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Abstract. Fragility curves (FC) are key tools for seismic probabilistic safety assessments that are performed at the level of the 

nuclear power plant (NPP). These statistical methods relate the probabilistic seismic hazard loading at the given site and the 

required performance of the NPP safety functions. In the present study, we investigate how the tools of non-stationary extreme 10 

value analysis can be used to model in a flexible manner the tail behaviour of the engineering demand parameter as a function 

of the considered intensity measure. We focus the analysis on the dynamic response of an anchored steam line and of a 

supporting structure under seismic solicitations. The failure criterion is linked to the exceedance of the maximum equivalent 

stress at a given location of the steam line. A series of three-component ground-motion records (~300) were applied at the base 

of the model to perform non-linear time history analyses. The set of numerical results was then used to derive a FC, which 15 

relates the failure probability to the variation of peak ground acceleration (PGA). The probabilistic model of the FC is selected 

via information criteria completed by diagnostics on the residuals, which support the choice of the generalized extreme value 

GEV distribution (instead of the widely used log-normal model). The GEV distribution is here non-stationary and the 

relationships of the GEV parameters (location, scale and shape) are established with respect to PGA using smooth non-linear 

models. The procedure is data-driven, which avoids the introduction of any a priori assumption on the shape/form of these 20 

relationships. To account for the uncertainties in the mechanical and geometrical parameters of the structures (elastic stiffness, 

damping, pipeline thicknesses, etc.), the FC is further constructed by integrating these uncertain parameters. A penalisation 

procedure is proposed to set to zero the variables of little influence in the smooth non-linear models. This enables us to outline 

which of these parametric uncertainties have negligible influence on the failure probability as well as the nature of the influence 

(linear, non-linear, decreasing, increasing, etc.) with respect to each of the GEV parameters. 25 

 

 

1 Introduction 

A crucial step of any seismic Probability Risk Assessment (PRA) is the vulnerability analysis of structures, systems and 

components (SSC) with respect to the external loading induced by earthquakes. To this end, fragility curves (FC), which relate 30 

https://doi.org/10.5194/nhess-2019-400
Preprint. Discussion started: 13 December 2019
c© Author(s) 2019. CC BY 4.0 License.



2 

 

the probability of an SSC to exceed a predefined damage state as a function of an intensity measure (IM) representing the 

hazard loading, are common tools. Formally, FC expresses the conditional probability 𝑃𝑓(𝑖𝑚) = 𝑃(𝐸𝐷𝑃 ≥ 𝑡ℎ|𝐼𝑀 = 𝑖𝑚) with 

respect to the IM value im and to the EDP engineering demand parameter obtained from structural analysis (e.g. force, 

displacement, drift ratio); th being an acceptable demand threshold. 

FCs are applied on a large variety of different structures like residential buildings (e.g. Gehl et al., 2013), nuclear power plant 35 

(Zentner et al., 2017), wind turbines (Quilligan et al., 2012), underground structures (Argyroudis and Pitilakis, 2012), etc. 

Their probabilistic nature make them well suited for PRA applications, at the interface between probabilistic hazard 

assessments and event tree analyses, in order to estimate the occurrence rate of undesirable top events.  

Different procedures exist to derive FCs (see e.g. an overview by Zentner et al., 2017). In the present study, we focus on the 

analytical approach, which aims at deriving a parametric cumulative distribution function (CDF) from data collected from 40 

numerical structural analyses. A common assumption in the literature is that the logarithm of im is normally distributed (e.g., 

Ellingwood, 2001) as follows: 

 

𝑃𝑓(𝑖𝑚) =  (
log(𝑖𝑚)−log ()


),          (1) 

where  is the standard normal cumulative distribution function, α is the median and β is lognormal standard deviation. The 45 

parameters of the normal distribution are commonly estimated either by maximum likelihood estimation (see e.g., Shinozuka 

et al., 2000) or by fitting a linear probabilistic seismic demand model in the log-scale (e.g., Banerjee and Shinozuka, 2008). 

