Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Preprints
https://doi.org/10.5194/nhess-2019-41
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-2019-41
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

  27 Mar 2019

27 Mar 2019

Review status
A revised version of this preprint was accepted for the journal NHESS and is expected to appear here in due course.

Design of parametric risk transfer solutions for volcanic eruptions: an application to Japanese volcanoes

Delioma Oramas-Dorta1, Giulio Tirabassi1, Guillermo E. Franco1, and Christina Magill2 Delioma Oramas-Dorta et al.
  • 1Guy Carpenter & Co, LLC. Tower Place West, London, EC3 5BU, United Kingdom
  • 2Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia

Abstract. Volcanic eruptions are rare but potentially catastrophic phenomena, affecting societies and economies through different pathways. The 2010 Eyjafjallajökull eruption in Iceland, a medium-sized ash fall producing eruption, caused losses in the range of billions of dollars, mainly to the aviation and tourist industries. Financial risk transfer mechanisms such as insurance are used by individuals, companies, Governments, etc. to protect themselves from losses associated to natural catastrophes. In this work, we conceptualize and design a parametric risk transfer mechanism to offset losses to building structures arising from large, ash fall-producing volcanic eruptions. Such transfer mechanism relies on the objective measurement of physical characteristics of volcanic eruptions that are correlated with the size of resulting losses (in this case, height of the eruptive column and predominant direction of ash dispersal), in order to pre-determine payments to the risk cedant concerned. We apply this risk transfer mechanism to the case of Mount Fuji in Japan, by considering a potential risk cedant such as a regional Government interested in offsetting losses to dwellings in the heavily populated Prefectures of Tokyo and Kanagawa. The simplicity in determining eruptive column height and ash fall dispersal direction makes this design suitable for extrapolation to other volcanic settings world-wide where significant ash fall producing eruptions may occur, provided these parameters are reported by an official, reputable agency, and a suitable loss model is available for the volcanoes of interest.

Delioma Oramas-Dorta et al.

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Delioma Oramas-Dorta et al.

Delioma Oramas-Dorta et al.

Viewed

Total article views: 655 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
430 205 20 655 23 25
  • HTML: 430
  • PDF: 205
  • XML: 20
  • Total: 655
  • BibTeX: 23
  • EndNote: 25
Views and downloads (calculated since 27 Mar 2019)
Cumulative views and downloads (calculated since 27 Mar 2019)

Viewed (geographical distribution)

Total article views: 497 (including HTML, PDF, and XML) Thereof 495 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 27 Nov 2020
Publications Copernicus
Download
Citation
Altmetrics