodplain measures to re-establish

the safety levels. Parkes and Demeritt (2016) found similar results for the river Eden, UK. They showed that the inclusion of

the 2015 flood event had a significant effect on the upper tail of the FF curve, even though their data set was extended from

1967 to 1800 by adding 21 reconstructed historic events to the data set of measured data. Schendel and Thongwichian (2017)

argues that if the flood frequency relation alters after a recent flood, and if this change can be ambiguously attributed to this15

event, the data set of measured discharges must expanded since otherwise the FF results will be upward biased. Based on their

considerations, it is interesting to see how adding a single extreme flood event influences the results of our method.

Both the 1317 and 1901 data sets are extended from 2018 to 2019 with a hypothesized flood in 2019. We assume that in

2019 a flood event has occurred that equals the largest measured discharge so far. This corresponds with the 1926 flood event

(Fig. 1), having a maximum discharge of 12,600 m3/s. No uncertainty of this event is included in the analysis. Fig. 7 shows20

that the FF curve based on the 1901 data set changes significantly as a result of this hypothesized 2019 flood. We calculate

an increase in the discharge corresponding with a return period of 100,000 years of 1,280 m3/s. Contrarily, the 2019 flood has

almost no effect on the extended 1317 data set. The discharge corresponding to a return period of 100,000 years only increased

slightly with 180 m3/s. Therefore, we conclude that the extended data set is more robust to changes in FF relations as a result

of future flood events. Hence, we expect that the changes in FF relations after the occurrence of the 1993 and 1995 flood events25

would be less severe if the analysis was performed with an extended data set as presented in this study. Consequently, decision

makers might have taken a different decision since less investments were required to cope with the new flood safety standards.

Therefore, we recommend to use historical information about the occurrence of flood events in future flood safety assessments.

6 Discussion

We developed an efficient bootstrap method to include historic flood events in an FFA. We used a 1D-2D coupled hydraulic30

model to normalize the data set of Meurs (2006) for modern topography. An advantage of the proposed method is that any

kind of historical information (e.g. flood marks, sediment depositions) can be used to extend the data set of annual maximum
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Figure 7. Fitted GEV curves and their 95% confidence intervals of the 1901 and 1317 data sets if they are extended with a future flood event

discharges as long as the information can be translated into discharges. Another great advantage of the proposed method is

the computational time to create the continuous data sets and to fit the GEV distributions. The entire process is completed

within several minutes. Furthermore, it is easy to update the analysis if more historical information about flood events becomes

available. However, the method is based on various assumptions and has some drawbacks. These assumptions and drawbacks

are discussed below.5

6.1 Added value of normalized historic flood events

The results have shown that extending the systematic data set with normalized historic flood events can significantly reduce

the confidence intervals of the FF curves. This is in line with the work of O’Connell et al. (2002) who claim that the length

of the instrumental record is the single most important factor influencing uncertainties in flood frequency relations. However,

reconstructing historic floods is time consuming, especially if these floods are normalized with a hydraulic model. Therefore,10
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Figure 8. Fitted GEV curves of the 1901, 1317 and QBootstrap data sets

the question arises whether it is required to reconstruct historic floods to extend the data set of measured discharges. Another,

less time consuming, option might be to solely resample the measured discharges in order to extend the length of the data set.

Such a method was applied by Chbab et al. (2006) who resampled 50 years of weather data to create a data set of 50,000 years

of annual maximum discharges.

To test the applicability of solely using measured discharges, we use the bootstrap method presented in Section 3. A data5

set of approximately 700 years (equal to the length of the 1317 data set) is created based on solely measured discharges in

the period 1901-2018. The perception threshold is assumed to be equal to the lowest measured discharge such that the entire

data set of measured discharges is used during the bootstrap resampling. Again, 5,000 discharge data sets are created to reach

convergence in the FFA. This data is referred to as the QBootstrap data set.

