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Abstract: We present evidence that the global juxtaposition of major assets relevant to the

economy with the space and time expression of extreme floods or droughts leads to a much
higher aggregate risk than would be expected by chance. Using a century long, globally gridded
time series that indexes net water availability, every year we compute local occurrences of an
extreme “dry” or “wet” condition for a specified duration and return period; -every-year. A global
exposure index is then derived for major mining commodities, by weighting extreme event
occurrence by local production exposed. We note significant spatial and temporal clustering of
exposure at the global level leading to the potential for fat tail risk associated with investment

portfolios and supply chains. This is-ntuitive-temay not be a surprise to climate scientists

familiar with the existence-ofa-varietyspace-time patterns of inter-annual to decadal climate

oscillations-at-different-frequencies. However, Fthe traditional approach of climate risk analysis

inthe-industry-only considers local or point extreme value analysis and hence does not account

for temporal and spatial clustering and-gquasi-periodicity-of this-spatialhy-and-temporaly-clustered

exposure_resulting-in-partfrom-the-telescoping-of sueh-eyelesfor global portfolios. Censequenthy;
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As multinational enterprises and supply chains assess

and disclose physical climate risks, they need to consider the much higher chance that they may

have multiple assets that may be exposed to extreme wet and/or dry climate extremes in the same

year.

One Sentence Summary:
Multinational businesses, and global supply

chains can experience many more extreme climate events in a given year than would be expected

by chance, due to persistent and recurrent organization in the space and time patterns of climate

varaibility.
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1. Introduction

A changing climate brings concerns as to whether there will be increasing business and societal
disruptions as well as conflicts associated with increasing water scarcity or flooding. Even if
there were no significant impact of climate change, the growing world population and
urbanization lead to increasing resource demands and imbalances whose changing exposure to
climate risk needs to be understood. Yet,

there are very few analyses

(Bonnafous, Lall, & Siegel, 2017a&h;, | Formatted: Font: Italic

{ Formatted: Font: Italic

) of the aggregate global annual exposure to hydroclimatic extremes over the last century

for specific industries, activities, or population,. Given

the nonstationary nature of climate extreme occurrence, and the intersection between the spatial
structure of climate events and the concentration of human activity, there is potential for high
risk, even if structural or financial instruments (e.g., insurance) were used to mitigate

climate risk at each location, as is the norm, and were designed based on the prior local climate

record, and if they even using information on climate cycles (see for instance (Khalial, Kwon, Formatted: Font: 12 pt, Do not check spelling or

grammar

Lall, Miranda, & Skees, 2007)), or accounting for non-stationarity in event modeling (e.g. (Lima, Formatted: Font: 12 pt, Do not check spelling or

grammar

Lall, Troy, & Devineni, 2015), (Hanel, Bruishand, & Ferro, 2009)). The implication could be a

Formatted: Font: 12 pt, Do not check spelling or
grammar

fat tailed, systemic risk for global enterprises.

From the perspective of a global investor, or of a development or humanitarian aid agency, an
assessment of the potential occurrence of many extreme hydroclimatic events across the planet in
a given year is needed to assess potential supply chain risks, production shortfalls, conflict or

needs for humanitarian relief. The World Bank noted that its development efforts can be
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compromised by climate extremes and climate change (World Bank, 2014). The 2011 floods in
Thailand, the 2010 floods in Queensland and Pakistan, the 2014-16 drought in Sao Paolo, and the
2016-18 drought in Cape Town drew attention from their supply chain risk implications as well
as the potential for the disruption of tourism, and global business. An area where the impacts of
2010). Drought led to restrictions on exports of rice from key producing countries in 2008,

leading to a doubling of the global price (Slayton, 2009; Bradsher, 2008). In this paper, we focus

on another area of the economy, mining, but also show some results for urban areas and four

major crops as a reference in the supplementary material. We consider global socio-economic
exposure to the nominal once in 10 year local hydroclimate extreme for the annual production of
four major mining commodities (using 2014 and 2013 production data) (SNL, 2016) at the major

mining locations

that represent a significant part_(between 53 and 78%) of global production,

Both dry and wet events are considered for mining given the potential additional expense on
Both dry and wet events are considered for mining given the potential additional expense on
Both dry and wet events are considered for mining given the potential additional expense on
Both dry and wet events are

considered for mining given the potential additional expense on water sourcing in a drought, and
mine dewatering in wet years. The intention is to illustrate the nature of global exposure using a
few globally relevant commaodities.

