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Abstract. Fragility curves (FC) are key tools for seismic probabilistic safety assessments that are performed at the level of the 

nuclear power plant (NPP). These statistical methods relate the probabilistic seismic hazard loading at the given site and the 

required performance of the NPP safety functions. In the present study, we investigate how the tools of non-stationary extreme 10 

value analysis can be used to model in a flexible manner the tail behaviour of the engineering demand parameter as a function 

of the considered intensity measure. We focus the analysis on the dynamic response of an anchored steam line and of a 

supporting structure under seismic solicitations. The failure criterion is linked to the exceedance of the maximum equivalent 

stress at a given location of the steam line. A series of three-component ground-motion records (~300) were applied at the base 

of the model to perform non-linear time history analyses. The set of numerical results was then used to derive a FC, which 15 

relates the failure probability to the variation of peak ground acceleration (PGA). The probabilistic model of the FC is selected 

via information criteria completed by diagnostics on the residuals, which support the choice of the generalized extreme value 

GEV distribution (instead of the widely used log-normal model). The GEV distribution is here non-stationary and the 

relationships of the GEV parameters (location, scale and shape) are established with respect to PGA using smooth non-linear 

models. The procedure is data-driven, which avoids the introduction of any a priori assumption on the shape/form of these 20 

relationships. To account for the uncertainties in the mechanical and geometrical parameters of the structures (elastic stiffness, 

damping, pipeline thicknesses, etc.), the FC is further constructed by integrating these uncertain parameters. A penalisation 

procedure is proposed to set to zero the variables of little influence in the smooth non-linear models. This enables us to outline 

which of these parametric uncertainties have negligible influence on the failure probability as well as the nature of the influence 

(linear, non-linear, decreasing, increasing, etc.) with respect to each of the GEV parameters. 25 

1 Introduction 

A crucial step of any seismic Probability Risk Assessment (PRA) is the vulnerability analysis of structures, systems and 

components (SSC) with respect to the external loading induced by earthquakes. To this end, fragility curves (FC), which relate 

the probability of an SSC to exceed a predefined damage state as a function of an intensity measure (IM) representing the 

hazard loading, are common tools. Formally, FC expresses the conditional probability with respect to the IM value (denoted 30 
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im) and to the EDP engineering demand parameter obtained from the structural analysis (e.g. force, displacement, drift ratio, 

etc.) as follows: 

 

𝑃௙(𝑖𝑚) = 𝑃(𝐸𝐷𝑃 ≥ 𝑡ℎ|𝐼𝑀 = 𝑖𝑚),          (1) 

where th is an acceptable demand threshold. 35 

FCs are applied on a large variety of different structures like residential buildings (e.g. Gehl et al., 2013), nuclear power plant 

(Zentner et al., 2017), wind turbines (Quilligan et al., 2012), underground structures (Argyroudis and Pitilakis, 2012), etc. 

Their probabilistic nature make them well suited for PRA applications, at the interface between probabilistic hazard 

assessments and event tree analyses, in order to estimate the occurrence rate of undesirable top events.  

Different procedures exist to derive FCs (see e.g. an overview by Zentner et al., 2017). In the present study, we focus on the 40 

analytical approach, which aims at deriving a parametric cumulative distribution function (CDF) from data collected from 

numerical structural analyses. A common assumption in the literature is that the logarithm of im is normally distributed (e.g., 

Ellingwood, 2001) as follows: 

 

𝑃௙(𝑖𝑚) =  ቀ
୪୭୥(௜௠)ି୪୭୥ ()


ቁ,          (2) 45 

where  is the standard normal cumulative distribution function, α is the median and β is lognormal standard deviation. The 

parameters of the normal distribution are commonly estimated either by maximum likelihood estimation (see e.g., Shinozuka 

et al., 2000) or by fitting a linear probabilistic seismic demand model in the log-scale (e.g., Banerjee and Shinozuka, 2008). 

This procedure faces, however, limits in practice:  

 Limit (1): the assumption of normality may not always be valid in all situations as discussed by Mai et al. (2017) and 50 

Zentner et al. (2017). This widely-used assumption is especially difficult to justify when the considered EDP 

corresponds to the maximum value of the variable of interest (for instance maximum transient stress value), i.e. when 

the FC serves to model extreme values; 

 Limit (2): a second commonly-used assumption is the homoscedasticity of the underlying probabilistic model, i.e. the 

variance term  is generally assumed to be constant over the domain of the IM;  55 

 Limit (3): the assumption of linearity regarding the relation between the median and IM may not always hold valid as 

shown for instance by Wang et al. (2018) using artificial neural networks;  

 Limit (4): a large number of factors may affect the estimate of Pf in addition to IM; for instance epistemic uncertainties 

due to the identification/characterization of some mechanical (e.g., elastic stiffness, damping ratio, etc.) and 

geometrical parameters of the considered structure.  60 
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The current study aims at going a step forward in the development of seismic FCs by improving the procedure regarding the 

afore-mentioned limits. To deal with limit (1), we propose to rely on the tools of extreme value statistics (Coles, 2001) and 

more specifically on the Generalised Extreme Value (GEV) distribution, which can model different extremes’ behaviour.  

Note that the focus is on the extremes related to EDP, not on the forcing, i.e. the analysis does not model the extremes of IM 65 

as it is done for current practices of probabilistic seismic hazard analysis (see e.g., Dutfoy, 2019). This means that no 

preliminary screening is applied, which implies that the FC derivation is conducted by considering both large and intermediate 

earthquakes, i.e. small-to-moderate to large IM values. 

The use of GEV is examined using criteria for model selection like Akaike or Bayesian Information Criteria (Akaike, 1998; 

Schwarz, 1978). Limits (2) and (3) are addressed using tools for distributional regression (e.g., Koenker et al., 2013) within 70 

the general framework of Generalized Additive Model for Location, Scale and Shape parameter (GAMLSS; e.g., Rigby and 

Stasinopoulos, 2005). GAMLSS is very flexible in the sense that the mathematical relation of the median and variance in Eq. 

1 can be learnt from the data via nonlinear smooth functions. GAMLSS can be applied to any parametric probabilistic model, 

and here to the GEV model as a particular case. This enables us to fit a non-stationary GEV model, i.e. a GEV model for which 

the parameters vary as a function of some covariates (here corresponding to IM and U). The use of data-driven nonlinear 75 

smooth functions avoids introducing a priori model like linear or polynomial as many authors do (see an example by for sea 

level extremes by Wong (2018), and for temperature by Cheng et al., 2014).  

