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Abstract. The “Masiere di Vedana” rock avalanche, located in the Belluno Dolomites (NE Italy) at the foot of the Mt. Peron, is

re-interpreted as Historic on the base of archeological information and cosmogenic 36Cl exposure dates. The deposit is 9 km2

wide, has a volume of ~170 Mm3 correspondings to a pre-detachment rock mass of ~130 Mm3, and a maximum runout distance

of 6 km and an H/L ratio of ~0.2. Differential velocities of the rock avalanche moving radially over different topography and

path-material lead to the formation of specific landforms (tomas and compressional ridges). In the Mt. Peron crown the bedding5

is subvertical and includes carbonate lithologies from lower Jurassic (Calcari Grigi Group) to Cretaceous (Maiolica) in age. The

proximal deposit is made of Calcari Grigi Group limestone, the distal deposit comprises upper Jurassic limestones (Fonzaso

Formation, Rosso Ammonitico, and Maiolica), while the middle Jurassic Vajont Limestone dominates the central sector of the

deposit. In the release area the bedding, the SSE-vergent frontal thrust planes, the NW-vergent backthrust planes, the NW-SE

fracture planes, and the N-S Jurassic fault planes controlled the failure and enhanced the rock mass fragmentation. Cosmogenic10
36Cl exposure ages, mean 1.90 ± 0.45 ka, indicate failure occurred between 340 BC and 560 AD. Although abundant Roman

remains were found in sites surrounding the rock avalanche deposit, none was found within the deposit, and this is consistent

with a Late Roman or early Middle Age failure. Seismic and climatic drivers are discussed. Over the last few hundred years,

earthquakes up to Mw 6.3 including that at 365 AD, affected the Belluno area. Early in the first millennium, periods of climate

worsening with increasing rainfall are known in the NE Alps. The combination of climate and earthquakes induced progressive15

long-term damage to the rock. The present Mt. Peron crown shows hundreds of meters-high rock prisms bound by backwall

trenches, suggesting a potential landslide hazard for the whole mountain belt north of Belluno affected by the same structural

characteristics.

1 Introduction

Landslides have an enormous impact on landscapes and can be a serious threat to human lives and buildings. Assessment of20

the potential for future events is distinctly dependent on knowledge of the conditions under which past failures occurred in the
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immediate vicinity (Samia et al., 2017). This entails detailed analysis and interpretation of driving factors as well as possible

triggers of past events (Eisbacher and Clague, 1984; Nicoletti and Sorriso-Valvo, 1991; Hungr, 2006; Strom, 2006; Hermanns

and Longva, 2012). Bedrock bedding, faults, fractures and other discontinuities predispose a rock to fail (Stead and Wolter,

2015). Damage accumulation in rock (fatigue) contributes to the location of failure (Friedmann et al., 2003; Brideau et al.,25

2009; Parker et al., 2013; Preisig et al., 2015), while seismic shakings (Keefer, 1993; Friedmann et al., 2003; Dunning et al.,

2007; Cui et al., 2011) and periods of extreme rainfall (Guzzetti et al., 2008; Tsai and Wang, 2011; Loew et al., 2017; Preisig

et al., 2015) can trigger landslides.

In this perspective, the Italian landslide inventory project (IFFI; Trigila et al., 2007; http://www.progettoiffi.isprambiente.it/

cartografia-on-line/) is the ideal starting point for hazard maps. These are tools for landscape management and civil protection30

plans, they thus require continuous updating and accurate input data. In the study area (Fig. 1), the southern side of Mt. Peron

(Belluno Dolomites, NE Italy) is classified in the most recent landslide hazard map (http://www.geoviewer.isprambiente.it) as

“Attention Area” (i.e., a failure is possible, but an evaluation is needed). In 2011 a rockfall (volume ~1000 m3, blocks up to 2.5

m3) detached from the upper part of the Mt. Peron which led to commissioning the evaluation of the hazard along its southern

cliff (Di Giusto, 2012). Numerous partially detached rock prisms were recognized, up to 18,000 m3 and with trenches up to 5035

cm wide. According to the author, nine out of 16 pillars are at risk for failure in case of an earthquake.

The IFFI catalog, the landslide hazard map and the evaluation by Di Giusto focused on the Mt. Peron southern wall and the

scree slope, neglecting the deposit of Masiere di Vedana (Abele, 1974; Eisbacher and Clague, 1984; Pellegrini et al., 2006).

This is also known as “Rovine di Vedana” (Mazzuoli, 1875; Squinabol, 1902; Montandon, 1933) or “Marocche di Vedana”

(Dal Piaz, 1912; Venzo, 1939). The deposit covers an area of 8-9 km2, has a maximum thickness of 40 m and an estimated40

volume of 100-120 Mm3 (Abele, 1974; Genevois et al., 2006; Pellegrini et al., 2006). The Masiere di Vedana is one of the

largest catastrophic events in the Alps (Heim, 1932; Abele, 1974; Eisbacher and Clague, 1984), comparable with large events

in the Himalaya (e.g., Hewitt, 2006; Hewitt et al., 2008; Mitchell et al., 2007), Rocky Mountains (e.g., Blais-Stevens et al.,

2011; Charrière et al., 2016) and Andes (e.g., Hermanns et al., 2004; Welkner et al., 2010).

