

1 Ensemble models from machine learning: an example of wave runup

2 and coastal dune erosion

- 3 Tomas Beuzen¹, Evan B. Goldstein², Kristen D. Splinter¹
- 4 ¹Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Sydney, NSW,
- 5 Australia
- 6 ²Department of Geography, Environment, and Sustainability, University of North Carolina at
- 7 Greensboro, Greensboro, NC, USA

Correspondence to: Tomas Beuzen (t.beuzen@unsw.edu.au)

Keywords: Gaussian Process; Narrabeen-Collaroy; Lidar; swash; dune impact model

8 Abstract

9 After decades of study and significant data collection of time-varying swash on sandy beaches, there is no single deterministic prediction scheme for wave runup that eliminates prediction error - even 10 11 bespoke, locally tuned predictors present scatter when compared to observations. Scatter in runup 12 prediction is meaningful and can be used to create probabilistic predictions of runup for a given wave 13 climate and beach slope. This contribution demonstrates this using a data-driven Gaussian process predictor; a probabilistic machine learning technique. The runup predictor is developed using one year 14 15 of hourly wave runup data (8328 observations) collected by a fixed LIDAR at Narrabeen Beach, Sydney, Australia. The Gaussian process predictor accurately predicts hourly wave runup elevation 16 when tested on unseen data with a root mean-squared-error of 0.18 m and bias of 0.02 m. The 17 uncertainty estimates output from the probabilistic GP predictor are then used practically in a 18 deterministic numerical model of coastal dune erosion, which relies on a parameterization of wave 19 20runup, to generate ensemble predictions. When applied to a dataset of dune erosion caused by a storm event that impacted Narrabeen Beach in 2011, the ensemble approach reproduced ~85% of the observed 21 22 variability in dune erosion along the 3.5 km beach and provided clear uncertainty estimates around 23 these predictions. This work demonstrates how data-driven methods can be used with traditional 24 deterministic models to develop ensemble predictions that provide more information and greater forecasting skill when compared to a single model using a deterministic parameterization; an idea that 25 26 could be applied more generally to other numerical models of geomorphic systems.

27 1 Introduction

28 Wave runup is important for characterizing the vulnerability of beach and dune systems and coastal infrastructure to wave action. Wave runup is typically defined as the time-varying vertical elevation of 29 30 wave action above ocean water levels and is a combination of wave swash and wave setup (Holman, 31 1986; Stockdon et al., 2006). Most parameterizations of wave runup use deterministic equations that 32 output a single value for either the maximum runup elevation in a given time period, R_{max} , or the 33 elevation exceeded by 2% of runup events in a given time period, R_2 , based on a given set of input conditions. In the majority of runup formulae, these input conditions are easily obtainable parameters 34 35 such as significant wave height, significant wave period, and beach slope (Atkinson et al., 2017; 36 Holman, 1986; Hunt, 1959; Ruggiero et al., 2001; Stockdon et al., 2006). However, wave dispersion 37 (Guza and Feddersen, 2012), wave spectrum (Van Oorschot and d'Angremond, 1969), nearshore 38 morphology (Cohn and Ruggiero, 2016), bore-bore interaction (García-Medina et al., 2017), tidal stage 39 (Guedes et al., 2013), and a range of other possible processes have been shown to influence swash zone 40 processes. Since typical wave runup parameterizations do not account for these more complex 41 processes, there is often significant scatter in runup predictions when compared to observations (e.g., 42 Atkinson et al., 2017; Stockdon et al., 2006). Even flexible machine learning approaches based on extensive runup datasets or consensus-style 'model of models' do not resolve prediction scatter in runup 43 44 datasets (e.g., Atkinson et al., 2017; Passarella et al., 2018b; Power et al., 2018). This suggests that the development of a perfect deterministic parameterization of wave runup, especially with only reduced, 45 easily obtainable inputs (i.e., wave height, wave period, and beach slope), is improbable. 46

47

The resulting inadequacies of a single deterministic parameterization of wave runup can cascade up through the scales to cause error in any larger model that uses a runup parameterization. It therefore makes sense to clearly incorporate prediction uncertainty into wave runup predictions. In disciplines such as hydrology and meteorology, with a more established tradition of forecasting, model uncertainty is often captured by using ensembles (e.g., Bauer et al., 2015; Cloke and Pappenberger, 2009). The benefits of ensemble modelling are typically superior skill and the explicit inclusion of uncertainty in predictions by outputting a range of possible model outcomes. Commonly used methods of generating

ensembles include combining different models (Limber et al., 2018) or perturbing model parameters,
initial conditions and/or input data (e.g., via Monte Carlo simulations (e.g., Callaghan et al., 2013)).

57

58 An alternative approach to quantify prediction uncertainty is to incorporate scatter about a mean 59 prediction into model parameterizations. For example, wave runup predictions at every time step could 60 be modelled with a deterministic parameterization plus a noise component that captures the scatter about the deterministic prediction caused by unresolved processes. If parameterizations are stochastic, 61 or have a stochastic component, repeated model runs (given identical initial and forcing conditions) 62 produce different model outputs – an ensemble – that represents a range of possible values the process 63 could take. This is broadly analogous to the method of "stochastic parameterization" used in the 64 weather forecasting community for sub-grid scale processes and parameterizations (Berner et al., 2017). 65 In these applications, stochastic parameterization has been shown to produce better predictions than 66 traditional ensemble methods and is now routinely used by many operational weather forecasting 67 68 centers (Berner et al., 2017; Buchanan, 2018).

69

70 Stochastically varying a deterministic wave runup parameterization to form an ensemble still requires 71 defining the stochastic term — i.e., the stochastic element that should be added to the predicted runup at 72 each model time step. An alternative to specifying a predefined distribution or a noise term added to a 73 parameterization is to learn and parameterize the variability in wave runup from observational data using machine learning techniques. Machine learning has had a wide range of applications in coastal 74 75 morphodynamics research (Goldstein et al., 2018) and has shown specific utility in understanding swash processes (Passarella et al., 2018b; Power et al., 2018) as well as storm driven erosion (Beuzen et al., 76 77 2018; den Heijer et al., 2012; Goldstein and Moore, 2016; Palmsten et al., 2014; Plant and Stockdon, 78 2012). While many machine learning algorithms and applications are often used to optimize deterministic predictions, a Gaussian process is a probabilistic machine learning technique that directly 79 captures model uncertainty from data (Rasmussen and Williams, 2006). Recent work has specifically 80 81 used Gaussian processes to understand coastal processes such as large scale coastline erosion (Kupilik 82 et al., 2018).

83

84 The work presented here is focused on using a Gaussian process to build a data-driven probabilistic predictor of wave runup that includes estimates of uncertainty. While quantifying uncertainty in runup 85 86 predictions from data is useful in itself, the benefit of this methodology is in explicitly including the 87 uncertainty with the runup predictor in a larger model that uses a runup parametrization, such as a 88 coastal dune erosion model. Dunes on sandy coastlines provide a natural barrier to storm erosion by absorbing the impact of incident waves and storm surge and helping to prevent or delay flooding of 89 90 coastal hinterland and infrastructure (Mull and Ruggiero, 2014; Sallenger, 2000; Stockdon et al., 2007). The accurate prediction of coastal dune erosion is therefore critical for characterizing the vulnerability 91 92 of dune and beach systems and coastal infrastructure to storm events. A variety of methods are available 93 for modelling dune erosion including: simple conceptual models relating hydrodynamic forcing, 94 antecedent morphology and dune response (Sallenger, 2000); empirical dune-impact models that relate 95 time-dependent dune erosion to the force of wave impact at the dune (Erikson et al., 2007; Larson et al., 2004; Palmsten and Holman, 2012); data-driven machine learning models (Plant and Stockdon, 2012); 96 97 and more complex physics-based models (Roelvink et al., 2009). In this study, we focus on dune-impact 98 models, which are simple, commonly used models that typically rely on a parameterization of wave 99 runup to model time-dependent dune erosion. As inadequacies in the runup parameterization can 100 jeopardize the success of model results (Overbeck et al., 2017; Palmsten and Holman, 2012; Splinter et 101 al., 2018), it makes sense to use a runup predictor that includes prediction uncertainty.

