No.	The comments	Our responses
1	The subject of this paper is interesting and potentially relevant to journal readers. Characterizing the bulk shear strength of jointed rock masses is a difficult problem and one that deserves attention. Doing so and using the results to improve Newmark analyses in such materials would be a significant contribution. The paper, however, falls short of accomplishing its aim for several reasons, as detailed below. It will need major revision before it could be considered for publication.	We appreciate your valuable comments and suggestions. We have incorporated them in the revision as documented below.
Gene	eral comments	
1	Referencing in the paper is inadequate and, in places, comes dangerously close to plagiarism (see below). Whole paragraphs have been lifted almost verbatim from other papers without referencing. Some key references are missing. In some places (described below), referenced statements are made that are the exact opposite of what the cited reference actually says. Not acceptable.	Thanks for this kind remind. Yes, changes were made based on the specific comments in the revision as documented below.
2	The models in the paper are running far too hot: they yield unrealistically high hazard levels. The problem can be traced back to the factor of safety (FS) calculation, which obviously yields values that are far too low. That, in turn, is probably due either to shear strengths being too low or to a mistake in the application of the governing equations. A very large proportion of the map area (perhaps	Thanks for this good suggestion. The study area is a mountainous area, full of excessively steep slopes, and the maximum relative altitude difference is 2300m. Slopes more than 45° account for about 15% of the study area. Approximately 2% of the slopes are steeper than 60°. Slopes along the riverbanks are approximately vertical. For slopes more than 60°, the normal force on slopes from potential sliding blocks is almost zero, so these slopes

	one-third) is statically unstable, which is simply not realistic and shows that either the model or the input data are flawed. And everything thereafter is tainted.	are statically unstable no matter how large the shear strength of rocks is. The Newmark's sliding block model may be inappropriate for this case. Actually, falls and slides had already occurred on part of some slopes before the earthquake. We modified some rock parameters and corrected the steepest slopes steeper than 60°, as detailed below. We have checked the application of the equations second time, and it is no problem of the computing procedure.
3	We don't really know if what the paper does is an improvement over the standard way of applying Newmark analysis. The paper needs to run a conventional Newmark analysis and then compare the results to the "improved" method to see if it is actually an improvement. Without a comparison, it is not possible to evaluate whether this yields better results.	This is a good comment. Yes, we ran a conventional Newmark analysis and added the results to the fourth part in the revision, and then the area under the curve method was used to draw comparisons between both analyses, see Line 347-360.
4	Wherever Jibson et al. (1998) is referenced, it should be changed to Jibson et al. (1998, 2000). The 2000 paper is an updated version of the 1998 paper and contains much of the same information.	Thanks for this kind remind. Yes, changes were made in the revision as suggested, see Line 41, 46, 53, 115, 118, 131, 156, 200, 201, 216, 252, 300, 316, 341, 530, 561, 569 in the revision.
5	The English expression needs a great deal of work.	Thanks for this kind remind. Yes, we have double checked the manuscript and corrected the language errors with the help of a native speaker.
Spec	ific comments	
1	Lines 44-50 [.] This material	Thanks for this kind remind
1	including the references, is quite clearly taken from Jibson (2011) and should be so referenced.	Yes, changes were made in the revision as suggested, see Line 49-50 in the revision.
2	Line 56: Just saying "inexact reasoning" leaves the reader with a certain lack of confidence. Perhaps a brief explanation of what such a	Thanks for this good suggestion. Yes, we explain the reason of using inexact reasoning and add a brief definition of "inexact reasoning" based

	method entails would be	on Shortliffe and Buchanan (1975) in
	appropriate. As stated, it is unclear	the revision. see Line 68-73.
	if "inexact reasoning" is the name	
	of the type of method or a	
	description of one It makes a	
	difference in how this is perceived	
	difference in now uns is perceived.	This is a good commont
2	Line 69: Replace "erect" with	This is a good comment.
3	"vertical."	Yes, change was made in the revision as
		suggested, see Line 86 in the revision.
		Thanks for this good suggestion.