This procedure faces, however, limits in practice:  

 Limit (1): the assumption of normality may not always be valid in all situations as discussed by Mai et al. (2017) and 

Zentner et al. (2017). This widely-used assumption is especially difficult to justify when the considered EDP 50 

corresponds to the maximum value of the variable of interest (for instance maximum transient stress value), i.e. when 

the FC serves to model extreme values; 

 Limit (2): a second commonly-used assumption is the homoscedasticity of the underlying probabilistic model, i.e. the 

variance term  is generally assumed to be constant over the domain of the IM;  

 Limit (3): the assumption of linearity regarding the relation between the median and IM may not always hold valid as 55 

shown for instance by Wang et al. (2018) using artificial neural networks;  

 Limit (4): a large number of factors may affect the estimate of Pf in addition to IM; for instance epistemic uncertainties 

due to the identification/characterization of some mechanical (e.g., elastic stiffness, damping ratio, etc.) and 

geometrical parameters of the considered structure. This means that the failure probability is conditional on the vector 

of uncertain mechanical and geometrical factors U (in addition to IM), namely: 60 

 

𝑃𝑓(𝑖𝑚, 𝒖) = 𝑃(𝐸𝐷𝑃 ≥ 𝑡ℎ|𝐼𝑀 = 𝑖𝑚, 𝑼 = 𝒖),        (2) 
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The current study aims at going a step forward in the development of seismic FCs by improving the procedure regarding the 

afore-mentioned limits. To deal with limit (1), we propose to rely on the tools of extreme value statistics (Coles, 2001) and 65 

more specifically on the Generalised Extreme Value (GEV) distribution, which can model different extremes’ behaviour.  

Note that the focus is on the extremes related to EDP, not on the forcing, i.e. the analysis does not model the extremes of IM 

as it is done for current practices of probabilistic seismic hazard analysis (see e.g., Dutfoy, 2019). This means that no 

preliminary screening is applied, which implies that the FC derivation is conducted by considering both large and intermediate 

earthquakes, i.e. small-to-moderate to large IM values. 70 

The use of GEV is examined using criteria for model selection like Akaike or Bayesian Information Criteria (Akaike, 1998; 

Schwarz, 1978). Limits (2) and (3) are addressed using tools for distributional regression (e.g., Koenker et al., 2013) within 

the general framework of Generalized Additive Model for Location, Scale and Shape parameter (GAMLSS; e.g., Rigby and 

Stasinopoulos, 2005). GAMLSS is very flexible in the sense that the mathematical relation of the median and variance in Eq. 

1 can be learnt from the data via nonlinear smooth functions. GAMLSS can be applied to any parametric probabilistic model, 75 

and here to the GEV model as a particular case. This enables us to fit a non-stationary GEV model, i.e. a GEV model for which 

the parameters vary as a function of some covariates (here corresponding to IM and U). The use of data-driven nonlinear 

smooth functions avoids introducing a priori model like linear or polynomial as many authors do (see an example by for sea 

level extremes by Wong (2018), and for temperature by Cheng et al., 2014). Finally, accounting for the epistemic uncertainties 

in the fitting process (limit (4)) raises the question of integrating a potentially large number of variables, which might hamper 80 

the stability and quality of the procedure for FC construction. This is handled with a penalisation procedure (Marra and Wood, 

2011), which enables the analysist to screen the parametric uncertainties of negligible influence. 

The paper is organised as follows. Section 2 describes the statistical methods to derive non-stationary GEV-based seismic 

fragility curves. Then, in Section 3, we describe a test-case related to the seismic fragility assessment for a steam line of a 

nuclear power plant. For this case, the derivation of FC is performed by considering the widely-used IM in the domain of 85 

seismic engineering, namely Peak Ground Acceleration (PGA). Finally, Section 4 applies the proposed procedure and discusses 

the results. 

2 Statistical methods 

In this section, we first describe the main steps of the proposed procedure for deriving the FC (Sect. 2.1). The subsequent 

sections provide technical details on the GEV probability model (Sect. 2.2), its non-stationary formulation and implementation 90 

(Sect. 2.3) within the GAMLSS framework and its combination with variable selection (Sect. 2.4). 