Finally, accounting for the epistemic uncertainties in the FC derivation (limit (4)) can be conducted in different manners. A 

first option can rely on the incremental dynamic analysis (IDA), where the uncertain mechanical/geometrical parameters result 

in uncertain capacities (i.e. related to the threshold th in Eq. (1)). The FC is then derived through convolution with the 80 

probabilistic distribution of the demand parameter; see Vamvatsikos and Cornell (2002). Depending on the complexity of the 

system (here for NPP), the adaptation of IDA to non-linear dynamic structural numerical simulations can be tedious (this is 

further discussed in Sect. 3.1). In the present study, we preferably opt for a second approach by viewing Pf as conditional on 

the vector of uncertain mechanical and geometrical factors U (in addition to IM), namely: 

 85 

𝑃௙(𝑖𝑚, 𝒖) = 𝑃(𝐸𝐷𝑃 ≥ 𝑡ℎ|𝐼𝑀 = 𝑖𝑚, 𝑼 = 𝒖),        (3) 

 

Dealing with Eq. (3) then raises the question of integrating a potentially large number of variables, which might hamper the 

stability and quality of the procedure for FC construction. This is handled with a penalisation procedure (Marra and Wood, 

2011), which enables the analysist to screen the uncertainties of negligible influence. 90 

The paper is organised as follows. Section 2 describes the statistical methods to derive non-stationary GEV-based seismic 

fragility curves. Then, in Section 3, we describe a test-case related to the seismic fragility assessment for a steam line of a 

nuclear power plant. For this case, the derivation of FC is performed by considering the widely-used IM in the domain of 

seismic engineering, namely Peak Ground Acceleration (PGA). Finally, the proposed procedure is applied in Section 4 on two 

cases, without and with epistemic uncertainties, and the results are discussed in Section 5. 95 



4 
 

2 Statistical methods 

In this section, we first describe the main steps of the proposed procedure for deriving the FC (Sect. 2.1). The subsequent 

sections provide technical details on the GEV probability model (Sect. 2.2), its non-stationary formulation and implementation 

(Sect. 2.3) within the GAMLSS framework and its combination with variable selection (Sect. 2.4). 

2.1 Overall procedure 100 

To derive the seismic FC, the following overall procedure is proposed: 

 Step 1 consists in analysing the validity of using the GEV distribution with respect to alternative probabilistic models 

(like the normal distribution of Eq. 2 in particular); 

 Depending on the results of step 1, step 2 aims at fitting the non-stationary GEV model using the double penalisation 

formulation described in Sect. 2.2 and 2.3; 105 

 Step 3 aims at producing some diagnostic information about the fitting procedure and results. The first diagnostic test 

uses the QQ plot of the model deviance residuals (conditional on the fitted model coefficients and scale parameter) 

formulated by Augustin et al. (2012). If the model distributional assumptions are met then the QQ plot should be 

close to a straight line. The second diagnostic test relies on a transformation of the data to a Gumbel distributed 

random variable (e.g. Beirlant et al., 2004) and on an analysis of the corresponding Gumbel QQ and PP plot; 110 

 Step 4 aims at analysing the partial effect of each input variable (i.e. the smooth non-linear term, see Eq. 4 in Sect. 

2.3) to assess the influence of the different GEV parameters; 

 Step 5 aims at deriving the seismic FC by evaluating the failure probability 𝑃௙(𝑖𝑚, 𝒖) =

𝑃(𝐸𝐷𝑃 ≥ 𝑡ℎ|𝐼𝑀 = 𝑖𝑚, 𝑼 = 𝒖). The following procedure is conducted to account for the epistemic uncertainties: 

 Step 5.1: the considered IM is fixed at a given value; 115 

 Step 5.2: for the considered IM value, a large number (here chosen at n=1,000) of U samples are randomly 

generated; 

 Step 5.3: for each of the randomly generated U samples, the failure probability is estimated for the considered 

IM value; 

 Return to step 5.1. 120 

The result of the procedure corresponds to a set of n FCs from which we can derive the median FC as well as the uncertainty 

bands based on the pointwise confidence intervals at different levels. These uncertainty bands thus reflect the impact of the 

epistemic uncertainty related to the mechanical/geometrical parameters. Due to the limited number of observations, the derived 

FC is associated to the uncertainty on the fitting of the probabilistic model (e.g., GEV or Gaussian) as well. To integrate this 

fitting uncertainty in the analysis, step 5 can be extended by randomly generating parameters of the considered probabilistic 125 

model at step 5.2 (by assuming that they follow a multivariate Gaussian distribution). 
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2.2 Model selection 

Selecting the most appropriate probabilistic models is achieved by means of information criteria as recommended in the domain 

of non-stationary extreme value analysis (e.g., Kim et al., 2017; Salas and Obeysekera, 2014), and more particularly 

recommended for choosing among various fragility models (e.g. Lallemant et al., 2015); see also an application of these criteria 130 

in the domain of nuclear safety by Zentner (2017). We focus on two information criteria, namely Akaike and Bayesian 

Information Criteria (Akaike, 1998; Schwarz, 1978), respectively denoted AIC and BIC whose formulation holds as follows: 

 

AIC = 2 log(𝑙) + 2k

BIC = 2 log(𝑙) + klog(n)
,           (4) 

 135 

where l(.) is the log-likelihood of the considered probability model, k is the number of parameters, n is the size of the dataset 

used to fit the probabilistic model.  

Though both criteria share similarities in their formulation, they provide different perspectives on model selection:  

- AIC-based model selection considers a model to be a probabilistic attempt to approach the “infinitely complex data-

generating truth – but only approaching not representing” (Höge et al. 2018: Table 2). This means that AIC-based 140 

analysis aims at addressing which model will predict the best the next sample, i.e. it provides a measure of the 

predictive accuracy of the considered model (Aho et al., 2014: Table 2); 

- The purpose of BIC-based analysis considers each model as a “probabilistic attempt to truly represent the infinitely 

complex data-generating truth” (Höge et al. 2018: Table 2) assuming that the true model exists and is among the 

candidate models. This perspective is different from the one of AIC and focuses on an approximation of the marginal 145 

probability of the data (here lEDP) given the model (Aho et al., 2014: Table 2), and gives insights on which model 

generated the data, i.e. it measures goodness of fit. 

The advantage of testing both criteria is to account for both perspectives on model selection, predictive accuracy and goodness 

of fit, while enabling to penalize too complex models; BIC generally penalizing more strongly than does the AIC. Since the 

constructed models use penalisation for the smoothness, we use the formulation provided by Wood et al. (2016: Sect. 5) to 150 

account for the smoothing parameter uncertainty. 