2. Data and Methods
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The evolution through time of wet and dry extremes has primarily been studied through indices

derived directly from precipitation (P) time series, and through relationships between P,

gvapotranspiration (£), potential evapotranspiration (E)), soil moisture (SM), runoff (R) and

drought indices such as the Palmer Drought Severity Index (PDSI) and the Standardized

Precipitation-Evapotranspiration Index (SPEI). The SPEI (Begueria, Vicente-Serrano, & Angulo-

Martinez, 2010; Begueria, Vicente-Serrano, Reig & Latorre, 2014) is a scalar index reported

monthly. It is built after fitting a distribution on the cumulative P — E,,over a window of

interest (e.g., 12 months). The dataset used is based on Climate Research Unit (CRU) (Harris,

Jones, Oshborn & Lister, 2014) data for both precipitation and potential evapotranspiration and is

accessible at http://spei.csic.es/database.html. CRU is a gridded dataset with 0.5° x 0.5° spatial

resolution of monthly temperature and precipitation built using interpolation of station network

data, itself accessible at https://crudata.uea.ac.uk/cru/data/hrg/). The SPEI is thus a measure of

the net water supply, as estimated using local precipitation and potential evapotranspiration, over

specified durations. We chose to use the SPEI for our analysis since a global reconstruction of

this index covering 1901-2014 that has been well verified was available, at a grid resolution of

0.5°. Since we are interested in an annual exposure, we used the 12-month duration values of the

SPEI. We limit our analyses to the land area bounded by 60°S to 60°N,

and retain grid blocks that have no more than 10% missing data. To define a dry (wet)

event, we first record, for each year, at each site, the quantile of SPEI time series for the return-

level of interest (e.q. for a 10-year return level, on the dry side, the threshold is defined as

quantile(SPEIJ¥™, 0.1), while on the wet side it will be quantile (SPEI;™, 0.9). Months for

which the SPEI is below (above) these thresholds are marked as belonging to a dry (wet) event.

It should be noted that CRU may not provide adequate spatial coverage far back in time,
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especially in the Southern Hemisphere. This may affect the SPEI. For our first analysis, we

consider the global land area exposed. Each event is then weighted by the area of the grid-block

it corresponds to divided by the total land area. Further, using CRU data, we consider extremes

in P_and E,,: for both of these variables, we aggregate monthly values over 12-month windows

and define wet and dry events at a given location as above (inversing thresholds for £,,). In the

supplementary material (Fig. S18), we also compare the results with those based on data from Formatted: Font: Bold

the NOAA’s 20" Century Reanalysis (20CR) project (Compo et al., 2011), accessible

Formatted: Superscript

here: https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html (the variable names are “prate”

[Formatted: Font: Italic
[ Formatted: Font: Italic
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for precipitation and “pevpr” for potential evapotranspiration) . We use the P_and E,, data of

20CR to compute a version of the SPEI. In each case, we study the proportion of the area of the

world affected by dry or wet, dry, wet and dry and wet events in a given year.

Production data is collected from (SNL, 2016) to

find the location of producing bauxite, copper, gold and iron ore copper mines in 2014. Each

climate event is then weighted with the 2014 share of production of each mine.

Wavelet and multitaper spectral analyses were performed to

assess cycles in the exposure time series and their covariation patterns with

climate indices.

Using package biwavelet (Gouhier, Grinsted, & Simko, 2016), we investigate the spectra and the

Using package biwavelet (Gouhier, Grinsted, & Simko, 2016), we investigate the spectra and the

Using package biwavelet (Gouhier, Grinsted, & Simko, 2016), we investigate the spectra and the

Using package
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biwavelet (Gouhier, Grinsted, & Simko, 2016), we investigate the spectra and the coherence

across series. Spectra are also assessed using

multitaper analysis(Rahim, Burr & Rahim, 2017).