		The landslide inventory is carried out by
	Lines 75-76: Is this a published	visual interpretation method through
	inventory? If so, reference it. If not,	comparison between pre-earthquake
1	the method of inventorying and	satellite images from Google Earth and
4	other parameters must be described	0.2m-high-resolution post-earthquake
	here. Is the inventory available to	aerial images. The database is not
	others?	available to others. Changes were made
		in the revision as suggested, see Line
		92-96 in the revision.
	Lines 91-98: This text is pretty	Thanks for this kind remind.
_	much verbatim from Jibson et al.	Yes, changes were made in the revision
5	(1998 2000) Direct quotes really	as suggested see Line 115-118 in the
	need to be referenced	revision
	Line 102: What is "the shallow of	This is a good comment.
6	slopes"? Not at all clear what that	Yes changes were made in the revision
Ũ	phrase means	see Line 123
		Thanks for this kind remind
7	Line 103: "Jibson" is misspelled	Ves change was made in the revision as
/	Line 105. 51050h is misspened.	suggested see Line 123 in the revision
	Line 105. The tarm "thrown	suggested, see Line 125 in the revision.
	landslides" is not really an accented	
	term in the international landalide	Thenks for this good suggestion
0	community The mean of the	Thanks for this good suggestion.
8	community. The proposed	Y es, changes were made in the revision, 1.1×126
	mechanism is not proven or	see Line 126-127.
	provable and should be considered	
	hypothetical.	
		This is a good comment.
9	Line 112: Should this be "vertical"	Yes, the expression is a little
	rather than "horizontal"? It is the	misleading, and we have revised the
	vertical, not the horizontal, shaking	expression in the revision, see Line 115.
-	that is ignored in Newmark's	We want to explain here that FS has no
	analysis	relationship with input accelerations, no
	unury515.	matter horizontal, vertical or inclined
		accelerations.

10	Line 121: What is meant by "basic friction angle"? Please briefly define. Does it refer to intact rock? Joints? Or what? Lines 130-133: Again, this is nearly	This is a good comment. Basic friction angle is the angle of frictional sliding resistance between rock joints, which can be obtained from residual shear tests on natural joints (Barton, 1973). We have added a brief definition in the revision, see Line 143-144.
11	a direct quote from Jibson (2011) and Jibson et al. (1998, 2000). It is important to avoid the appearance of plagiarism. All it takes is simple referencing.	Thank you very much for this kind remind. Yes, change was made in the revision as suggested, see Line 156-157 in the revision.
12	Line 161: If there are slopes where FS=0.09, they are moving. Maybe a slope with FS=0.9 could be considered on the boundary, but at FS=0.09, failure is a virtual certainty if the slope has been correctly characterized. If these slopes are not, in fact, moving before the earthquake, it means that the approach for assigning FS is flawed, at least in part. It might mean that the strength characterization of the material in that area is significantly wrong. Or some other parameter is off. Or the equations are being applied incorrectly. But a FS that low is simply wrong: the slope would be moving. Something is very wrong in how this was done.	Thanks for this good suggestion. There exist numerous high mountains and deep valleys with steep slopes in the study area. Actually, falls and slides had already occurred on local area of some slopes before the earthquake. For some steepest slopes (usually more than 60°), the shear resistance between the block and the sliding surface does not work anymore in Newmark's sliding block model. No block can stay on that steep sliding surface, and the calculated FS will be nearly zero in this case. Actually, we think that the sliding block model is inappropriate in this case, the unstable blocks are already failed, and the further sliding will occur along a failure plane inside the slope, the angle (α) of the inclination of the failure plane will be complementary of an angle of $45^\circ - \frac{\phi_b}{2}$. According to the rock parameters, $45^\circ - \frac{\phi_b}{2}$ is around 30° in the study area. Therefore, for simplicity, we assigned an angle (α) of 60° to those slopes more than 60° to avoid a too low FS from Newmark analysis. After the correction, static factors of safety range from 0.40 to 181.29 We also run a

		conventional Newmark analysis, and
		static factors of safety range from 0.54
		to 283.35. The minimum FS values
		have little differences. Changes were
		made in the revision, see Line 168-176.
