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Abstract 8 

After decades of study and significant data collection of time-varying swash on sandy beaches, there is 9 

no single deterministic prediction scheme for wave runup that eliminates prediction error — even 10 

bespoke, locally tuned predictors present scatter when compared to observations. Scatter in runup 11 

prediction is meaningful and can be used to create probabilistic predictions of runup for a given wave 12 

climate and beach slope. This contribution demonstrates this using a data-driven Gaussian process 13 

predictor; a probabilistic machine learning technique. The runup predictor is developed using one year 14 

of hourly wave runup data (8328 observations) collected by a fixed LIDAR at Narrabeen Beach, 15 

Sydney, Australia. The Gaussian process predictor accurately predicts hourly wave runup elevation 16 

when tested on unseen data with a root mean-squared-error of 0.18 m and bias of 0.02 m. The 17 

uncertainty estimates output from the probabilistic GP predictor are then used practically in a 18 

deterministic numerical model of coastal dune erosion, which relies on a parameterization of wave 19 

runup, to generate ensemble predictions. When applied to a dataset of dune erosion caused by a storm 20 

event that impacted Narrabeen Beach in 2011, the ensemble approach reproduced ~85% of the observed 21 

variability in dune erosion along the 3.5 km beach and provided clear uncertainty estimates around 22 

these predictions. This work demonstrates how data-driven methods can be used with traditional 23 

deterministic models to develop ensemble predictions that provide more information and greater 24 

forecasting skill when compared to a single model using a deterministic parameterization; an idea that 25 

could be applied more generally to other numerical models of geomorphic systems.  26 
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1 Introduction 27 

Wave runup is important for characterizing the vulnerability of beach and dune systems and coastal 28 

infrastructure to wave action. Wave runup is typically defined as the time-varying vertical elevation of 29 

wave action above ocean water levels and is a combination of wave swash and wave setup (Holman, 30 

1986; Stockdon et al., 2006). Most parameterizations of wave runup use deterministic equations that 31 

output a single value for either the maximum runup elevation in a given time period, Rmax, or the 32 

elevation exceeded by 2% of runup events in a given time period, R2, based on a given set of input 33 

conditions. In the majority of runup formulae, these input conditions are easily obtainable parameters 34 

such as significant wave height, significant wave period, and beach slope (Atkinson et al., 2017; 35 

Holman, 1986; Hunt, 1959; Ruggiero et al., 2001; Stockdon et al., 2006). However, wave dispersion 36 

(Guza and Feddersen, 2012), wave spectrum (Van Oorschot and d'Angremond, 1969), nearshore 37 

morphology (Cohn and Ruggiero, 2016), bore-bore interaction (García-Medina et al., 2017), tidal stage 38 

(Guedes et al., 2013),  and a range of other possible processes have been shown to influence swash zone 39 

processes. Since typical wave runup parameterizations do not account for these more complex 40 

processes, there is often significant scatter in runup predictions when compared to observations (e.g., 41 

Atkinson et al., 2017; Stockdon et al., 2006). Even flexible machine learning approaches based on 42 

extensive runup datasets or consensus-style ‘model of models’ do not resolve prediction scatter in runup 43 

datasets (e.g., Atkinson et al., 2017; Passarella et al., 2018b; Power et al., 2018). This suggests that the 44 

development of a perfect deterministic parameterization of wave runup, especially with only reduced, 45 

easily obtainable inputs (i.e., wave height, wave period, and beach slope), is improbable.  46 

 47 

The resulting inadequacies of a single deterministic parameterization of wave runup can cascade up 48 

through the scales to cause error in any larger model that uses a runup parameterization. It therefore 49 

makes sense to clearly incorporate prediction uncertainty into wave runup predictions. In disciplines 50 

such as hydrology and meteorology, with a more established tradition of forecasting, model uncertainty 51 

is often captured by using ensembles (e.g., Bauer et al., 2015; Cloke and Pappenberger, 2009). The 52 

benefits of ensemble modelling are typically superior skill and the explicit inclusion of uncertainty in 53 

predictions by outputting a range of possible model outcomes. Commonly used methods of generating 54 
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ensembles include combining different models (Limber et al., 2018) or perturbing model parameters, 55 

initial conditions and/or input data (e.g., via Monte Carlo simulations (e.g., Callaghan et al., 2013)).  56 

 57 

An alternative approach to quantify prediction uncertainty is to incorporate scatter about a mean 58 

prediction into model parameterizations. For example, wave runup predictions at every time step could 59 

be modelled with a deterministic parameterization plus a noise component that captures the scatter 60 

about the deterministic prediction caused by unresolved processes. If parameterizations are stochastic, 61 

or have a stochastic component, repeated model runs (given identical initial and forcing conditions) 62 

produce different model outputs – an ensemble – that represents a range of possible values the process 63 

could take. This is broadly analogous to the method of “stochastic parameterization” used in the 64 

weather forecasting community for sub-grid scale processes and parameterizations (Berner et al., 2017). 65 

In these applications, stochastic parameterization has been shown to produce better predictions than 66 

traditional ensemble methods and is now routinely used by many operational weather forecasting 67 

centers (Berner et al., 2017; Buchanan, 2018). 68 

 69 

Stochastically varying a deterministic wave runup parameterization to form an ensemble still requires 70 

defining the stochastic term — i.e., the stochastic element that should be added to the predicted runup at 71 

each model time step. An alternative to specifying a predefined distribution or a noise term added to a 72 

parameterization is to learn and parameterize the variability in wave runup from observational data 73 

using machine learning techniques. Machine learning has had a wide range of applications in coastal 74 

morphodynamics research (Goldstein et al., 2018) and has shown specific utility in understanding swash 75 

processes (Passarella et al., 2018b; Power et al., 2018) as well as storm driven erosion (Beuzen et al., 76 

2018; den Heijer et al., 2012; Goldstein and Moore, 2016; Palmsten et al., 2014; Plant and Stockdon, 77 

2012). While many machine learning algorithms and applications are often used to optimize 78 

deterministic predictions, a Gaussian process is a probabilistic machine learning technique that directly 79 

captures model uncertainty from data (Rasmussen and Williams, 2006). Recent work has specifically 80 

used Gaussian processes to understand coastal processes such as large scale coastline erosion (Kupilik 81 

et al., 2018).  82 
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 83 

The work presented here is focused on using a Gaussian process to build a data-driven probabilistic 84 

predictor of wave runup that includes estimates of uncertainty. While quantifying uncertainty in runup 85 

predictions from data is useful in itself, the benefit of this methodology is in explicitly including the 86 

uncertainty with the runup predictor in a larger model that uses a runup parametrization, such as a 87 

coastal dune erosion model. Dunes on sandy coastlines provide a natural barrier to storm erosion by 88 

absorbing the impact of incident waves and storm surge and helping to prevent or delay flooding of 89 

coastal hinterland and infrastructure (Mull and Ruggiero, 2014; Sallenger, 2000; Stockdon et al., 2007). 90 

