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Abstract. The purpose of this study is to propose the Bayesian Network (BN) model to estimate flood peaks from Atmospheric 

Ensemble Forecasts (AEFs). The Weather Research and Forecasting model was used to simulate historic storms using five 

cumulus parameterization schemes. The BN model was trained to compute flood peak forecasts from AEFs and hydrological 10 

pre-conditions. The Mean Absolute Relative Error was calculated as 0.076 for validation data while it was calculated as 0.39 

in artificial neural network (ANN) as a widely used model. It seems that BN is less sensitive to small data sets, thus it is more 

suited for flood peak forecasting than ANN. 
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1 Introduction 15 

Floods are the most threatening natural disaster across the world (Hénonin et al., 2010). Studies show that over 80% of the 

cities of Iran are at the risk of flooding (Chitsaz and Banihabib, 2015). Flood warning is an efficient way to reduce the flood 

damage. However, many flood forecasting systems in the world rely on observed rainfall and thus, the lead time of these 

systems is often short for small basins (Banihabib and Arabi, 2016). Numerical Weather Prediction (NWP) models can be used 

to increase the lead time of flood warning by using in advance forecasts of rainfalls. Although the combination of NWP and 20 

hydrological models can significantly increase the flood warning lead-time rather than using observed rainfalls, the 

deterministic weather prediction doesn’t reflect the existing uncertainties. Thus, in the last decades, many operative and 

research on flood forecasting systems around the world are increasingly employing ensembles of NWPs instead of single 

deterministic forecasts, which have considerable uncertainties (Goodarzi et al., 2019). Ensemble methods are considered to be 

an effective way to estimate the probability of future states of the atmosphere by addressing uncertainties present in initial 25 

conditions and in model approximations (Tennant et al., 2007). Various approaches have been developed to produce 

atmospheric ensemble forecasts including perturbing the initial conditions, perturbing the input parameters of the model, using 

multi-model ensembles and using different parameterization schemes (Yang et al., 2011). 
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One of the most important parameterization schemes is the cumulus parameterization. NWP models often use Cumulus 

Parameterization Schemes (CPS) to consider the effects of cumulus clouds which are not represented in the modelling as they 

are much smaller than the model grid size (Pennelly et al., 2014). Common CPS are presented in table 1.  

Table 1. Common Cumulus Parameterization Schemes. 

Model Reference Software used 

Kain-Fritsch (KF) Kain and Fritsch (1990)  WRF version 3.8 

Betts-Miller-Janjić (BMJ) Janjić (1994) WRF version 3.8 

Grell 3D ensemble (GR3D) Grell (1993) WRF version 3.8 

Multi-scale Kain-Fritsch (MSKF) Zheng et al. (2016) WRF version 3.8 

Grell-Dévényi ensemble (GDE)  Grell and Dévényi (2002) WRF version 3.8 

 5 

Kerkhoven et al. (2006) compared various CPS for a summer monsoon in east China and found that the Kain–Fritsch scheme 

is the best scheme at simulating moderate rainfall depths. Pennelly et al. (2014) applied the WRF model with diverse cumulus 

parameterization schemes for three flood events in Alberta, Canada, and they showed that the Kain–Fritsch and explicit 

cumulus parameterization schemes were the most accurate for simulating the rainfalls. Other studies indicated that ensemble 

forecasting is promising for predicting heavy rainfall (Deb et al., 2008; El Afandi, 2013; Li et al., 2014).  10 

Ensemble meteorological forecasting is widely coupled with a hydrological model to predict stream flow ensembles. Li et al. 

(2017) coupled the WRF model with a distributed hydrological model for flood forecasting in a large watershed in southern 

China. The results suggest that the simulated floods are rational and could benefit the flood management communities due to 

its longer lead time. Rogelis and Werner (2018) assessed the potential of NWP models for flood early warning in tropical 

mountainous watersheds. The results showed that the streamflow forecasts resulted from a hydrological model forced by post-15 

processed rainfall using the WRF added value to the flood early warning systems.  