2.1 Overall procedure 

To derive the seismic FC, the following overall procedure is proposed: 
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 Step 1 consists in analysing the validity of using the GEV distribution with respect to alternative probabilistic models 

(and the normal distribution of Eq. 1 in particular). This can be done based on the criteria for model selection like 95 

Akaike or Bayesian Information Criteria (Akaike, 1998; Schwarz, 1978), respectively denoted AIC and BIC. Since 

the constructed models use penalisation for the smoothness, we use the formulation provided by Wood et al. (2016: 

Sect. 5) to account for the smoothing parameter uncertainty; 

 Depending on the results of step 1, step 2 aims at fitting the non-stationary GEV model using the double penalisation 

formulation described in Sect. 2.2 and 2.3; 100 

 Step 3 aims at producing some diagnostic information about the fitting procedure and results. The first diagnostic test 

uses the QQ plot of the model deviance residuals (conditional on the fitted model coefficients and scale parameter) 

formulated by Augustin et al. (2012). If the model distributional assumptions are met then the QQ plot should be 

close to a straight line. The second diagnostic test relies on a transformation of the data to a Gumbel distributed 

random variable (e.g. Beirlant et al., 2004) and on an analysis of the corresponding Gumbel QQ plot; 105 

 Step 4 aims at analysing the partial effect of each input variable (i.e. the smooth non-linear term, see Eq. 4 in Sect. 

2.3) to assess the influence of the different GEV parameters; 

 Step 5 aims at deriving the seismic FC by evaluating the failure probability 𝑃𝑓(𝑖𝑚, 𝒖) =

𝑃(𝐸𝐷𝑃 ≥ 𝑡ℎ|𝐼𝑀 = 𝑖𝑚, 𝑼 = 𝒖). 

For step 5, the following procedure is conducted to account for the mechanical and geometrical uncertainties: 110 

 Step 5.1: the considered IM is fixed at a given value; 

 Step 5.2: for the considered IM value, a large number (here chosen at n=1000) of mechanical and geometrical 

parameters are randomly and uniformly sampled within their respective bounds of variation; 

 Step 5.3: for each of the randomly selected parameters and for the considered IM value, the failure probability is 

estimated; 115 

 Return to step 5.1. 

The procedure of Step 5 provides a set of n FCs from which we can derive the median FC as well as the uncertainty bands 

based on the pointwise confidence intervals at different levels. 

2.2 GEV distribution 

The cumulative distribution function (CDF) of the Generalized Extreme Value (GEV) probability model holds as follows: 120 

 

P(EDP ≤ edp) = exp (− (1 +  (
edp−µ


))

−1/

),        (3) 

where edp is the variable of interest; µ,  and  are the GEV location, scale, and shape parameters, respectively. Depending 

on the value of the shape parameter, the GEV distribution presents an asymptotic horizontal behaviour for ξ<0 (i.e. the 
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asymptotically–bounded distribution, which corresponds to the Weibull distribution); unbounded when ξ>0 (i.e. high 125 

probability of occurrence of great values can be reached, which corresponds to the Fréchet distribution); and intermediate in 

the case of ξ=0 (Gumbel distribution).  

 

Fig. 1a illustrates the behaviour of the GEV density distribution for µ=12.5, =0.25 and different ξ values: the higher ξ, the 

heavier the tail. Fig. 1b,c further illustrates how changes in the other parameters (respectively the location and the scale) affect 130 

the density distribution. The location primarily translates the whole density distribution, while the scale affects the tail and to 

a lesser extent (for the considered case) the mode. 

 

 

Figure 1: Behaviour of the GEV density distributions depending on the changes in the parameter value: (a) ξ (with µ fixed at 12.5, 135 
and  fixed at 0.25); (b) µ (with ξ fixed at 0.5, and  fixed at 0.25); (c)  (with µ fixed at 12.5, and ξ fixed at 0.5). 

 

2.3 Nonstationary GEV 

The GEV distribution is assumed to be nonstationary in the sense that the GEV parameters =(µ,,) vary as a function of x 

the vector of input variables, which include IM and the uncertain input variables U (as described in the introduction). The 140 

fitting is performed within the general framework of Generalized Additive Model for Location, Scale and Shape parameter 

(GAMLSS; e.g., Rigby and Stasinopoulos, 2005). Since the scale parameter satisfies >0, we preferably work with its log-

transformation, which is denoted l. In the following, we assume that  follows a semi-parametric additive formulation as 

follows: 

 145 



(𝒙) = ∑ 𝑓𝑗(𝑥𝑗)𝐽

𝑗=1 ,           (4) 

where J is the number of functional terms that is generally inferior to the number of input variables (see Sect. 2.3), fj(.) 

corresponds to a univariate smooth non-linear model described as follows: 
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𝑓𝑗(𝑥) = ∑ 𝛽𝑗𝑏𝑏𝑏(𝑥)𝑏 ,           (5) 150 

with 𝑏𝑏(. )  the thin plate spline basis function (Wood, 2003) and 
𝑗
 the regression coefficients for the considered smooth 

function.  