Yet, selecting the most appropriate model may not be straightforward in all situations when two model candidates present 

close AIC/BIC values. For instance, Burnham & Anderson (2004) suggests an AIC difference (relative to the minimum value) 

of at least 10 to support the ranking between model candidates with confidence. If this criterion is not met, we propose to 

complement the analysis by the likelihood ratio test LRT (e.g., Panagoulia et al., 2014: Sect. 2), which compares two 155 

hierarchically nested GEV formulations using L=-2(l0-l1), where l0 is the maximized log-likelihood of the simpler model M0 

and l1 is the one of the more complex model M1 (that presents q additional parameters compared to M0 and contains M0 as a 

particular case). The criterion L follows a chi-squared distribution with q degrees of freedom, which allows deriving a p-value 

of the test. 
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2.3 Non-stationary GEV distribution 160 

The cumulative distribution function (CDF) of the Generalized Extreme Value (GEV) probability model holds as follows: 

 

P(EDP ≤ edp) = exp ቆ− ൬1 +  ቀ
ୣୢ୮ µ


ቁ൰

ିଵ/
ቇ,        (5) 

where edp is the variable of interest; µ,  and  are the GEV location, scale, and shape parameters, respectively. Depending 

on the value of the shape parameter, the GEV distribution presents an asymptotic horizontal behaviour for ξ<0 (i.e. the 165 

asymptotically–bounded distribution, which corresponds to the Weibull distribution); unbounded when ξ>0 (i.e. high 

probability of occurrence of great values can be reached, which corresponds to the Fréchet distribution); and intermediate in 

the case of ξ=0 (Gumbel distribution).  

 

Fig. 1a illustrates the behaviour of the GEV density distribution for µ=12.5, =0.25 and different ξ values: the higher ξ, the 170 

heavier the tail. Fig. 1b,c further illustrates how changes in the other parameters (respectively the location and the scale) affect 

the density distribution. The location primarily translates the whole density distribution, while the scale affects the tail and to 

a lesser extent (for the considered case) the mode. 

 

 175 

Figure 1: Behaviour of the GEV density distributions depending on the changes in the parameter value: (a) ξ (with µ fixed at 12.5, 
and  fixed at 0.25); (b) µ (with ξ fixed at 0.5, and  fixed at 0.25); (c)  (with µ fixed at 12.5, and ξ fixed at 0.5). 

 

The GEV distribution is assumed to be nonstationary in the sense that the GEV parameters =(µ,,) vary as a function of x 

the vector of input variables, which include IM and the uncertain input variables U (as described in the introduction). The 180 

fitting is performed within the general framework of Generalized Additive Model for Location, Scale and Shape parameter 

(GAMLSS; e.g., Rigby and Stasinopoulos, 2005). Since the scale parameter satisfies >0, we preferably work with its log-
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transformation, which is denoted l. In the following, we assume that  follows a semi-parametric additive formulation as 

follows: 

 185 

(𝒙) = ∑ 𝑓௝(𝑥௝)௃
௝ୀଵ ,           (6) 

where J is the number of functional terms that is generally inferior to the number of input variables (see Sect. 2.3), fj(.) 

corresponds to a univariate smooth non-linear model described as follows: 

 

𝑓௝(𝑥) = ∑ 𝛽௝௕𝑏௕(𝑥)௕ ,           (7) 190 

with 𝑏௕(. )  the thin plate spline basis function (Wood, 2003) and 
௝
 the regression coefficients for the considered smooth 

function.  

These functional terms (termed as partial effect) hold the information of each parameter’s individual effect on the considered 

GEV parameter. The interest is to model the relationship between each GEV parameter and the input variables flexibly. 

Alternatives approach would assume a priori functional relationships (like linear or of polynomial form), which may not be 195 

valid. 

The model estimation consists in evaluating the regression coefficients  (associated to the GEV parameters ) by maximizing 

the log-likelihood l(.) of the GEV distribution. To avoid overfitting, the estimation is based on the penalized version of l(.) to 

control the roughness of the smooth functional terms (hence their complexity) as follows: 

 200 

argmax
ఉ

ቀ𝑙() −
ଵ

ଶ
∑ ୨𝜷

்𝑺௝𝜷௝ ቁ,          (8) 

where ୨ controls the extent of the penalisation (i.e. the trade-off between goodness-of-fit and smoothness), and 𝑺௝ is a matrix 

of known coefficients (such that the terms in the summation measure the roughness of the smooth functions). Computational 

methods and implementation details are detailed in (Wood et al., 2016 and references therein). In particular, the penalisation 

parameter is selected through minimisation of the generalized cross validation score. 205 

2.4 Variable selection 

The introduction of the penalisation coefficients in Eq. 8 has two effects: they can penalize how “wiggly” a given term is (i.e. 

it has a smoothing effect) and they can penalize the absolute size of the function (i.e. it has a shrinkage effect). The second 

effect is of high interest to screen out input variables of negligible influence. However, the penalty can only affect the 

components that have derivatives, i.e. the set of smooth non-linear functions termed as the “range space”. Completely smooth 210 

functions (including constant or linear functions), which belong to the “null space” are however not influenced by Eq. 8. For 

instance, for one-dimensional thin plate regression splines, a linear term might be left in the model, even when the penalty 

value is very large (as λ → ∞); this means that the afore-described procedure does not ensure that an input variable of negligible 
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influence will completely be filtered out of the analysis (with corresponding regression coefficient shrunk to zero). The 

consequence is that Eq. 6 does not usually remove a smooth term from the model altogether (Marra and Wood, 2011). To 215 

overcome this problem, a double-penalty procedure was proposed by Marra and Wood (2011) based on the idea that the space 

of a spline basis can be decomposed in the sum of two components, one associated with the functions in the penalty null space 

and the other with the penalty range space. See Appendix A for further implementation details. This double-penalty procedure 

is adopted in the following. 

To exemplify how the procedure works, we apply it on the following synthetic case. Consider a non-stationary GEV 220 

distribution whose parameters are related to two covariates x1 and x2 (see Eq. 9) as follows: 

 

𝑓µ(𝑥) = 𝑥ଵ
ଷ + 2. 𝑥ଶ

ଶ + 1

𝑓௟(𝑥) = 𝑥ଵ
ଶ

𝑓(𝑥) = −0.1

,           (9) 

 

A total of 200 random samples are generated by drawing x1 and x2 from a uniform distribution on [0; 4] and [0; 2] respectively. 225 

Fig. 2a provides the partial effects for the synthetic test case using the single penalisation approach. The non-linear 

relationships are clearly identified for µ (Fig. 2a-i,ii) and for l (Fig. 2a-ii). Yet, the single penalisation approach fails to 

identify properly the absence of influence of x2 on l  and of both covariates on  (Fig. 2a-iv,v,vi) since the resulting partial 

effects still present a linear trend (though with small amplitude and large uncertainty bands). Fig. 2b provides the partial effects 

using the double penalisation approach. Clearly, this type penalisation achieves a more satisfactory identification of the 230 

negligible influence of x2 on l  and of both covariates on  (Fig. 2b-iv,v,vi) as well the nonlinear partial effects for µ (Fig. 2b-

i,ii) and for l (Fig. 2b-ii). 
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Figure 2: Partial effect for the synthetic test case using the single penalisation approach (a) and the double penalisation approach 235 
(b). 