Only few case studies report how flood hydrographs derived from Atmospheric Ensemble Forecasts (AEFs) can be converted 

into warning decisions during a flood event. Li et al. (2017) and Abebe and Price (2005) used the exceeding ensemble members. 

Dietrich et al. (2009a) used the quantile of the predicted flow ensemble. Yang et al. (2016) integrated ensemble rainfall 

forecasts, rainfall thresholds and a real time data assimilation method. Leandro et al. (2019) reduced the ensemble to the upper 20 

and lower range of the uncertainty band. Other concepts of deriving a single (deterministic type) warning indicator from 

ensembles are weighting of ensemble members, e.g., averaging by Bayesian model average (Raftery et al., 2005) or by machine 

learning (Doycheva et al., 2016) or by reduction of members to create a multi-model sub-ensemble (Dietrich et al., 2009b).  

According to previous studies, converting the ensemble forecasts into warnings and also deriving a single warning indicator 

from ensembles are not yet adequately considered and remains a challenging question in ensemble based flood warning. The 25 

main objective of this study is to propose the BN model to estimate the flood peak from a meteorological ensemble forecast 

without employing a hydrological model. BN has been widely used by researchers in many water resources fields. Applications 
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of BN in water resources can be found in Mediero et al. (2007), Sharma and Goyal (2016) and Shin et al. (2016). Phan et al. 

(2016) reviewed 111 BN applications in water resources management but only 4 were in the domain of river flow, 5 were in 

operational decision making context and none in operational flood warning. BN application in ensemble flood forecasting has 

not been reported yet to our best knowledge.  

In previous studies, meteorological ensemble forecasts are coupled with a hydrological model to predict a set of flood 5 

hydrographs with different peak discharge. Ensemble decision making according to a range of possible flood peaks is a 

challenging issue especially in case of equal likelihood of each ensemble member. In the present study, the hydrological model 

is replaced by a Bayesian network for deriving a single warning indicator from atmospheric ensemble forecasts.  

 The purpose of the present study is therefore to predict the flood peak addressing the uncertainties and the probability of 

occurrence of each ensemble member. Floods are rare extreme events that occur with low frequency in the studied area. Thus, 10 

one of the problems in flood modelling is small data size. In the present study, we try to deal with small data size by using 

Bayesian Network, which is less sensitive to a small data size (Zhang and Bivens, 2007). As a case study, flood peaks were 

forecasted in a relatively small mountainous basin, Kan Basin, Tehran, Iran. The Weather Research and Forecasting (WRF) 

model was used to simulate 14 historic precipitation events using five different cumulus parameterization schemes. Then 

atmospheric ensemble forecasts were coupled to the BN to estimate the flood magnitude for an ensemble forecasting, from 15 

which flood warnings could be derived. Forecasting performance of the BN was compared with the results obtained from an 

artificial neural network (ANN) as a widely used data based model.  

2 Data and methodology 

2.1. Study Area 

The case study of this research is Kan Basin, Tehran, Iran with an area of 197 km². The geographical limits lie between 35°46′ 20 

N to 35°58′ N latitudes and 51°10′ E to 51°23′ E longitudes. Figure 1 shows the location of the study area. Average elevation 

is 2428.7 m above sea level and the annual rainfall is about 600 mm. The rainfall data was from Emamzadeh-Davood rainfall 

station and the flow data was collected from Sooleghan hydrometric station that is located downstream of the basin as shown 

in Figure 1. The time of concentration (Tc) of the basin is about 3 hours, so the NWP models can significantly increase the 

lead time of flood warning compared to using observed precipitation. Since the increasing of lead time decreases the accuracy 25 

of NWP forecasts (Sikder and Hossain, 2016), thus the forecasting was conducted one day before the observed event. Long 

lead time for flood forecasting is very important in large watershed flood mitigation as it provides more time for flood warning 

and emergency responses (Li et al, 2017). A flow chart of the proposed flood forecast approach is presented in Figure 2 and 

the precipitation and streamflow data are presented in table 2.  