The accurate prediction of coastal dune erosion is therefore critical for characterizing the vulnerability 91 

of dune and beach systems and coastal infrastructure to storm events. A variety of methods are available 92 

for modelling dune erosion including: simple conceptual models relating hydrodynamic forcing, 93 

antecedent morphology and dune response (Sallenger, 2000); empirical dune-impact models that relate 94 

time-dependent dune erosion to the force of wave impact at the dune (Erikson et al., 2007; Larson et al., 95 

2004; Palmsten and Holman, 2012); data-driven machine learning models (Plant and Stockdon, 2012); 96 

and more complex physics-based models (Roelvink et al., 2009). In this study, we focus on dune-impact 97 

models, which are simple, commonly used models that typically rely on a parameterization of wave 98 

runup to model time-dependent dune erosion. As inadequacies in the runup parameterization can 99 

jeopardize the success of model results (Overbeck et al., 2017; Palmsten and Holman, 2012; Splinter et 100 

al., 2018), it makes sense to use a runup predictor that includes prediction uncertainty. 101 

 102 

The overall aim of this work is to demonstrate how probabilistic data-driven methods can be used with 103 

deterministic models to develop ensemble predictions, an idea that could be applied more generally to 104 

other numerical models of geomorphic systems. Sect. 2 first describes the Gaussian process model 105 

theory.  In Sect. 3 the Gaussian process runup predictor is developed. In Sect. 4 an example application 106 

of the Gaussian process predictor of runup inside a morphodynamic model of coastal dune erosion to 107 

build a ‘hybrid’ model (Goldstein and Coco, 2015; Krasnopolsky and Fox-Rabinovitz, 2006) that can 108 

generate ensemble output is presented. A discussion of the results and technique is provided in Sect. 5 109 

followed by conclusions in Sect. 6. The data and code used to develop the Gaussian Process runup 110 
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predictor in this manuscript are publicly available at 111 

https://github.com/TomasBeuzen/BeuzenEtAl_GP_Paper.  112 
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2 Gaussian Processes 113 

2.1 Gaussian Process Theory  114 

Gaussian processes (GPs) are data-driven, non-parametric models. A brief introduction to GPs is given 115 

here; for a more detailed introduction the reader is referred to Rasmussen and Williams (2006). There 116 

are two main approaches to determine a function that best parameterizes a process over an input space: 117 

1) select a class of functions to consider, e.g., polynomial functions, and best fit the functions to the data 118 

(a parametric approach); or, 2) consider all possible functions that could fit the data, and assign higher 119 

weight to functions that are more likely (a non-parametric approach) (Rasmussen and Williams, 2006). 120 

In the first approach it is necessary to decide on a class of functions to fit to the data – if all or parts of 121 

the data are not well modelled by the selected functions, then the predictions may be poor. In the second 122 

approach there is an infinite set of possible functions that could fit a data set (imagine the number of 123 

paths that could be drawn between two points on a graph). A GP addresses the problem of infinite 124 

possible functions by specifying a probability distribution over the space of possible functions that fit a 125 

given dataset. Based on this distribution, the GP quantifies what function most likely fits the underlying 126 

process generating the data and gives confidence intervals for this estimate. Additionally, random 127 

samples can also be drawn from the distribution to provide examples of what different functions that fit 128 

the dataset might look like. 129 

 130 

A GP is defined as a collection of random variables, any finite set of which has a multivariate Gaussian 131 

distribution. The random variables in a GP represent the value of the underlying function that describes 132 

the data, f(x), at location x. The typical workflow for a GP is to define a prior distribution over the space 133 

of possible functions that fit the data, form a posterior distribution by conditioning the prior on observed 134 

input/output data pairs (“training data”), and to then use this posterior distribution to predict unknown 135 

outputs at other input values (“testing data”). The key to GP modelling is the use of the multivariate 136 

Gaussian distribution, which has simple closed form solutions to the aforementioned conditioning 137 

process, as described below. 138 
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 139 

Whereas a univariate Gaussian distribution is defined by a mean and variance (i.e., Ɲ(μ,σ2)), a GP (a 140 

multivariate Gaussian distribution) is completely defined by a mean function m(x) and covariance 141 

function k(x, x’) (also known as a “kernel”), and is typically denoted: 142 

 143 

𝑓(𝒙)~𝒩(𝑚(𝒙), 𝑘(𝒙, 𝒙+))          (1) 144 

 145 

Where x is an input vector of dimension D (x ∈ ℝD), and f is the unknown function describing the data. 146 

Note that for the remainder of this paper, a variable denoted in bold text represents a vector. The mean 147 

function, m(x), describes the expected mean value of the function describing the data at location x, 148 

while the covariance function encodes the correlation between the function values at locations in x. 149 

 150 

These concepts of GP development are further described using a hypothetical dataset of significant 151 

wave height (Hs) versus wave runup (R2) shown in Fig. 1A. The first step of GP modelling is to 152 

constrain the infinite set of functions that could fit a dataset by defining a prior distribution over the 153 

space of functions. This prior distribution encodes belief about what the underlying function is expected 154 

to look like (e.g., smooth/erratic, cyclic/random, etc.) before constraining the model with any observed 155 

training data. Typically it is assumed that the mean function of the GP prior, m(x), is 0 everywhere, to 156 

simplify notation and computation of the model (Rasmussen and Williams, 2006). Note that this does 157 

not limit the GP posterior to be a constant mean process. The covariance function, k(x,x’), ultimately 158 

encodes what the underlying functions look like because it controls how similar the function value at 159 

one input point is to the function value at other input points.  160 

 161 

There are many different types of covariance functions or “kernels”. One of the most common, and the 162 

one used in this study, is the squared exponential covariance function: 163 

 164 

𝑘.𝑥0, 𝑥12 = 𝜎56exp	[−∑
>
6?@
A .𝑥B,0− 𝑥B,1 2

6C
BD> ]       (2) 165 

 166 
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Where σf is the signal variance and l is known as the length-scale, both of which are hyperparameters in 167 

the model that can be estimated from data (discussed further in Sect. 2.2). Together the mean function 168 

and covariance function specify a multivariate Gaussian distribution: 169 

 170 

𝑓(𝒙)~𝒩(𝟎, 𝐾)           (3) 171 

 172 

Where f is the output of the prior distribution, the mean function is assumed to be 0 and K is the 173 

covariance matrix made by evaluating the covariance function at arbitrary input points that lie within 174 

the domain being modelled (i.e., K(x,x)i,j = k(xi,xj)). Random sample functions can be drawn from this 175 

prior distribution as demonstrated in Fig. 1B. 176 

 177 

The goal is to determine which of these functions actually fit the observed data points (training data) in 178 