As there is no consensus on the age and dynamics of the Masiere di Vedana, a re-evaluation is needed in the light of hazard45

assessment. The Masiere di Vedana deposit was interpreted as: a glacial deposit (Hoernes, 1892), a landslide transported

by a glacier during the Lateglacial (Mazzuoli, 1875; Squinabol, 1902; Dal Piaz, 1912; Venzo, 1939) and as the result of a

catastrophic flood due to collapse of a natural dam (Taramelli, 1883). Some other authors proposed this deposit to be due

to: (1) the combined effect of a landslide over a glacier, followed by a second landslide that evolved into a rock avalanche

(Pellegrini, 2000; Pellegrini et al., 2006), and (2) a small rock slide followed by a larger rock avalanche (Genevois et al., 2006).50

The age attribution for the deposit ranges from the Lateglacial (Pellegrini et al., 2006) to historical times (Piloni, 1607; Miari,

1830).

The aim of this study is to provide chronology and to evaluate driving factors, potential triggers, and process dynamics of

the Masiere di Vedana rock avalanche, in the light of a better assessment of the hazard, potential extent and runout in similar

settings.55
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2 Setting

The Masiere di Vedana lies at the mouth of the Cordevole Valley in a broad plain at the confluence of the Cordevole and

Piave Rivers (Fig. 1). Mt. Peron (1486 m a.s.l.) is the south-western peak of the Schiara Group (highest peak: Mt. Schiara:

2565 m a.s.l.). The Mt. Peron is composed, from the west to the east, by Calcari Grigi Group (Lower-Middle Jurassic), Vajont

Limestone (Middle Jurassic), Fonzaso Formation, Rosso Ammonitico (Upper Jurassic) and Maiolica (Cretaceous) limestones.60

Their distinctive characteristics, useful for tracking the source of the Masiere di Vedana deposit, are: thick-bedded, fossiliferous

blue-gray limestones (Calcari Grigi Group); thick-bedded, locally oolitic limestones and calcarenites (Vajont Limestone);

thick-bedded siliceous limestones with clay interbeds (Fonzaso Fm.); pink to red nodular limestones rich in ammonites (Rosso

Ammonitico); thick-bedded, white limestones with chert nodules (usually gray to black) containing nannofossils, calpionellids

and radiolaria (Maiolica). Scaglia Rossa and the Cenozoic formations (Belluno flysch, Belluno glauconitic sandstone, Bastia65

siltstone, Libano sandstone and Bolago marl) crop out at the base of the Piz Vedana (Fig. 3), form the Castel Cuch ridge and

underlie the fluvial plain between the Mis and Cordevole rivers. Outcrops of cemented Pleistocene fluvial gravels (“Roe” or

“Sass Muss conglomerate”; Costa et al., 1996) are located just to the west of the present course of the Cordevole River (near

the town of Vignole in Fig. 3).

The investigated area is bound by Alpine tectonic lineaments (Fig. 1): the Valsugana thrust fault to the north, the S-verging70

Alpine folds and thrusts to the south (Doglioni, 1990). The Mt. Peron belongs to the hanging wall of the WSW-ENE oriented

Belluno thrust, one of the main tectonic lineaments of the eastern Southern Alps (Doglioni, 1990; Galadini et al., 2005), that

crops out at the northern limb of the Belluno syncline. The sedimentary strata of the forelimb are sub-vertical to slightly

overturned (Doglioni, 1990; Costa et al., 1996) and they converge into the Belluno thrust. The Val Carpenada - Val di Vido -

Val Madonuta thrust is the backthrust of the Belluno thrust (Costa et al., 1996). To the east, reactivated Jurassic faults (Masetti75

and Bianchin, 1987) displaced the Val Carpenada - Val di Vido - Val Madonuta thrust (Fig. 1) and induced a wealth of fractures

in the Mt. Peron rock wall (Fig. 2). The Mt. Peron is at the nucleus of an ENE-WSW oriented anticline with a very steep

forelimb, followed southwards by the Belluno syncline (Fig. 2a) that hosts Cenozoic sedimentary units (Costa et al., 1996).

3 Methods

3.1 Field survey, structural analysis and remote sensing80

Detailed geomorphological maps (Caneve, 1985; De Zorzi, 2013), aerial and satellite images (Google Earth and Bing databases)

and DTM analysis (cell size: 5 m, vertical accuracy: 30 cm; http://idt.regione.veneto.it/app/metacatalog/) were used to obtain

topographic profiles and to estimate the area of the Masiere di Vedana deposit. The areal distribution of lithologies in the de-

posit was gauged by observation of boulders in the field and verified by thin section analysis (Supplementary Material SM1).

Six boreholes, up to 3 m deep, were taken in the fine sediments of the Torbe area (Supplementary Material Figure SM2a)85

with a hand-auger (Edelman combination-type, EjikelkampTM), which allows the extraction of 10 cm-wide cylindric cores.
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Orientations of bedrock discontinuities, such as bedding, foliation, joints, fractures and faults, were measured in the southern

wall of Mt. Peron.

3.2 Cosmogenic 36Cl exposure dating

Twelve different boulders located in topographically high positions with respect to the surroundings within the deposits were90

sampled for dating with cosmogenic 36Cl. For boulders VB13 (VB13a, VB13b) and VB14 (VB5 same boulder as VB14) two

samples were taken. Samples were taken to cover the full extent of the deposit, from right near the source area to the distal

sector.

For 36Cl sample preparation we used the method of isotope dilution as described by Ivy-Ochs et al. (2004). Total Cl and 36Cl

were determined at the ETH AMS facility of the Laboratory for Ion Beam Physics (LIP) with the 6 MV tandem accelerator. The95
36Cl/Cl ratios of the samples were normalized to the ETH internal standard K382/4N with a value of 36Cl/Cl = 17.36 x 10-12

which is calibrated against the primary 36Cl standard KNSTD5000 (Christl et al., 2013; Vockenhuber et al., 2019). Full process

chemistry blanks (3.4 x 10-15) were subtracted from measured sample ratios. All fourteen rock samples were processed. Only

seven were measured successfully due to too high 36S, also in relation to the very low 36Cl concentrations in these samples.