 30 

 

Table2. Precipitation and streamflow data. 
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event Observed cumulative precipitation (mm) Observed peak flow(m3/s) 
27.03.2007 25.3 24.2 
27.04.2007 33.5 57.1 
07.12.2007 32.3 12.7 
03.11.2008 37.3 20.9 
30.04.2009 29 34.4 
04.02.2010 68.1 11.6 
08.04.2010 48.8 34.1 
13.03.2011 32.6 20.9 
05.04.2011 55.5 24.5 
29.08.2011 56.4 26.4 
28.10.2011 55.9 55.1 
20.11.2011 48 44.7 
14.04.2012 67.7 67.2 
13.11.2012 78.9 25 

 

 

 

 Figure 1. Location of study area, rainfall and flow stations. 

 5 
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Figure 2. Flow chart of the flood forecast approach in this research. 

2.2. The Weather Research and Forecasting model (WRF) 

The Weather Research and Forecasting (WRF) model was used to simulate 14 historic heavy precipitation events that caused 

floods in the study area. In this study, WRF version 3.8 was employed with three domains and one-hour temporal resolution. 5 

The horizontal resolutions of the domains are 45 km, 15 km and 5 km, respectively. Figure 3 shows the WRF domain setup 

using an inter-active nested domain inside the parent domain. The outer (the coarsest) domain covers Iran, the middle 

domain covers the northern part of Iran and the inner domain covers the study area and only the meteorological information 

from this domain was used for forecasting of flood in the study basin. 
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The NCEP Global Forecasting System (GFS) Final analysis (FNL) data was used as the initial conditions of the WRF. The 

model settings were based on the Noah land surface model (Chen and Dudhia, 2001), the Rapid Radiative Transfer Model 

(RRTM) longwave radiation scheme (Mlawer et al., 1997), the Dudhia shortwave radiation model (Dudhia, 1989), the Yonsei 

University (YSU) planetary boundary layer scheme (Hong et al., 2006) and the WRF Single-Moment (WSM) 3-class 

microphysics scheme (Hong et al., 2004). Because of the importance of cumulus parameterization for hydrological purpose, 5 

an ensemble was created by using five cumulus schemes including KF, BMJ, GR3D, MSKF and GDE cumulus scheme. The 

atmospheric ensemble forecasts were fed into the Bayesian Network to estimate flood peak flow. 

 

Figure 3. WRF domain setup using an inter-active nested domain inside the parent domain. 

2.3. Bayesian Network 10 

This study proposes a probabilistic model to generate the flood forecasts and to estimate the flood magnitude based on Bayesian 

networks (BN) for an ensemble forecasting. BNs are a class of probabilistic graphical models composed by a set of random 

variables and directed acyclic graphs (DAG) to show the potential dependence between variables (Scutari, 2017). The node at 

the start of an arrow is casual or preceding event that is called parent node and the node at the head is an outcome event that 

is called child node. Each node is labelled with a conditional probability table (CPT) based on prior information or statistically 15 

observed correlations that shows the strengths of the influences of the parent nodes on the child node. In general, assuming 

random variables with domain size d, the conditional probability table of a child node with n parents needs one to specify dn+1 

probabilities (Li et al., 2011).  