2.3. Results

The key findings from our analyses are illustrated in Fig. 1 and 2. We use the 1901-2014 data of
the SPEI12 index

, thus a measure of net water availability based on the cumulative difference between

, thus a measure of net water

availability based on the cumulative difference between precipitation and potential
evapotranspiration for a 12 month duration at each location, which is computed for each month
in the record, and then mapped to a probability distribution, yielding monthly time series.

We consider the 90™ (10™) percentile of yearly maximum (minimum) of the SPEI time series at
We consider the 90" (10™) percentile of yearly maximum (minimum) of the SPEI time series at
We consider the 90" (10™) percentile of yearly maximum (minimum) of the SPEI time series at
We consider the 90™ (10™") percentile of yearly maximum (minimum) of the SPEI time series at

We consider the 90™
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(10™) percentile of yearly maximum (minimum) of the SPEI time series at each location as a
“dry” (“wet”) threshold, corresponding to a 10 year return period event. The

exceedance of this threshold at a given location in each year of the

climate record is then weighted by the production (assumed here to be constant) at that location

and spatially aggregated to provide an estimate of annual exposure.

In the worst year, nearly 40% of the global land area experienced a 10-year dry or a wet event.
Sectoral impacts are heavily clustered when assets are concentrated in a few locations.

This is for instance the case for phosphates, for which, the worst

year translated into a nearly 84% exposure of global production, or for lithium and lead.
Nearly 50% of global copper production is exposed by a dry or wet event, in the worst year of
Nearly 50% of global copper

production is exposed by a dry or wet event, in the worst year of available data. For

each of the portfolios considered, the worst exposure in the record, has a negligible probability of

occurrence if one were to consider the local 10 year return period events occurring independently

and randomly over the earth. We assessed these probabilities using 100,000 simulations of the

114 year record

assuming the same asset values at each mining site, and , random sampling of hit or no hit

assuming the same asset values at each mining site, and ,

random sampling of hit or no hit independently at each location using the local marginal
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probabilities for the events.

. This illustrates that the spatial concentration of risk across the earth
is dramatic for the tail events, highlighting the potential for multiple hits at the
global scale a few years per century, much

more frequently than may be expected by chance considering locations independent

from each other. If, for a given commodity i, we call X ; the production exposed in a given year,
M; and m; respectively the maximum and median share of production exposed observed over |

114 years, we have the following table] i

Table 1: Share of global commodity portfolios exposed to wet and dry events
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Bauxite 0.63  0.65 0.1865 0.2419 \
copper 0.78 0.50 0 0.0686 \
Gold 0.61 0.42 0 0
Iron ore 0.53 069 0 0.0009 i

The comparison between the 3™ and 4™ column shows that the phenomenon tends to be much
more acute for the maximum exposure, than for the median (ie. for more extreme events).

Density estimation (Fig.1) also highlights the potential for fat tails, while smoothed time series

of exposure with a smoothing window of 11 years (Fig. 2), make evident the existence of cycles.
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Empirical and simulated logspline density estimation
of the exposure of the bauxite portfolio

T T T T T T T
0.0 01 02 0.3 04 05 06

Share of portfolio exposed

Empirical and simulated logspline density estimation
of the exposure of the gold portfolio

T T T T T
0.0 01 02 03 04

Share of portfolio exposed

10

Empirical and simulated logspline density estimation
of the exposure of the copper portfolio

T T T T T
0.0 01 0.2 03 04 05

Share of portfolio exposed

Empirical and simulated logspline density estimation
of the exposure of the iron portfolio

T T T T T T T T
0.0 0.1 02 0.3 04 0.5 0.6 07
Share of portfolio exposed

Fig. 1: Empirical (red) and i.i.d. process simulated (grey) density estimation of the yearly share of production exposed to a wet or
dry 10-year event according to the 12-months SPEI for four difeerent portfolios