Fig. 1A. This can be achieved by forming a posterior distribution on the function space by conditioning 179 

the prior with the training data. Roughly speaking, this operation is mathematically equivalent to 180 

drawing an infinite number of random functions from the multivariate Gaussian prior (Eq. (3)), and 181 

then rejecting those that do not agree with the training data. As mentioned above, the multivariate 182 

Gaussian offers a simple, closed form solution to this conditioning. Assuming that our observed training 183 

data is noiseless (i.e., y exactly represents the value of the underlying function f) then we can condition 184 

the prior distribution with the training data samples (x,y) to define a posterior distribution of the 185 

function value (f*) at arbitrary test inputs (x*): 186 

 187 

𝒇∗|𝒚~𝒩(𝐾∗𝐾L>𝑦, 𝐾∗∗ − 𝐾∗𝐾L>𝐾∗N)         (4) 188 

 189 

Where f* is the output of the posterior distribution at the desired test points x*, y is the training data 190 

outputs at inputs x, K* is the covariance matrix made by evaluating the covariance function (Eq. (2)) 191 

between the test inputs x* and training inputs x (i.e., k(x*,x)), K is the covariance matrix made by 192 

evaluating the covariance function between training data points x, and K** is the covariance matrix 193 

made by evaluating the covariance function between test points x*. Function values can be sampled 194 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-81
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 2 April 2019
c© Author(s) 2019. CC BY 4.0 License.



10 
 

from the posterior distribution as shown in Fig. 1C. These samples represent random realizations of 195 

what the underlying function describing the training data could look like.  196 

 197 

As stated earlier, in Eq. (4) and Fig. 1C there is an assumption that the training data is noiseless and 198 

represents the exact value of the function at the specific point in input space. In reality, there is error 199 

associated with observations of physical systems, such that: 200 

 201 

𝒚 = 𝑓(𝒙) + 𝜀            (5) 202 

 203 

Where ε is assumed to be independent identically distributed Gaussian noise with variance sn2. This 204 

noise can be incorporated into the GP modelling framework through the use of a white noise kernel that 205 

adds an element of Gaussian white noise into the model: 206 

 207 

𝑘.𝑥0, 𝑥12 = 𝜎Q6𝛿01           (6) 208 

 209 

Where sn2 is the variance of the noise and dij is a Kronecker delta which is 1 if i = j and 0 otherwise. 210 

The squared exponential kernel and white noise kernel are closed under addition and product 211 

(Rasmussen and Williams, 2006), such that they can simply be combined to form a custom kernel for 212 

use in the GP: 213 

 214 

𝑘.𝑥0, 𝑥12 = 𝜎56 exp S−∑
>
6?@
A .𝑥B,0 − 𝑥B,12

6C
BD> T + 𝜎Q6𝛿01      (7) 215 

 216 

The combination of kernels to model different signals in a dataset (that vary over different spatial or 217 

temporal timescales) is common in applications of GPs (Rasmussen and Williams, 2006; Reggente et 218 

al., 2014; Roberts et al., 2013).  Samples drawn from the resultant “noisy” posterior distribution are 219 

shown in Fig. 1D in which the GP can now be seen to not fit the observed training data precisely. 220 
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 221 
Fig. 1: A) Five hypothetical random observations of significant wave height (Hs) and 2% wave runup elevation (R2). B) The 222 
Gaussian process (GP) prior distribution. C) The GP posterior distribution, formed by conditioning the prior distribution in (B) 223 
with the observed data points in (A), assuming the observations are noise-free. D). The GP posterior distribution conditioned on 224 
the observations with a noise component. 225 

 226 

2.2 Gaussian Process Kernel Optimization 227 

In Eq. (7) there are three hyperparameters: the signal variance (σf), the length scale (l) and the noise 228 

variance (σn). These hyperparameters are typically unknown but can be estimated and optimized based 229 

on the particular dataset. Here, this optimization is performed by using the typical methodology of 230 

maximizing the log-marginal-likelihood of the observed data y given the hyperparameters: 231 

 232 
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log	𝑝(𝑦|𝑥, 𝜎5, 𝑙, 𝜎Q)           (8) 233 

 234 

The Python toolkit SciKit-Learn (Pedregosa et al., 2011) was used to develop the GP described in this 235 

study. 236 

2.3 Training a Gaussian Process Model 237 

It is standard practice in the development of data-driven machine learning models to divide the available 238 

dataset into training, validation and testing subsets. The training data is used to fit model parameters. 239 

The validation data is used to evaluate model performance and the model hyperparameters are usually 240 

varied until performance on the validation data is optimized. Once the model is optimized, the 241 

remaining test dataset is used to objectively evaluate its performance and generalizability. A decision 242 

must be made about how to split a dataset into training, validation and testing subsets. There are many 243 

different approaches to handle this splitting process; for example, random selection, cross-validation, 244 

stratified sampling, or a number of other deterministic sampling techniques (Camus et al., 2011). The 245 

exact technique used to generate the data subsets often depends on the problem at hand. Here, there 246 

were two constraints to be considered; first, the computational expense of GPs scales by O(n3) 247 

(Rasmussen and Williams, 2006), so it is desirable to keep the training set as small as possible without 248 

deteriorating model performance; and, secondly, machine learning models typically perform poorly 249 

with out-of-sample predictions (i.e., extrapolation), so it is desirable to include in the training set the 250 

data samples that captures the full range of variability in the data. Based on these constraints, we used a 251 

maximum dissimilarity algorithm (MDA) to divide the available data into training, validation and 252 

testing sets. 253 

 254 

The MDA is a deterministic routine that iteratively adds a data point to the training set based on how 255 

dissimilar it is to the data already included in the training set. Camus et al. (2011) provide a 256 

comprehensive introduction to the MDA selection routine and it has been previously used in ML studies 257 