These functional terms (termed as partial effect) hold the information of each parameter’s individual effect on the considered 

GEV parameter. The interest is to model the relationship between each GEV parameter and the input variables flexibly. 

Alternatives approach would assume a priori functional relationships (like linear or of polynomial form), which may not be 155 

valid. 

The model estimation consists in evaluating the regression coefficients  (associated to the GEV parameters ) by maximizing 

the log-likelihood l(.) of the GEV distribution. To avoid overfitting, the estimation is based on the penalized version of l(.) to 

control the roughness of the smooth functional terms (hence their complexity) as follows: 

 160 

argmax
𝛽

(𝑙() −
1

2
∑ j𝜷

𝑇𝑺𝑗𝜷𝑗 ),          (6) 

where j controls the extent of the penalisation (i.e. the trade-off between goodness-of-fit and smoothness), and 𝑺𝑗 is a matrix 

of known coefficients (such that the terms in the summation measure the roughness of the smooth functions). Computational 

methods and implementation details are detailed in (Wood et al., 2016 and references therein). 

2.4 Variable selection 165 

The introduction of the penalisation coefficients in Eq. 6 has two effects: they can penalize how “wiggly” a given term is (i.e. 

it has a smoothing effect) and they can penalize the absolute size of the function (i.e. it has a shrinkage effect). The second 

effect is of high interest to screen out input variables of negligible influence. However, the penalty can only affect the 

components that have derivatives, i.e. the set of smooth non-linear functions termed as the “range space”. Completely smooth 

functions (including constant or linear functions), which belong to the “null space” are however not influenced by Eq. 6. For 170 

instance, for one-dimensional thin plate regression splines, a linear term might be left in the model, even when the penalty 

value is very large (as λ → ∞); this means that the afore-described procedure does not ensure that an input variable of negligible 

influence will completely be filtered out of the analysis (with corresponding regression coefficient shrunk to zero). The 

consequence is that Eq. 6 does not usually remove a smooth term from the model altogether (Marra and Wood, 2011). To 

overcome this problem, a double-penalty procedure was proposed by Marra and Wood (2011) based on the idea that the space 175 

of a spline basis can be decomposed in the sum of two components, one associated with the functions in the penalty null space 

and the other with the penalty range space. This double-penalty procedure is adopted in the following. 
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3 Application case 

This section provides details on the test-case on which the proposed statistical methods (Sect. 2) for the derivation of FCs are 

demonstrated. The numerical model of the main steam line of a nuclear reactor is described in Sect. 3.1. A set of ground-180 

motion records (Sect. 3.2) is applied to assess the seismic fragility of this essential component of a nuclear power plant. 

3.1 Structural model 

The 3-D model of a steam line and its supporting structure (i.e., the containment building, see schematic overview in Fig. 2a), 

previously assembled by Rahni et al. (2017) in the CAST3M finite-element software (Combescure et al., 1982), is introduced 

here as an application of the seismic fragility analysis of a complex engineered object. The containment building consists of a 185 

double-wall structure: the inner wall (reinforced pre-stressed concrete) and the outer wall (reinforced concrete) are modelled 

with multi-degree-of-freedom stick elements (see Fig. 2b). The steel steam line is modelled by means of beam elements, 

representing pipe segments and elbows, as well as several valves, supporting devices and stops at different elevations of the 

supporting structure.  

 190 

Figure 2: (a) Schematic overview of a nuclear power plant (adapted from nucleus.iaea.org); The red rectangles indicate the main 

components represented in the structural model. (b) Stick model of the containment building; (c) Steam line beam model, originally 

built by Rahni et al. (2017). The red circle indicates the location of the vertical stop. 