The goal is to calculate the posterior conditional probability distribution of each of the possible unobserved causes given the 

observed evidence, i.e. P [Cause⃓ Evidence]. 20 
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However, in practice we are often able to obtain only the converse conditional probability distribution of observing evidence 

given the cause, P [Evidence⃓ Cause]. The whole concept of Bayesian networks is built on the Bayes theorem, which helps 

us to express the conditional probability distribution of cause given the observed evidence using the converse conditional 

probability of observing evidence given the cause as Eq (1): 

P ሾCause ⃓ Evidenceሿ ൌ  PሾEvidence ⃓ Causeሿ
 ሾେୟ୳ୱୣሿ

ሾ୴୧ୢୣ୬ୡୣሿ
                                                                                                     (1)                 5 

Any node in a Bayesian network is always conditionally independent of its all non-descendants given that node’s parents. The 

conditional probabilities are represented in the form of Conditional Probability Distribution (CPD) if the nodes represent a 

continuous variable or Conditional Probability Table (CPT) if the nodes represent a discrete variable. The joint probability 

(Pb) can be defined as the product of the local conditional distributions as given in Eq (2): 

𝑃ሺ𝑥ଵ. 𝑥ଶ. … . 𝑥ሻ ൌ ෑ 𝑃ሺ𝑥



ୀଵ

⃓𝑥ାଵ. … . 𝑥 ሻ                                                                                                                                            ሺ2ሻ 10 

In a BN, a node xi is independent of all other nodes except its parents (Sharma and Goyal, 2016). A simple example of BN is 

presented in Figure 4. The joint probability for this simple network can be defined as Eq (3): 

𝒑ሺ𝒂. 𝒃. 𝒄ሻ ൌ 𝒑ሺ𝒂ሻ ൈ 𝒑ሺ𝒃⃓𝒂ሻ
ൈ 𝒑ሺ𝒄⃓𝒂. 𝒃ሻ                                                                                                                                                  ሺ𝟑ሻ 

 15 

 Figure 4. An example of a graphical Bayesian network. 

The graph containing nodes and arrows is called BN structure (BS). Learning a Bayesian Network includes two aspects: 

structure learning and parameter learning. 

Structure Learning: The purpose of structure learning is to determine the best structure, which maximizes the conditional 

probability P(BS|D), where BS is the BN structure and D is the given data (Sharma and Goyal, 2016). Structure learning 20 

consists in finding the DAG that encodes the conditional independencies present in the data. This has been achieved in the 

literature with constraint-based, score-based and hybrid algorithms (Scutari, 2017). Some common structure learning 
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techniques are K2 algorithm (Cooper and Herskovits, 1992; Amirkhani and Rahmati, 2015) and MCMC algorithm (Madigan 

et al., 1995). However, BS can be easily defined if the relationship between child nodes and parent nodes is known. In the 

present study, the flood is influenced by atmospheric ensemble forecasts, base flow of the river and antecedent rainfall, so the 

BS is known. 

Parameter Learning: Bayesian network conditional probability tables (CPTs) can be learned when the BN structure is known. 5 

Different parameter learning algorithms have been presented, including expectation maximization, Markov Chain Monte Carlo 

methods such as Gibbs sampling, and gradient descent methods (Reed and Mengshoel, 2014). In this study, Expectation 

Maximization (EM) was used for Bayesian Network parameter learning. The EM algorithm is an iterative method that 

performs a number of iterations, each of which calculates the logarithm of the probability of the data given the current joint 

probability distribution. This quantity is known as the log-likelihood, and the algorithm attempts to maximize 10 

likelihood estimators (Bergmann and Kopp, 2009). In the HUGIN software (further developed from original work of Lauritzen 

and Spiegelhalter, 1988), convergence is achieved when the difference between the log-likelihoods of two consecutive 

iterations is less than or equal to the numerical value of a log-likelihood threshold times the log-likelihood. Alternatively, the 

user can specify an upper limit on the number of iterations to ensure that the procedure terminates. 

Our proposed ensemble forecasting using a BN model has the following four steps: 15 

1. Selecting relevant variables and spatial units, 

2. Creating training data set for the model, 

3. Learning the model using the HUGIN software (version 8.3) and 

4. Evaluating the performance and accuracy of the model.  

In the present study, the flood peak is the response variable that is influenced by some predictor variables including ensemble 20 

rainfall forecasts, base flow of the river and antecedent soil moisture. Base flow of the river is the normal day to day discharge. 