102

103 The overall aim of this work is to demonstrate how probabilistic data-driven methods can be used with deterministic models to develop ensemble predictions, an idea that could be applied more generally to 104 105 other numerical models of geomorphic systems. Sect. 2 first describes the Gaussian process model 106 theory. In Sect. 3 the Gaussian process runup predictor is developed. In Sect. 4 an example application of the Gaussian process predictor of runup inside a morphodynamic model of coastal dune erosion to 107 108 build a 'hybrid' model (Goldstein and Coco, 2015; Krasnopolsky and Fox-Rabinovitz, 2006) that can 109 generate ensemble output is presented. A discussion of the results and technique is provided in Sect. 5 110 followed by conclusions in Sect. 6. The data and code used to develop the Gaussian Process runup

- 111 predictor in this manuscript are publicly available at
- 112 <u>https://github.com/TomasBeuzen/BeuzenEtAl_GP_Paper</u>.

113 2 Gaussian Processes

114 2.1 Gaussian Process Theory

115 Gaussian processes (GPs) are data-driven, non-parametric models. A brief introduction to GPs is given 116 here; for a more detailed introduction the reader is referred to Rasmussen and Williams (2006). There are two main approaches to determine a function that best parameterizes a process over an input space: 117 1) select a class of functions to consider, e.g., polynomial functions, and best fit the functions to the data 118 119 (a parametric approach); or, 2) consider all possible functions that could fit the data, and assign higher weight to functions that are more likely (a non-parametric approach) (Rasmussen and Williams, 2006). 120 121 In the first approach it is necessary to decide on a class of functions to fit to the data – if all or parts of 122 the data are not well modelled by the selected functions, then the predictions may be poor. In the second 123 approach there is an infinite set of possible functions that could fit a data set (imagine the number of 124 paths that could be drawn between two points on a graph). A GP addresses the problem of infinite 125 possible functions by specifying a probability distribution over the space of possible functions that fit a 126 given dataset. Based on this distribution, the GP quantifies what function most likely fits the underlying 127 process generating the data and gives confidence intervals for this estimate. Additionally, random samples can also be drawn from the distribution to provide examples of what different functions that fit 128 129 the dataset might look like.

130

131 A GP is defined as a collection of random variables, any finite set of which has a multivariate Gaussian distribution. The random variables in a GP represent the value of the underlying function that describes 132 133 the data, f(x), at location x. The typical workflow for a GP is to define a prior distribution over the space of possible functions that fit the data, form a posterior distribution by conditioning the prior on observed 134 input/output data pairs ("training data"), and to then use this posterior distribution to predict unknown 135 136 outputs at other input values ("testing data"). The key to GP modelling is the use of the multivariate 137 Gaussian distribution, which has simple closed form solutions to the aforementioned conditioning 138 process, as described below.

139

140 Whereas a univariate Gaussian distribution is defined by a mean and variance (i.e., $N(\mu,\sigma^2)$), a GP (a 141 multivariate Gaussian distribution) is completely defined by a mean function m(x) and covariance 142 function k(x, x') (also known as a "kernel"), and is typically denoted:

143

144
$$f(\mathbf{x}) \sim \mathcal{N}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
 (1)

145

146 Where x is an input vector of dimension D ($x \in \mathbb{R}^{D}$), and f is the unknown function describing the data. 147 Note that for the remainder of this paper, a variable denoted in bold text represents a vector. The mean 148 function, m(x), describes the expected mean value of the function describing the data at location x, 149 while the covariance function encodes the correlation between the function values at locations in x.

150

151 These concepts of GP development are further described using a hypothetical dataset of significant 152 wave height (H_s) versus wave runup (R_2) shown in Fig. 1A. The first step of GP modelling is to 153 constrain the infinite set of functions that could fit a dataset by defining a prior distribution over the 154 space of functions. This prior distribution encodes belief about what the underlying function is expected to look like (e.g., smooth/erratic, cyclic/random, etc.) before constraining the model with any observed 155 training data. Typically it is assumed that the mean function of the GP prior, m(x), is 0 everywhere, to 156 simplify notation and computation of the model (Rasmussen and Williams, 2006). Note that this does 157 not limit the GP posterior to be a constant mean process. The covariance function, k(x,x'), ultimately 158 159 encodes what the underlying functions look like because it controls how similar the function value at 160 one input point is to the function value at other input points.

161

162 There are many different types of covariance functions or "kernels". One of the most common, and the 163 one used in this study, is the squared exponential covariance function:

164

165
$$k(x_i, x_j) = \sigma_f^2 \exp\left[-\sum_{d=1}^{D} \frac{1}{2l_d^2} (x_{d,i} - x_{d,j})^2\right]$$
 (2)

167 Where σ_f is the signal variance and *l* is known as the length-scale, both of which are hyperparameters in 168 the model that can be estimated from data (discussed further in **Sect. 2.2**). Together the mean function 169 and covariance function specify a multivariate Gaussian distribution:

170

$$171 \quad f(\boldsymbol{x}) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{K}) \tag{3}$$

172

173 Where *f* is the output of the prior distribution, the mean function is assumed to be **0** and *K* is the 174 covariance matrix made by evaluating the covariance function at arbitrary input points that lie within 175 the domain being modelled (i.e., $K(x,x)_{i,j} = k(x_i,x_j)$). Random sample functions can be drawn from this 176 prior distribution as demonstrated in **Fig. 1B**.

177

The goal is to determine which of these functions actually fit the observed data points (training data) in 178 Fig. 1A. This can be achieved by forming a posterior distribution on the function space by conditioning 179 180 the prior with the training data. Roughly speaking, this operation is mathematically equivalent to 181 drawing an infinite number of random functions from the multivariate Gaussian prior (Eq. (3)), and 182 then rejecting those that do not agree with the training data. As mentioned above, the multivariate Gaussian offers a simple, closed form solution to this conditioning. Assuming that our observed training 183 184 data is noiseless (i.e., v exactly represents the value of the underlying function f) then we can condition the prior distribution with the training data samples (x,y) to define a posterior distribution of the 185 function value (f_*) at arbitrary test inputs (x_*): 186

187

188
$$f^* | y \sim \mathcal{N}(K_* K^{-1} y, K_{**} - K_* K^{-1} K_*^T)$$
 (4)

189

190 Where f_* is the output of the posterior distribution at the desired test points x_* , y is the training data 191 outputs at inputs x, K_* is the covariance matrix made by evaluating the covariance function (Eq. (2)) 192 between the test inputs x_* and training inputs x (i.e., $k(x_*,x)$), K is the covariance matrix made by 193 evaluating the covariance function between training data points x, and K_{**} is the covariance matrix 194 made by evaluating the covariance function between test points x_* . Function values can be sampled

195 from the posterior distribution as shown in Fig. 1C. These samples represent random realizations of 196 what the underlying function describing the training data could look like.