10

15

20

25

30

35

Submitted Manuscript: Confidential

Smoothed time series of the share of given commodities affected by a 10 year
wet or dry 12-month SPEI event

0.5
- 0.41
g _
E 03] Portfollo.
o bauxite
é copper
:5, gold
g 0.2 1 iron

0.1+

0.01

1900 1925 1950 1975 2000

Fig. 2: Time series of weighted global annual share of production exposed for different commodities with 11 year local

regression smoothed trends. Wet and dry events are considered

Consistent with many analyses of longer duration hydrologic extremes (Greve et al., 2014;
Sheffield & Wood, 2008; Sippel et al., 2017; Trenberth et al., 2014), the time series of global
annual exposure for mining reveals a cyclical rather than monotonically increasing or decreasing
trend (as may be expected from anthropogenic climate change). In several of the cases, using
wavelet and spectral analyses we find evidence for connections to the El Nifio Southern

Oscillation and to climate indices known to exhibit decadal variability (Fig. S9-S13).
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Given these observations, we explored the global land area exposed. The temporal trend of the
global land area exposed to the crossing of the dry and wet thresholds of the 12 month SPEI
index is shown in Fig. 3. An increase in the area affected by events of all types occurred through
the 1970's. This was followed by a decrease in the total affected area. Note that the threshold
used to determine whether an extreme event occurred at a location or not is determined as the
appropriate quantile at that location using the corresponding data source. Hence, generic biases
in observations in the net water availability at any location are not an issue in determining
whether or not an extreme event occurred.

Time series of the proportion of the land area between 60°N and 60°S affected by a
12-month event with a 10-year return level

Area affected by a dry OR a wet event Area affected by a dry AND a wet event
© 0012 .
g Legend
° 03 11-yr smooth
< 0.008
£ 85-yr smooth
“
o
5§02 0.004
£
o
Q
g 01 0.000
a
1900 1925 1950 1975 2000 1900 1925 1950 1975 2000

Area affected by a wet event Area affected by a dry event

Proportion of land area

1900 1925 1950 1975 2000 1900 1925 1950 1975 2000
Fig. 3: Global area proportion affected annually by exceedance of the 10-year, 12-month SPEI index for wet or dry (top left), wet

and dry (top right), wet (bottom left), and dry areas (bottom right) event, with 95t confidence interval in shaded grey.
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Wavelet coherence between the time series of the world area
hit by a wet OR a dry 10-year event
and the Nino 3.4 DJF anomaly

0.8

06
o
o
5}
o

04

0.2

0.0

1920 1940 1960 1980 2000
Time

Figure 4: Wavelet coherence between the global share of area exposed and the Nino 3.4 DJF anomaly

The recent decrease in wet events is largely observed in the tropics and subtropics for the CRU
data (Fig. S7). The 1982-1983 El Nifio event corresponds to the highest number of extremes
(Fig. 3,_Fig.5). The 5 years that show up with most events are (in decreasing order): 1983, 1984,
1973, 1974, and 1976. Except for 1984, these correspond to some of the strongest December-

January-February (DJF) El Nino Southern Oscillation (ENSO) conditions (EI Nifio for 1983,

1973, La Nifa for 1974 and 1976) (NOAA ESRL, 2016). Wavelet analyses of the derived hit

series (performed with biwavelet (Gouhier, Grinsted, & Simko, 2016) show significant inter-

annual and decadal variations, and are coherent with the NINO3.4 index at interannual (4 years)

and decadal (16 years) frequencies after 1970 (Fig. 4

13
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). Coherence is characterized by warmer colors, with significant regions circled in black. A

Multitaper spectral analysis (Rahim, Burr, & Rahim, 2017; Slepian, 1978; Thomson, 1982) also

shows coherence for cycles of 4 years, consistent with the ENSO and North Atlantic Oscillation

(NAO) phenomena (Fig. S14, where common oscillatory behaviors from multitaper analysis are

marked by spikes with the x axes corresponding to cycles/year; thus a 0.2 value corresponds to

5-year cycle), and with the Pacific Decadal Oscillation (PDO) index at scales of about 8 years.