All measured data are presented here. Major and trace element concentrations were determined with XRF (Supplementary100

Material SM3) and ICP-MS (Supplementary Material SM4), respectively. We calculated surface exposure ages with the LIP

ETH in-house MATLAB code based on the parameters presented in detail in Alfimov and Ivy-Ochs (2009, and references

therein). A production rate of 54.0 ± 3.5 36Cl atoms (g Ca) -1 yr-1, which encompasses a muon contribution at the rock surface

of 9.6%; and a value of 760 ± 150 neutrons (g air) -1 yr-1. These values are in excellent agreement with production rates

recently published by Marrero et al. (2016). Production from all major elements and through low energy neutron capture in105

light of the trace elements (Supplementary Material Table SM4a) were fully considered. Production rates were scaled to the

latitude, longitude, and altitude of the sites based on Stone (2000). No correction was made for karst weathering of the boulder

surfaces (cf. Styllas et al., 2018). The extent of karst dissolution on the boulder surfaces varies significantly from boulder to

boulder. Implementing a rate of 5 mm/ka would change the ages by less than 4%, which does not affect any of the conclusions

drawn here. Stated errors of the exposure ages (Table 1) include both analytical uncertainties and those of the production rates110

(Alfimov and Ivy-Ochs, 2009). Two different surfaces of boulder 13 were analyzed (VB13a, 1.45 ± 0.12; VB13b, 1.45 ± 0.12

ka); the weighted mean of 1.45 ± 0.08 ka is used for further discussion.

4 Results

4.1 Mt. Peron release area

The Mt. Peron scarp is 700 m wide and 600 m high, S-to-SW facing and partially circular. Numerous faults and fractures are115

well visible on the wall (Fig. 2b) and were grouped into five main discontinuity sets (Fig. 2c). These comprise: (1) bedding,

(2) WSW-ENE directed frontal thrust planes, (3) NW vergent backthrust-related planes, (4) NW-SE aligned local conjugate
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fracture planes sets, and (5) persistent N-S oriented planes interpreted as reactivated Jurassic faults (Masetti and Bianchin,

1987). Bedding is nearly vertical, its orientation ranges from 146/78 to 170/80 (dip direction/dip angle). The Belluno thrust,

average orientation 337/64 (Costa et al., 1996), crops out at the base of the steep wall, whilst other Belluno thrust planes120

(295/53 to 340/67) were measured higher up along the wall (Fig. 2b). The NW-verging planes related to the backthrust are

111/15 to 175/54 and steepen to 80° at higher elevations along the wall. The NW-SE aligned fractures are 209/16 to 245/32

with an associated conjugate set, from 20/44 to 62/30, and nearly-vertical fractures with dip direction of 219 to 255. The N-S

striking fracture planes dip both to the east (75/40 to 83/75) and to the west (240/71 to 299/18). Today myriad large and small

individual rock prisms bound by these discontinuities are present at high elevation in the release area.125

4.2 Masiere di Vedana rock avalanche deposit

The deposit covers an area of ~9 km2 from the base of Mt. Peron southwards to Roe Basse (~5 km) and westwards to Mis

River (~3 km; Fig. 3). The thickness of the deposit is estimated ~10 m in the proximal area (near boulder VB2, Fig. 3), ~15 m

in the central sector near Torbe, >30 m at the boundary between the Vedana and Masiere sectors, ~5 m in the Masiere central

sector and ~15 m in the southern (distal) sector (Suppiei section, Fig. 4). Using a mean thickness of 20 m, a rough estimation130

of the total debris volume of ~170 Mm3 is obtained. Such volume corresponds to a released rock mass of about 130 Mm3

(bulking coefficient of 25% cf. Genevois et al., 2006). With a vertical drop (H) of about 1150 m (from the top of Mt. Peron:

1486 m a.s.l., to Roe Basse area: ~340 m a.s.l) and a travel distance (L) of about 5900 m (Fig. 3), we calculate an H/L ratio of

~0.2 (Fahrböschung angle of 11°). Based on spatial pattern, boulder lithology and morphological character, we distinguish five

sectors of the deposit: Peron, Vedana, Torbe, Masiere and Roe (Roe Alte and Roe Basse).135

The Peron sector includes the talus apron deposits at the foot of Mt. Peron, the rock avalanche deposits on the east side of the

river and the terrace of the town of Peron (at about 380 m a.s.l.). Boulders at the foot of the slope range up to 20 m in diameter

(Fig. 5a). Three boulders in the Peron sector were dated with cosmogenic 36Cl (Fig. 3; Table 1): VB3a (Rosso Ammonitico;

1.83 ± 0.28 ka), VB3c (Fonzaso Fm.; 3.62 ± 0.41 ka) and VB14a (Calcari Grigi Group; 2.39 ± 0.39 ka). Based on the trend

of all obtained ages, the age of VB3c is interpreted as an outlier, its age possibly reflecting the presence of inherited 36Cl due140

to pre-exposure. The town of Peron lies on a terrace made of rounded gravel layers with rare sand lenses that are interfingered

with talus deposits (Caneve, 1985).