Antecedent recharge flow was used as the base flow of the river. The catchment's antecedent soil moisture represents the 

relative wetness prior to the flood event and can have an important influence on flood response. Because of the lack of soil 

moisture data in the Kan basin, antecedent rainfall was used to represent the soil moisture. Antecedent rainfall is the 

total precipitation amount that occurred in the 24 hours before the start of the event. This study was performed on 14 historical 25 

storms. It should be noted that approx. 70% of the available data (10 storm events) is allocated for training and the remaining 

(4 storm events) data are used for validation. The data sample is relatively small due to the following reasons: 

1. NCEP (GFS - FNL) data are not available for some historical storms.  

2. During the above-mentioned period, a small number of actual flood events occurred in the study area, since the basin 

is located in a semi-arid region.  30 

3. There is a lack of flood data because of the flood damages to hydrometry equipment in some floods. 

Considering the relatively small sample size, we proposed using the BN that is less sensitive to small data set size in 

comparison with ANN. Some advantages of BN are: 
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1. Suitable for small and incomplete data sets: A very useful advantage of BN is that there are no minimum sample data 

sizes needed to perform the analysis, and BN take into account the complete data set (Myllymaki et al., 2002). In 

addition, Kontkanen et al. (1997) demonstrate that BN can show good accuracy of prediction even with rather small 

data set. Furthermore, Zhang and Bivens (2007) showed that BN is less sensitive to small data set size in comparison 

with ANN. 5 

2. Structural learning possible: It is possible to use data and also subject matter knowledge to learn the structure of BN. 

This is an aspect of active research, and though the statistical theory is well understood, the techniques are still under 

development (Jensen, 2001).  

3. Fast responses: Since BN is analytically solved, it can provide fast responses to requests once the model is compiled. 

The compiled form of a BN comprises a conditional probability distribution for each combination of variable values, 10 

and thus can provide any distribution instantly, in contrast to the other simulation models in which the results need to 

be simulated, which can take very long (Uusitalo, 2007). Thus, BN are recommended for operational ensemble 

forecasting in particular in fast reacting basins, where a high number of forecasts must be simulated within a short 

time.  

2.4. Artificial Neural Networks (ANN) 15 

Artificial Neural Networks (ANN) are used as an alternative of statistical models in different aspects including clustering 

analysis, estimation, sample recognition etc. (Mammadov et al, 2005). An ANN model is basically an engineering method of 

biological neurons. It is constructed by input, output and hidden layers. ANN consist of a large number of simple processing 

elements, which are interconnected with each other and also layered (Sharma et al, 2012).  

Typically, there are four distinct steps in developing an ANN model. The first step is data transformation or scaling. The input 20 

and output variables are first normalized linearly in the range of 0 and 1 using the following equation: 

𝑋ത =
ି

ೌೣି ௫
                                                                                                                                                                             (4) 

Where 𝑋ത the normalized value of the X. Xmin and Xmax are the minimum and maximum of data, respectively. The main purpose 

for standardizing the data is that the variables are usually measured in different units. By normalizing the variables in 

dimensionless units, the arbitrary effect of similarity between objects is removed (Aichouri et al., 2015). 25 

The second step is the network architecture definition in which the number of hidden layers, the number of neurons in each 

layer, and the connectivity between the neurons are determined. The number of neurons and hidden layers is problem 

dependent and is estimated by the trial and error technique or expert experience. A synaptic weight is allocated to each link to 

represent the relative connectivity strength of two nodes at both ends in predicting the input-output relationship (Raju et al., 

2011). A typical ANN architecture is presented in Figure 5. In this study, the output from the model is the flood peak and the 30 

input variables are atmospheric ensemble forecasts, base flow of the river and antecedent rainfall. The third step is using a 

learning algorithm to train the network to predict correctly to the set of inputs. There are several learning algorithms. In the 
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present study, the most widely used feed forward error back propagation algorithm was used for training because of the good 

performance of this algorithm in previous studies (Raju et al., 2011; Banihabib et al., 2015; ASCE, 2000; Sarkar and Kumar, 

2012). The success of an ANN application depends on the quality and also the quantity of the available data (Cheng et al., 

2017). The final step is the validation, in which the performance of the trained ANN model is evaluated using statistical criteria 

(Sarkar and Kumar, 2012). 5 

 

Figure 5. Typical ANN architecture. 