		For another reason, it is difficult for a
		statically stable slope to fail under an
		earthquake. Earthquakes usually make
		statically unstable slopes or slopes on
		the boundary fail. For this reason, it is
		important to truthfully characterize the
		shear strengths of slopes. Shear
		strengths assigned to the geologic units
		were from results of hundreds of shear
		tests from the references. We assigned
		the original shear strengths to the
		geologic units other than increasing
		strengths to make statically unstable
		cells stable as Jibson et al. (1998, 200)
		did, which will change the statically
		stable level of the whole area, especially
		the slopes on the boundary at first. In
		addition, we considered size effect of
		the potential slide surface, this would
		yield lower F_S , which, in turn, yield
		higher displacement. However, the
		actual inventory of landslides was used
		to calibrate the predicted displacements,
		and the confidence levels indicated by
		certainty factors fit well of the spatial
		distribution of coseismic landslides as
		shown in the hazard map (Fig. 16), see
		Line 336-346.
	Lines 161-168: This discussion is	Thanks for this kind remind.
12	clearly related to the approach of	Yes, changes were made in the revision
13	Jibson et al. (1998, 2000), which	as suggested, see Line 200-201 in the
	should be referenced here.	revision.
14	Lines 172-173: Eliminating flatter	Thanks for this good suggestion.
	slopes is perfectly fine, as is setting	Yes, some rock parameters were
	a minimum FS=1.01. But the fact	corrected in the revision, see Line
	remains that the raw FS	640-641. We have double check the
	calculations yielded absurdly low	equations and ran the analysis again.
	FS values, which should cause	The main cause for the low FS values is
	revaluation of the input parameters	those steep slopes, and we assigned an

	and aquations used. Co healt to see	angle (a) = f(0) + a + b = a - a + a = a
	if it was done right.	than 60° to avoid a too low FS in the revision, see Line 168-176.
15	Lines 183-184: This is stated exactly backward. A higher critical acceleration would relate to lower susceptibility; a lower critical acceleration corresponds to higher susceptibility. It takes less acceleration to trigger movement; therefore, it is more susceptible to failure.	Thanks for this kind remind. Yes, changes were made in the revision, see Line 216-218.
16	Lines 201-202: Add Bray and Travasarou (2007) to this list. Also, Jibson (2007) superseded both Jibson (1993) and Jibson et al. (1998) with respect to empirical regressions. Cite the most recent work.	This is a good comment. Yes, changes were made in the revision as suggested, see Line 237-238 in the revision.
17	Line 204: Replace "scalar" with "vector."	This is a good comment. Yes, change was made in the revision as suggested, see Line 240 in the revision.
18	Lines 218-219: This statement is completely incorrect and the exact opposite of what Jibson et al. (1998, 2000) said. They clearly demonstrated (see Jibson et al., 2000, fig. 14) that larger predicted displacements do correspond to greater incidence of slope failures.	Thanks for this kind remind. Yes, changes were made in the revision, see Line 252-254.
19	Line 227: The words "belief" and "disbelief" suggest that this is a matter of faith rather than science. Perhaps "total confidence" and "total lack of confidence" would work better.	Thanks for this good suggestion. Yes, changes were made in the revision, see Line 261, 262, 263, 319. The words "belief" and "disbelief" are original description of the certainty factor model, but we think the referee's expressions are better in this case.