In the Vedana sector, the rock avalanche deposit displays an irregular forested topography with relief on the order of tens

of meters (Fig. 5b). Huge blocks hundreds of cubic meters in size, mostly made of Calcari Grigi, dominate the carapace. This

covers the main body of the deposit made of shattered rocks, which is comprised of very angular clasts (up to tens of cm145

in diameter) in a matrix of silty sand. VB2 boulder (Calcari Grigi) gave an age of 1.49 ± 0.26 ka. In the Ponte Mas quarry

(Figs. 3, 5g), an open section showed glacial till (up to 3 m thick) incorporated into the base of the rock avalanche deposit,

its original bedding completely obliterated. This sediment is composed of sub-rounded clasts (up to 20 cm in length), some of

them striated, supported by a silty clay matrix. Clasts are sedimentary and volcanic, reflecting the catchment of the Cordevole

paleoglacier (cf. Pellegrini et al., 2006). Several ENE-WSW trending incisions cut through the Vedana and Torbe sectors (main150
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ones highlighted on Fig. 3). Irregular patches of sandy-silty and fine gravel sediments are found in the Vedana low-lying areas

between the blocky reliefs.

The Torbe sector encompasses the distal northern lobe of the rock avalanche, characterized by 10 to 20-m high isolated hills

and hummocks (Fig. 5d), “toma” (Turnau, 1906; Abele, 1974) that emerge from a flat topography. They are roughly aligned

ENE-WSW, circular at the base and have slope angles of 35°-40°. The toma are made of very angular Calcari Grigi boulders155

and clasts, with many jig-saw puzzle structures in a sandy, gravelly matrix (Fig. 5e). Six cores taken in the flat area between the

hills (see Fig. 3 and Supplementary Material SM2) show up to two meters of fining upward silty sand above the rock avalanche.

Torbe is crossed by the largest incision of the whole Masiere di Vedana (Fig. 3), ENE-WSW trending, ~50 m wide and up to

20 m deep in respect to the mean topographic surface. A shallower incision, few m deep, is located at the base of Piz Vedana

slope, still conveying a small amount of water coming from the Vedana Lake.160

The Masiere sector is strikingly different from Vedana and Torbe. It is a bleak, vegetation-free, desert-like sea of limestone

blocks, mainly of dolomitized Vajont Limestone (Fig. 5c). Boulders up to 3 m in diameter and abundant angular and sub-

angular clasts, with almost no matrix, are present in the surficial part. In the southern part of Masiere, numerous 2-3 m high

and up to 150 m long ridges, aligned roughly E-W, are present (Fig. 6). The contact of the rock avalanche with the underlying

Pleistocene conglomerate crops out near the southern boundary of the Masiere (white asterisk in Fig. 6). Next to the northern165

boundary of Masiere, the Cordevole River flows upon the Cenozoic rocks of the Castel Cuch ridge, covered elsewhere by the

rock avalanche. An ENE-WSW trending shallow incision (Fig. 3) with associated well sorted, medium-to-coarse grained sandy

deposits, is present, almost parallel to Castel Cuch. A roughly N-S trending incision, few meters deep, ~10 m wide and about

500 m long, is located just to the west of the Cordevole River. The town of Mas is built upon a flat terrace, mainly made of

sorted rounded gravels with a sandy matrix, that bounds the Masiere to the east.170

Roe Alte and Roe Basse comprise the distal sector of the Masiere di Vedana to the south (Fig. 3), where angular clasts up

to 20 cm in diameter and very few boulders immersed in a sandy matrix are scattered in the meadows. Boulders belong to

the Fonzaso Formation, Rosso Ammonitico and Maiolica, very few of them made of Vajont Limestone. Roe Basse is made

of silty/sandy alluvial sediments deposited by the Gresal and other minor streams coming from the east, mantling the rock

avalanche deposit on the northwestern side. The Suppiei section, 100-m-long and 25-m-high, on the left flank of the Cordevole175

River (Figs. 3, 5h; Supplementary Material SM5), shows the Bolago Marl unconformably overlain by 0.5-2 m of glacial till.

This is in turn covered, with a sharp and undulated contact, by up to 20 m of rock avalanche debris decimetric in size, with

boulders (~1 m diameter) on top. On the Roe Alte rocky upland, the rock avalanche is at most 2 meters thick, with rare boulders

(1-2 m diameter). Two boulders made of Vajont Limestone (Fig. 3) have been dated with 36Cl (VB12, 2.35 ± 0.21 ka; VB13,

1.45 ± 0.08 ka; Table 1). South of the town of Mas, the Cordevole River flows into narrow meanders entrenched ~20 m into180

rock avalanche deposits, alluvial material, glacial sediments and bedrock. The terrace of the Vignole village is almost totally

made of rock avalanche debris, despite being remarkably flat.
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5 Interpretation and discussion

5.1 Age of the Mt. Peron rock avalanche

36Cl surface exposure ages from boulders all across the deposit range from 1.45 ± 0.08 ka to 2.39 ± 0.38 ka (Table 1). All185

ages show a good overlapping within uncertainties. A single sample (VB3c) gave a result markedly different from the others:

3.62 ± 0.41 ka. Although this age may point to pre-exposure of the sampled boulder surface (cf. Sewell et al., 2006; Merchel

et al., 2013), as for example seen at Lavini di Marco (Martin et al., 2014), the possibility exists that this boulder is part of

a partially buried older deposit located right at the foot of Mt. Peron. The poorly developed karst dissolution features (0.5-

1 cm deep karren) on the tops of many boulders suggest as well that the deposit is relatively young. The average of 36Cl190

ages, excluding Vb3c as an outlier, is 1.90 ± 0.45 ka. The uncertainty of the mean is based on the cumulative probability of

uncertainties for all samples based on a Gaussian probability distribution (one sigma level). Such a value indicates that the

rock avalanche, considering the error range, occurred during historical times, between 340 BC and 560 AD. These results are

in stark contrast to previous reconstructions, which pointed to a Lateglacial age (Mazzuoli, 1875; Hoernes, 1892; Squinabol,