Number of months in exceedance of the threshold for a 10-year wet or
dry event in 1983

50

lat

-50

-100 0 100 200
long

Figure 5: Map of the number of months in exceedance of a 10-year return level threshold for a wet or dry event in 1983

The spatial teleconnections of hydrologic extremes to the EI Nifio Southern Oscillation, and
other organized modes of inter-annual to decadal climate variability are well studied and their

impacts on agriculture and disasters are documented (Rojas, Li, & Cumani, 2014). However,

other than studies on the production of specific crops, an analysis of the impact of these climate

14
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modes on the aggregate global impact has not been previously done, especially considering a

specific risk threshold.

—Conclusion

In prior work (Bonnafous, Lall, & Siegel, 2017a&b) we illustrated impacts of hydrologic

extremes with different return periods on mining company portfolios, and the associated
potential value at risk. For global companies and supply chains, the role of hydroclimatic risk
clustering in space and time is not well studied, especially since the exposure could result from a
combination of effects on real assets, transportation, energy, water and health infrastructure,
production and increase in local conflict under drought. A first step would be to develop
influence diagrams that reflect the pathways of climate exposure for an investment portfolio or
supply chain, and then integrate social and economic factors to assess possible aggregate
exposure. Critical path analyses on these exposure networks can then be performed to identify
exposure pathways that contribute most significantly to the aggregate risk, and to then develop
risk mitigation strategies for those pathways. Such a framework would take into account
compound events, and simply “add” the space-time clustering of risk to a framework akin to the

one advocated in (Zscheischler et al., 2018). Examples of industry asset portfolio that could

benefit from such analysis include (but are not limited to) renewable energy production facilities

(e.g. dams for floods and droughts, windmills for extreme winds or low-wind periods), or

transport infrastructure such as ports. Agriculture is a particular case, as much work has been

done on it and would need to be properly integrated in the framework, for instance regarding the

regional spatial extent and timing of droughts.

15
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Parametric insurance and related financial instruments could provide an effective approach for
risk mitigation. Examples of such products indexed to ENSO indices are available at scales
ranging from farmer and micro-insurance to national banks to the World Food Program (Khalil,
Kwon, Lall, Miranda, & Skees, 2007; Carriquiry & Osgood, 2012; Hellmuth, Osgood, Hess,
Moorhead, & Bhojwani, 2009). Consider that a product were available where one could purchase
a unit of insurance against a climate index (e.g., ENSO) exceeding a specified threshold, and the
historical data for the index were publicly available. Then, a global or regional portfolio manager
concerned with aggregate risk exposure could explore how often an exceedance of that threshold
also led to an exceedance of the risk threshold for each element on their own exposure pathway,
and assess how well that index would influence their aggregate risk exposure. Where multiple
climate indices are available for parametric insurance, the manager could optimize their
allocation to a combination of those indices to mirror their risk exposure. Tradeoffs via reduction
in exposure by considering alternate suppliers or by structural measures (e.g., storage or

inventory) could also be considered.

On one hand, the quality of historical climate data sets degrades especially as one goes back

before 1950. On the other hand, climate re-analysis products as well as the IPCC climate model
integrations for the 20™ century are known to show significant biases for hydroclimatic variables
(Bozkurt, Rojas, Boisier, & Valdivieso, 2017; Ficklin, Abatzoglou, Robeson, & Dufficy, 2016;
Liu, Mehran, Phillips, & AghaKouchak, 2014). However, we expect the conclusion as to the
space and time clustering that translates into a fat tailed risk for global enterprises is robust.

On the other hand, one might advocate that the datasets used here may not fully represent

extremes, especially on the wet side, as complex dynamics such as runoff conditions and

16
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hydrological routing are involved at the local level. However, accurately modeling flooding risk

at the asset scale globally is still confounded by considerable uncertainty associated with the

climatic and soils data and the lack of calibration/verification data from the application of state-

of-the-art hydrological models. Plugging such a model in our approach is obviously doable and

could be part of a larger effort including exploring the risk-level space. Our goal was here to

highlight that currently the space-time correlation structure of climate risk is largely
unaddressed by risk managers, and to establish the need to do so,

retrospectively and prospectively. Analyses of the biases and uncertainty attendant to future
climate projections in this context are needed and will depend on the model and the space-time
resolution of the analysis.