 

2.5 Statistical criteria for validation 

 In the present study, Mean Absolute Relative Error (𝑀𝐴𝑅𝐸), Mean Relative Bias Error (𝑀𝑅𝐵𝐸) and regression coefficient 10 

( 𝑟) were used for performance evaluation of the model as given in the following equations:  

𝑀𝐴𝑅𝐸 ൌ
ଵ


∑ |ைିி|

ை
                                                                                                                                                                    (6) 

𝑀𝑅𝐵𝐸 ൌ
ଵ


∑ ைିி

ை
                                                                                                                                                                     (7) 

𝑟 ൌ  
ሺ∑ ைிሻିሺ∑ ைሻሺ∑ ிሻ 

ටሾ ∑ ைమିሺ∑ ைሻమሿሾ ∑ ிమିሺ∑ ிሻమሿ
                                                                                                                                                (8) 

𝑂 is the observed value, 𝐹 is the predicted value and 𝑛 is the total number of data sets. 15 

3. Results and discussion 

3.1. Rainfall verification using the WRF model 

In this section, the comparison between the observed and predicted precipitation obtained from the WRF model is addressed. 

As mentioned earlier, the WRF model was used to simulate 14 historic precipitation events and the results for some events are 

presented here. Figure 6 illustrates the predicted cumulative rainfall and the observed cumulative rainfall for these events. In 20 

general, the results show that the WRF model was able to capture the heavy rainfall events. The uncertainties in the predicted 

rainfall lead to a large spread of the ensemble members and this is why the uncertainty in rainfall forecasting becomes 

important. 
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The ensemble precipitation illustrates that both overestimation and underestimation of precipitation occurs using various 

schemes. Overestimation is very noticeable for the early hours of forecasting while for the last period of the event, 

underestimation occurs in some schemes. 

From the case study, the results of precipitation forecast using different cumulus schemes by the WRF model can be 

significantly different. Therefore, it is necessary to forecast precipitation by implementing various physics schemes, especially 5 

different microphysical schemes. Furthermore, it can be inferred that the difference between observed and predicted rainfall is 

mainly caused by the initial condition in the NWP models, thus the atmospheric ensemble forecasts can be produced also by 

perturbing the initial conditions.  

 

   
27.03.2007  27.04.2007 

   
08.04.2010  29.08.2011 

Figure 6. The ensemble forecasted precipitation and the observed cumulative precipitation. 10 

 

0

20

40

60

80

1 4 7 101316192225283134374043464952

p
re
ci
p
it
at
io
n
 (
m
m
)

Time (hr)

observed KF
BMJ GR3D
MSKF GDE

0

10

20

30

40

50

60

1 4 7 101316192225283134374043464952

Time (hr)

0

10

20

30

40

50

60

70

1 5 9 131721252933374145495357616569

P
re
ci
p
it
at
io
n
 (
m
m
)

Time (hr)

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40

p
re
ci
p
it
at
io
n
 (
m
m
)

Time (hr)