197

As stated earlier, in **Eq. (4)** and **Fig. 1C** there is an assumption that the training data is noiseless and represents the exact value of the function at the specific point in input space. In reality, there is error associated with observations of physical systems, such that:

$$202 \quad \mathbf{y} = f(\mathbf{x}) + \varepsilon \tag{5}$$

203

Where ε is assumed to be independent identically distributed Gaussian noise with variance σ_n^2 . This noise can be incorporated into the GP modelling framework through the use of a white noise kernel that adds an element of Gaussian white noise into the model:

207

$$208 \quad k(x_i, x_j) = \sigma_n^2 \delta_{ij} \tag{6}$$

209

210 Where σ_n^2 is the variance of the noise and δ_{ij} is a Kronecker delta which is 1 if i = j and 0 otherwise. 211 The squared exponential kernel and white noise kernel are closed under addition and product 212 (Rasmussen and Williams, 2006), such that they can simply be combined to form a custom kernel for 213 use in the GP:

214

215
$$k(x_i, x_j) = \sigma_f^2 \exp\left\{-\sum_{d=1}^D \frac{1}{2l_d^2} (x_{d,i} - x_{d,j})^2\right\} + \sigma_n^2 \delta_{ij}$$
 (7)

216

The combination of kernels to model different signals in a dataset (that vary over different spatial or temporal timescales) is common in applications of GPs (Rasmussen and Williams, 2006; Reggente et al., 2014; Roberts et al., 2013). Samples drawn from the resultant "noisy" posterior distribution are shown in **Fig. 1D** in which the GP can now be seen to not fit the observed training data precisely.

Natural Hazards and Earth System Sciences Discussions

221

Fig. 1: A) Five hypothetical random observations of significant wave height (H_s) and 2% wave runup elevation (R_2) . B) The Gaussian process (GP) prior distribution. C) The GP posterior distribution, formed by conditioning the prior distribution in (B) with the observed data points in (A), assuming the observations are noise-free. D). The GP posterior distribution conditioned on the observations with a noise component.

226

227 2.2 Gaussian Process Kernel Optimization

In Eq. (7) there are three hyperparameters: the signal variance (σ_f) , the length scale (l) and the noise variance (σ_n) . These hyperparameters are typically unknown but can be estimated and optimized based on the particular dataset. Here, this optimization is performed by using the typical methodology of maximizing the log-marginal-likelihood of the observed data y given the hyperparameters:

 \odot

(8)

- 233 $\log p(y|x, \sigma_f, l, \sigma_n)$
- 234

The Python toolkit SciKit-Learn (Pedregosa et al., 2011) was used to develop the GP described in thisstudy.

237 2.3 Training a Gaussian Process Model

238 It is standard practice in the development of data-driven machine learning models to divide the available 239 dataset into training, validation and testing subsets. The training data is used to fit model parameters. 240 The validation data is used to evaluate model performance and the model hyperparameters are usually 241 varied until performance on the validation data is optimized. Once the model is optimized, the 242 remaining test dataset is used to objectively evaluate its performance and generalizability. A decision 243 must be made about how to split a dataset into training, validation and testing subsets. There are many 244 different approaches to handle this splitting process; for example, random selection, cross-validation, 245 stratified sampling, or a number of other deterministic sampling techniques (Camus et al., 2011). The 246 exact technique used to generate the data subsets often depends on the problem at hand. Here, there 247 were two constraints to be considered; first, the computational expense of GPs scales by $O(n^3)$ 248 (Rasmussen and Williams, 2006), so it is desirable to keep the training set as small as possible without deteriorating model performance; and, secondly, machine learning models typically perform poorly 249 250 with out-of-sample predictions (i.e., extrapolation), so it is desirable to include in the training set the 251 data samples that captures the full range of variability in the data. Based on these constraints, we used a 252 maximum dissimilarity algorithm (MDA) to divide the available data into training, validation and 253 testing sets.

254

The MDA is a deterministic routine that iteratively adds a data point to the training set based on how dissimilar it is to the data already included in the training set. Camus et al. (2011) provide a comprehensive introduction to the MDA selection routine and it has been previously used in ML studies (e.g., Goldstein et al., 2013). Briefly, to initialize the MDA routine, the data point with the maximum sum of dissimilarity (defined by Euclidean distance) to all other data points is selected as the first data

point to be added to the training data set. Additional data points are included in the training set through an iterative process whereby the next data point added is the one with maximum dissimilarity to those already in the training set - this process continues until a user-defined training set size is reached. In this way the MDA routine produces a set of training data that captures the range of variability present in the full dataset. The data not selected for the training set are equally and randomly split to form the validation dataset and test dataset.

266 **3** Development of a Gaussian Process Runup Model

267 3.1 Runup Data

In 2014, an extended-range LIDAR (LIght Detection And Ranging) device (SICK LD-LRS 2110) was permanently installed on the rooftop of a beachside building (44 m above mean sea level) at Narrabeen-Collaroy Beach (hereafter referred to simply as Narrabeen) on the south-east coast of Australia (Fig. 2). Since 2014, this LIDAR has continuously scanned a single cross-shore profile transect extending from the base of the beachside building to a range of 130 m, capturing the surface of the beach profile and incident wave swash at a frequency of 5 Hz in both daylight and non-daylight hours. Specific details of the LIDAR setup and functioning can be found in (Phillips et al., 2019).

275 276

280

281 Narrabeen Beach is a 3.6 km long embayed beach bounded by rocky headlands. It is composed of fine to medium quartz sand (D50 \approx 0.3 mm), with a ~30% carbonate fraction. Offshore, the coastline has a 282 283 steep and narrow (20 - 70 km) continental shelf (Short and Trenaman, 1992). The region is microtidal 284 and semidiurnal with a mean spring tidal range of 1.6 m and has a moderate to high energy deep water 285 wave climate characterized by persistent long-period SSE swell waves that is interrupted by storm events (significant wave height > 3 m) typically 10 – 20 times per year (Short and Trenaman, 1992). In 286 287 the present study, approximately one year of the high-resolution wave runup LIDAR dataset available at Narrabeen is used to develop a data-driven parameterization of the 2% exceedance of wave runup (R_2). 288 289 Data used to develop this parameterization were at hourly resolution and include: R_2 , the beach slope 290 (β) , offshore significant wave height (H_s) , and peak wave period (T_p) . These data are described below 291 and have been commonly used to parameterize R_2 in other empirical models of wave runup (e.g., 292 Holman, 1986; Hunt, 1959; Stockdon et al., 2006).

293

294 Individual wave runup elevation on the beach profile was extracted on a wave-by-wave basis from the 295 LIDAR dataset (Fig. 2C). Hourly R_2 was calculated as the 2% exceedance value for a given hour of 296 wave runup observations. β was calculated as the linear (best-fit) slope of the beach profile over which two standard deviations of wave runup values were observed during the hour. Hourly H_s and T_p data 297 298 were obtained from the Sydney Wave Rider buoy, situated 11 km offshore of Narrabeen in ~ 80 m water depth. Narrabeen is an embayed beach, where prominent rocky headlands both attenuate and 299 300 refract incident waves. To remove these effects in the wave data and to emulate an open coastline and generalize the parameterization of R_2 presented in this study, offshore wave data were first transformed 301 to a nearshore equivalent (10 m water depth) using the SWAN spectral wave model (Booij et al., 1999), 302 303 and then reverse shoaled back to deep water wave data. A total of 8328 hourly samples of R_2 , β , H_s and T_p were extracted to develop a parameterization of R_2 in this study. Histograms of this data are shown in 304 305 Fig. 3.

307

Fig. 3: Histograms of the 8328 data samples extracted from the Narrabeen LIDAR: (A) significant wave height (H_s); (B) peak wave period (T_p); (C) beach slope (β); and, (D) 2% wave runup elevation (R_2).