Code/Data availability

Datasets are available at the links provided and upon request. Codes are available upon request.

Author contributions

Luc Bonnafous performed participated in designing the study, writing the paper and produced
the analysis
Upmanu Lall participated in designing the study and writing the paper

Competing interests

The authors declare that they have no conflict of interest.

Begueria, S., Vicente-Serrano, S. M., & Angulo-Martinez, M. (2010). A multiscalar global
drought dataset : The SPEI base : A new gridded product for the analysis of drought
variability and impacts. Bulletin of the American Meteorological Society, 91(10),
1351-1356. https://doi.org/10.1175/2010BAMS2988.1

Begueria, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation

evapotranspiration index (SPEI) revisited : Parameter fitting, evapotranspiration models,

17

[Formatted: Font: (Default) Times New Roman, 12 pt ]

[Field Code Changed J




10

15

20

Submitted Manuscript: Confidential

tools, datasets and drought monitoring. International Journal of Climatology, 34(10),
3001-3023. https://doi.org/10.1002/joc.3887

Bonnafous, L., Lall, U., & Siegel, J. (2017a). An index for drought induced financial risk in the
mining industry. Water Resources Research, 53, 1-23.
https://doi.org/10.1002/2016 WR020339.Received

Bonnafous, Luc, Lall, U., & Siegel, J. (2017b). A water risk index for portfolio exposure to
climatic extremes : Conceptualization and an application to the mining industry.
Hydrology and Earth System Sciences, 21(4), 2075-2106. https://doi.org/10.5194/hess-
21-2075-2017

Bozkurt, D., Rojas, M., Boisier, J. P., & Valdivieso, J. (2017). Climate change impacts on
hydroclimatic regimes and extremes over Andean basins in central Chile. Hydrology and
Earth System Sciences Discussions, (January), 1-29. https://doi.org/10.5194/hess-2016-
690

Bradsher, K. (2008). A Drought in Australia, a Global Shortage of Rice. New York Times, 17 Apr
2008, Vol. 2018.

Carriquiry, M. A., & Osgood, D. E. (2012). Index Insurance, Probabilistic Climate Forecasts,
and Production. Journal of Risk and Insurance, 79(1), 287-300.
https://doi.org/10.1111/j.1539-6975.2011.01422.x

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X, ... Worley,
S. J. (2011). The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal

Meteorological Society, 137(654), 1-28. https://doi.org/10.1002/qj.776

18



10

15

20

Submitted Manuscript: Confidential

Ficklin, D. L., Abatzoglou, J. T., Robeson, S. M., & Dufficy, A. (2016). The influence of climate
model biases on projections of aridity and drought. Journal of Climate, 29(4), 1369-1389.
https://doi.org/10.1175/JCLI-D-15-0439.1

Gouhier, A. T. C., Grinsted, A., & Simko, V. (2016). Package « biwavelet ». CRAN, 1-38.

Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., & Seneviratne, S. I. (2014).
Global assessment of trends in wetting and drying over land. Nature Geoscience, 7(10),
716-721. https://doi.org/10.1038/NGEO2247

Harris, 1., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of
monthly climatic observations—The CRU TS3.10 Dataset. International Journal of
Climatology, 34(3), 623-642. https://doi.org/10.1002/joc.3711

Hellmuth, M. E., Osgood, D. E., Hess, U., Moorhead, A., & Bhojwani, H. (2009). Index
insurance and climate risk : Prospects for development and disaster management. In
Prospects (Vol. 2).