(e.g., Goldstein et al., 2013). Briefly, to initialize the MDA routine, the data point with the maximum 258 

sum of dissimilarity (defined by Euclidean distance) to all other data points is selected as the first data 259 
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point to be added to the training data set. Additional data points are included in the training set through 260 

an iterative process whereby the next data point added is the one with maximum dissimilarity to those 261 

already in the training set - this process continues until a user-defined training set size is reached. In this 262 

way the MDA routine produces a set of training data that captures the range of variability present in the 263 

full dataset. The data not selected for the training set are equally and randomly split to form the 264 

validation dataset and test dataset.  265 
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3 Development of a Gaussian Process Runup Model 266 

3.1 Runup Data 267 

In 2014, an extended-range LIDAR (LIght Detection And Ranging) device (SICK LD-LRS 2110) was 268 

permanently installed on the rooftop of a beachside building (44 m above mean sea level) at Narrabeen-269 

Collaroy Beach (hereafter referred to simply as Narrabeen) on the south-east coast of Australia (Fig. 2). 270 

Since 2014, this LIDAR has continuously scanned a single cross-shore profile transect extending from 271 

the base of the beachside building to a range of 130 m, capturing the surface of the beach profile and 272 

incident wave swash at a frequency of 5 Hz in both daylight and non-daylight hours. Specific details of 273 

the LIDAR setup and functioning can be found in (Phillips et al., 2019). 274 

 275 
 276 

 277 
Fig. 2: A) Narrabeen Beach, located on the southeast coast of Australia. B) Conceptual figure of the fixed LIDAR setup. C) A five-278 
minute extract of runup elevation extracted from the LIDAR data, individual runup maxima are marked with red circles. 279 
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 280 

Narrabeen Beach is a 3.6 km long embayed beach bounded by rocky headlands. It is composed of fine 281 

to medium quartz sand (D50 ≈ 0.3 mm), with a ~30% carbonate fraction. Offshore, the coastline has a 282 

steep and narrow (20 – 70 km) continental shelf (Short and Trenaman, 1992). The region is microtidal 283 

and semidiurnal with a mean spring tidal range of 1.6 m and has a moderate to high energy deep water 284 

wave climate characterized by persistent long-period SSE swell waves that is interrupted by storm 285 

events (significant wave height > 3 m) typically 10 – 20 times per year (Short and Trenaman, 1992). In 286 

the present study, approximately one year of the high-resolution wave runup LIDAR dataset available at 287 

Narrabeen is used to develop a data-driven parameterization of the 2% exceedance of wave runup (R2). 288 

Data used to develop this parameterization were at hourly resolution and include: R2, the beach slope 289 

(β), offshore significant wave height (Hs), and peak wave period (Tp). These data are described below 290 

and have been commonly used to parameterize R2 in other empirical models of wave runup (e.g., 291 

Holman, 1986; Hunt, 1959; Stockdon et al., 2006).  292 

 293 

Individual wave runup elevation on the beach profile was extracted on a wave-by-wave basis from the 294 

LIDAR dataset (Fig. 2C). Hourly R2 was calculated as the 2% exceedance value for a given hour of 295 

wave runup observations. β was calculated as the linear (best-fit) slope of the beach profile over which 296 

two standard deviations of wave runup values were observed during the hour. Hourly Hs and Tp data 297 

were obtained from the Sydney Wave Rider buoy, situated 11 km offshore of Narrabeen in ~ 80 m 298 

water depth. Narrabeen is an embayed beach, where prominent rocky headlands both attenuate and 299 

refract incident waves. To remove these effects in the wave data and to emulate an open coastline and 300 

generalize the parameterization of R2 presented in this study, offshore wave data were first transformed 301 

to a nearshore equivalent (10 m water depth) using the SWAN spectral wave model (Booij et al., 1999), 302 

and then reverse shoaled back to deep water wave data. A total of 8328 hourly samples of R2, β, Hs and 303 

Tp were extracted to develop a parameterization of R2 in this study. Histograms of this data are shown in 304 

Fig. 3. 305 

 306 
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 307 
Fig. 3: Histograms of the 8328 data samples extracted from the Narrabeen LIDAR: (A) significant wave height (Hs); (B) peak wave 308 
period (Tp); (C) beach slope (β); and, (D) 2% wave runup elevation (R2). 309 

3.2 Training Data for the GP Runup Predictor 310 

To determine the optimum training set size, kernel and model hyperparameters, a number of different 311 

user-defined training set sizes were trialed using the MDA selection routine discussed in Sect. 2.3. The 312 

GP was trained using different amounts of data and hyperparameters were optimized on the validation 313 

data set only. It was found that a training set size of only 5% of the available dataset (training dataset = 314 

416 of 8328 available samples, validation dataset = 3956 samples, testing dataset = 3956 samples) was 315 

required to develop an optimum GP model. Training data sizes beyond this value produced negligible 316 

changes in GP performance but considerable increases in computational demand, similar to findings of 317 

previous work (Goldstein and Coco, 2014; Tinoco et al., 2015). Results presented below discuss the 318 

performance of the GP on the testing dataset which was not used in GP training or validation. 319 
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3.3 Runup Predictor Results 320 

Results of the GP R2 predictor on the 3956 test samples are shown in Fig. 4. This figure plots the mean 321 

GP predictions against corresponding observations of R2. The mean GP prediction performs well on the 322 

test data, with a root-mean-squared-error (RMSE) of 0.18 m and bias (B) of 0.02 m. For comparison, 323 

the commonly used R2 parameterization of Stockdon et al. (2006) tested on the same data has a RMSE 324 

of 0.36 m and B of 0.21 m. Despite the relatively accurate performance of the GP on this dataset, there 325 

remains significant scatter in the observed versus predicted R2 in Fig. 4. This is consistent with recent 326 

work by Atkinson et al. (2017) showing that commonly used predictors of R2 always result in scatter. 327 

 328 

 329 
Fig. 4: Observed 2% wave runup (R2) versus the R2 predicted by the Gaussian process model. Root-mean-squared-error (RMSE) 330 
is 0.36 m, bias (B) is 0.02 m and squared correlation (r2) is 0.54. 331 