310 3.2 Training Data for the GP Runup Predictor

311 To determine the optimum training set size, kernel and model hyperparameters, a number of different 312 user-defined training set sizes were trialed using the MDA selection routine discussed in Sect. 2.3. The 313 GP was trained using different amounts of data and hyperparameters were optimized on the validation 314 data set only. It was found that a training set size of only 5% of the available dataset (training dataset = 416 of 8328 available samples, validation dataset = 3956 samples, testing dataset = 3956 samples) was 315 316 required to develop an optimum GP model. Training data sizes beyond this value produced negligible 317 changes in GP performance but considerable increases in computational demand, similar to findings of 318 previous work (Goldstein and Coco, 2014; Tinoco et al., 2015). Results presented below discuss the performance of the GP on the testing dataset which was not used in GP training or validation. 319

320 3.3 Runup Predictor Results

Results of the GP R_2 predictor on the 3956 test samples are shown in **Fig. 4**. This figure plots the mean GP predictions against corresponding observations of R_2 . The mean GP prediction performs well on the test data, with a root-mean-squared-error (RMSE) of 0.18 m and bias (B) of 0.02 m. For comparison, the commonly used R_2 parameterization of Stockdon et al. (2006) tested on the same data has a RMSE of 0.36 m and B of 0.21 m. Despite the relatively accurate performance of the GP on this dataset, there remains significant scatter in the observed versus predicted R_2 in **Fig. 4**. This is consistent with recent work by Atkinson et al. (2017) showing that commonly used predictors of R_2 always result in scatter.

328

329

Fig. 4: Observed 2% wave runup (R_2) versus the R_2 predicted by the Gaussian process model. Root-mean-squared-error (RMSE) is 0.36 m, bias (B) is 0.02 m and squared correlation (r^2) is 0.54.

Here the scatter (uncertainty) is used to form ensemble predictions. The GP developed here not only gives a mean prediction as used in **Fig. 4**, but it specifies a multivariate Gaussian distribution from which different random functions that describe the data can be sampled. Random samples of wave

runup from the GP can capture uncertainty around the mean runup prediction (as was demonstrated in 336 337 the hypothetical example in Fig. 1D). To assess how well the GP model captures uncertainty, random 338 samples are successively drawn from the GP and the number of R_2 measurements captured with each 339 new draw are determined. Only 10 random samples drawn from the GP are required to capture 95% of 340 the scatter in R_2 (Fig. 5A). This process of drawing random samples from the GP was repeated 100 341 times with results showing that the above is true for any 10 random samples, with an average capture percentage of 95.7% and range of 94.9% to 96.1% for 10 samples across the 100 trials. As a point of 342 contrast, Fig. 5B shows how much arbitrary error would need to be added to the mean R_2 prediction to 343 344 capture scatter about the mean to emulate the uncertainty captured by the GP. It can be seen that the mean R_2 prediction would need to vary by \pm 51% to capture 95% of the scatter present in the runup 345 data. This demonstrates how random models of runup drawn from the GP effectively capture 346 347 uncertainty in R_2 predictions. These randomly drawn R_2 models can be used within a larger dune-impact model to produce an ensemble of dune erosion predictions that includes uncertainty in runup 348 349 predictions, as demonstrated in Sect. 4.

- 350
- 351

Fig. 5: A) Percent of observed runup values captured within the range of ensemble predictions made by randomly sampling different runup values from the Gaussian process. Only 10 randomly drawn models can form an ensemble that captures 95% of the scatter in observed R_2 values. B) An experiment showing how much arbitrary error would need to be added to the mean GP runup prediction in order to capture scatter in R2 observations. The mean GP prediction would have to vary by 51% in order to 357 capture 95% of scatter in R₂ observations.

358 4 Application of a Gaussian Process Runup Predictor in a Coastal Dune Erosion Model

359 4.1 Dune Erosion Model

We use the dune erosion model of Larson et al. (2004) as an example of how the GP runup predictor can be used to create an ensemble of dune erosion predictions, and thus provide probabilistic outcomes with uncertainty bands needed in coastal management. The dune erosion model is subsequently referred to as LEH04 and is defined as follows:

364

365
$$dV = 4C_s(R_2 - z_b)^2(\frac{t}{r})$$
 (9)

366

Where dV (m³/m) is the volumetric dune erosion per unit width alongshore for a given time step t, z_b 367 (m) is the time-varying dune toe elevation, T(s) is the wave period for that time step, R_2 (m) is the 2% 368 runup exceedance for that time step, and C_s is the transport coefficient. Note that the original equation 369 370 used a best-fit relationship to define the runup term, R (see Eq. (36) in Larson et al., 2004) rather than R_2 . Subsequent modifications of the LEH04 model have been made to adjust the collision frequency 371 372 (i.e. the t/T term; e.g., Palmsten and Holman (2012), Splinter and Palmsten (2012)), however we retain the model presented in Eq. (9) for the purpose of providing a simple illustrative example. At each time 373 step, dune volume is eroded in bulk and the dune toe is adjusted along a predefined slope (defined here 374 375 as the linear slope between the pre- and post-storm dune toe) so that erosion causes the dune toe to 376 increase in elevation and recede landward. Dune erosion and dune toe recession only occurs when wave runup (R_2) exceeds the dune toe (i.e., $R_2 - z_b > 0$) and cannot progress vertically beyond the maximum 377 378 runup elevation. When R_2 does not exceed z_b , dV = 0. The GP R_2 predictor described in Sect. 3 is used to stochastically parameterize wave runup in the LEH04 model and form ensembles of dune erosion 379 380 predictions. The model is applied to new data not used to train the GP R_2 predictor, using detailed 381 observations of dune erosion caused by a large coastal storm event at Narrabeen Beach, southeast 382 Australia in 2011.

CC ①

383 4.2 June 2011 Storm Data

384 In June 2011 a large coastal storm event impacted the southeast coast of Australia. This event resulted in variable alongshore dune erosion at Narrabeen Beach, which was precisely captured by airborne 385 386 LIDAR immediately pre-, during, and post-storm by five surveys conducted approximately 24 hours 387 apart. Cross-shore profiles were extracted from the Lidar data at 10 m alongshore intervals as described 388 in detail in Splinter et al. (2018), resulting in 351 individual profiles (Fig. 6). The June 2011 storm 389 lasted 120 hours. Hourly wave data was recorded by the Sydney wave rider buoy located in ~80 m 390 water depth directly to the southeast of Narrabeen Beach. As with the hourly wave data used to develop 391 the GP model of R_2 (Sect. 3.1), hourly wave data for each of the 351 profiles for the June 2011 storm was obtained by first transforming offshore wave data to the nearshore equivalent at 10 m water depth 392 directly offshore of each profile using the SWAN spectral wave model (Booij et al., 1999), and then 393 394 reverse shoaling back to equivalent deep water wave data, to account for the effects of wave refraction and attenuation caused by the distinctly curved Narrabeen embayment. The tidal range during the storm 395 396 event was measured in-situ at the Fort Denison Tide Gauge (located within Sydney Harbour 397 approximately 16 km south of Narrabeen) as 1.58 m (mean spring tidal range at Narrabeen is 1.6 m). 398 The hydrodynamic time series and airborne LIDAR observations of dune change are used to 399 demonstrate how the LEH04 model can be used with the GP predictor of runup to generate stochastic 400 parameterizations and create probabilistic model ensembles (Eq. (9)).

401

Fig. 6: June 2011 storm data. A) Offshore H_s and T_p with vertical dashed lines indicating the time of the LIDAR surveys, B) Measured (pre vs post storm) dune erosion volumes for the 351 profile transects extracted from LIDAR data, C) Example pre-(blue) and post-storm (red) profile cross sections showing dune toes (coloured circles) and dune erosion volume (grey shading).

For each of the 351 available profiles, the pre-, during and post-storm dune toe positions were defined as the local maxima of curvature of the beach profile following the method of Stockdon et al. (2007). Dune erosion at each profile was then defined as the difference in subaerial beach volume landward of the pre-storm dune toe, as shown in **Fig. 6C**. Of the 351 profiles, only 117 had storm driven dune erosion (**Fig. 6B**). For the example demonstration presented here, only profiles for which the post-storm dune toe elevation was at the same or higher elevation than the pre-storm dune toe are considered; which is a basic assumption of the LEH04 model. Of the 117 profiles with storm erosion, 40 profiles

412 met these criteria. For each of these profiles, the linear slope between the pre- and post-storm dune toe413 was used to project the dune erosion calculated using the LEH04 model.