20	Lines 261-269: This is a mischaracterization of what Jibson et al. (1998, 2000) found. They showed that most shallow, brittle failures occur at model displacements of less than 15 cm. A displacement of 60 cm is very large	This is a good comment. According to Jibson et al. (1998, 2000), the predicted displacements do not correspond directly to real slope movements in the field. We think that different cases have different displacement ranges, and it is

 and in the original of anger, deeper slides. This again suggests that the model is running too hot and is over-predicting displacement and thus hazard. bight of the sliding types based on the distribution of displacements within a certain case. 60cm may be a large displacement in some case, but an average level in this case. For the new method shown in the manuscript, the displacements range from 0 to 123cm, while for a conventional Newmark analysis, the displacements range from 0 to 121cm, almost in same range. Line 276: Define "proportion of landslide area." Not clear what this means. Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low. Lines 297-300: The model results strongly suggest that the shear strongly suggest that the		and would be more likely to	meaningless to compare the
 Chrospond to highly, techer sides. This again suggests that the model is running too hot and is over-predicting displacement and thus hazard. different ground motion intensity and empirical regression are used. However, we can analyze the sliding types based on the distribution of displacements within a certain case. 60cm may be a large displacement in some case, but an average level in this case. For the new method shown in the manuscript, the displacements range from 0 to 123cm, while for a conventional Newmark analysis, the displacements range from 0 to 121cm, almost in same range. Line 276: Define "proportion of landslide area." Not clear what this means. Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low. Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. and the complementary of 45⁵ dbs to those slopes more than 60° to avoid a too low FS from Newmark analysis a the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, distingt and the revision. 		correspond to larger deeper slides	displacements with other cases because
 21 Ins again suggests that the model is over-predicting displacement and thus hazard. and thus hazard. black to the hamazon hamazon hamazon hama and hamazon hama		This again suggests that the model	different ground motion intensity and
13Full hing too not and is over-predicting displacement and thus hazard.Implified regression are used. However, we can analyze the sliding types based on the distribution of displacements within a certain case. 60cm may be a large displacement in some case, but an average level in this case. For the new method shown in the manuscript, the displacements range from 0 to 123cm, while for a conventional Newmark analysis, the displacements range from 0 to 121cm, almost in same range.21Line 276: Define "proportion of landslide area." Not clear what this means.Thanks for this good suggestion. Yes, changes were made in the revision, see Line 313. This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of laidel slopes (the proportion of landslide area approaching 0.06, not even definitely increasing, but it remains quite low.22Lines 297-300: The model results strongly suggest that the shear strongly suggest that the shear strongly suggest that the shear of FS, which, in turn, yielded displacements that are far too high.This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (a) that the complementary of $45^{\circ} \frac{\Phi_{\rm D}}{2}$ to those slopes more than 60° to avoid a to low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, id to the turb of the statical's statically stable slope to fail under an earthquake, to th		is maning too hot and is	amplified accession are used. However
Over-predicting displacement and thus hazard.we can analyze the stiding types based on the distribution of displacements within a certain case. 60cm may be a large displacement in some case, but an average level in this case. For the new method shown in the manuscript, the displacements range from 0 to 123cm, while for a conventional Newmark analysis, the displacements range from 0 to 121cm, almost in same range.21Line 276: Define "proportion of landslide area." Not clear what this means.Thanks for this good suggestion. Yes, changes were made in the revision, see Line 313.22Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of falled slopes (the proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strongly suggest that the shear 			empirical regression are used. However,
thus hazard. thus has hazard. thus hazard. thus hazard. thus has hazard. thus has hazard. thus has hazard. thus has has hazard. thus has has has has has has has has has ha		over-predicting displacement and	we can analyze the sliding types based
within a certain case. 60cm may be a large displacement in some case, but an average level in this case. For the new method shown in the manuscript, the displacements range from 0 to 123cm, while for a conventional Newmark analysis, the displacements range from 0 to 121cm, almost in same range. Thanks for this good suggestion. Yes, changes were made in the revision, see Line 313. This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion failed slopes (the proportion failed slopes were made in the revision, see Line 318-320. This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} \frac{\Phi_{D}}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, the stable slope to fail under an earthquake,		thus hazard.	on the distribution of displacements
21large displacement in some case, but an average level in this case. For the new method shown in the manuscript, the displacements range from 0 to 123 cm, while for a conventional Newmark analysis, the displacements range from 0 to 121 cm, almost in same range.21Line 276: Define "proportion of landslide area." Not clear what this means.Thanks for this good suggestion. Yes, changes were made in the revision, see Line 313.21Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of failed slopes (the proportion of failed slopes (the proportion of almostlide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} \frac{\Phi_{0}}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, at the statically stable sl			within a certain case. 60cm may be a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			large displacement in some case, but an