3 Application case 

This section provides details on the test-case on which the proposed statistical methods (Sect. 2) for the derivation of FCs are 

demonstrated. The numerical model of the main steam line of a nuclear reactor is described in Sect. 3.1. A set of ground-

motion records (Sect. 3.2) is applied to assess the seismic fragility of this essential component of a nuclear power plant. 240 

3.1 Structural model 

The 3-D model of a steam line and its supporting structure (i.e., the containment building, see schematic overview in Fig. 3a), 

previously assembled by Rahni et al. (2017) in the CAST3M finite-element software (Combescure et al., 1982), is introduced 
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here as an application of the seismic fragility analysis of a complex engineered object. The containment building consists of a 

double-wall structure: the inner wall (reinforced pre-stressed concrete) and the outer wall (reinforced concrete) are modelled 245 

with multi-degree-of-freedom stick elements (see Fig. 3b). The steel steam line is modelled by means of beam elements, 

representing pipe segments and elbows, as well as several valves, supporting devices and stops at different elevations of the 

supporting structure.  

 

Figure 3: (a) Schematic overview of a nuclear power plant (adapted from nucleus.iaea.org); The red rectangles indicate the main 250 
components represented in the structural model. (b) Stick model of the containment building; (c) Steam line beam model, originally 
built by Rahni et al. (2017). The red circle indicates the location of the vertical stop. 

 

The objective of the fragility analysis is to check the integrity of the steam line: one of the failure criteria identified by Rahni 

et al. (2017) is the effort calculated at the location corresponding to a vertical stop along the steam line (Fig. 3c). Failure is 255 

assumed when the maximum transient effort exceeds the stop’s design effort, i.e. EDP ≥ 775 kN (i.e. 13.56 in log-scale). The 

model also accounts for epistemic uncertainties due to the identification of some mechanical and geometrical parameters; 

namely the Young’s modulus of the inner containment, the damping ratio of the structural walls and of the steam line, and the 

thickness of the steam line along various segments of the assembly. The variation range of the ten selected parameters, 

constituting the vector U of uncertain factors (see Eq. 3), is detailed in Table 1. A uniform distribution is assumed for these 260 

parameters following the values provided by Rahni et al. (2017). 

 

Table 1. Input parameters of the numerical model, according to Rahni et al. (2017). 

Variable Description Uniform distribution interval 

EIC Young’s Modulus – Inner containment [27700 – 45556] MPa 

ξRPC Damping ratio – reinforced pre-stressed concrete [4 – 6] % 

ξRC Damping ratio – reinforced concrete [6 – 8] % 
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e1 Pipe thickness – Segment #1 [29.8 – 38.3] mm 

e2 Pipe thickness – Segment #2 [33.3 – 42.8] mm 

e3 Pipe thickness – Segment #3 [34.1 – 43.9] mm 

e4 Pipe thickness – Segment #4 [33.3 – 42.8] mm 

e5 Pipe thickness – Segment #5 [53.4 – 68.6] mm 

e6 Pipe thickness – Segment #6 [34.1 – 43.9] mm 

ξSL Damping ratio – steam line [1 – 4] % 

 

3.2 Dynamic structural analyses 265 

A series of non-linear time-history analyses are performed on the 3-D model by applying ground-motion records (i.e., 

acceleration time-histories) at the base of the containment building in the form of a 3-component loading. In the CAST3M 

software, the response of the building is first computed, and the resulting displacement time-history along the structure is then 

applied to the steam line model, in order to record the effort demands during the seismic loading. The non-linear dynamic 

analyses are performed on a high performance-computing cluster, enabling the launch of the multiple runs in parallel (e.g., a 270 

ground-motion of a duration of 20s is processed in around 3 or 4 hours). Here, the main limit with respect to the number of 

ground-motion records is not necessarily related to the computation time cost, but more to the availability of natural ground 

motions that are able to fit the conditional spectra at the desired return periods (as detailed below). Another option would be 

the generation of synthetic ground motions, using for instance the stochastic simulation method by Boore (2003) or the non-

stationary stochastic procedure by Pousse et al. (2006). It has been decided however to use only natural records in the present 275 

application, in order to accurately represent the inherent variability of other ground motion parameters such as duration. 

Natural ground-motion records are selected and scaled using the conditional spectrum method described by Lin et al. (2013). 

Thanks to the consideration of reference earthquake scenarios at various return periods, the scaling of a set of natural records 

is carried out to some extent, while preserving the consistency of the associated response spectra. The steps of this procedure 

hold as follows: 280 

 Choice of a conditioning period: the spectral acceleration (SA) at T* = 0.38s (fundamental mode of the structure) is 

selected as the ground-motion parameter upon which the records are conditioned and scaled. 

 Definition of seismic hazard levels: six hazard levels are arbitrarily defined, and the associated annual probabilities 

of exceedance are quantified with the OpenQuake engine1, using the SHARE seismic source catalogue (Woessner et 

al., 2013), for an arbitrary site in Southern Europe. The GMPE from Boore et al. (2014) is used to generate the ground 285 

                                                           
1 www.globalquakemodel.org 
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motions, assuming soil conditions corresponding to Vs,30 = 800 m/s at the considered site. Data associated with the 

mean hazard curve are summarized in Table 2. 

 

Table 2: Estimation of the seismic hazard distribution for the application site. 

Scaling level 
SA(0.38s) [g] 

Annual Probability of 

Exceedance 

Return Period 

#1 0.185 4.87E-2 20 y 

#2 0.617 4.99E-3 200 y 

#3 0.836 2.50E-3 400 y 

#4 1.492 5.00E-4 2,000 y 

#5 2.673 5.00E-5 20,000 y 

#6 3.882 5.00E-6 200,000 y 

 290 

 Disaggregation of the seismic sources and identification of the reference earthquakes: the OpenQuake engine is used 

to perform a hazard disaggregation for each scaling level. A reference earthquake scenario may then be characterized 

through the variables [Mw; Rjb; ε] (i.e., magnitude, Joyner-Boore distance, error term of the ground-motion prediction 

equation), which are averaged from the disaggregation results (Bazzurro and Cornell, 1999). This disaggregation 

leads to the definition of a mean reference earthquake (MRE) for each scaling level. 295 

 Construction of the conditional spectra: for each scaling level, the conditional mean spectrum is built by applying the 

GMPE to the identified MRE. For each period Ti, it is defined as follows (Lin et al., 2013): 