12 
 

3.2. Bayesian Network Verification 

The atmospheric ensemble forecasts were fed into the BN to estimate flood peak flow. Ten various models were developed 

using various combinations of predictors. In all of the combinations, flood-peak discharge is the predicting variable. Table 3 

shows the accuracy of the model for different combinations of predictors to compare the performance of the prediction. The 

performance of the model was evaluated by MARE and R2. It is clear from Table 3 that maximum hourly rainfall outperformed 5 

accumulated rainfall as predictor variable (No. 2 in Table 4). It shows for the relatively short concentration-time basin, Kan 

basin, that cumulative precipitation is not a good indicator to predict the flood peak and maximum hourly rainfall provides 

better results. Thus maximum hourly rainfall was used in combinations of other predictor variables. This can also be seen by 

comparing combination No. 5 and 9 that there is no considerable decrease in accuracy by deleting the Multi-scale Kain-Fritsch 

scheme, consequently it can be concluded that MSKF is the least accurate cumulus scheme. It was also found that by deleting 10 

the Kain-Fritsch scheme in combination (No. 6 in Table 3) the accuracy is significantly decreased. Thus, the Kain-Fritsch is 

the most efficient cumulus parameterization scheme in the study area. Other studies on precipitation prediction have also 

shown similar results. Pennelly et al. (2014) showed that the Kain-Fritsch cumulus parameterization schemes is the most 

accurate in simulating heavy precipitation across three summer events. Liang et al. (2004) showed that the Kain-Fritsch scheme 

works better in the Southeast of United States where convection is largely governed by the near-surface forcing. 15 

According to Table 3, the best results were obtained for combination No. 5. The proposed structure of this combination is 

composed of eight nodes as shown in in Table 4. Atmospheric ensemble forecasts, base flow of the river and antecedent rainfall 

are the parent nodes and flood peak is the child node. It can also be seen that the base flow is influenced by antecedent rainfall. 

Mean absolute relative error was calculated 0.076 for the validation data set in the combination No. 5. The coefficient of 

determination (R2) is another criterion for testing and it is seen from Table 3 that it’s values are close to unity. We should 20 

compare our study to similar studies to determine whether our R-squared is in the right ballpark. Khan and Coulibaly (2006) 

used a Bayesian learning approach to train a multilayer feedforward network for daily river flow and reservoir inflow 

simulation. Their result also showed a high R-squared value. The results showed that the BN is an efficient method for 

modeling and combining the ensemble flood forecasts prediction. The proposed BN approach in this study predicts flood peak 

flow. Since the Kan River in the studied reach is a mountainous river without any flood plain storage, the peak discharge is 25 

almost not reduced by flood routing along the river, and so we can use the peak flood instead of routing the flood hydrograph. 

However, in our study, we consider peak flow as the variable of interest. In other fields of application, flow volume or time to 

peak might be of interest. 

Moreover, Bayesian cluster analysis could also provide probabilistic results for flood early warning, but since the data sample 

is relatively small in this study, cluster analysis cannot be achieved. This method can be also tested in basins with sufficient 30 

historical hydrological data in future works.  

 

Table 3. Performance of Bayesian Network for different combinations of predictor variables. 
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Combination No. predictor variables R2 MARE 

1 Maximum hourly rainfall  0.99 
 

0.16 
 

2 Accumulated rainfall 0.74 
 

1.06 

3 Maximum hourly rainfall, Base flow of the river 0.99 
 

0.18 

4 Maximum hourly rainfall, Antecedent rainfall 0.99 
 

0.12 

5 Maximum hourly rainfall, Base flow of the river, Antecedent rainfall 0.99 
 

0.076 

6 Maximum hourly rainfall (deleting KF) , Base flow of the river, Antecedent 
soil moisture 

0.58 
 

0.46 

7 Maximum hourly rainfall (deleting BMJ) , Base flow of the river, 
Antecedent rainfall 

0.99 
 

0.23 

8 Maximum hourly rainfall (deleting GR3D) , Base flow of the river, 
Antecedent rainfall 

0.99 
 

0.15 

9 Maximum hourly rainfall (deleting MSKF) , Base flow of the river, 
Antecedent rainfall 

0.99 
 

0.087 

10 Maximum hourly rainfall (deleting GDE) , Base flow of the river, 
Antecedent rainfall 

0.99 
 

0.10 

 
 
Table 4. The cause-effect relationships among the variables in the proposed structure of the Bayesian network. 