 332 
Here the scatter (uncertainty) is used to form ensemble predictions. The GP developed here not only 333 

gives a mean prediction as used in Fig. 4, but it specifies a multivariate Gaussian distribution from 334 

which different random functions that describe the data can be sampled. Random samples of wave 335 
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runup from the GP can capture uncertainty around the mean runup prediction (as was demonstrated in 336 

the hypothetical example in Fig. 1D). To assess how well the GP model captures uncertainty, random 337 

samples are successively drawn from the GP and the number of R2 measurements captured with each 338 

new draw are determined. Only 10 random samples drawn from the GP are required to capture 95% of 339 

the scatter in R2 (Fig. 5A). This process of drawing random samples from the GP was repeated 100 340 

times with results showing that the above is true for any 10 random samples, with an average capture 341 

percentage of 95.7% and range of 94.9% to 96.1% for 10 samples across the 100 trials. As a point of 342 

contrast, Fig. 5B shows how much arbitrary error would need to be added to the mean R2 prediction to 343 

capture scatter about the mean to emulate the uncertainty captured by the GP. It can be seen that the 344 

mean R2 prediction would need to vary by ± 51% to capture 95% of the scatter present in the runup 345 

data. This demonstrates how random models of runup drawn from the GP effectively capture 346 

uncertainty in R2 predictions. These randomly drawn R2 models can be used within a larger dune-impact 347 

model to produce an ensemble of dune erosion predictions that includes uncertainty in runup 348 

predictions, as demonstrated in Sect. 4. 349 

 350 

 351 

 352 
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Fig. 5: A) Percent of observed runup values captured within the range of ensemble predictions made by randomly sampling 353 
different runup values from the Gaussian process. Only 10 randomly drawn models can form an ensemble that captures 95% of 354 
the scatter in observed R2 values. B) An experiment showing how much arbitrary error would need to be added to the mean GP 355 
runup prediction in order to capture scatter in R2 observations. The mean GP prediction would have to vary by 51% in order to 356 
capture 95% of scatter in R2 observations.   357 
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4 Application of a Gaussian Process Runup Predictor in a Coastal Dune Erosion Model 358 

4.1 Dune Erosion Model 359 

We use the dune erosion model of Larson et al. (2004) as an example of how the GP runup predictor 360 

can be used to create an ensemble of dune erosion predictions, and thus provide probabilistic outcomes 361 

with uncertainty bands needed in coastal management. The dune erosion model is subsequently referred 362 

to as LEH04 and is defined as follows: 363 

 364 

𝑑𝑉 = 4𝐶^(𝑅6 − 𝑧a)6(
b
N
)          (9) 365 

 366 

Where dV (m3/m) is the volumetric dune erosion per unit width alongshore for a given time step t, zb 367 

(m) is the time-varying dune toe elevation, T (s) is the wave period for that time step, R2 (m) is the 2% 368 

runup exceedance for that time step, and Cs is the transport coefficient. Note that the original equation 369 

used a best-fit relationship to define the runup term, R (see Eq. (36) in Larson et al., 2004) rather than 370 

R2. Subsequent modifications of the LEH04 model have been made to adjust the collision frequency 371 

(i.e. the t/T term; e.g., Palmsten and Holman (2012), Splinter and Palmsten (2012)), however we retain 372 

the model presented in Eq. (9) for the purpose of providing a simple illustrative example. At each time 373 

step, dune volume is eroded in bulk and the dune toe is adjusted along a predefined slope (defined here 374 

as the linear slope between the pre- and post-storm dune toe) so that erosion causes the dune toe to 375 

increase in elevation and recede landward. Dune erosion and dune toe recession only occurs when wave 376 

runup (R2) exceeds the dune toe (i.e., R2 – zb > 0) and cannot progress vertically beyond the maximum 377 

runup elevation. When R2 does not exceed zb, dV = 0.  The GP R2 predictor described in Sect. 3 is used 378 

to stochastically parameterize wave runup in the LEH04 model and form ensembles of dune erosion 379 

predictions. The model is applied to new data not used to train the GP R2 predictor, using detailed 380 

observations of dune erosion caused by a large coastal storm event at Narrabeen Beach, southeast 381 

Australia in 2011. 382 
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4.2 June 2011 Storm Data 383 

In June 2011 a large coastal storm event impacted the southeast coast of Australia. This event resulted 384 

in variable alongshore dune erosion at Narrabeen Beach, which was precisely captured by airborne 385 

LIDAR immediately pre-, during, and post-storm by five surveys conducted approximately 24 hours 386 

apart. Cross-shore profiles were extracted from the Lidar data at 10 m alongshore intervals as described 387 

in detail in Splinter et al. (2018), resulting in 351 individual profiles (Fig. 6). The June 2011 storm 388 

lasted 120 hours. Hourly wave data was recorded by the Sydney wave rider buoy located in ~80 m 389 

water depth directly to the southeast of Narrabeen Beach. As with the hourly wave data used to develop 390 

the GP model of R2 (Sect. 3.1), hourly wave data for each of the 351 profiles for the June 2011 storm 391 

was obtained by first transforming offshore wave data to the nearshore equivalent at 10 m water depth 392 

directly offshore of each profile using the SWAN spectral wave model (Booij et al., 1999), and then 393 

reverse shoaling back to equivalent deep water wave data, to account for the effects of wave refraction 394 

and attenuation caused by the distinctly curved Narrabeen embayment. The tidal range during the storm 395 

event was measured in-situ at the Fort Denison Tide Gauge (located within Sydney Harbour 396 

approximately 16 km south of Narrabeen) as 1.58 m (mean spring tidal range at Narrabeen is 1.6 m). 397 

The hydrodynamic time series and airborne LIDAR observations of dune change are used to 398 

demonstrate how the LEH04 model can be used with the GP predictor of runup to generate stochastic 399 

parameterizations and create probabilistic model ensembles (Eq. (9)). 400 
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 401 
Fig. 6: June 2011 storm data. A) Offshore Hs and Tp with vertical dashed lines indicating the time of the LIDAR surveys, B) 402 
Measured (pre vs post storm) dune erosion volumes for the 351 profile transects extracted from LIDAR data, C) Example pre- 403 
(blue) and post-storm (red) profile cross sections showing dune toes (coloured circles) and dune erosion volume (grey shading). 404 

For each of the 351 available profiles, the pre-, during and post-storm dune toe positions were defined 405 

as the local maxima of curvature of the beach profile following the method of Stockdon et al. (2007). 406 

Dune erosion at each profile was then defined as the difference in subaerial beach volume landward of 407 

the pre-storm dune toe, as shown in Fig. 6C. Of the 351 profiles, only 117 had storm driven dune 408 

erosion (Fig. 6B). For the example demonstration presented here, only profiles for which the post-storm 409 

dune toe elevation was at the same or higher elevation than the pre-storm dune toe are considered; 410 

which is a basic assumption of the LEH04 model. Of the 117 profiles with storm erosion, 40 profiles 411 
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met these criteria. For each of these profiles, the linear slope between the pre- and post-storm dune toe 412 

was used to project the dune erosion calculated using the LEH04 model. 413 

 414 

The LEH04 dune erosion model (Eq. (9)) has a single tuneable parameter, the transport coefficient Cs. 415 