 

The objective of the fragility analysis is to check the integrity of the steam line: one of the failure criteria identified by Rahni 195 

et al. (2017) is the effort calculated at the location corresponding to a vertical stop along the steam line (Fig. 2c). Failure is 

assumed when the maximum transient effort exceeds the stop’s design effort, i.e. EDP ≥ 775 kN (i.e. 13.56 in log-scale). The 

model also accounts for epistemic uncertainties due to the identification of some mechanical and geometrical parameters; 

namely the Young’s modulus of the inner containment, the damping ratio of the structural walls and of the steam line, and the 

thickness of the steam line along various segments of the assembly. The variation range of the ten selected parameters, 200 
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constituting the vector U of uncertain factors (see Eq. 2), is detailed in Table 1. A uniform distribution is assumed for these 

parameters following the values provided by Rahni et al. (2017). 

 

Table 1. Input parameters of the numerical model, according to Rahni et al. (2017). 

Variable Description Uniform distribution interval 

EIC Young’s Modulus – Inner containment [27700 – 45556] MPa 

ξRPC Damping ratio – reinforced pre-stressed concrete [4 – 6] % 

ξRC Damping ratio – reinforced concrete [6 – 8] % 

e1 Pipe thickness – Segment #1 [29.8 – 38.3] mm 

e2 Pipe thickness – Segment #2 [33.3 – 42.8] mm 

e3 Pipe thickness – Segment #3 [34.1 – 43.9] mm 

e4 Pipe thickness – Segment #4 [33.3 – 42.8] mm 

e5 Pipe thickness – Segment #5 [53.4 – 68.6] mm 

e6 Pipe thickness – Segment #6 [34.1 – 43.9] mm 

ξSL Damping ratio – steam line [1 – 4] % 

 205 

3.2 Dynamic structural analyses 

A series of non-linear time-history analyses are performed on the 3-D model by applying ground-motion records (i.e., 

acceleration time-histories) at the base of the containment building in the form of a 3-component loading. In the CAST3M 

software, the response of the building is first computed, and the resulting displacement time-history along the structure is then 

applied to the steam line model, in order to record the effort demands during the seismic loading. 210 

To this end, natural ground-motion records are selected and scaled using the conditional spectrum method described by Lin et 

al. (2013). In this manner, the scaling of a set of natural records is carried out to some extent, while preserving the consistency 

of the associated response spectra. The steps of this procedure hold as follows: 

 Selection of scaling levels: the acceleration response spectrum is chosen to be conditioned at the period T1=0.38s, 

which corresponds to the fundamental mode of the structural model. Six scaling levels are selected and correspond to 215 

return periods from 20 years to 20,000 years. 

 Identification of reference earthquakes: a reference earthquake scenario is identified for each scaling level by means 

of a probabilistic seismic hazard disaggregation at the studied site. The corresponding target response spectrum is 

then generated. 
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 Selection of ground-motion records that are spectrum compatible using the procedure by Jayaram et al. (2011): 220 

records are selected from the PEER database1 (Ancheta et al., 2014), which consist of 30 records for each of the 6 

scaling levels; i.e., in total, 180 ground-motion records. 

Two distinct cases are considered for the derivation of FCs, depending on whether parametric uncertainties are included in the 

statistical model or not: 

 Case #1 (without parametric uncertainties): A first series of numerical simulations are performed by keeping the 225 

mechanical and geometrical parameters fixed at their best estimate values, i.e. the mid-point of the distribution 

intervals detailed in Table 1. The 180 ground-motion records are applied to the deterministic structural model, 

resulting in a database of 180 IM-EDP points, with PGA chosen as the IM.  

 Case #2 (with parametric uncertainties): A second series of numerical simulations are performed by accounting for 

parametric uncertainties. This is achieved by randomly varying the values of the mechanical and geometrical input 230 

parameters of the numerical model (Table 1) using the Latin Hypercube Sampling technique (Mc Kay et al., 1979). 

A total number of 360 numerical simulations are performed (using 180 ground-motion records). 

Fig. 3 provides the evolution of lEDP (log-transformed of EDP) versus lPGA (log-transformed PGA) for both cases. We can 

note that only a few simulation runs (5 for Case #1 and 8 for Case #2) lead to the exceedance of the acceptable demand 

threshold. 235 

 

 

Figure 3: Evolution of lEDP (log-transformed EDP) as a function of lPGA (log-transformed PGA) for Case #1 (a) without parametric 

uncertainty, and for Case #2 (b) with parametric uncertainty. The horizontal dashed line indicates the acceptable demand threshold. 