 

𝝁𝒍𝒏 𝑺𝑨(𝑻𝒊)| 𝒍𝒏 𝑺𝑨(𝑻∗) = 𝝁𝒍𝒏 𝑺𝑨൫𝑴𝒘, 𝑹𝒋𝒃, 𝑻𝒊൯ + 𝝆𝑻𝒊,𝑻∗ ∙ 𝜺(𝑻∗) ∙ 𝝈𝒍𝒏 𝑺𝑨(𝑴𝒘, 𝑻𝒊)  (10) 

where µlnSA(Mw,Rjb,Ti) is the mean output of the GMPE for the MRE considered, ρTi,T* is the cross-correlation 300 

coefficient between SA(Ti) and SA(T*) (Baker and Jayaram, 2008), ε(T*) is the error term value at the target period 

T* = 0.38s, and σlnSA(Mw, Ti) is the standard deviation of the logarithm of SA(Ti), as provided by the GMPE. The 

associated standard deviation is also evaluated, thanks to the following equation: 

 

𝝁𝒍𝒏 𝑺𝑨(𝑻𝒊)| 𝒍𝒏 𝑺𝑨(𝑻∗) = 𝝁𝒍𝒏 𝑺𝑨൫𝑴𝒘, 𝑹𝒋𝒃, 𝑻𝒊൯ + 𝝆𝑻𝒊,𝑻∗ ∙ 𝜺(𝑻∗) ∙ 𝝈𝒍𝒏 𝑺𝑨(𝑴𝒘, 𝑻𝒊)  (11) 305 

The conditional mean spectrum and its associated standard deviation are finally assembled in order to construct the 

conditional spectrum at each scaling level. The conditional mean spectra may be compared with the uniform hazard 

spectra (UHS) that are estimated from the hazard curves at various periods. As stated in Lin et al. (2013), the SA 
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value at the conditioning period corresponds to the UHS, which acts as an upper-bound envelope for the conditional 

mean spectrum. 310 

 Selection and scaling of the ground-motion records: ground-motion records that are compatible with the target 

conditional response spectrum are selected, using the algorithm by Jayaram et al. (2011): the distribution of the 

selected ground-motion spectra, once scaled with respect to the conditioning period, has to fit the median and standard 

deviation of the conditional spectrum that is built from Eq. 10 and 11. The final selection from the PEER database 

(PEER, 2013) consists of 30 records for each of the 6 scaling levels (i.e., 180 ground-motion records in total). 315 

 

Two distinct cases are considered for the derivation of FCs, depending on whether parametric uncertainties are included in the 

statistical model or not: 

 

 Case #1 (without epistemic uncertainties): A first series of numerical simulations are performed by keeping the 320 

mechanical and geometrical parameters fixed at their best estimate values, i.e. the mid-point of the distribution 

intervals detailed in Table 1. The 180 ground-motion records are applied to the deterministic structural model, 

resulting in a database of 180 IM-EDP points, with PGA chosen as the IM.  

 Case #2 (with epistemic uncertainties): A second series of numerical simulations are performed by accounting for 

parametric uncertainties. This is achieved by randomly varying the values of the mechanical and geometrical input 325 

parameters of the numerical model (Table 1) using the Latin Hypercube Sampling technique (Mc Kay et al., 1979). 

A total number of 360 numerical simulations are performed (using 180 ground-motion records). 

 

Therefore, multiple ground motions are scaled at the same IM value, and statistics on the exceedance rate of a given EDP value 

may be extracted at each IM step, in a similar way as what is carried out in multi-stripe analyses or incremental dynamic 330 

analyses (Baker, 2015; Vamvatsikos and Cornell, 2002) for the derivation of FC. In the present study, the conditional spectrum 

method leads to the selection and scaling of ground motions with respect to SA(0.38s), which corresponds to the fundamental 

modal of the structure. For illustration purposes, Fig. 4 displays the damage probabilities at the 6 selected return periods, which 

may be associated to unique values of SA(0.38s). 

 335 
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Figure 4. (a) Damage probabilities directly extracted from the 6 scaling levels (or return periods); (b) Damage probabilities 

w.r.t. the 6 SA(T*) levels, and fitted lognormal cumulative distribution function. 

 

From Fig. 4, two main observations can be made: (i) the multiple stripe analysis does not emphasize any different between the 340 

models with and without parametric uncertainty, and (ii) the FC directly derived from the 6 probabilities does not provide a 

satisfying fit. However, the fragility analysis is here focused on the pipeline component (located along the structure), which 

appears to be more susceptible to PGA: therefore, PGA is chosen as IM in the present fragility analysis.  

Fig. 5 provides the evolution of lEDP (log-transformed of EDP) versus lPGA (log-transformed PGA) for both cases. We can 

note that only a few simulation runs (5 for Case #1 and 8 for Case #2) lead to the exceedance of the acceptable demand 345 

threshold. As shown in Fig. 4, there is a variability around the 6 scaling levels: for this reason, it is not feasible to represent 

probabilities at 6 levels of PGA. In this case, conventional approaches for FC derivation are the ‘regression on the IM-EDP 

cloud’ (i.e., least-squares regression, as demonstrated by Cornell et al., 2002) or the use of Generalized Linear Model regression 

or maximum likelihood estimation (Shinozuka et al., 2000). 

 350 



15 
 

 

Figure 5: Evolution of lEDP (log-transformed EDP) as a function of lPGA (log-transformed PGA) for Case #1 (a) without parametric 
uncertainty, and for Case #2 (b) with parametric uncertainty. The horizontal dashed line indicates the acceptable demand threshold. 

4 Applications 

In this section, we apply the proposed procedure to both cases described in Sect. 3.2. Sect. 4.1 and 4.2 respectively describes 355 

the application for deriving the FCs without (case #1) and with epistemic uncertainty (case #2). For each case, we first select 

the most appropriate probabilistic model, then analyse the partial effects and finally, compare the derived FC with the one 

based on the commonly-used assumption of normality. The analysis is here focused on the log-transformed PGA (denoted 

lPGA) to derive the FC. 

4.1 Case #1 Derivation of seismic FC without epistemic uncertainties 360 

4.1.1 Model selection and checking 

A series of different probabilistic models (Table 3) were fitted to the database of IM-EDP points described in Sect. 3.2 (Fig. 