414

415 The LEH04 dune erosion model (Eq. (9)) has a single tuneable parameter, the transport coefficient C_s . There is ambiguity in the literature regarding the value of C_s . Larson et al. (2004) developed an 416 417 empirical equation to relate C_s to wave height (H_{rms}) and grain size (D_{50}) using experimental data. Values ranged from 1x10⁻⁵ to 1x10⁻¹, and Larson et al. (2004) used 1.7 x 10⁻⁴ based on field data from 418 419 Birkemeier et al. (1988). Palmsten and Holman (2012) used LEH04 to model dune erosion observed in 420 a large wave tank experiment conducted at the O.H. Hinsdale Wave Research Laboratory at Oregon 421 State University. The model was shown to accurately reproduce dune erosion when applied in hourly time steps using a C_s of 1.34 x 10⁻³, based on the empirical equation determined by Larson et al. (2004). 422 Mull and Ruggiero (2014) used values of 1.7 x 10^{-4} and 1.34 x 10^{-3} as lower and upper bounds of C_s to 423 model dune erosion caused by a large storm event on the Pacific Northwest Coast of the USA and the 424 laboratory experiment used by Palmsten and Holman (2012). For the dune erosion experiment, the 425 value of 1.7 x 10⁻⁴ was found to predict dune erosion volumes closest to the observed erosion when 426 applied in a single time step, with an optimum value of 2.98 x 10⁻⁴. Splinter and Palmsten (2012) found 427 a best fit C_s of 4 x 10⁻⁵ in an application to modelling dune erosion caused by a large storm event that 428 occurred on the Gold Coast, Australia. Ranasinghe et al. (2012) found a C_s value of 1.5 x 10⁻³ in an 429 430 application at Narrabeen Beach, Australia. It is noted that C_s values in these studies are influenced by the time step used in the model and the exact definition of wave runup, R, used (Larson et al., 2004; 431 432 Mull and Ruggiero, 2014; Palmsten and Holman, 2012; Splinter and Palmsten, 2012). In practice, C_s could be optimized to fit any particular dataset. However, for predictive applications the optimum C_s 433 value may not be known in advance, since it is unclear if subsequent storms at a given location will be 434 well predicted using previously optimized C_s values. A key goal of this work is to determine if using 435 stochastic parameterizations to generate ensembles that predict a range of dune erosion (based on 436 uncertainty in the runup parameterization) can still capture observed dune erosion even if the optimum 437 C_s value is not known in advance. As such, a C_s value of 1.5 x 10⁻³ is used in this example application 438

439 based on previous work at Narrabeen Beach by Ranasinghe et al. (2012). Sensitivity of model results to 440 the choice of C_s are further discussed in **Sect. 5.2**.

441

442 An example at a single profile (profile 141, located approximately half-way up the Narrabeen 443 embayment as shown in Fig. 6B) of time-varying ensemble dune erosion predictions is provided in Fig. 444 7. It was previously shown in Fig. 5 that only 10 random samples drawn from the GP R_2 predictor were required to capture 95% of the scatter in the R_2 data used to develop and test the GP. However, it is 445 trivial to draw many more samples than this from the GP - for example, drawing 10,000 samples takes 446 less than one second on a standard desktop computer. Therefore, to explore a large range of possible 447 runup scenarios during the 120-hour storm event, 10,000 different runup time series are drawn from the 448 449 GP and used to run LEH04 at hourly intervals, thus producing 10,000 model results of dune erosion. The effect of using different ensemble sizes is explored in Sect. 5.2. Fig. 7A shows the time-varying 450 451 distribution of the runup models (blue) used to force LEH04 along with the time-varying prediction distribution of dune toe elevations (grey) throughout the 120-hour storm event. To interpret model 452 453 output probabilistically, the mean of the ensemble is plotted, along with intervals capturing 66%, 90%, 454 and 99% of the ensemble output. These intervals are consistent with those used in IPCC for climate 455 change predictions (Mastrandrea et al., 2010) and in the context of the model results presented here, 456 they represent varying levels of confidence in the model output. For example, there is high confidence 457 that the real dune erosion will fall within the 66% ensemble prediction range. Fig. 7B shows the timevarying predicted distribution of dune erosion volumes from the 10,000 LEH04 runs. It can be seen that 458 459 while the mean value of the ensemble predictions deviates slightly from the observed dune erosion, the observed erosion is still captured well within the 66% envelope of predictions. 460

Fig. 7: Example of LEH04 used with the Gaussian process R_2 predictor to form an ensemble of dune erosion predictions. 10,000 runup models are drawn from the Gaussian process and used to force the LEH04 model. A) Runup (blue) and dune toe (grey) elevation for the 120-hour storm event. Bold colored line is the mean of the ensemble and shaded areas represent the regions captured by 66%, 90% and 99% of the ensemble predictions. Pink dots denote the observed dune toe elevation throughout the storm event. B) The corresponding ensemble of dune erosion predictions.

467 Pre- and post-storm dune erosion results for the 40 profiles using 10,000 ensemble members and C_s of 1.5 x 10^{-3} are shown in Fig. 8. The squared-correlation (r²) for the observed and predicted dune erosion 468 volumes is 0.85. Many of the profiles experienced only minor dune erosion (< 2.5 m^3/m) and can be 469 470 seen to be well predicted by the mean of the ensemble predictions. In contrast, the ensemble mean can 471 be seen to under-predict dune erosion at profiles where high erosion volumes were observed. However, 472 the ensemble range of predictions for these profiles also has a large spread, indicative of high 473 uncertainty in predictions. It should be noted that the results presented in Fig. 8 are based on a nonoptimized C_s value. Increasing C_s would lead to better mean ensemble predictions of the large dune 474

erosion volumes, but potentially over-prediction of the smaller events. The exact effect of varying C_s is quantified in **Sect. 5.2**. However, regardless of the value of C_s chosen, an advantage of the GP approach is that uncertainty in the GP predictions can give an indication of dune erosion, even if the mean dune erosion prediction deviates from the observation.

479

Fig. 8: Observed (pink dots) and predicted (black dots) dune erosion volumes for the 40 modelled profiles, using 10,000 runup models drawn from the Gaussian process and used to force the LEH04 model. Note that the 40 profiles shown are not uniformly spaced along the 3.5 km Narrabeen embayment. The black dots represent the ensemble mean prediction for each profile, while the shaded areas represent the regions captured by 66%, 90% and 99% of the ensemble predictions.

485 5 Discussion

486 5.1 Runup Predictors

487 Studies of commonly used deterministic runup parameterizations such as those proposed by Hunt 488 (1959), Holman (1986) and Stockdon et al. (2006) amongst others, show that these parametrizations are not universally applicable and there remains no perfect predictor of wave runup on beaches (Atkinson et 489 490 al., 2017; Passarella et al., 2018a; Power et al., 2018). This suggests that the available parametrizations 491 do not fully capture all the relevant processes controlling wave runup on beaches (Power et al., 2018). 492 Recent work has used ensemble and data-driven methods to account for unresolved factors and 493 complexity in runup processes. For example, Atkinson et al. (2017) developed a 'model-of-models' by 494 fitting a least-squares line to the predictions of several runup parameterizations. Power et al. (2018) 495 used a data-driven, deterministic, Gene-Expression Programming model to predict wave runup against a 496 large dataset of runup observations. Both of these approaches led to improved predictions, when 497 compared to conventional runup parameterizations, of wave runup on the datasets tested in these 498 studies. The work presented in this study used a data-driven Gaussian process (GP) approach to develop 499 a probabilistic runup predictor. While the mean predictions from the GP predictor developed in this study using high-resolution LIDAR data of wave runup were accurate (RMSE = 0.18 m) and better than 500 501 those provided by the Stockdon et al. (2006) formula tested on the same data (RMSE = 0.36 m), the key 502 advantage of the GP approach over deterministic approaches is that probabilistic predictions are output 503 that are specifically derived from data and implicitly account for unresolved processes and uncertainty in runup predictions. Previous work has similarly used GPs for efficiently and accurately quantifying 504 505 uncertainty in other environmental applications (e.g., Holman et al., 2014; Kupilik et al., 2018; Reggente et al., 2014). While alternative approaches are available for generating probabilistic 506 507 predictions, such as Monte Carlo simulations (e.g., Callaghan et al., 2013), the GP approach explicitly 508 derives uncertainty from data, requires no deterministic equations, and is computationally efficient (i.e., 509 as discussed in Sect. 5.2, drawing 10,000 samples of 120-hour runup time series on a standard desktop 510 computer took less than one second).