Parent ID Entity Name Child ID Child Name 

n1 Predicted rainfall using KF cumulus parameterization scheme n8 Flood peak 

n2 Predicted rainfall using BMJ cumulus parameterization scheme n8 Flood peak 

n3 Predicted rainfall using GR3D cumulus parameterization scheme n8 Flood peak 

n4 Predicted rainfall using MSKF cumulus parameterization scheme n8 Flood peak 

n5 Predicted rainfall using GDE cumulus parameterization scheme n8 Flood peak 

n6 Base flow n8 Flood peak 

n7 Antecedent rainfall n6/ n8 Base flow/ Flood peak 

 

The performance of the BN model is compared with the results obtained from an ANN model as a benchmark. The comparison 5 

is conducted using the same data set for training and validation. These results are presented in section 3.3. 
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3.3. Artificial Neural Network Verification 

The first step in developing an ANN model is to determine the input and output variables. The output from the model is the 

flood peak discharge magnitude, and the input variables have been selected the same of the best combination of predictor 

variables in BN that has been used in this study (Table 3, combination No. 5). The feed forward error back propagation 

algorithm has been employed as the training algorithm in this study. The difficult task in working with ANN contains selecting 5 

parameters such as the number of hidden nodes. There is no established algorithm until now to determine how many hidden 

nodes are required to approximate any given function. Here, we use the common trial and error method to choose the number 

of hidden nodes, which are varied from 2 to 6 according to previous studies (Banihabib et al., 2015). Error index is usually 

used to select the best performance of the network model compared to observed data. The accuracy of the model for different 

numbers of nodes in the hidden layer is presented in Table 4. It was found that four hidden nodes give the best results. The 10 

mean absolute relative error (MARE) was calculated as 0.39 for the validation data set while this index was calculated 0.076 

in BN. The comparison shows that BN offers better accuracy. Although our data set was relatively small, the result of BN 

model was accurate enough. Therefore, it seems that BN is less sensitive to small data set size, so it is more suited for rare 

events such as floods, where the available data are limited due to the high return period of such events.  

Table 4. MARE and R2 of Artificial Neural Network in the verification phase. 15 

Number of nodes in hidden layer MARE R2 

2 1.14 0.44 

3   0.74 0.92 

4 0.39 0.77 

5 0.51 0.93 

6 1.23 0.12 
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4. Conclusions  

This study proposed a probabilistic model to address the uncertainties of flood forecasts using the Bayesian networks (BN) 

and to estimate the flood peak in an ensemble flood forecasting. This is the first attempt to use BN in ensemble flood 

forecasting. The Weather Research and Forecasting (WRF) model was used to simulate some historic precipitation rainfall 

events using five various cumulus parameterization schemes. The results showed that there is no considerable decrease in 5 

accuracy by deleting the Multi-scale Kain-Fritsch scheme, thus it can be concluded that is the least accurate cumulus scheme. 

It also was found that Kain-Fritsch is the most efficient cumulus parameterization scheme. Atmospheric ensemble forecasts 

were coupled with the Bayesian Network to estimate the flood magnitude in an ensemble forecasting. Results of the BN are 

compared with the results obtained from an artificial neural network as a widely used model to show the performance of BN. 

The comparison is conducted using the same data set for validation and training. The results showed that the BN is an efficient 10 

method for flood forecasting based on ensemble rainfall forecasts and offers better accuracy than ANN. We showed that BN 

is less sensitive to small data set size in comparison with other models, thus it is more suited for rare events such as floods. 

The results of this study indicate that BN might be a suitable tool for a fast computation of peak flow and flood warnings from 

numerical ensemble weather predictions. Our study is a proof of concept at the current stage that flood warnings can be done 

by evaluating hydrological pre-conditions and meteorological ensembles by a trained BN instead of a hydrological model. 15 

However, further studies are required to confirm the applicability of BN. The present study was conducted with a lead time of 

one day before the observed event in a small basin. Future studies may test BN for other catchments and for larger lead-times.  
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