5a). Three different probabilistic models (Normal, Tweedie, GEV) and two types of effects on the probabilistic model’s 

parameters were tested (linear or non-linear). Note that the Tweedie distribution corresponds to a family of exponential 

distributions which takes as special cases the Poisson distribution and the Gamma distribution (Tweedie, 1984). 365 

 

Table 3. Description of the probabilistic model used to derive the FCs 

Model name Probability model Type of relationship 

NOsta Normal Stationary (without covariate effect) 
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NOlin1 Normal Linear effect on the mean 

NOlin2 Normal Linear effect on the mean and log-transformed 

standard deviation (with link function log(+b), 

where b=0.01) 

NOsmo1 Normal Non-Linear smooth effect on the mean 

NOsmo2 Normal Non-Linear smooth effect on the mean and log-

transformed standard deviation (with link 

function log(+b), where b=0.01) 

GEVsta GEV Stationary (without covariate effect) 

GEVlin1 GEV Linear effect on the location 

GEVlin2 GEV Linear effect on the location and scale (log-

transformed) 

GEVlin3 GEV Linear effect on the location, scale (log-

transformed) and shape 

GEVsmo1 GEV Non-Linear smooth effect on the location 

GEVsmo2 GEV Non-Linear smooth effect on the location and 

scale (log-transformed) 

GEVsmo3 GEV Non-Linear smooth effect on the location, scale 

(log-transformed) and shape 

TWElin1 Tweedie Linear effect on the log-transformed location 

TWEsmo1 Tweedie Non-Linear smooth effect on the log-transformed 

location 

 

The analysis of the AIC/BIC differences (relative to the minimum value, Fig. 6) here suggests that both models, GEVsmo3 

and GEVsmo2 are valid (as indicated by the AIC/BIC differences close to zero). The differences between the criteria value is 370 

less than 10, and to help the ranking, we complement the analysis by evaluating the LRT p-value, which reaches ~18%, hence 

suggesting that GEVsmo2 should be preferred (for illustration, the LRT p-value for a stationary GEV model and the non-

stationary GEVsmot2 model is here far less than 1%). In addition, we also analyse the regression coefficients of GEVsmo3, 

which shows that the penalisation procedure imposes all coefficient of the shape parameters to be zero, which indicates that 

lPGA only acts on the location and scale parameters.  375 

These results provide support in favour of GEVsmo2, i.e. a GEV distribution with non-linear smooth term for the location and 

scale parameters only. The estimated shape parameter reaches here a constant value of 0.07 (+/-0.05), hence indicating a 

behaviour close to the Gumbel domain. This illustrates the flexibility of the proposed approach based on GEV, which 
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encompasses the Gumbel distribution as a particular case. We also note that the analysis of the AIC and BIC values would 

have favoured the selection of NOsmo2 if the GEV model had not been taken into account, i.e. a heteroscedastic log-normal 380 

FC. 

 

 

Figure 6: Model selection criteria (AIC (a) and BIC (b) differences relative to the minimum value) for the different models described 
in Table 3 considering the derivation of a FC without epistemic uncertainty. 385 

 

The examination of the diagnostic plots (Fig. 7a) of the model deviance residuals (conditional on the fitted model coefficients 

and scale parameter) shows a clear improvement of the fitting; in particular for large theoretical quantiles above 1.5 (the dots 

better aligned along the first bisector in Fig. 7b). The Gumbel QQ and PP plots (Fig. 7c,d) also indicate a satisfactory fitting 

of the GEV model.  390 
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Figure 7: Diagnostic plots to check the validity of the considered model: (a) QQ plot for the deviance residuals for the NOsmo2 
model; (b) QQ plot for the deviance residuals for the GEVsmo2 model without parametric uncertainty; (c) QQ plot on Gumbel 
scale; (d) PP plot on Gumbel scale. 395 

 

4.1.2 Partial effects 

Fig. 8a,b respectively provides the evolution of the partial effects (as formally described in Sect. 2.3: Eqs. 6 and 7) with respect 

to the location and to the log-transformed scale parameter. We note that the assumption of the relationship between EDP and 

lPGA is non-linear (contrary to the widely-used assumption). An increase in lPGA both induces an increase of µ and of l, 400 

hence a shift of the density (as illustrated in Fig. 1b) and an impact on the tail (as illustrated in Fig. 1c). We note that the fitting 

uncertainty (indicated by the +/- two standard above and below the best estimate) remains small and the afore-described 

conclusions can be considered with confidence. 
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 405 

Figure 8: Partial effect of (a) PGA on the GEV location parameter; (b) PGA on the log-transformed GEV scale parameter. The red-
coloured bands are defined by 2 standard errors above and below the estimate. 

 

4.1.3 FC derivation 

Using the Monte-Carlo-based procedure described in Sect. 2.1, we evaluate the failure probability Pf (Eq. 1) to derive the 410 

corresponding GEV-based FC (Fig. 9a) with accounts for fitting uncertainties. The resulting FC is compared to the one based 

on the normal assumption (Fig. 9b). This shows that Pf would have been under-estimated for moderate-to-large PGA from 10 

to ~25 m²/s if the selection of the probability model had not been applied (i.e. if the widespread assumption of normality had 

been used); for instance at PGA=20 m²/s, Pf is under-estimated by ~5%. This is particularly noticeable for the range of PGA 

from 10 to 15 m²/s, where the GEV-based FC clearly indicates a non-zero probability value, whereas the Gaussian model 415 

indicates negligible probability values below 1%. For very high PGA, both FC models approximately provide almost the same 

Pf value. These conclusions should however be analysed with respect to the fitting uncertainty, which has here a clear impact; 

for instance at PGA=20 m²/s, the 90% confidence interval has a width of 10% (Fig. 9a), i.e. of the same order of magnitude 

than a PGA variation from 10 to 20 m²/s. We note also that the fitting uncertainty reaches the same magnitude between both 

models. This suggests that additional numerical simulation results are necessary to decrease this uncertainty source for both 420 

models. 
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Figure 9: Fragility curve (relating the failure probability Pf to PGA) based on (a) the non-stationary model GEVsmo2, (b) the 
Gaussian NOSmo2 model. The coloured bands reflect the uncertainty in the fitting. 

 425 

4.2 Case #2 Derivation of seismic FC with epistemic uncertainties 

4.2.1 Model selection and checking 

In this case, the FCs were derived by accounting not only for lPGA but also for 10 additional uncertain parameters (Table 1). 
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Figure 10: Model selection criteria (AIC (a) and BIC (b) differences relative to the minimum value) for the different models described 430 
in Table 3 considering the derivation of a FC with epistemic uncertainty. 

 

The AIC and BIC differences ((relative to the minimum value, Fig. 10) for the different probabilistic models (described in 

Table 2) show that GEVsmo2 model should preferably be selected. Contrary to case #1, the AIC/BIC differences are large 

enough to rank with confidence GEVsmo2 as the most appropriate model. This indicates that the location and scale parameters 435 

are non-linear smooth functions of IM and of the uncertain parameters. The estimated shape parameter reaches here a constant 

value of -0.24 (+/-0.06), hence indicating a Weibull tail behaviour. Similarly as for the analysis without parametric 

uncertainties (Sect. 4.1), we note that the AIC and BIC values would have favoured the selection of NOsmo2 if the GEV model 

had not been taken into account. 