511 5.2 The Effect of Cs and Ensemble Size on Dune Erosion

In Sect. 4, the application of the GP runup predictor within the LEH04 model to produce an ensemble 512 of dune erosion predictions was based on 10,000 ensemble members and a C_s value of 1.5 x 10⁻³. The 513 514 sensitivity of results to the number of members in the ensemble and the value of the tunable parameter 515 C_s in Eq. (9) is presented in Fig. 9. The mean absolute error (MAE) between the mean ensemble dune erosion predictions and the observed dune erosion, averaged across all 40 profiles, varies for R_2 516 ensembles of 5, 10, 20, 100, 1000, and 10,000 members and C_s values ranging from 10^{-5} to 10^{-1} (Fig. 9). 517 518 As can be seen in Fig. 9A and summarized in Table 1, the lowest MAE for the differing ensemble sizes 519 is similar, ranging from 1.50 to 1.64 m³/m, suggesting that the number of ensemble members does not have a significant impact on the resultant mean prediction. The lowest MAE for the different ensemble 520 sizes corresponds to C_s values between 2.8 x 10⁻³ (10,000 ensemble members) and 4.1 x 10⁻³ (5 521 ensemble members); reasonably consistent with the value of 1.5×10^{-3} previously reported by 522 Ranasinghe et al. (2012) for Narrabeen Beach and within the range of C_s values presented in Larson et 523 524 al. (2004).

525

526 The key utility to using a data-driven GP predictor to produce ensembles is that a range of predictions at 527 every location is provided as opposed to a single erosion volume. The ensemble range provides an 528 indication of uncertainty in predictions, which can be highly useful for coastal engineers and managers 529 taking a risk-based approach to coastal hazard management. Fig. 9B-D displays the percentage of dune erosion observations from the 40 profiles captured within ensemble predictions for C_s values ranging 530 from 10⁻⁵ to 10⁻¹. It can be seen that a high proportion of dune erosion observations are captured within 531 the 66%, 90% and 99% ensemble envelope across several orders of magnitude C_s . While the main 532 533 purpose of using ensemble runup predictions within LEH04 is to incorporate uncertainty in the runup prediction, this result demonstrates that the ensemble approach is less sensitive to the choice of C_s than 534 535 a deterministic model and so can be useful for forecasting with non-optimized model parameters.

536

Results in Fig. 9 and Table 1 demonstrate that there is relatively little difference in model performance
when more than 10 to 100 ensemble members are used; consistent with results presented previously in

539 Fig. 5 that showed that only 10 random samples drawn from the GP R_2 predictor were required to capture 95% of the scatter in the R_2 data used to develop and test the GP. This suggests that the GP 540 approach efficiently captures scatter (uncertainty) in runup predictions and subsequently, dune erosion 541 predictions, requiring on the order of 10 samples; significantly less than the $10^3 - 10^6$ runs typically 542 used in Monte Carlo simulations to develop probabilistic predictions (e.g., Callaghan et al., 2008; Li et 543 544 al., 2013; Ranasinghe et al., 2012). Nevertheless, it is noted that drawing a large number of samples from the GP predictor is trivial, with 10,000 samples taking less than one second on a standard desktop 545 546 computer.

Fig. 9: Results of the stochastic parameterization methodology for R_2 ensembles of 5, 10, 20, 100, 1000, and 10,000 members and C_s values ranging from 10⁻⁵ to 10⁻¹. A) The mean absolute error (MAE) between the median ensemble dune erosion predictions and the observed dune erosion averaged across all 40 profiles. B), C) and D) show the percentage of dune erosion observations that fall within the 99%, 90% and 66% ensemble prediction ranges respectively.

Table 1: Quantitative summary of Fig. 9, showing the optimum *C_s* value for differing ensemble sizes, along with the associated mean-absolute-error (MAE) and percent of the 40 dune erosion observations captured by the 66%, 90% and 99% ensemble prediction range.

Ensemble Members	Optimum Cs	MAE (m ³ /m)	r ²	Percent Captured in 66% Ensemble Range (%)	Percent Captured in 90% Ensemble Range (%)	Percent Captured in 99% Ensemble Range (%)
5	4.1 x 10 ⁻³	1.59	0.86	45	57	65
10	3.4 x 10 ⁻³	1.50	0.87	55	75	78
20	3.4 x 10 ⁻³	1.54	0.86	62	78	88
100	3.3 x 10 ⁻³	1.61	0.86	68	88	100
1000	2.8 x 10 ⁻³	1.64	0.86	65	88	100
10,000	2.8 x 10 ⁻³	1.64	0.86	65	88	100

555

556 5.3 Including Uncertainty in Dune Erosion Models

557 Uncertainty in wave runup predictions within dune-impact models can result in significantly varied 558 predictions of dune erosion. For example, the model of Larson et al. (2004) used in this study only 559 predicts dune erosion if runup elevation exceeds the dune toe elevation and predicts a non-linear 560 relationship between runup that exceeds the dune toe and resultant dune erosion. Hence, if wave runup 561 predictions are biased too low then no dune erosion will be predicted, and if wave runup is predicted too high then dune erosion may be significantly over predicted. Ensemble modelling has become standard 562 563 practice in many areas of weather and climate modelling (Bauer et al., 2015), hydrological modelling 564 (Cloke and Pappenberger, 2009), and more recently has been applied to coastal problems such as the 565 prediction of cliff retreat (Limber et al., 2018) as a method of handling prediction uncertainty. While 566 using a single deterministic model is computationally simple and provides one solution for a given set 567 of input conditions, model ensembles provide a range of predictions that can better capture the variety 568 of mechanisms and stochasticity within a coastal system. The result is typically improved skill over 569 deterministic models (Atkinson et al., 2017; Limber et al., 2018) and a natural method of providing 570 uncertainty with predictions.

As a quantitative comparison, Splinter et al. (2018) applied a modified version of the LEH04 model to 572 573 the same June 2011 storm dataset used in the work presented here with a modified expression for the collision frequency (i.e. the t/T term in Eq. (9)) based on work by Palmsten and Holman (2012). The 574 575 parameterization of Stockdon et al. (2006) was used to estimate R_2 in the model. The model was forced hourly over the course of the storm, updating the dune toe, recession slope, and profiles based on each 576 577 daily LIDAR survey. Based on only the 40 profiles used in the present study, results from Splinter et al. (2018) showed that the deterministic LEH04 approach reproduced 68% ($r^2 = 0.68$) of the observed 578 579 variability in dune erosion. As shown in Table 1, the simple LEH04 model (Eq. (9)) applied here using the GP runup predictor to generate ensemble prediction reproduced ~85% (based on the ensemble 580 581 mean) of the observed variability in dune erosion for the 40 profiles. While there are some discrepancies in the two modelling approaches, the ensemble approach clearly has an appreciable increase in skill 582 over the deterministic approach; attributed here to using a runup predictor trained on local runup data, 583 584 and the ensemble modelling approach. However, a major advantage of the ensemble approach over the deterministic approach is the provision of prediction uncertainty (e.g., Fig. 8). While the mean ensemble 585 586 prediction is not 100% accurate, Table 1 shows that using just 100 samples can capture all the observed 587 variability in dune erosion within the ensemble output.