There is ambiguity in the literature regarding the value of Cs. Larson et al. (2004) developed an 416 

empirical equation to relate Cs to wave height (Hrms) and grain size (D50) using experimental data. 417 

Values ranged from 1x10-5 to 1x10-1, and Larson et al. (2004) used 1.7 x 10-4 based on field data from 418 

Birkemeier et al. (1988). Palmsten and Holman (2012) used LEH04 to model dune erosion observed in 419 

a large wave tank experiment conducted at the O.H. Hinsdale Wave Research Laboratory at Oregon 420 

State University. The model was shown to accurately reproduce dune erosion when applied in hourly 421 

time steps using a Cs of 1.34 x 10-3, based on the empirical equation determined by Larson et al. (2004).  422 

Mull and Ruggiero (2014) used values of 1.7 x 10-4 and 1.34 x 10-3 as lower and upper bounds of Cs to 423 

model dune erosion caused by a large storm event on the Pacific Northwest Coast of the USA and the 424 

laboratory experiment used by Palmsten and Holman (2012). For the dune erosion experiment, the 425 

value of 1.7 x 10-4 was found to predict dune erosion volumes closest to the observed erosion when 426 

applied in a single time step, with an optimum value of 2.98 x 10-4. Splinter and Palmsten (2012) found 427 

a best fit Cs of 4 x 10-5 in an application to modelling dune erosion caused by a large storm event that 428 

occurred on the Gold Coast, Australia. Ranasinghe et al. (2012) found a Cs value of 1.5 x 10−3 in an 429 

application at Narrabeen Beach, Australia. It is noted that Cs values in these studies are influenced by 430 

the time step used in the model and the exact definition of wave runup, R, used (Larson et al., 2004; 431 

Mull and Ruggiero, 2014; Palmsten and Holman, 2012; Splinter and Palmsten, 2012). In practice, Cs 432 

could be optimized to fit any particular dataset. However, for predictive applications the optimum Cs 433 

value may not be known in advance, since it is unclear if subsequent storms at a given location will be 434 

well predicted using previously optimized Cs values.  A key goal of this work is to determine if using 435 

stochastic parameterizations to generate ensembles that predict a range of dune erosion (based on 436 

uncertainty in the runup parameterization) can still capture observed dune erosion even if the optimum 437 

Cs value is not known in advance. As such, a Cs value of 1.5 x 10−3 is used in this example application 438 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-81
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 2 April 2019
c© Author(s) 2019. CC BY 4.0 License.



24 
 

based on previous work at Narrabeen Beach by Ranasinghe et al. (2012). Sensitivity of model results to 439 

the choice of Cs are further discussed in Sect. 5.2. 440 

 441 

An example at a single profile (profile 141, located approximately half-way up the Narrabeen 442 

embayment as shown in Fig. 6B) of time-varying ensemble dune erosion predictions is provided in Fig. 443 

7. It was previously shown in Fig. 5 that only 10 random samples drawn from the GP R2 predictor were 444 

required to capture 95% of the scatter in the R2 data used to develop and test the GP. However, it is 445 

trivial to draw many more samples than this from the GP - for example, drawing 10,000 samples takes 446 

less than one second on a standard desktop computer. Therefore, to explore a large range of possible 447 

runup scenarios during the 120-hour storm event, 10,000 different runup time series are drawn from the 448 

GP and used to run LEH04 at hourly intervals, thus producing 10,000 model results of dune erosion. 449 

The effect of using different ensemble sizes is explored in Sect. 5.2. Fig. 7A shows the time-varying 450 

distribution of the runup models (blue) used to force LEH04 along with the time-varying prediction 451 

distribution of dune toe elevations (grey) throughout the 120-hour storm event. To interpret model 452 

output probabilistically, the mean of the ensemble is plotted, along with intervals capturing 66%, 90%, 453 

and 99% of the ensemble output. These intervals are consistent with those used in IPCC for climate 454 

change predictions (Mastrandrea et al., 2010) and in the context of the model results presented here, 455 

they represent varying levels of confidence in the model output. For example, there is high confidence 456 

that the real dune erosion will fall within the 66% ensemble prediction range.  Fig. 7B shows the time-457 

varying predicted distribution of dune erosion volumes from the 10,000 LEH04 runs. It can be seen that 458 

while the mean value of the ensemble predictions deviates slightly from the observed dune erosion, the 459 

observed erosion is still captured well within the 66% envelope of predictions. 460 
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 461 
Fig. 7: Example of LEH04 used with the Gaussian process R2 predictor to form an ensemble of dune erosion predictions. 10,000 462 
runup models are drawn from the Gaussian process and used to force the LEH04 model. A) Runup (blue) and dune toe (grey) 463 
elevation for the 120-hour storm event. Bold colored line is the mean of the ensemble and shaded areas represent the regions 464 
captured by 66%, 90% and 99% of the ensemble predictions. Pink dots denote the observed dune toe elevation throughout the 465 
storm event.  B) The corresponding ensemble of dune erosion predictions. 466 

Pre- and post-storm dune erosion results for the 40 profiles using 10,000 ensemble members and Cs of 467 

1.5 x 10-3 are shown in Fig. 8. The squared-correlation (r2) for the observed and predicted dune erosion 468 

volumes is 0.85. Many of the profiles experienced only minor dune erosion (< 2.5 m3/m) and can be 469 

seen to be well predicted by the mean of the ensemble predictions. In contrast, the ensemble mean can 470 

be seen to under-predict dune erosion at profiles where high erosion volumes were observed.  However, 471 

the ensemble range of predictions for these profiles also has a large spread, indicative of high 472 

uncertainty in predictions. It should be noted that the results presented in Fig. 8 are based on a non-473 

optimized Cs value. Increasing Cs would lead to better mean ensemble predictions of the large dune 474 
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erosion volumes, but potentially over-prediction of the smaller events. The exact effect of varying Cs is 475 

quantified in Sect. 5.2. However, regardless of the value of Cs chosen, an advantage of the GP approach 476 

is that uncertainty in the GP predictions can give an indication of dune erosion, even if the mean dune 477 

erosion prediction deviates from the observation.  478 

 479 

 480 
Fig. 8: Observed (pink dots) and predicted (black dots) dune erosion volumes for the 40 modelled profiles, using 10,000 runup 481 
models drawn from the Gaussian process and used to force the LEH04 model. Note that the 40 profiles shown are not uniformly 482 
spaced along the 3.5 km Narrabeen embayment. The black dots represent the ensemble mean prediction for each profile, while the 483 
shaded areas represent the regions captured by 66%, 90% and 99% of the ensemble predictions.  484 
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5 Discussion 485 