The examination of the QQ plots (Fig. 11) of the model deviance residuals (conditional on the fitted model coefficients and 440 

scale parameter) shows an improvement of the fitting; in particular for large theoretical quantiles above 1.0 (the dots better 

aligned along the first bisector in Fig. 11b). The Gumbel QQ and PP plot (Fig. 11c,d) also indicate a very satisfactory fitting 

of the GEV model.  
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Figure 11: Diagnostic plots to check the validity of the considered model: (a) QQ plot for the deviance residuals for the NOsmo2 445 
model; (b) QQ plot for the deviance residuals for the GEVsmo2 model with epistemic uncertainty; (c) QQ plot on Gumbel scale; (d) 
PP plot on Gumbel scale. 

 

4.2.1 Partial effects 

Fig. 12 provides the evolution of the partial effects with respect to the location parameter. Several observations can be made: 450 

 Fig. 12a show quasi-similar partial effect for lPGA (Fig. 8a); 

 Three among the ten uncertain parameters were filtered out by the procedure of Sect. 2.4, namely two mechanical 

parameters (the damping ratio of reinforced pre-stressed concrete RPC, and the damping ratio of the steam line SL) 
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and one geometrical parameter (the pipe thickness of segment #2). As an illustration, Fig. 12e depicts the partial effect 

of a parameter, which was identified as of negligible influence: here, the partial effect of e2 is shrunk to zero; 455 

 Three thickness parameters (e1, e4, e5) present an increasing linear effect on µ (Fig. 12d,g,h); 

 Two parameters (the Young’s Modulus of the inner containment EIC and the thickness e3) present a decreasing linear 

effect on µ (Fig. 12b,f); 

 The damping ratio of the reinforced concrete RC presents a non-linear effect with a minimum value at around 0.0725 

(Fig. 12c); 460 

 The thickness e6 presents a non-linear effect with a maximum value at around 0.04 (Fig. 12i). 

 

 

Figure 12: Partial effect on the GEV location parameter. The red-coloured bands are defined by 2 standard errors above and below 
the estimate. 465 

 

Fig. 13 provides the evolution of the partial effects with respect to the (log transformed) scale parameter. We show here that a 

larger number of input parameters were filtered out by the selection procedure i.e. only the thickness e5 is selected as well as 

the damping ratios of the concrete structures ξRPC and ξRC (related to the containment building). The partial effects are all non-
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linear, but with larger uncertainty than for the location parameter (compare the widths of the red-coloured uncertain bands in 470 

Fig. 12 and 13). In particular, the strong non-linear influence of ξRPC and ξRC may be due to the simplified coupling assumption 

between structural dynamic response and anchored steam line (i.e., the displacement time-history at various points of the 

building is directly used as input for the response of the steam line). Identifying this problem is possible thanks to the analysis 

of the partial effects, though it should be recognized that this behavior remains difficult to interpret and further investigations 

are here necessary. We also note that the partial effect for lPGA is quasi-similar to Fig. 8b.  475 

 

 

Figure 13: Partial effect on the log-transformed GEV scale parameter. The red-coloured bands are defined by 2 standard errors 
above and below the estimate. 

 480 

Table 4 summarizes the different types of influence identified in Fig. 12 and 13, i.e. linear, non-linear, or absence of influence 

as well as the type of monotony when applicable.  

 

Table 4. Influence of the geometrical/mechanical parameters on the GEV parameters, µ and l of the GEVsmo2 model. 

Variable Influence on µ Influence on l 

EIC Linear (decreasing) - 
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ξRPC - Non-linear (non-monotone) 

ξRC Non-linear (non-monotone) Non-linear (decreasing) 

e1 Linear (increasing) - 

e2 - - 

e3 Linear (decreasing) - 

e4 Linear (increasing) - 

e5 Linear (increasing) Non-linear (non-monotone) 

e6 Non-linear (non-monotone) - 

ξSL - - 

 485 

4.2.3 FC derivation 

Based on the results of Fig. 12 and 13, the FC is derived by accounting for the epistemic uncertainties by following the Monte-

Carlo procedure (step 5 described in Sect. 2.1) by including (or not) fitting uncertainty (Fig. 14a and b respectively). We show 

that the GEV-based FC is less steep than the one for case #1 (Fig. 9): this is mainly related to the value of the shape parameter 

(close to Gumbel regime for case #1 without epistemic uncertainty and of Weibull regime for case #2 with epistemic 490 

uncertainty). Fig. 14a also outlines that the uncertainty related to the mechanical and geometrical parameters has a non-

negligible influence as shown by the width of the uncertainty bands: for PGA=30 m²/s, the 90% confidence interval has a 

width of ~20%. In addition, the inclusion of the fitting uncertainty (Fig. 14b) increases the width of the confidence interval, 

but it appears to mainly impact the 90% confidence interval (compare the dark and the light coloured envelope in Fig. 14); for 

instance, compared to Fig. 14a, this uncertainty implies a +5% (respectively -5%) shift of the upper bound (respectively lower 495 

bound) of the 90% confidence interval at PGA=30 m²/s. 

Compared to the widely-used assumption of normality, Fig. 14c,d show that the failure probability reached with this model is 

larger than with the GEV-based FC; at PGA=30 m²/s, the difference reaches ~5%. In practice, this means that a design based 

on the Gaussian model would have here been too conservative. Regarding the impact of the different sources of uncertainty, 

the epistemic uncertainty appears to influence less the Gaussian model than the GEV one. The impact of the fitting uncertainty 500 

is however quasi-equivalent for both models. 
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Figure 14: Fragility curve (relating the failure probability Pf to PGA) considering epistemic uncertainties only (left), and fitting 
uncertainty as well (right). (a,b) GEV-based FC; (c,d) FC based on the normal assumption. The coloured bands are defined based 505 
on the pointwise confidence intervals derived from the set of FCs (see text for details). 

 

The interest of incorporating the mechanical/geometrical parameters directly in the equation of the FC is the ability to study 

how the FC in Fig. 14 evolves as a function of the parametric uncertainties, hence to identify regions of the parameters’ values 

leading to large failure probability. This is illustrated in Fig. 15, where the FC is modified depending on the value of the 510 

thickness e4, from -12.5% (0.033m) to +12.5% (~0.043m) with respect to the median value of 0.038m. Here larger e4 induces 

a steeper FC. This appears to be in agreement with the increasing effect of e4 as shown in Fig. 12g. Fig. 15 also shows that the 

effect of e4 on Pf only becomes significant when the e4 variation is of a least +/-5%, compared to the fitting uncertainty (of the 

order of magnitude of +/- 2.5%). 