588

589 The GP approach is a novel approach to building model ensembles to capture uncertainty. Previous 590 work modelling beach and dune erosion has successfully used Monte Carlo methods, which randomly vary model inputs within many thousands of model iterations, to produce ensembles and probabilistic 591 592 erosion predictions (e.g., Callaghan et al., 2008; Li et al., 2013; Ranasinghe et al., 2012). As discussed earlier in Sect. 5.2, advantages of the GP approach over approaches like Monte Carlo include the 593 594 explicit quantification of uncertainty directly from data, no deterministic equations are required, and the 595 approach is computationally efficient; here, drawing 10,000 samples of 120-hour runup time series from 596 the GP took less than one second on a standard desktop computer.

597 6 Conclusion

For coastal managers, the accurate prediction of wave runup as well as dune erosion is critical for 598 599 characterizing the vulnerability of coastlines to wave-induced flooding, erosion of dune systems, and 600 wave impacts on adjacent coastal infrastructure. While many formulations for wave runup have been 601 proposed over the years, none have proven to accurately predict runup over a wide range of conditions 602 and sites of interest. In this contribution, a Gaussian process (GP) was used with over 8000 high-603 resolution LIDAR-derived wave runup observations were used to develop a probabilistically 604 parametrization of wave runup that quantify uncertainty in runup predictions. The mean GP prediction 605 performed well on unseen data, with a RMSE of 0.18 m, a significant improvement over the commonly used R_2 parameterization of Stockdon et al. (2006) (RMSE of 0.36 m) used on the same data. Further, 606 only 10 randomly drawn models from the probabilistic GP distribution were needed to form an 607 ensemble that captured 95% of the scatter in the test data. 608

609

Coastal dune-impact models offer a method of predicting dune erosion deterministically. As an example 610 611 application of how the GP runup predictor can be used in geomorphic systems, the uncertainty in the runup parameterization was propagated through a deterministic dune erosion model to generate 612 613 ensemble model predictions and provide prediction uncertainty. The hybrid dune erosion model performed well on the test data, with a squared-correlation (r^2) between the observed and predicted dune 614 615 erosion volumes of 0.85. Importantly, the probabilistic output provided uncertainty bands of the expected erosion volumes which is a key advantage over deterministic approaches. Compared to 616 617 traditional methods of producing probabilistic predictions such as Monte Carlo, the GP approach has the advantage of learning uncertainty directly from observed data, it requires no deterministic equations, 618 619 and is computationally efficient; for the GP developed here, drawing 10,000 samples of 120-hour runup 620 time series on a standard desktop computer took less than one second.

621

This work is an example of how a machine learning model such as a GP can profitably be integrated into coastal morphodynamic models (Goldstein and Coco, 2015) to provide probabilistic predictions for nonlinear, multidimensional processes and drive ensemble forecasts. Approaches combining machine

- 625 learning methods with traditional coastal science and management models present a promising area for
- 626 furthering coastal morphodynamic research. Future work is focused on using more and varied datasets
- 627 to further train the GP developed here and to integrate it into a real-time coastal erosion forecasting
- 628 system.

629 Code and Data Availability

- 630 The data and code used to develop the Gaussian Process runup predictor in this manuscript are publicly
- 631 available at https://github.com/TomasBeuzen/BeuzenEtAl GP Paper.

632 Author Contributions

633 The order of the authors' names reflects the size of their contribution to the writing of this manuscript.

634 Acknowledgements

- 635 This research was partially funded by ongoing support by Northern Beaches Council, the Australian
- 636 Research Council (LP04555157, LP100200348, DP150101339) and the NSW Environmental Trust
- 637 Environmental Research Program (RD 2015/0128). Wave and tide data were kindly provided by Manly
- 638 Hydraulics Laboratory under the NSW Coastal Data Network Program managed by OEH. The lead
- 639 Author is funded under the Australian Postgraduate Research Training Program. EBG acknowledges
- 640 financial support from DOD DARPA (R0011836623/HR001118200064).

641 **References**

- 642 Atkinson, A. L., Power, H. E., Moura, T., Hammond, T., Callaghan, D. P., and Baldock, T. E.:
- Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast, Coastal Engineering, 119, 15-31, 2017.
- 645 Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 646 525, 47, 2015.
- 647 Berner, J., Achatz, U., Batté, L., Bengtsson, L., Cámara, A. d. l., Christensen, H. M., Colangeli, M.,
- 648 Coleman, D. R., Crommelin, D., and Dolaptchiev, S. I.: Stochastic parameterization: Toward a new
- view of weather and climate models, Bulletin of the American Meteorological Society, 98, 565-588,2017.
- 651 Beuzen, T., Splinter, K., Marshall, L., Turner, I., Harley, M., and Palmsten, M.: Bayesian Networks in
- coastal engineering: Distinguishing descriptive and predictive applications, Coastal Engineering, 135,16-30, 2018.
- Birkemeier, W. A., Savage, R. J., and Leffler, M. W.: A collection of storm erosion field data, CoastalEngineering Research Center, Vicksburg, MS, 1988.
- 656 Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1.
- 657 Model description and validation, Journal of Geophysical Research: Oceans, 104, 7649-7666, 1999.
- 658 Buchanan, M.: Ignorance as strength, 2018. Nature Publishing Group, 2018.
- 659 Callaghan, D. P., Nielsen, P., Short, A., and Ranasinghe, R.: Statistical simulation of wave climate and
- 660 extreme beach erosion, Coastal Engineering, 55, 375-390, 2008.
- 661 Callaghan, D. P., Ranasinghe, R., and Roelvink, D.: Probabilistic estimation of storm erosion using
- 662 analytical, semi-empirical, and process based storm erosion models, Coastal Engineering, 82, 64-75, 663 2013.
- 664 Camus, P., Mendez, F. J., Medina, R., and Cofiño, A. S.: Analysis of clustering and selection algorithms
- 665 for the study of multivariate wave climate, Coastal Engineering, 58, 453-462, 2011.
- Cloke, H. and Pappenberger, F.: Ensemble flood forecasting: A review, Journal of Hydrology, 375, 613-626, 2009.
- 668 Cohn, N. and Ruggiero, P.: The influence of seasonal to interannual nearshore profile variability on
- 669 extreme water levels: Modeling wave runup on dissipative beaches, Coastal Engineering, 115, 79-92, 670 2016.
- 671 den Heijer, C., Knipping, D. T. J. A., Plant, N. G., van Thiel de Vries, J. S. M., Baart, F., and van
- 672 Gelder, P. H. A. J. M.: Impact Assessment of Extreme Storm Events Using a Bayesian Network, 673 Santander, Spain2012.
- 674 Erikson, L. H., Larson, M., and Hanson, H.: Laboratory investigation of beach scarp and dune recession 675 due to notching and subsequent failure, Marine Geology, 245, 1-19, 2007.
- 676 García-Medina, G., Özkan-Haller, H. T., Holman, R. A., and Ruggiero, P.: Large runup controls on a
- 677 gently sloping dissipative beach, Journal of Geophysical Research: Oceans, 122, 5998-6010, 2017.
- 678 Goldstein, E., Coco, G., and Plant, N. G.: A Review of Machine Learning Applications to Coastal
- 679 Sediment Transport and Morphodynamics. EarthArXiv, 2018.
- 680 Goldstein, E. B. and Coco, G.: A machine learning approach for the prediction of settling velocity,
- 681 Water Resources Research, 50, 3595-3601, 2014.