We find that the use of the QBootstrap data set, based on solely resampling the measured discharges of the 1901 data set, results10

in lower uncertainties of the FF curve compared to the 1901 data set (Fig. 8). This is because the length of the measured data
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set is increased through the resampling method. Although the confidence interval decreases after resampling, the confidence

interval of the QBootstrap data set is still larger compared to the 1317 data set, including the normalized historic flood events

(Fig. 8). This is because the variance of the QBootstrap data set, which is equal to 4.19 x 106 m3/s, is still larger than the variance

of the 1317 data set. For the QBootstrap data set, the entire measured data set (1901-2018) is used for resampling, while for the

1317 data set only the discharges below a certain threshold in the systematic time period (1772-2018) are used for resampling.5

The perception threshold was chosen to be equal to the lowest flood event in the historical time period having a discharge of

between 6,928-10,724 m3/s. Hence, the missing years in the historical time period are filled with relatively low discharges.

Therefore, the variance of the 1317 data set is relatively low (3.35 x 106 m3/s) as a result of the lower discharges to create the

continuous data set. As a result of the lower variance, also the uncertainty intervals are smaller compared to the QBootstrap data

set.10

Furthermore, the FF curve of the QBootstrap data set is only based on a relatively short data set of measured discharges and

hence only based on the climate conditions of this period. Extending the data set with historic flood events gives a better

representation of the long-term climatic variability in flood events since these events only have been normalized for changes

in the river system and thus still capture the climate signal. We conclude that reconstructing historic events, even if their

uncertainty is large, is worth the effort since it reduces the uncertainty intervals of design discharges corresponding to rare15

flood events which is crucial for flood protection policy-making.

6.2 Resampling systematic data set

The shape of the constructed FF curve strongly depends on the climate conditions of the period considered. If the data set is

extended with a period which only has a small number of large flood events, this will result in a significant shift of the FF curve

in downward direction. This shift can be overestimated if the absence of large flood events only applies to the period used to20

extend the data set. Furthermore, by resampling the measured data set, we assume that the flood series consist of independent

and identically distributed random variables. This might not be the case if climate variability plays a significant roll in the

considered time period resulting in a period of e.g. extreme low or high flows. However, up till now no consistent large-scale

climate change signal in observed flood magnitudes has been identified (Blöschl et al., 2017).

In Section 5, we found that extending the data set from 1901 to 1772 resulted in a shift in downward direction of the FF25

curve. This is because in the period 1772-1900, a relatively small number of floods exceeded a discharge larger than 10,000

m3/s. Since no large flood events were present in the period 1772-1900, this data set has a lower variance compared to the 1901

data set. Using both the 1772 and 1901 data sets for resampling purposes influences the uncertainty of the FF curve. To identify

this effect, we compared the results if solely the measured discharges (1901-2018) are used for resampling purposes and if the

entire systematic data set (1772-2018) period is used. We find that using the entire systematic data set results in a reduction in30

the 95% confidence intervals compared to the situation in which solely the measured discharges are used caused by the lower

variance in the period 1772-1900. However, the reduction is at maximum 12% for the return period of 100,000 years. Although

the lower variance in the 1772-1900 data set might be explained by the fact that these discharges are not normalized, the lower

variance may also be caused by the natural variability in climate.
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6.3 Distribution function and goodness-of-fit test

In Section 5, only the results for a GEV distribution were presented. We found that the uncertainty interval of the flood event

with a return period of 100,000 years was reduced with 73% by extending the data set of approximately 120 years of annual

maximum discharges to a data set with a length of 700 years. Performing the analysis with other distributions yield similar

results. A reduction of 60% is found for the Gumbel distribution and a reduction of 76% for the Weibull distribution. This5

shows that, although the uncertainty intervals depend on the probability distribution function used, the general conclusion of

reduction in uncertainty of the fitted FF curve holds.

However, by only considering a single distribution function in the analysis, model uncertainty is neglected. One approach to

manage this uncertainty is to create a composite distribution of several distributions each allocated a weighting based on how

well it fits the available data (Apel et al., 2008). Furthermore, the uncertainty related to the use of various goodness-of-fit tests10

was neglected since only the Maximum Likelihood function was used to fit the sample data to the distribution function. Using

a composite distribution and multiple goodness-of-fit tests will result in an increase in the uncertainties of FF curves.

6.4 Length of extended data set and considered perception threshold

The measured data set starting at 1901 was extended to 1317. However, the extended data set still has limited length compared

to the maximum return period of 100,000 years considered in Dutch water policy. Preferably, we would like to have a data set15

with at least the same length as the maximum safety level considered such that extrapolation in FFAs is not required anymore.

However, the proposed method is a large step to decrease uncertainty.