Jain, S., & Lall, U. (2001). Floods in a changing climate : Does the past represent the future?
Water Resources Research, 37(12), 3193-3205. https://doi.org/10.1029/2001 WR000495

Khalil, A. F., Kwon, H. H., Lall, U., Miranda, M. J., & Skees, J. (2007). El Nifio-Southern
Oscillation-based index insurance for floods : Statistical risk analyses and application to
Peru. Water Resources Research, 43(10), 1-14. https://doi.org/10.1029/2006WR005281

Liu, Z., Mehran, A., Phillips, T. J., & AghaKouchak, A. (2014). Seasonal and regional biases in
CMIPS5 precipitation simulations. Climate Research, 60(1), 35-50.
https://doi.org/10.3354/cr01221

NOAA ESRL. (2016). TOP 24 STRONGEST EL NINO AND LA NINA EVENT YEARS BY

SEASON.

19



10

15

20

Submitted Manuscript: Confidential

Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., ... Fang, J. (2010). The impacts of
climate change on water resources and agriculture in China. Nature, 467(7311), 43-51.
https://doi.org/10.1038/nature09364

Rahim, A. K., Burr, W. S., & Rahim, M. K. (2017). Package ‘ multitaper .

Rojas, O., Li, Y., & Cumani, R. (2014). An assessment using FAO’s Agricultural Stress Index
(ASI) Understanding the drought impact of El Nifio on the global agricultural areas :
https://doi.org/10.13140/2.1.1868.3687

Sheffield, J., & Wood, E. F. (2008). Global trends and variability in soil moisture and drought
characteristics, 1950-2000, from observation-driven simulations of the terrestrial
hydrologic cycle. Journal of Climate, 21(3), 432-458.
https://doi.org/10.1175/2007JCL11822.1

Sippel, S., Zscheischler, J., Heimann, M., Lange, H., Mahecha, M. D., Jan Van Oldenborgh, G.,
... Reichstein, M. (2017). Have precipitation extremes and annual totals been increasing
in the world’s dry regions over the last 60 years? Hydrology and Earth System Sciences,
21(1), 441-458. https://doi.org/10.5194/hess-21-441-2017

Slayton, T. (2009). Rice Crisis Forensics : How Asian Governments Carelessly Set the World
Rice Market on Fire. Development, (163), 43. https://doi.org/10.2139/ssrn.1392418

Slepian, D. (1978). Prolate spheroidal wave functions, Fourier analysis, and uncertainty. VV-The
discrete case. ATT Technical Journal, 57(5), 1371-1430. https://doi.org/10.1002/j.1538-
7305.1978.th02104.x

SNL. (2016). SNL Mining and Metals database.

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE,

70(9), 1055-1096. https://doi.org/10.1109/PROC.1982.12433

20

[Formatted: English (United States)




Submitted Manuscript: Confidential

Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., &
Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change,
4(1), 17-22. https://doi.org/10.1038/nclimate2067

USDA. (2010). Effects of the Summer Drought and Fires on Russian Agriculture. USDA GAINS

5 report, RS1061.

Vicente-Serrano, S. M., Begueria, S., Lopez-Moreno, J. I., Angulo, M., & EI Kenawy, A. (2010).
A New Global 0.5° Gridded Dataset (1901-2006) of a Multiscalar Drought Index :
Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity
Index. Journal of Hydrometeorology, 11(4), 1033-1043.

10 https://doi.org/10.1175/2010JHM1224.1

World Bank. (2014). Turn Down the Heat : Confronting the New Climate Normal. Consulté &
I’adresse World Bank website:
https://openknowledge.worldbank.org/handle/10986/20595

Zscheischler, J., Westra, S., Hurk, B. J. J. M. Van Den, Seneviratne, S. I., Ward, P. J., Pitman,

15 A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., Zhang, X., (2018).
Future climate risk from compound events. Nature Climate Change, (May).

https://doi.org/10.1038/s41558-018-0156-3

Acknowledgments
20 Support for the Twentieth Century Reanalysis Project version 2c dataset is provided by the U.S.
Department of Energy, Office of Science Biological and Environmental Research (BER), and by

the National Oceanic and Atmospheric Administration Climate Program Office

21


http://science.energy.gov/ber/