5.1 Runup Predictors 486 

Studies of commonly used deterministic runup parameterizations such as those proposed by Hunt 487 

(1959), Holman (1986) and Stockdon et al. (2006) amongst others, show that these parametrizations are 488 

not universally applicable and there remains no perfect predictor of wave runup on beaches (Atkinson et 489 

al., 2017; Passarella et al., 2018a; Power et al., 2018). This suggests that the available parametrizations 490 

do not fully capture all the relevant processes controlling wave runup on beaches (Power et al., 2018). 491 

Recent work has used ensemble and data-driven methods to account for unresolved factors and 492 

complexity in runup processes. For example, Atkinson et al. (2017) developed a ‘model-of-models’ by 493 

fitting a least-squares line to the predictions of several runup parameterizations. Power et al. (2018) 494 

used a data-driven, deterministic, Gene-Expression Programming model to predict wave runup against a 495 

large dataset of runup observations. Both of these approaches led to improved predictions, when 496 

compared to conventional runup parameterizations, of wave runup on the datasets tested in these 497 

studies. The work presented in this study used a data-driven Gaussian process (GP) approach to develop 498 

a probabilistic runup predictor. While the mean predictions from the GP predictor developed in this 499 

study using high-resolution LIDAR data of wave runup were accurate (RMSE = 0.18 m) and better than 500 

those provided by the Stockdon et al. (2006) formula tested on the same data (RMSE = 0.36 m), the key 501 

advantage of the GP approach over deterministic approaches is that probabilistic predictions are output 502 

that are specifically derived from data and implicitly account for unresolved processes and uncertainty 503 

in runup predictions. Previous work has similarly used GPs for efficiently and accurately quantifying 504 

uncertainty in other environmental applications (e.g., Holman et al., 2014; Kupilik et al., 2018; 505 

Reggente et al., 2014). While alternative approaches are available for generating probabilistic 506 

predictions, such as Monte Carlo simulations (e.g., Callaghan et al., 2013), the GP approach explicitly 507 

derives uncertainty from data, requires no deterministic equations, and is computationally efficient (i.e., 508 

as discussed in Sect. 5.2, drawing 10,000 samples of 120-hour runup time series on a standard desktop 509 

computer took less than one second). 510 
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5.2 The Effect of Cs and Ensemble Size on Dune Erosion 511 

In Sect. 4, the application of the GP runup predictor within the LEH04 model to produce an ensemble 512 

of dune erosion predictions was based on 10,000 ensemble members and a Cs value of 1.5 x 10-3. The 513 

sensitivity of results to the number of members in the ensemble and the value of the tunable parameter 514 

Cs in Eq. (9) is presented in Fig. 9. The mean absolute error (MAE) between the mean ensemble dune 515 

erosion predictions and the observed dune erosion, averaged across all 40 profiles, varies for R2 516 

ensembles of 5, 10, 20, 100, 1000, and 10,000 members and Cs values ranging from 10-5 to 10-1 (Fig. 9).  517 

As can be seen in Fig. 9A and summarized in Table 1, the lowest MAE for the differing ensemble sizes 518 

is similar, ranging from 1.50 to 1.64 m3/m, suggesting that the number of ensemble members does not 519 

have a significant impact on the resultant mean prediction. The lowest MAE for the different ensemble 520 

sizes corresponds to Cs values between 2.8 x 10-3 (10,000 ensemble members) and 4.1 x 10-3 (5 521 

ensemble members); reasonably consistent with the value of 1.5 x 10-3 previously reported by 522 

Ranasinghe et al. (2012) for Narrabeen Beach and within the range of Cs values presented in Larson et 523 

al. (2004).  524 

 525 

The key utility to using a data-driven GP predictor to produce ensembles is that a range of predictions at 526 

every location is provided as opposed to a single erosion volume. The ensemble range provides an 527 

indication of uncertainty in predictions, which can be highly useful for coastal engineers and managers 528 

taking a risk-based approach to coastal hazard management. Fig. 9B-D displays the percentage of dune 529 

erosion observations from the 40 profiles captured within ensemble predictions for Cs values ranging 530 

from 10-5 to 10-1. It can be seen that a high proportion of dune erosion observations are captured within 531 

the 66%, 90% and 99% ensemble envelope across several orders of magnitude Cs. While the main 532 

purpose of using ensemble runup predictions within LEH04 is to incorporate uncertainty in the runup 533 

prediction, this result demonstrates that the ensemble approach is less sensitive to the choice of Cs than 534 

a deterministic model and so can be useful for forecasting with non-optimized model parameters.  535 

 536 

Results in Fig. 9 and Table 1 demonstrate that there is relatively little difference in model performance 537 

when more than 10 to 100 ensemble members are used; consistent with results presented previously in 538 
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Fig. 5 that showed that only 10 random samples drawn from the GP R2 predictor were required to 539 

capture 95% of the scatter in the R2 data used to develop and test the GP. This suggests that the GP 540 

approach efficiently captures scatter (uncertainty) in runup predictions and subsequently, dune erosion 541 

predictions, requiring on the order of 10 samples; significantly less than the 103 – 106 runs typically 542 

used in Monte Carlo simulations to develop probabilistic predictions (e.g., Callaghan et al., 2008; Li et 543 

al., 2013; Ranasinghe et al., 2012). Nevertheless, it is noted that drawing a large number of samples 544 

from the GP predictor is trivial, with 10,000 samples taking less than one second on a standard desktop 545 

computer. 546 
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 547 

Fig. 9: Results of the stochastic parameterization methodology for R2 ensembles of 5, 10, 20, 100, 1000, and 10,000 members and Cs 548 
values ranging from 10-5 to 10-1. A) The mean absolute error (MAE) between the median ensemble dune erosion predictions and 549 
the observed dune erosion averaged across all 40 profiles. B), C) and D) show the percentage of dune erosion observations that fall 550 
within the 99%, 90% and 66% ensemble prediction ranges respectively.  551 
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Table 1: Quantitative summary of Fig. 9, showing the optimum Cs value for differing ensemble sizes, along with the associated 552 
mean-absolute-error (MAE) and percent of the 40 dune erosion observations captured by the 66%, 90% and 99% ensemble 553 
prediction range. 554 

Ensemble 
Members 

Optimum 
Cs 

MAE 
(m3/m) r2 

Percent 
Captured in 

66% Ensemble 
Range (%) 

Percent 
Captured in 

90% Ensemble 
Range (%) 

Percent 
Captured in 

99% Ensemble 
Range (%) 