                                                           
1 https://ngawest2.berkeley.edu/ 
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4 Applications 240 

In this section, we apply the proposed procedure to both cases described in Sect. 3.2. Sect. 4.1 and 4.2 respectively describes 

the application for deriving the FCs without and with parametric uncertainty. The analysis is here focused on the log-

transformed PGA (denoted lPGA) to derive the FC. 

4.1 Case #1 Derivation of seismic FC without parametric uncertainties 

A series of different probabilistic models (Table 2) were fitted to the database of IM-EDP points described in Sect. 3.2 (Fig. 245 

3a). Three different probabilistic models (Normal, Tweedie, GEV) and two types of effects on the probabilistic model’s 

parameters were tested (linear or non-linear). Note that the Tweedie distribution corresponds to a family of exponential 

distributions which takes as special cases the Poisson distribution and the Gamma distribution (Tweedie, 1984). 

 

Table 2. Description of the probabilistic model used to derive the FCs 250 

Model name Probability model Type of relationship 

NOlin1 Normal Linear effect on the mean 

NOlin2 Normal Linear effect on the mean and variance 

NOsmo1 Normal Non-Linear smooth effect on the mean 

NOsmo2 Normal Non-Linear smooth effect on the mean and the 

variance 

GEVlin1 GEV Linear effect on the location 

GEVlin2 GEV Linear effect on the location and scale 

GEVlin3 GEV Linear effect on the location, scale and shape 

GEVsmo1 GEV Non-Linear smooth effect on the location 

GEVsmo2 GEV Non-Linear smooth effect on the location and 

scale 

GEVsmo3 GEV Non-Linear smooth effect on the location, scale 

and shape 

TWElin1 Tweedie Linear effect on the location 

TWEsmo1 Tweedie Non-Linear smooth effect on the location 

 

The corresponding AIC and BIC were evaluated (Fig. 4), which shows that GEVsmo2 model should preferably be selected. 

These criteria suggest that both models, GEVsmo3 and GEVsmo2 are valid (as indicated by the low values for AIC and BIC). 

The analysis of the regression coefficients of GEVsmo3 shows that the penalisation procedure imposes all coefficient of the 

shape parameters to be zero, which indicates that lPGA only acts on the location and scale parameters. This provides further 255 

https://doi.org/10.5194/nhess-2019-400
Preprint. Discussion started: 13 December 2019
c© Author(s) 2019. CC BY 4.0 License.



11 

 

support in favour of GEVsmo2, i.e. a GEV distribution with non-linear smooth term for the location and scale parameters only. 

The estimated shape parameter reaches here a constant value of 0.07 (+/-0.05), hence indicating a behaviour close to the 

Gumbel domain. We also note that the analysis of the AIC and BIC values would have favoured the selection of NOsmo2 if 

the GEV model had not been taken into account, i.e. a heteroscedastic log-normal FC. 

 260 

 

Figure 4: Model selection criteria (AIC (a) and BIC (b)) for the different models described in Table 2 considering the derivation of 

a FC without parametric uncertainty. 

 

The examination of the QQ plots (Fig. 5a) of the model deviance residuals (conditional on the fitted model coefficients and 265 

scale parameter) shows a clear improvement of the fitting; in particular for large theoretical quantiles above 1.5 (the dots better 

aligned along the first bisector in Fig. 5b). The Gumbel QQ plot (Fig. 5c) also indicates a satisfactory fitting of the GEV model.  
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Figure 5: QQ plots to check the validity of the considered model with respect to: (a) the deviance residuals for the NOsmo2 model 270 
(b) the deviance residuals for the GEVsmo2 model without parametric uncertainty; (c) the Gumbel quantiles. 

 

Fig. 6a,b respectively provides the evolution of the partial effect with respect to the location and to the scale parameter. We 

note that the assumption of the relationship between EDP and lPGA is non-linear (contrary to the widely-used assumption). 

An increase in lPGA both induces an increase of µ and of l, hence a shift of the density (as illustrated in Fig. 1b) and an 275 

impact on the tail (as illustrated in Fig. 1c). 