21method shown in the manuscript, the displacements range from 0 to 123cm, while for a conventional Newmark analysis, the displacements range from 0 to 121cm, almost in same range.21Line 276: Define "proportion of landslide area." Not clear what this means.Thanks for this good suggestion. Yes, changes were made in the revision, see Line 313.22Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ}\frac{\Phi_B}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, at the to fail under an earthquake,			average level in this case. For the new
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			method shown in the manuscript, the
21while for a conventional Newmark analysis, the displacements range from 0 to 121cm, almost in same range.21Line 276: Define "proportion of landslide area." Not clear what this means.Thanks for this good suggestion. Yes, changes were made in the revision, see Line 313.22Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is difficult for a statically stable slope to fail under an eartquake, to landslide are areatquake, made in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an eartquake, to here the line terminal procession.			displacements range from 0 to 123cm,
21analysis, the displacements range from 0 to 121 cm, almost in same range.21Line 276: Define "proportion of landslide area." Not clear what this means.Thanks for this good suggestion. Yes, changes were made in the revision, see Line 313.22Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is difficult for a statically stable slope to fail under an eartquake, ute to the state of the slope to fail under an eartquake, ute to the state of the slope to fail under an eartquake,			while for a conventional Newmark
DefinitionInterpretent of the importance range. 0 to 121 cm, almost in same range.21Line 276: Define "proportion of landslide area." Not clear what this means.Thanks for this good suggestion. Yes, changes were made in the revision, see Line 313.22Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is difficult for a statically stable slope to fail under an earthquake, ut an all with the increase the under an earthquake, the value of the work of the set of the set of the under an earthquake, the set of the under an earthquake,			analysis, the displacements range from
21Line 276: Define "proportion of landslide area." Not clear what this means.Thanks for this good suggestion. Yes, changes were made in the revision, see Line 313.21Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.This is a good comment. 			0 to 121cm almost in same range
21Initial 210. Define proportion of landslide area." Not clear what this means.Yes, changes were made in the revision, see Line 313.21landslide area." Not clear what this means.Yes, changes were made in the revision, see Line 313.22Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.Therefore, we assigned an angle (α) that the complementary of $45^\circ \frac{\phi_h}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, Net when the method with the revision.		Line 276: Define "proportion of	Thanks for this good suggestion
21Individue area. For clear what this means.Fes, enarges were made in the revision, see Line 313.22individue area. For clear what this means.Fes, enarges were made in the revision, see Line 313.21Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} \frac{\Phi_h}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,	21	landslide area " Not clear what this	Ves changes were made in the revision
122See Line 313.22Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is quite low.This is a good comment. Yes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is algood comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} \frac{\Phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,	<u> </u>	landshuc alca. Not clear what this	1 cs, changes were made in the revision,
22 Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low. 23 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded 23 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. 24 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.		means.	See Lille 515.
22Fes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.Fes, the description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.The description here may mislead readers. We want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.(a) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, of the turn the terminal propertion of a landslide area with the increase of the propertion of landslide area) stable slope to fail under an earthquake,			This is a good comment.
22Line 280: Actually, figure 16 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.readers. we want to explain the changing tendency of the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is a good comment angle (α) that the complementary of $45^\circ - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, we have the line to the		1 200 A-t11 from 16	Yes, the description here may misicau
22 shows the proportion of landslide area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low. 23 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. 23 Shows the proportion of landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320. This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,		Line 280: Actually, figure 10	readers. We want to explain the
22area approaching 0.06, not even close to 1.0. The proportion is definitely increasing, but it remains quite low.landslide area with the increase of CF. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, attend to the label.		shows the proportion of landslide	changing tendency of the proportion of
close to 1.0. The proportion is definitely increasing, but it remains quite low. Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. According to Jibson et al. (1998, 2000), if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320. This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,	22	area approaching 0.06, not even	landslide area with the increase of CF.