 515 
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Figure 15: FC considering different thickness e4: (a) -12.5% of the original value; (b) -5%; (c) +5%; (d) +12.5%. Uncertainty bands 
are provided by accounting for epistemic uncertainty only (dark blue) and by accounting for the fitting uncertainty as well (light 
blue). 

 520 

5 Discussion and further work 

The current study has focused on the problem of seismic FC derivation for nuclear power plant safety analysis. We propose a 

procedure based on the non-stationary GEV distribution to model, in a flexible manner, the tail behaviour of the EDP as a 

function of the considered IM. The key ingredient is the use of non-linear smooth functional EDP-IM relationships (partial 

effects) that are learnt from the data (to overcome limits (2) and (3) as highlighted in the introduction). This avoids the 525 

introduction of any a priori assumption on the shape/form of these relationships. In particular, the benefit is shown on case #1 

(without epistemic uncertainty), where the non-linear relation is clearly outlined for both µ and l. The interest of such data-

driven non-parametric techniques has also been shown using alternatives techniques (like neural network, Wang et al., 2018 

or kernel smoothing, Mai et al., 2017). To bring these approaches to an operative level, an extensive comparison/benchmark 

exercise on real cases should be conducted in the future. 530 

The second objective of the present study was to compare the GEV-based FC with the one based on the Gaussian assumption. 

We show that if a careful selection of the most appropriate model is not performed (limit (1) described in the introduction), 

the failure probability would be either under- or over-estimated for case #1 (without epistemic uncertainty) and case #2 (with 

epistemic uncertainty), respectively. This result brings an additional element against the uncritical use of the (log-)normal 

fragility curve (see discussions by Karamlou and Bocchini, 2015; Mai et al., 2017; Zentner et al., 2017, among others).  535 

The third objective was to propose an approach to incorporate the mechanical and geometrical parameters in the FC derivation 

(using advanced penalisation procedures). The main motivation was to allow studying the evolution of the failure probability 

as function of the considered covariate (as illustrated in Fig. 15). As indicated in the introduction, an alternative approach 

would rely on the principles of the IDA method; the advantage being to capture the variability of the structural capacity and to 

get deeper insight into the structural behaviour. See an example for masonry buildings by Rota et al. (2010). Yet, the adaptation 540 
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of this technique would impose additional developments to properly characterise collapse through the numerical model (see 

discussion by Zentner et al., 2017: Sect. 2.5). Sect. 3.1 also points out the difficulty in applying this approach in our case. 

Combining the idea underlying IDA and our statistical procedure is worth investigating in the future.  

The benefit of the proposed approach is to provide information on the sensitivity to the epistemic uncertainties by both 

identifying the parameters of negligible influence (via the double penalisation method), and by using the derived partial effects. 545 

The latter hold information on the magnitude and nature of the influence (linear, non-linear, decreasing, increasing, etc.) for 

each GEV parameters (to overcome limit (4)). Additional developments should however be performed to derive the same 

levels of information for the FC (and not only for the parameters of the probabilistic model). In this view, Fig. 15 provides a 

first basis that can be improved by: 1) analysing the role of each covariate from a physical viewpoint, as done for instance by 

Salas and Obeysekera (2014) to investigate the evolution of hydrological extremes over time (e.g. increasing, decreasing or 550 

abrupt shifts of hydrologic extremes). Some valuable lessons can also be drawn from this domain of application to define and 

communicate an evolving probability of failure (named return period in this domain); 2) deriving a global indicator of 

sensitivity via variance-based global sensitivity analysis (see e.g., Borgonovo et al., 2013). The latter approach opens promising 

perspectives to ease the fitting process by filtering out beforehand some negligible mechanical/geometrical parameters. It is 

also expected to improve the interpretability of the procedure by clarifying the respective role of the different sources of 555 

uncertainty i.e. related to the mechanical/geometrical parameters, but also to the fitting process, which appears to have a non-

negligible impact in our study.  

The treatment of this type of uncertainty can be improved on two aspects: 1) it is expected to decrease by fitting the FC with 

a larger number numerical simulation results. To relieve the computational burden (each numerical simulation has a 

computation time cost of several hours, see Sect. 3.2), replacing the mechanical simulator by surrogate models (like neural 560 

network, Wang et al., 2018 or using model order reduction strategy, Bamer et al., 2017) can be envisaged; 2) the modelling of 

such uncertainty can be done in a more flexible and realistic manner (compared to the Gaussian assumption made here) using 

Bayesian techniques within framework of GAMLSS (Umlauf et al., 2018). 

Finally, from an earthquake engineering viewpoint, the proposed procedure has focused on a single IM (here PGA), but any 

other IMs could easily be incorporated, similarly as for the mechanical and geometrical parameters, to derive vector-based FC 565 

as done by Gehl et al. (2019) using the same structure. The proposed penalisation approach can be seen as a valuable option 

to solve a recurrent problem in this domain, namely the identification of most important IMs (see discussion by Gehl et al., 

2013 and references therein).  
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Appendix A Double penalisation procedure 

This appendix gives further details on the double penalisation procedure used to select variable in the nonstationary GEV. Full 585 

details are described by Marra and Wood (2011). 

Consider the smoothing penalty matrix 𝑺௝ in Eq. 6 (associated to the jth smooth function in the semi-parametric additive 

formulation of Eq. 4). This matrix can be decomposed as 

𝑼௝௝𝑼௝
் ,             (A1) 

where 𝑼௝ is the eigenvector matrix associated with the jth smooth function, and ௝ is the corresponding diagonal eigenvalue 590 

matrix. As explained in Sect. 2.4, the penalty as described in Eq. 6 can only affect the components that have derivatives, i.e. 

the set of smooth non-linear functions termed as the “range space”. Completely smooth functions (including constant or linear 

functions), which belong to the “null space” are however not influenced. This problem implies that ௝  contains zero 

eigenvalues, which makes the variable selection difficult for “nuisance” functions belonging to the null space, i.e. functions 

with negligible influence on the variable of interest. The idea of Marra and Wood (2011) is to introduce an extra penalty term 595 

which penalizes only functions in the null space of the penalty to achieve a complete removal of the smooth component. 

Consider the decomposition (A1), an additional penalty can be defined as 𝑺୨
∗ = 𝑼୨

∗𝑼୨
∗் where 𝑼௝

∗ is the matrix of eigenvectors 

corresponding to the zero eigenvalues of ௝. In practice, the penalty in Eq.6 holds as follows: 

୨
୘𝑺୨ + ୨

∗୘𝑺୨
∗ ,           (A2) 

where two penalization parameters (
୨
, ୨

∗) are estimated; here by minimization of the generalized cross validation score. 600 
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