 

 

Figure 6: Partial effect of (a) PGA on the GEV location parameter; (b) PGA on the log-transformed GEV scale parameter. The red-

coloured bands are defined by 2 standard errors above and below the estimate. 280 

Based on Fig. 6, we evaluate the failure probability (Eq. 2) to derive the corresponding GEV-based FC, which is compared to 

the one based on the normal assumption (Fig. 7). This shows that the failure probability would have been under-estimated by 
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a factor of ~4 if the selection of the probability model had not been applied (i.e. if the widespread assumption of normality had 

been used).  

 285 

Figure 7: Fragility Curve (that relates the failure probability Pf to PGA) considering the GEV-based approach with non-linear 

smooth terms of the location and of the scale parameter (termed as GEVsmo2, black line) and considering the approach based on 

the normal assumption (termed as NOsmo2, red line). 

 

4.2 Case #2 Derivation of seismic FC with parametric uncertainties 290 

In this case, the FCs were derived by accounting not only for lPGA but also for 10 additional uncertain parameters (Table 1). 

 

Figure 8: Model selection criteria (AIC (a) and BIC (b)) for the different models described in Table 2 considering the derivation of 

a vector-based FC with parametric uncertainty. 
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The AIC and BIC values for the different probabilistic models (described in Table 2) were evaluated (Fig. 8), which shows 295 

that GEVsmo2 model should preferably be selected. This indicates that the location and scale parameters are non-linear smooth 

functions of IM and of the uncertain parameters. The estimated shape parameter reaches here a constant value of -0.24 (+/-

0.06), hence indicating a Weibull tail behaviour. Similarly as for the analysis without parametric uncertainties (Sect. 4.1), we 

note that the AIC and BIC values would have favoured the selection of NOsmo2 if the GEV model had not been taken into 

account. 300 

The examination of the QQ plots (Fig. 9) of the model deviance residuals (conditional on the fitted model coefficients and 

scale parameter) shows an improvement of the fitting; in particular for large theoretical quantiles above 1.0 (the dots better 

aligned along the first bisector in Fig. 9b). The Gumbel QQ plot (Fig. 9c) also indicates a very satisfactory fitting of the GEV 

model.  

 305 

Figure 9: QQ plots to check the validity of the considered model with respect to: (a) the deviance residuals for the NOsmo2 model 

(b) the deviance residuals for the GEVsmo2 model with parametric uncertainty; (c) the Gumbel quantiles. 

 

Fig. 10 provides the evolution of the partial effects with respect to the location parameter. Several observations can be made: 

 Fig. 10a show quasi-similar partial effect for lPGA (Fig. 6a); 310 

 Three among the ten uncertain parameters were filtered out by the procedure of Sect. 2.4, namely two mechanical 

parameters (the damping ratio of reinforced pre-stressed concrete RPC, and the damping ratio of the steam line SL) 

and one geometrical parameter (the pipe thickness of segment #2). As an illustration, Fig. 10e depicts the partial effect 

of a parameter, which was identified as of negligible influence: here, the partial effect of e2 is shrunk to zero; 

 Three thickness parameters (e1, e4, e5) present an increasing linear effect on µ (Fig. 10d,g,h); 315 

 Two parameters (the Young’s Modulus of the inner containment EIC and the thickness e3) present a decreasing linear 

effect on µ (Fig. 10b,f); 

 The damping ratio of the reinforced concrete RC presents a non-linear effect with a minimum value at around 0.0725 

(Fig. 10c); 
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 The thickness e6 presents a non-linear effect with a maximum value at around 0.04 (Fig. 10i). 320 

 

Figure 10: Partial effect on the GEV location parameter. The red-coloured bands are defined by 2 standard errors above and below 

the estimate. 

 

Fig. 11 provides the evolution of the partial effects with respect to the (log transformed) scale parameter. We show here that a 325 

larger number of input parameters were filtered out by the selection procedure i.e. only the thickness e5 is selected as well as 
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the damping ratios of the concrete structures. The partial effects are all non-linear, but with larger uncertainty than for the 

location parameter (compare the widths of the red-coloured uncertain bands in Fig. 10 and 11). We also note that the partial 

effect for lPGA is quasi-similar to Fig. 6b. 

 330 

Figure 11: Partial effect on the log-transformed GEV scale parameter. The red-coloured bands are defined by 2 standard errors 

above and below the estimate. 