- 682 Goldstein, E. B. and Coco, G.: Machine learning components in deterministic models: hybrid synergy in 683 the age of data, Frontiers in Environmental Science, 3, 33, 2015.
- 684 Goldstein, E. B., Coco, G., and Murray, A. B.: Prediction of wave ripple characteristics using genetic
- 685 programming, Continental Shelf Research, 71, 1-15, 2013.
- 686 Goldstein, E. B. and Moore, L. J.: Stability and bistability in a one-dimensional model of coastal
- 687 foredune height, Journal of Geophysical Research: Earth Surface, 121, 964-977, 2016.
- 688 Guedes, R., Bryan, K. R., and Coco, G.: Observations of wave energy fluxes and swash motions on a
- 689 low-sloping, dissipative beach, Journal of geophysical research: Oceans, 118, 3651-3669, 2013.
- 690 Guza, R. and Feddersen, F.: Effect of wave frequency and directional spread on shoreline runup,
- 691 Geophysical Research Letters, 39, 2012.
- 692 Holman, D., Sridharan, M., Gowda, P., Porter, D., Marek, T., Howell, T., and Moorhead, J.: Gaussian
- 693 process models for reference ET estimation from alternative meteorological data sources, Journal of
- 694 Hydrology, 517, 28-35, 2014.
- Holman, R.: Extreme value statistics for wave run-up on a natural beach, Coastal Engineering, 9, 527-544, 1986.
- 697 Hunt, I. A.: Design of sea-walls and breakwaters, Transactions of the American Society of Civil
- 698 Engineers, 126, 542-570, 1959.
- 699 Krasnopolsky, V. M. and Fox-Rabinovitz, M. S.: Complex hybrid models combining deterministic and
- 700 machine learning components for numerical climate modeling and weather prediction, Neural
- 701 Networks, 19, 122-134, 2006.
- 702 Kupilik, M., Witmer, F. D., MacLeod, E.-A., Wang, C., and Ravens, T.: Gaussian Process Regression
- for Arctic Coastal Erosion Forecasting, IEEE Transactions on Geoscience and Remote Sensing, 2018.
 1-9, 2018.
- Larson, M., Erikson, L., and Hanson, H.: An analytical model to predict dune erosion due to wave
 impact, Coastal Engineering, 51, 675-696, 2004.
- Li, F., Van Gelder, P., Callaghan, D., Jongejan, R., Heijer, C. d., and Ranasinghe, R.: Probabilistic
- modeling of wave climate and predicting dune erosion, Journal of Coastal Research, 65, 760-765, 2013.
- 709 Limber, P. W., Barnard, P. L., Vitousek, S., and Erikson, L. H.: A model ensemble for projecting
- 710 multidecadal coastal cliff retreat during the 21st century, Journal of Geophysical Research: Earth
- 711 Surface, 123, 1566-1589, 2018.
- 712 Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., Held, H.,
- 713 Kriegler, E., Mach, K. J., and Matschoss, P. R.: Guidance note for lead authors of the IPCC fifth
- 714 assessment report on consistent treatment of uncertainties, 2010. 2010.
- 715 Mull, J. and Ruggiero, P.: Estimating storm-induced dune erosion and overtopping along US West
- 716 Coast beaches, Journal of Coastal Research, 30, 1173-1187, 2014.
- 717 Overbeck, J. R., Long, J. W., and Stockdon, H. F.: Testing model parameters for wave-induced dune
- rosion using observations from Hurricane Sandy, Geophysical Research Letters, 44, 937-945, 2017.
- 719 Palmsten, M. L. and Holman, R. A.: Laboratory investigation of dune erosion using stereo video,
- 720 Coastal engineering, 60, 123-135, 2012.
- 721 Palmsten, M. L., Splinter, K. D., Plant, N. G., and Stockdon, H. F.: Probabilistic estimation of dune
- retreat on the Gold Coast, Australia, Shore and Beach, 82, 35-43, 2014.

- Passarella, M., De Muro, S., Ruju, A., and Coco, G.: An assessment of swash excursion predictors using field observations, Journal of Coastal Research, 85, 1036-1040, 2018a.
- 725 Passarella, M., Goldstein, E. B., Muro, S. D., and Coco, G.: The use of genetic programming to develop
- 726 a predictor of swash excursion on sandy beaches, Natural Hazards and Earth System Sciences, 18, 599-
- 727 611, 2018b.
- 728 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
- Prettenhofer, P., Weiss, R., and Dubourg, V.: Scikit-learn: Machine learning in Python, Journal of machine learning research, 12, 2825-2830, 2011.
- 731 Phillips, M., Blenkinsopp, C., Splinter, K., Harley, M., and Turner, I.: Modes of berm and beachface
- 732 recovery following storm reset: observations using a continuously scanning lidar, Journal of
- 733 Geophysical Research: Earth Surface, 2019. 2019.
- 734 Plant, N. G. and Stockdon, H. F.: Probabilistic prediction of barrier-island response to hurricanes,
- 735 Journal of Geophysical Research: Earth Surface, 117, n/a-n/a, 2012.
- 736 Power, H. E., Gharabaghi, B., Bonakdari, H., Robertson, B., Atkinson, A. L., and Baldock, T. E.:
- Prediction of wave runup on beaches using Gene-Expression Programming and empirical relationships,
 Coastal Engineering, 2018. 2018.
- 739 Ranasinghe, R., Callaghan, D., and Stive, M. J.: Estimating coastal recession due to sea level rise:
- 740 beyond the Bruun rule, Climatic Change, 110, 561-574, 2012.
- 741 Rasmussen, C. E. and Williams, C. K.: Gaussian Processes for Machine Learning, The MIT Press,
- 742 Cambridge, Massachusetts, 2006.
- 743 Reggente, M., Peters, J., Theunis, J., Van Poppel, M., Rademaker, M., Kumar, P., and De Baets, B.:
- 744 Prediction of ultrafine particle number concentrations in urban environments by means of Gaussian
- process regression based on measurements of oxides of nitrogen, Environmental modelling & software,61, 135-150, 2014.
- Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., and Aigrain, S.: Gaussian processes for time-series modelling, Phil. Trans. R. Soc. A, 371, 20110550, 2013.
- 749 Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., and Lescinski, J.:
- Modelling storm impacts on beaches, dunes and barrier islands, Coastal Engineering, 56, 1133-1152,2009.
- 752 Ruggiero, P., Komar, P. D., McDougal, W. G., Marra, J. J., and Beach, R. A.: Wave runup, extreme
- water levels and the erosion of properties backing beaches, Journal of Coastal Research, 2001. 407-419,2001.
- Sallenger, A. H.: Storm impact scale for barrier islands, Journal of Coastal Research, 2000. 890-895,2000.
- 557 Short, A. D. and Trenaman, N.: Wave climate of the Sydney region, an energetic and highly variable 558 ocean wave regime, Marine and Freshwater Research, 43, 765-791, 1992.
- 759 Splinter, K. D., Kearney, E. T., and Turner, I. L.: Drivers of alongshore variable dune erosion during a
- 760 storm event: Observations and modelling, Coastal Engineering, 131, 31-41, 2018.
- Splinter, K. D. and Palmsten, M. L.: Modeling dune response to an East Coast Low, Marine Geology,329, 46-57, 2012.
- 763 Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger, A. H.: Empirical parameterization of
- setup, swash, and runup, Coastal Engineering, 53, 573-588, 2006.

- 55 Stockdon, H. F., Sallenger Jr, A. H., Holman, R. A., and Howd, P. A.: A simple model for the spatiallyvariable coastal response to hurricanes, Marine Geology, 238, 1-20, 2007.
- 767 Tinoco, R., Goldstein, E., and Coco, G.: A data-driven approach to develop physically sound predictors:
- 768 Application to depth-averaged velocities on flows through submerged arrays of rigid cylinders, Water
- 769 Resources Research, 51, 1247-1263, 2015.
- Van Oorschot, J. and d'Angremond, K.: The effect of wave energy spectra on wave run-up. In: CoastalEngineering 1968, 1969.
- 772