1902; Dal Piaz, 1912; Venzo, 1939; Genevois et al., 2006; Pellegrini et al., 2006). The date 1113, 1114, 1117 AD proposed for195

the main landslide event suggested by some authors (Piloni, 1607; Miari, 1830) may be associated to the Verona earthquake

at 1117 AD. That event was clearly felt in the Belluno area, where it did cause several rockfalls (Guidoboni et al., 2005), but

its age is not consistent with the cosmogenic dates on the Masiere di Vedana. To search for independent constraints for the age

of the main landslide event, a detailed research in numerous archives and chronicles was undertaken. This area during Roman

time was largely and uniformly inhabited by “incolae” for agricultural aims, being the area located next to the Claudia Augusta200

Altinate road connecting Feltre with Belluno (Fig. 1) (Alpago-Novello, 1957, 1988). The presence of a Roman bridge crossing

the Cordevole River north of the Mt. Peron indicates there was a connection to the main Claudia Augusta Altinate road. While

numerous archeological Neolithic and Roman sites are reported around the Masiere di Vedana (Capuis et al., 1988; Frassine et

al., 2016), no Roman or pre-Roman archaeological remains have been found within the rock avalanche deposits (Fig. 3). If the

Masiere di Vedana deposit was settled after Roman times, previous settlements eventually located in the area would have been205

buried by the event. The oldest record for the post-event human presence is a hospice built in the 12th century AD (1155 AD;

Magoga and Marin, 1998) on the fluvial terrace near the village of S. Gottardo (Fig. 3). Therefore, historical data indicate a

time frame between Roman times and the Middle Ages.

The age uncertainties do not allow to directly determine if the Masiere di Vedana deposit was due to a single failure or

multiple events. The distribution of the available dates has no spatial pattern across the deposit, no physical boundaries occur, no210

buried soil layers have been found within the deposits. Moreover, the runout of the landslide indicates a single huge catastrophic

event. Therefore, a single rock avalanche occurred in historical time contradicting previous interpretations (e.g., Genevois et

al., 2006; Pellegrini et al., 2006) and asking for a re-evaluation of the landslide hazard.
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5.2 Release, emplacement and post-event modification of the deposit

A schematic reconstruction of the reach of the Cordevole Valley involved in the rock avalanche can be depicted before, during215

and after the event. Before the rock avalanche, the Cordevole River flowed through a gentle rolling landscape along the foot

of Piz Vedana and through a breach cutting the Castel Cuch bedrock ridge just north of the village of Mas (Figs. 3, 7a).

Topographic highs, like Castel Cuch and Roe Alte, were at that time mantled with glacial sediments attributable to the last

glaciation.

The rock avalanche involved the detachment of about 130 Mm3 from the southern face of Mt. Peron. Initial movement was220

a sliding along the NW vergent backthrust-related planes (Fig. 2). En bloc movement may have been only briefly sustained as

the pervasive network of fractures favored a massive collapse. The rock mass immediately evolved into a rock avalanche whose

volume grown by fragmentation up to 170 Mm3 and spread out onto the flat plain below. The H/L of ~0.2 (apparent friction

angle of 11°) marks the Mt. Peron event as extremely mobile, for example in comparison to the Fernpass rock avalanche which

has a H/L of 0.9, a volume 1 km3 and a significantly longer runout distance of 15.5 km (Prager et al., 2009). It may be possible225

to glean information about the failure style from the distribution of boulder lithologies, which follows the stratigraphic order

of the bedrock exposed in the source area and has been as well noted at the Tschirgant rock avalanche deposits in Austria

(Dufresne et al., 2016) and the Frank slide in Canada (Charrière et al., 2016). In the Mt. Peron bedrock, the lithologic sequence

from west to east is: Calcari Grigi Group, Vajont Limestone, Fonzaso Fm., Rosso Ammonitico and Maiolica. This pattern is

mirrored in the deposits (Figs. 3, 4): Vedana and Torbe are dominated by Calcari Grigi Group, Masiere by Vajont Limestone230

and Roe by Fonzaso Fm., Rosso Ammonitico and Maiolica. Experiments and modelling suggest that this kind of zonation is

likely to occur when the sliding mass propagates as a flexible sheet, with laminar flow (Friedmann et al., 2006).

Several landforms within the Masiere di Vedana provide further clues on the processes of propagation and emplacement.

The tomas in the Torbe sector suggest differential velocities in the moving mass propagating on a water-saturated substrate

(Strom, 2006; Prager et al., 2009; Dufresne, 2012; Dufresne et al., 2016; Aaron et al., 2017). Tomas, with likely similar origin,235

are present in the distal deposits at Fernpass in Tyrol (Prager et al., 2009) and at Flims (von Poschinger and Ruegg, 2012).