5 4.1 x 10-3 1.59 0.86 45 57 65 
10 3.4 x 10-3 1.50 0.87 55 75 78 
20 3.4 x 10-3 1.54 0.86 62 78 88 

100 3.3 x 10-3 1.61 0.86 68 88 100 
1000 2.8 x 10-3 1.64 0.86 65 88 100 

10,000 2.8 x 10-3 1.64 0.86 65 88 100 
 555 

5.3 Including Uncertainty in Dune Erosion Models 556 

Uncertainty in wave runup predictions within dune-impact models can result in significantly varied 557 

predictions of dune erosion. For example, the model of Larson et al. (2004) used in this study only 558 

predicts dune erosion if runup elevation exceeds the dune toe elevation and predicts a non-linear 559 

relationship between runup that exceeds the dune toe and resultant dune erosion. Hence, if wave runup 560 

predictions are biased too low then no dune erosion will be predicted, and if wave runup is predicted too 561 

high then dune erosion may be significantly over predicted. Ensemble modelling has become standard 562 

practice in many areas of weather and climate modelling (Bauer et al., 2015), hydrological modelling 563 

(Cloke and Pappenberger, 2009), and more recently has been applied to coastal problems such as the 564 

prediction of cliff retreat (Limber et al., 2018) as a method of handling prediction uncertainty. While 565 

using a single deterministic model is computationally simple and provides one solution for a given set 566 

of input conditions, model ensembles provide a range of predictions that can better capture the variety 567 

of mechanisms and stochasticity within a coastal system. The result is typically improved skill  over 568 

deterministic models (Atkinson et al., 2017; Limber et al., 2018) and a natural method of providing 569 

uncertainty with predictions.  570 

 571 
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As a quantitative comparison, Splinter et al. (2018) applied a modified version of the LEH04 model to 572 

the same June 2011 storm dataset used in the work presented here with a modified expression for the 573 

collision frequency (i.e. the t/T term in Eq. (9)) based on work by Palmsten and Holman (2012). The 574 

parameterization of Stockdon et al. (2006) was used to estimate R2 in the model. The model was forced 575 

hourly over the course of the storm, updating the dune toe, recession slope, and profiles based on each 576 

daily LIDAR survey. Based on only the 40 profiles used in the present study, results from Splinter et al. 577 

(2018) showed that the deterministic LEH04 approach reproduced 68% (r2 = 0.68) of the observed 578 

variability in dune erosion. As shown in Table 1, the simple LEH04 model (Eq. (9)) applied here using 579 

the GP runup predictor to generate ensemble prediction reproduced ~85% (based on the ensemble 580 

mean) of the observed variability in dune erosion for the 40 profiles. While there are some discrepancies 581 

in the two modelling approaches, the ensemble approach clearly has an appreciable increase in skill 582 

over the deterministic approach; attributed here to using a runup predictor trained on local runup data, 583 

and the ensemble modelling approach. However, a major advantage of the ensemble approach over the 584 

deterministic approach is the provision of prediction uncertainty (e.g., Fig. 8). While the mean ensemble 585 

prediction is not 100% accurate, Table 1 shows that using just 100 samples can capture all the observed 586 

variability in dune erosion within the ensemble output.  587 

 588 

The GP approach is a novel approach to building model ensembles to capture uncertainty. Previous 589 

work modelling beach and dune erosion has successfully used Monte Carlo methods, which randomly 590 

vary model inputs within many thousands of model iterations, to produce ensembles and probabilistic 591 

erosion predictions (e.g., Callaghan et al., 2008; Li et al., 2013; Ranasinghe et al., 2012). As discussed 592 

earlier in Sect. 5.2, advantages of the GP approach over approaches like Monte Carlo include the 593 

explicit quantification of uncertainty directly from data, no deterministic equations are required, and the 594 

approach is computationally efficient; here, drawing 10,000 samples of 120-hour runup time series from 595 

the GP took less than one second on a standard desktop computer.  596 
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6 Conclusion 597 

For coastal managers, the accurate prediction of wave runup as well as dune erosion is critical for 598 

characterizing the vulnerability of coastlines to wave-induced flooding, erosion of dune systems, and 599 

wave impacts on adjacent coastal infrastructure. While many formulations for wave runup have been 600 

proposed over the years, none have proven to accurately predict runup over a wide range of conditions 601 

and sites of interest. In this contribution, a Gaussian process (GP) was used with over 8000 high-602 

resolution LIDAR-derived wave runup observations were used to develop a probabilistically 603 

parametrization of wave runup that quantify uncertainty in runup predictions. The mean GP prediction 604 

performed well on unseen data, with a RMSE of 0.18 m, a significant improvement over the commonly 605 

used R2 parameterization of Stockdon et al. (2006) (RMSE of 0.36 m) used on the same data. Further, 606 

only 10 randomly drawn models from the probabilistic GP distribution were needed to form an 607 

ensemble that captured 95% of the scatter in the test data.  608 

 609 

Coastal dune-impact models offer a method of predicting dune erosion deterministically. As an example 610 

application of how the GP runup predictor can be used in geomorphic systems, the uncertainty in the 611 

runup parameterization was propagated through a deterministic dune erosion model to generate 612 

ensemble model predictions and provide prediction uncertainty. The hybrid dune erosion model 613 

performed well on the test data, with a squared-correlation (r2) between the observed and predicted dune 614 

erosion volumes of 0.85. Importantly, the probabilistic output provided uncertainty bands of the 615 

expected erosion volumes which is a key advantage over deterministic approaches. Compared to 616 

traditional methods of producing probabilistic predictions such as Monte Carlo, the GP approach has the 617 

advantage of learning uncertainty directly from observed data, it requires no deterministic equations, 618 

and is computationally efficient; for the GP developed here, drawing 10,000 samples of 120-hour runup 619 

time series on a standard desktop computer took less than one second. 620 

 621 

This work is an example of how a machine learning model such as a GP can profitably be integrated 622 

into coastal morphodynamic models (Goldstein and Coco, 2015) to provide probabilistic predictions for 623 

nonlinear, multidimensional processes and drive ensemble forecasts. Approaches combining machine 624 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-81
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 2 April 2019
c© Author(s) 2019. CC BY 4.0 License.



34 
 

learning methods with traditional coastal science and management models present a promising area for 625 

furthering coastal morphodynamic research. Future work is focused on using more and varied datasets 626 

to further train the GP developed here and to integrate it into a real-time coastal erosion forecasting 627 

system.  628 
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Code and Data Availability 629 

The data and code used to develop the Gaussian Process runup predictor in this manuscript are publicly 630 

available at https://github.com/TomasBeuzen/BeuzenEtAl_GP_Paper.  631 
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