Furthermore, the systematic data set was used to create a continuous data set using a bootstrap approach. However, preferably

we would like to have a historical continuous record since now the low flows are biased on climate conditions of the last

250 years. Using this data set for resampling influences the uncertainty intervals of the FF curves. If the historical climate20

conditions highly deviated from the current climate conditions, this approach does not produce a reliable result. In addition,

the perception threshold influences the variance of the considered data set and hence the uncertainty of the FF curve. Using a

smaller threshold results in an increase in the variance of the data set and hence to an increase in the uncertainty intervals. The

proposed assumption related to the perception threshold can only be used if there is enough confidence that the smallest known

flood event in the historical time is indeed the actual smallest flood event that occurred in the considered time period.25

6.5 Comparison with Bayesian statistics

The FFA was performed based on frequentist statistics. The Maximum Likelihood function was used to fit the parameters of

the GEV distribution function. However, only point estimates are computed. To enable uncertainty predictions of the GEV pa-

rameter estimates, the maximum likelihood estimator assumes symmetric confidence intervals. This may result in an incorrect

estimation of the uncertainty which is specifically a problem for small sample sizes. For large sample sizes, maximum likeli-30

hood estimators become unbiased minimum variance estimators with approximate normal distributions. Contrarily, Bayesian

statistics provide the entire posterior distributions of the parameter estimates and thus no assumptions have to be made. How-
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ever, a disadvantage of the Bayesian statistics is that the results are influenced by the priors describing the distributions of

the parameters (Neppel et al., 2010). For future work, we recommend to study how uncertainty estimates differ between the

proposed bootstrap method and a method which relies on Bayesian statistics such as Reis and Stedinger (2005).

Moreover, a disadvantage of the proposed bootstrap approach is that, by resampling the systematic data set to fill the gaps

in the historical time period, the shape of the flood frequency curve is influenced in the domain corresponding to events with5

small return periods (i.e. up to∼ 100 years corresponding with the length of the 1901 data set). Methods presented by e.g. Reis

and Stedinger (2005) and Wang (1990) use historical information solely to improve the estimation of the tail of the FF curves,

while the systematic part of the curve stays untouched. Table 2 shows the discharges corresponding with a return period of 100

years for both the 1901 data set and the extended 1317 data set following the bootstrap method described in Section 3. We find

that this discharge decreases from 12,075 m3/s to 11,628 m3/s by extending the systematic data set. This decrease in design10

discharge with 3.7% indicates that resampling the systematic data set over the historical time period only has a little effect on

the shape of the flood frequency curve corresponding with small return periods justifying the use of the bootstrap method.

7 Conclusions

Design discharges are commonly determined with the use of flood frequency analyses (FFA) in which measured discharges are

used to fit a probability distribution function. However, discharge measurements have been performed only for the last 50-10015

years. This relatively short data set of measured discharges results in large uncertainties in the prediction of design discharges

corresponding to rare events. Therefore, this study presents an efficient bootstrap method to include historic flood events in

an FFA. The proposed method is efficient in terms of computational time and set-up. Additionally, the basic principles of the

traditional FFA remain unchanged.

The proposed bootstrap method was applied to the discharge series at Lobith. The systematic data set covering the period20

1772-2018 was extended with 12 historic flood events. The historic flood events reconstructed by Meurs (2006) had a large

uncertainty range, especially for the most extreme flood events. The use of a 1D-2D coupled model reduced this uncertainty

range of the maximum discharge at Lobith for most flood events as a result of the overflow patterns and dike breaches along

the Lower Rhine. The inclusion of these historic flood events in combination with a bootstrap method to create a continuous

data set, resulted in a decrease in the 95% uncertainty interval of 72% for the discharges at Lobith corresponding to a return25

period of 100,000 years. Adding historical information about rare events with a large uncertainty range in combination with a

bootstrap method has thus the potential to significantly decrease the confidence interval of design discharges of extreme events.

Since correct prediction of flood frequency relations with little uncertainty is of high importance for future national flood

protection programs, we recommend to use historical information in FFA. Additionally, extending the data set with historic

events makes the flood frequency relation less sensitive to future flood events. Finally, we highlight that the proposed method30

to include historical discharges into a traditional FFA can be easily implemented in flood safety assessments because of its

simple nature in terms of mathematical computations as well as of its computational efforts.
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