23definitely increasing, but it remains quite low.if a proportion of failed slopes (the proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.23Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake, stable slope to fail under an earthquake,		close to 1.0. The proportion is	According to Jibson et al. (1998, 2000),
quite low.proportion of landslide area) gets close to 1.0, it is incredible. Changes were made in the revision, see Line 318-320.add in the revision, see Line 318-320.This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,		definitely increasing, but it remains	if a proportion of failed slopes (the
23 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. Lines the target of target of the target of target of the target of the target of tar		quite low.	proportion of landslide area) gets close
23 made in the revision, see Line 318-320. This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,			to 1.0, it is incredible. Changes were
23 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. 23 This is a good comment. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,			made in the revision, see Line 318-320.
23 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. However, we have different opinions. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,			This is a good comment.
Example 23 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. Firstly, for the widely distributed steep slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,			However, we have different opinions.
23 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. 3 slopes, the shear strengths do not work anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,			Firstly, for the widely distributed steep
23 Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. anymore in Newmark's sliding block model. Therefore, we assigned an angle (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,			slopes, the shear strengths do not work
Lines 297-300: The model results strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. $\begin{array}{c} \text{model. Therefore, we assigned an angle} \\ (\alpha) \text{ that the complementary of } 45^\circ - \frac{\phi_b}{2} \text{ to} \\ \text{those slopes more than } 60^\circ \text{ to avoid a} \\ \text{too low FS from Newmark analysis in} \\ \text{the revision, see Line 168-176.} \\ \text{Secondly, it is difficult for a statically} \\ \text{stable slope to fail under an earthquake,} \\ \text{the revision} \\ the revision$			anymore in Newmark's sliding block
23 Strongly suggest that the shear strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. (α) that the complementary of $45^{\circ} - \frac{\phi_b}{2}$ to those slopes more than 60° to avoid a too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,		Lines 207 200. The model regults	model. Therefore, we assigned an angle
23 strengths used were too low, which yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high.		Lines 29/-300: The model results strongly suggest that the shear	(α) that the complementary of 45°- $\frac{\phi_b}{\alpha}$ to
yielded unrealistically low values of FS, which, in turn, yielded displacements that are far too high. too low FS from Newmark analysis in the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,	23	strengths used were too low, which	those slopes more than 60° to avoid a
ot FS, which, in turn, yielded displacements that are far too high. the revision, see Line 168-176. Secondly, it is difficult for a statically stable slope to fail under an earthquake,	25	yielded unrealistically low values	too low FS from Newmark analysis in
displacements that are far too high. Secondly, it is difficult for a statically stable slope to fail under an earthquake,		of FS, which, in turn, yielded	the revision, see Line 168-176
stable slope to fail under an earthquake,		displacements that are far too high.	Secondly, it is difficult for a statically
			stable slope to fail under an earthquake
earthquakes usually make statically			earthquakes usually make statically
unstable slopes or slopes on the			unstable slopes or slopes on the
boundary fail For this reason it is			boundary fail For this reason it is
important to truthfully characterize the			important to truthfully characterize the

		shear strengths of slopes. We may yield
		a higher level of FS if we increase
		strengths as Jibson et al. (1998, 200)
		did. But this will change the statically
		stable level of the whole area, especially
		the slopes on the boundary at first. In
		addition, according to Jibson (2011), FS
		from a limit-equilibrium analysis shows
		a slope to be either stable or unstable,
		but the likelihood of failure cannot be
		judged. Therefore, it is not necessary to
		keep all cells stable through changing
		strengths. As we considered size effect
		of the potential slide surface, this would
		yield lower F_S , which, in turn, yield
		higher displacement. However, the
		actual inventory of landslides was used
		to calibrate the predicted displacements,
		and the confidence levels indicated by
		certainty factors fit well of the spatial
		distribution of coseismic landslides as
		shown in the hazard map (Fig. 16), see
		Line 336-346. Finally, even for a same
		study area, different displacements will
		be yielded because different ground
		motion intensity and empirical
		regression are used. The predicted
		displacements do not correspond
		directly to real slope movements in the
		field (Jibson et al., 1998, 2000).