 

Based on the results of Fig. 10 and 11, the FC is derived by accounting for the mechanical and geometrical uncertainties by 

following the procedure in Sect. 2.1 (step 5). Fig. 12a presents the median FC together with the uncertainty induced by the 335 

mechanical and geometrical parameters. We show that the GEV-based FC is less steep than for the one without uncertainty 

(Fig. 6): this is mainly related to the value of the shape parameter (close to Gumbel for case #2 without uncertainty and of 

Weibull behaviour for case # 1 with uncertainty). Fig. 12a also outlines that the uncertainty on the mechanical and geometrical 

parameters have a non-negligible influence as shown by the width of the uncertainty bands. Compared to the widely-used 
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assumption of normality (Fig. 12b), we reach the same conclusions as for Sect. 4.1, namely an under-estimation of the failure 340 

probability when using this assumption, here by a factor of ~3 (by comparing the median FCs). 

 

Figure 12: Fragility curve (that relates the failure probability Pf to PGA) considering the uncertain mechanical and geometrical 

parameters. (a) GEV-based FC; (b) FC based on the normal assumption. The red-coloured band are defined based on the pointwise 

confidence intervals derived from the set of FCs (see text for details). 345 

 

The interest of incorporating the mechanical parameters directly in the equation of the FC is the ability to study how the FC in 

Fig. 12 evolves as a function of the parametric uncertainties, hence to identify regions of the parameters’ values leading to 

large failure probability. This is illustrated in Fig. 13, where the FC is modified depending on the value of the thickness e4. 

Here larger e4 induces a steeper FC. This appears to be in agreement with the increasing effect of e4 as shown in Fig. 10g. 350 

 

 

Figure 13: Fragility curve (that relates the failure probability Pf to PGA) by considering the thickness e4 fixed at a constant value 

of: (a) 0.02m; (b) 0.038m; (c) 0.05m, while accounting for the variability of the other uncertainties. 

 355 
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5 Discussion and conclusion 

The current study has focused on the problem of seismic fragility curve derivation for nuclear power plant safety analysis. We 

propose a procedure based on the non-stationary GEV distribution to model, in a flexible manner, the tail behaviour of the 

EDP as a function of the considered IM. The key ingredient is the use of non-linear smooth functional EDP-IM relationships 

that are learnt from the data (to overcome limits 2 and 3 as highlighted in the introduction), which avoids the introduction of 360 

any a priori assumption on the shape/form of these relationships. The application to a nuclear power plant’s steam line and its 

supporting structure highlights how the application of the (log-)normal fragility curve (to overcome limit 1) would under-

estimate the failure probability compared to the GEV-based one. This result brings an additional element against the uncritical 

use of the (log-)normal fragility curve (see discussions by Karamlou and Bocchini, 2015; Mai et al., 2017; Zentner et al., 2017, 

among others). We further proposed to incorporate the mechanical and geometrical parameters in the derivation of the fragility 365 

curve (using advanced penalisation procedures). This enables us to outline which of these parametric uncertainties have 

negligible influence on the failure probability as well as the nature of the influence (linear, non-linear, decreasing, increasing, 

etc.) with respect to each of the GEV parameters (to overcome limit (4)). 

The current study should be considered a feasibility assessment of non-stationary GEV tools for FC derivations. Several lines 

of future research are however identified. From an earthquake engineering viewpoint, the proposed procedure has focused on 370 

a single IM (here PGA), but any other IMs could easily be incorporated similarly as for the mechanical and geometrical 

parameters to derive vector-based fragility curves as done by Gehl et al. (2019) using the same structure. The proposed 

penalisation approach can be seen as a valuable option to solve a recurrent problem in this domain, namely the identification 

of most important IMs (see discussion by Gehl et al., 2013 and references therein).  

From a methodological viewpoint, the derivation of the fragility curves was done using the best estimate of the partial effects. 375 

Due to the limited number of observations, these functional terms are associated to uncertainties, which should be integrated 

in the analysis. Bayesian techniques within framework of GAMLSS (Umlauf et al., 2018) are promising options to overcome 

this problem. Finally, combining the proposed penalisation with tools of global sensitivity analysis (like Borgonovo et al., 

2013) is worth testing in future work to improve the interpretability of the procedure. 
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