Recently, More and Wolkersdorfer (2019) proposed for the Toma Hills at Fernpass an alternative origin from internal erosion

by suffusion. However, at Masiere di Vedana the fluvial deposition above the rock avalanche suggests that suffusion process

can be ruled out. In contrast to the increased mobility seen in the Torbe sector, in the central Masiere area, landforms indicative

of stalling are present (Fig. 6). The stacked sub-parallel transverse ridges, much like those noted at Tschirgant (Patzelt, 2012;240

Dufresne et al., 2016; Ostermann et al., 2017), with slight overrunning of the ridges in front by those behind, indicate slowing

down of the moving mass due to longitudinal compression (Nicoletti and Sorriso-Valvo, 1991; Dunning et al., 2005; Strom,

2006; Dufresne et al., 2016). Outcrop relationships (Fig. 6) suggest that the Pleistocene conglomerate inhibited the rock mass

flow, in combination with the slight uphill gradient. The ridges at Masiere were previously interpreted as neotectonic lineaments

by Baggio and Marcolongo (1984).245

After the event, the Cordevole River changed its channel several times. The rock avalanche blocked the river, creating

accommodation space to the north, where possibly a temporary lake formed. The river was then forced to flow westward
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across the deposit as indicated by the paleochannels in the Vedana and Torbe sectors (black arrows, Fig. 3), taking different

paths at different times. Low-lying areas were progressively filled, as shown by the fining upwards sequence recorded in core

TB1 (Supplementary Material Figure SM2a). The Torbe, Vedana and Peron terrace are flat surfaces at ~380 m a.s.l. (Fig.250

7b). Afterwards, a further sedimentation was hindered by the trenching in Torbe. The Cordevole river finally breached the

landslide deposit to the southeast, through the Castel Cuch ridge made of Cenozoic rocks (Fig. 7a). The river initially flowed

from Mas (about 375 m a.s.l.; green line in Fig. 7a) to the southern flank of Castel Cuch as suggested by the still recognizable

paleochannel (Fig. 3) filled with well sorted, medium- to coarse-grained sand (Caneve, 1985). Subsequently, the Cordevole

moved to the eastern side of the Pleistocene conglomerate cliff (Fig. 3). The final diversion of the river formed the Peron, Mas255

and Vignole terraces and currently flows some meters below with upstream migration of the knickpoint (Fig. 7).

5.3 Driving factors and possible future hazards

In the Cordevole and Piave Valleys many landslides have been recorded (Fig. 8) and have caused a great deal of damage and

casualties (Rossato et al., 2018). Moreover, rock avalanches such as Masiere di Vedana are difficult to predict (Hungr, 2006)

and may be very destructive due to their huge volume and extreme runout (Guzzetti, 2000; Hungr, 2004; Geertsema et al., 2006;260

Evans et al., 2007; Sosio et al., 2008; Cui et al., 2011; Hermanns and Longva, 2012). In the light of the results we obtained,

the search for the drivers of the Masiere di Vedana rock avalanche is both timely and imperative. Even if what determines the

moment of failure may be difficult to pinpoint, increased pore pressure and seismic ground shaking are primary candidates in

such cases (Wieczorek, 1996; Schuster and Wieczorek, 2002; Takahashi, 2001). However, rock avalanches may start without a

definite trigger, as for example the Tsatichhu landslide (10th September 2003) in Bhutan (Dunning et al., 2006) and the several265

Randa events (total of 30 Mm3) in 1991 in Switzerland (Loew et al., 2012). Failure normally occurs when in the rock mass

resisting forces weaken till the driving forces overcome them (factor of safety ≤1; Glade and Crozier, 2005).

The Belluno area has a high mean annual rainfall (1643 mm in the time interval 1994-2018 at https://www.arpa.veneto.it/dati-

ambientali/open-data) and is prone to extreme rainfall events (e.g., >300 mm of rain at Sospirolo during a single event: 27th

October – 1st November 2018; ARPAV, 2018). Moreover, at the time of the Masiere di Vedana rock avalanche, soon after the270

beginning of the Christian Era, the eastern European Alps and NE Italy were affected by various periods of climate degradation

during which several extreme meteorological events occurred (Wirth et al., 2013; Rossato et al., 2015). One of these extreme

events had an impact all over Europe between 50 and 250 AD, with marked intensity and widespread flooding recognizable in

the stratigraphic records (Macklin et al., 2006; Benito et al., 2015; Rossato et al., 2015). This event of severe rainfall could be

a possible trigger for the Masiere di Vedana rock avalanche or, at least may have acted as a driving and destabilizing factor.275

Likewise, the Val Pola rock avalanche in the central Alps was triggered by a period of exceptional rainfall (Crosta et al., 2004).

The Veneto region is prone to earthquake activity and is categorized as level 2 seismic hazard (“possible strong earthquakes”

in Ordinanza del PCM n. 3519/2006), as the historical record testifies (up to ~Mw=6.5; Vigano` et al., 2013, 2015; Rovida et

al., 2016). Continuous instrumental monitoring of the Belluno area dates back only to 1977 (Sandron et al., 2014), preceding

cataloged major seismic events in the region are based on either historical chronicles, dated building damages and/or observed280

rockfalls (Piloni, 1607; Taramelli, 1883; Guidoboni et al., 2005, 2018). Within a radius of 30 km from Mt. Peron, eight
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earthquakes with Mw greater than 5.0, and one exceeding 6.0, are listed (Fig. 1). The strongest (Mw = 6.3) in the nearby

area, occurred just 20 km to the east of Mt. Peron on 29th June 1873 (Rovida et al., 2016, and references therein). Severe

damages to Belluno city were reported during the Asolo (25th February 1695 AD; Mw=6.4) and Verona (3rd January 1117;

Mw=6.5) earthquakes whose epicenters were located, respectively, 60 and 140 km away. As for the time frame suggested by285

our chronology, historical records report an important seismic event at July 365 AD with damages to the city of Belluno (Piloni,

1607). These data suggest that the Belluno area is sensitive to seismic shakings originating even hundreds of km away. In the

Alps, earthquakes have been suggested as triggers for several rock avalanches (e.g., Grämiger et al., 2016; Ivy-Ochs et al.,

2017; Köpfli et al., 2018). The most important effect of the frequent seismic activity is the progressive increase in the rock

fatigue, with the formation and subsequent weathering of failure planes (Friedmann et al., 2003; Brideau et al., 2009; Parker290

et al., 2013; Preisig et al., 2015; Gischig et al., 2016). Where these intersect, rock dissolution and the formation of caves is

favored (Filipponi et al., 2009; Sauro et al., 2013), further weakening the mechanical properties of rocks (Pánek et al., 2009;

Gutierrez et al., 2014). The Mt. Peron southern wall is known locally as the "weeping rock" due to the numerous caves and

karst springs along the steep rock face (Fig. 2b).