		Therefore, we chose the certainty factor
		model (CFM) to explore the
		relationship between the landslide
		occurrences and the predicted
		displacements, and the coseismic
		landslide hazard is expressed by
		certainty factors not the displacements.
	Line 470, figure 1: What are the	Thanks for this good suggestion
24	colors on the map? Needs a color	Ves changes were made in the revision
	bar with values of whatever is	res, changes were made in the revision,
	being shown.	
	Line 478 figure 3. Change	Thanks for this kind remind.
25	"shadow" to "shallow"	Yes, change was made in the revision as
	Shauow to Shahow.	suggested, see Line 565 in the revision.

26	Lines 480-483: The drawing might have originally been adapted from Wilson and Keefer (1983), but the adapting was done by Jibson et al. (1998, 2000), where this came from, as was the language of the caption. Referencing!	Thanks for this kind remind. Yes, changes were made in the revision as suggested, see Line 530, 568-569 in the revision.
27	Lines 508-510, figure 10: This figure clearly shows that a very large proportion of the map has FS<1 and was therefore set to FS=1.01. When Jibson et al. (1998, 2000) did this, it was for a few dozen cells out of a million. In the case shown in figure 10, it appears that perhaps one-third the model had $FS<1$. That means the FS model is seriously flawed. Either the strength values are way off, or the equations are wrong. But a model that is this statically unstable is simply not correct and needs adjustment. This undermines the basis for all following analyses and conclusions.	Thanks for this good suggestion. Yes, we modified some strength values and corrected the steepest slopes steeper than 60° in the revision, see Line 640-641, 168-176. After the correction, static factors of safety range from 0.40 to 181.29, see Line 195 in the revision.
28	Lines 511-513, figure 11: Same problem. This map shows absurdly low critical accelerations. Not only would landslides be happening before the earthquake, any significant seismic shaking would have triggered tens or hundreds of thousands of slides if the critical accelerations were actually this low. And that didn't happen. This model is running way too hot.	Thanks for this good suggestion. Yes, change was made in the revision, see Line 560.
29	Lines 518-520, figure 13: Same problem again. This map predicts large areas with very large displacements. If this were accurate, the landsliding in the Ludian earthquake would have been widespread and catastrophic. Jibson et al. (1998, 2000) found	Thanks for this good suggestion. Yes, change was made in the revision, see Line 610. As we discussed above, different cases have different displacement ranges, and it is meaningless to compare the displacements with other cases because different ground motion intensity and

	that modeled displacements of >10 cm related to high landslide probabilities. That would include almost all of this map. Even accounting for differences in calibration between their model and this one, figure 13 is simply not realistic. The model needs to be dialed back.	empirical regression are used. For the new method shown in the manuscript, the displacements range from 0 to 123cm, we should have a different standard of displacement for judging the high landslide probability. On the other hand, the ground motion intensity plays a crucial role in the magnitude of displacements. If we apply a maximum PGA of 0.25g, the maximum displacement will drop to about 46cm, as shown in another case study we have.
30	Lines 521-524, figure 14: It is very difficult to see the landslides in this figure for visual verification. Can they be rendered in black to be more visible? It needs to be made clear that the numbers being shown are not estimates of the probability of landsliding (you can't have a negative probability), but rather confidence levels. In fact, the term "probability" should be removed from the caption and the text. This is not probability, it is, in the words of the paper, a confidence level based on "inexact reasoning."	Thanks for this good suggestion. Yes, changes were made in the revision, see Line 612-614.
31 Final	Lines 530-532, figure 16: The vertical axis is cut off at a very low proportion of 0.06. Why? Can the results be portrayed up to a higher proportion of landslide area? 0.2? 0.5? 1.0? The text refers to 1.0, but the graph goes nowhere near that value.	This is a good comment. Yes, the proportion has been up to 0.14 after the correction. The text is to explain the changing tendency of the proportion of landslide area with the increase of CF in the curve. Changes were made in the revision, see Line 318-320, 620. devoted by the reviewer to the review
process. Your constructive comments are invaluable to the improvement of our		
manuscript.		