In a general view, active tectonics and related accumulated fatigue have been suggested to contribute to intensification of295

slope instability registered in the Belluno Dolomites during the last 1500 yr (Galadini et al., 2005). The Belluno Dolomites

experienced a long deformation history since the Miocene, related to regional-scale stress connected to the counter-clockwise

rotation of the Adria plate, indented with the Alpine orogeny (Márton et al., 2003; D’Agostino et al., 2008). Such forces

overturned the bedding, formed the thrusts and backthrusts (WSW-ENE oriented), the two conjugate fracture sets (NW-SE

oriented) and led to re-activation of the Jurassic faults (N-S oriented). The belt characterized by these deformations lies between300

the Belluno thrust and the Val Carpenada - Val di Vido - Val Madonuta backthrust (Fig. 1), and extends from the Piave Valley

to the east to the Caorame Valley to the west (Bosellini et al., 1981; Masetti and Bianchin, 1987; Bigi et al., 1990; Costa et al.,

1996, Fig. 1).

Similar to the Mt. Peron, the entire belt may produce huge landslide events. Mt. Tre Pietre (1965 m a.s.l.), Mt. Pizzocco

(2186 m a.s.l.) and Mt. Serva (2133 m a.s.l.) are higher than Mt. Peron (1486 m a.s.l.), with densely inhabited areas at their305

foothills (Figs. 1, 9), and deserve focused hazard evaluation. The Piz Vedana (1324 m a.s.l.) should be mentioned as well,

because even if lower than the other peaks, it looms over the artificial Lake Mis (Fig. 3). A massive rock failure that would hit

the lake or damage the dam may pose a serious threat, possibly triggering a tsunami, as happened for instance at Vajont (e.g.,

Borgatti et al., 2004).

6 Conclusions310

Data acquired in this study cast new light on the timing, failure and propagation of the Masiere di Vedana rock avalanche

and the potential risk from the Mt. Peron rock wall and surrounding area. The rock avalanche (~130 Mm3) detached from the

southern slope of the Mt. Peron. The deposit extends over an area of 9 km2, with a total volume of ~170 Mm3. A H/L ratio

~0.2 is calculated, marking it as extremely mobile, which is also shown by the maximum runout of 6 km. Geomorphological,
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stratigraphic and historical evidence when combined with cosmogenic 36Cl exposure ages, mean age 1.90 ± 0.45 ka, point to315

a single event that occurred in or after late Roman times but before the Middle Ages.

The steep rock wall on the south face of Mt. Peron shows a pervasive deformation; numerous fractures and faults cross-cut

the sub-vertical to slightly overturned carbonate Mesozoic bedrock. The WSW-ENE directed backthrust planes, which are the

most continuous ones, constituted the planes along which the rock mass initially slid, rapidly breaking-up and evolving into a

rock avalanche.320

The stratigraphic sequence is preserved in the rock avalanche deposit. Lithologies that presently constitute the western part

of the source area, were deposited in the proximal sectors (Vedana, Torbe), while the more easterly outcropping ones reached

the distal areas (Masiere, Roe Alte). Landforms of the deposit suggest differential velocities during emplacement. In the NW

sector (Torbe) enhanced mobility likely due to interaction with water-saturated path material is evidenced by the numerous

ENE-WSW aligned tomas. In contrast, in the middle sector (Masiere) stacked transverse ridges point to stalling, perhaps325

related to the gentle uphill gradient and impeded propagation over Pleistocene conglomerates. Post-event evolution comprises

formation of backwater alluvial terraces and the wandering of the Cordevole River in the rock avalanche deposits, with incision

and aggradation phases.

Identified pivotal drivers are the overall structural setting, exceptional rainfall events and seismic shakings. Their com-

bination produced a pervasive fracturation and weathering of the rock mass, with progressive increase of rock fatigue. No330

exceptional event may actually be required for such rock avalanches to occur, as accumulation of damage markedly lowers the

energy needed to trigger failure.

Today, in the area between the Belluno thrust and its backthrusts from the Caorame to the Piave Valleys, the hazard for the

failures of large blocks, prisms or larger rock volumes needs re-evaluation. The occurrence of a huge event like the Masiere di

Vedana rock avalanche has to be considered.335
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Figure 1. Simplified geological map (black dashed-line box indicates location of Fig. 3). The map is based on Bosellini et al. (1981); Masetti

and Bianchin (1987); Bigi et al. (1990); Costa et al. (1996). Epicenters of earthquakes from the last two millennia are shown with color

coding and year of occurrence (source: Parametric Catalogue of Italian Earthquakes, 2015 version Rovida et al., 2016). Base map is the

SRTM derived Digital Elevation Model (30-m cells) (source: http://viewfinderpanoramas.org/). Structural setting is shown in inset upper

left (based on Doglioni, 1990). AST: Alpine Sole thrust; BL: Belluno thrust; BS: Belluno syncline; CP: Coppolo-Pelf anticline; CVM: Val

Carpenada-Val di Vido-Val Madonuta thrust; ESA: eastern Southern Alps thrust system; FPT: Frontal Penninic thrust; IL: Insubric line; PG:

Pala Alta-Gresal; PM: Pala Bassa-Val Medone; VS: Valsugana thrust; VV: Vittorio Veneto thrust.
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Figure 2. Structural scheme of the Mt. Peron release scarp. a: Schematic geological cross-section. b: Photograph with major structural

elements and larger karst caves (black-and-white circles) highlighted. c: Lower hemisphere stereographic projection of principal structural

elements. Colours in b and c correspond to the following: bedding (black), N-S reactivated Jurassic fault-related planes (grey), basal trenches

and other high-angle fractures connected to the Belluno thrust (yellow) and backthrust (red), fractures related to the NNW-SSE fault system

(light blue), their conjugates (pink) and high-angle fractures with the same orientation (green).
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Figure 3. Geological map of the study area, based on own field surveys and previous studies (Pellegrini, 2000; Pellegrini and Caneve, 2005),

overlain on a 5-m cell DTM (open data released by Regione Veneto: http://idt.regione.veneto.it/app/metacatalog/). The boundary of Mt.

Peron rock avalanche deposits is marked with solid white line, whilst the contact between Quaternary sediments and bedrock is shown with

solid black line. The location of boulders sampled for dating (red stars) and/or thin section analysis (green stars) are shown. Obtained 36Cl

exposure ages are in ka. Sites of Roman and pre-Roman archeological findings are indicated by red squares (from Capuis et al., 1988). Solid

lines in the left frame correspond to the traces of the stratigraphic profiles in Fig. 4. Location of stratigraphic sections (yellow ellipses; Fig.

5) and paleo-Cordevole paths (black dashed arrows) are shown. The extent of Fig. 6 (dotted black box) and Fig. SM4 (solid black box;

Supplementary Material) is indicated. In the lower right, a stratigraphic sketch of bedrock formations cropping out in the Belluno area is

given (modified from Costa et al., 1996).
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Figure 4. Geologic profiles of the Mt. Peron rock avalanche deposits (modified from Costa et al., 1996). Traces of the profiles are shown

in the small DTM and in Fig. 3a, their extent being equal. The discussed sectors of the Mt. Peron rock avalanche, Vedana, Torbe, Masiere

and Roe Alte, are indicated, along with the location of Ponte Mas and Suppiei stratigraphic sections (Fig. 5g, h). The vertical bedding and

interpreted Belluno thrust are shown schematically. Note the preservation of bedrock stratigraphic order in the rock avalanche deposits from

older to younger proximal to distal: Calcari Grigi Group, Vajont Limestone, Fonzaso Formation-Rosso Ammonitico-Maiolica.
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Figure 5. Photos of the deposits (a: decametric boulder, Peron alluvial terrace; b: plurimetric boulder, Vedana sector; c: metric boulders,

Masiere sector; d: toma relief in the Torbe sector; e: open section of a toma, Torbe sector; f: karst evidence on a boulder, Masiere sector)

and stratigraphic sections described in the text (g: Ponte Mas section: incorporation of the underlying glacial deposit (green) into the rock

avalanche deposit (light blue) is shown; h: Suppiei section: glacial sediments (green), covered by rock avalanche deposit (light blue), rest

directly on bedrock (red); locations in Figs. 3, 4).
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Figure 6. Transverse ridges in the south-western part of the Masiere sector (basemap source: © Google Earth). Location of image shown in

Fig.3. The rock avalanche was moving (from north to south) over a slight topographic high made up of Pleistocene conglomerate (see Fig. 4),

theridges are interpreted as compressional. White stars indicate locations where the contact between the rock avalanche and the

conglomerate is exposed.
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Figure 7. Curvilinear topographic profiles (10X vertical exaggeration) showing the relationship between the bigger incisions and the external

main surfaces related to the rock-avalanche and the post-event evolution. Profiles correspond to the present course of Cordevole creek (blue

line in a) paired with the main topographic surfaces on its left bank (green line in a) and the main incision passing through the Torbe and

Vedana sectors (blue line in b) paired with the main topographic surfaces on its left side (green line in b). Traces of the profiles are shown

in the small DTM, that corresponds to Fig. 3.
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Figure 8. Largest and most damaging (in terms of human lives) landslides located near Mt. Peron (base map is a SRTM derived Digital

Elevation Model with 30-m cells; source: http://viewfinderpanoramas.org/). Volumes of deposits correspond to the size of the symbols,

casualties are shown with color coding. AB: Alta Badia, several events between 11,500 BP-present (Borgatti et al., 2004), AL: Alleghe,

1771 AD (Ermini and Casagli, 2003), AN: Antelao, 1814 AD (Montandon, 1933), CM: Col Mandro, 1825 AD (Montandon, 1933), CO:

Cortina d’Ampezzo, several events between 10,700-2,000 BP (Borgatti and Soldati, 2010), FA: Fadalto, Lateglacial-to-present (Pellegrini

and Surian, 1996), LV: La Valle. 1701 AD (Montandon, 1933), MA: Marziai, 17,500-15,000 BP (Pellegrini et al., 2006), MS: Mt. Salta,

1674 AD (Montandon, 1933), PE: Pecol, 1841 AD (Montandon, 1933), MP: Mt. Peron, 1.90 ±0.45 ka (this work), SI: Siror, 1348 AD

(Montandon, 1933), VA: Vajont, 1963 AD (Borgatti et al., 2004), VC: Val Cia, 1882 AD (Montandon, 1933), VS: Valle San Lucano, 1908

AD (Aldighieri et al., 2016).
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Figure 9. Panoramic view of the northern side of the Piave Valley, with major peaks belonging to the studied deformation belt.
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