
Dear Referee #1, 

 

We would like to thank you for your constructive comments. We agree with most of the 

suggestions and, therefore, we will modify the manuscript to take on board your comments. In 

the following, we recall these comments and we reply to each of the comments in turn (outlined 

by “<Authors’ reply>”).  

 

Please note that the line numbers of changes are indicated and correspond to the revised 

manuscript with marked changes. 

 

Referee #1:  
 

1. General comments 

The authors present in this manuscript a methodology to derive low probabilities of failure for 

a nuclear plant, based on a simplified numerical model, by fitting a statistical distribution to 

the response. The paper propose several non-linear models to link the response to the different 

covariates and some model selection to derive the best estimation of failing probability, called 

here Fragility Curve. 

 

The paper well expose the models used, however some of them could be better explained, and 

the results when the covariates uncertainties are taken into account are well presented. In 

comparison, the description of the construction of the database is less clear to me, and as is 

would be difficult to reproduce. 

 

The paper is well written, with relevant references and good quality figures. The methods used, 

if not the newest, have not been already used in the domain, as far as I know. The application 

is sensible and realistic. The problem addressed is worth being 

published. 

 

2. Specific comments 

 

2.1 Statistical methods 

The description of variable selection method is rather crude and could be better explained. For 

example, the double-penalty procedure is not presented, and would better serve the paper than 

the description of the GEV distributions.  

<Authors’ reply> We agree with referee #1 and have elaborated on this aspect by providing a 

complementary appendix. Besides, Sect. 2.4 has been completed with an application on a 

synthetic test case as follows: 

“To exemplify how the procedure works, we apply it on the following synthetic case.  

Consider a nonstationary GEV distribution whose parameters are influenced by two covariates 

x1 and x2 (see Eq. 6) as follows: 

𝑓µ(𝑥) = 𝑥1
3 + 2. 𝑥2

2 + 1

𝑓𝑙(𝑥) = 𝑥1
2

𝑓(𝑥) = −0.1

,         (6) 

A total of 200 random samples are generated by drawing x1 and x2 from a uniform distribution 

on [0; 4] and [0; 2] respectively. Fig. 2a provides the partial effects for the synthetic test case 

using the single penalisation approach. The non-linear relationships are clearly identified for µ 

(Fig. 2a-i,ii) and for l (Fig. 2a-ii). Yet, the single penalisation approach fails to identify 

properly the absence of influence of x2 on l  and of both covariates on  (Fig. 2a-iv,v,vi) since 



the resulting partial effects still present a linear trend (though with large uncertainty bands). 

Fig. 2b provides the partial effects using the double penalisation approach. Clearly, the 

penalisation achieves to identify the absence of influence (Fig. 2b-iv,v,vi) as well as the 

nonlinear partial effects for µ (Fig. 2b-i,ii) and for l (Fig. 2b-ii)”. 

 

 
New Figure 2: Partial effect for the synthetic test case using the single penalisation approach 

(a) and the double penalisation approach (b).  

 

Moreover, it could be interesting to compare the results with a dedicated variable selection 

algorithm such as boosting for example (e.g. with gamboostLSS package). As is, it is difficult 

to understand how the selection if done and in particular how variables are excluded from the 

figures 10 and 11. 

<Authors’ reply> The current version of gamboostLSS package does not consider the GEV 

distribution and adding these new functionalities to this specific package is out of the scope of 

the current study. We however agree that mentioning alternative fitting (and variable selection) 

approaches should be added to the manuscript as future lines of research. 

 

Besides, to bring additional elements to referee #1 (and out of curiosity), we applied the 

gamboostLSS procedure by randomly generating 200 observations from a nonstationary 

Gumbel distribution considering the following relationships: 

𝑓µ(𝑥) = 𝑥1
3 + 2. 𝑥2

2 + 1

𝑓𝑙(𝑥) = 𝑥1
2

 

The following figure provides the comparison between the partial effect for l derived from  

(a) the double-penalisation-based fit as proposed in the present work; 



(b) the boosting-based fit (using a 5-fold cross validation procedure combined with the 

noncyclical algorithm by Thomas et al. (2018) for selecting the stopping boosting cut-

off). 

 
Figure. Partial effect for the synthetic Gumbel test case using the double penalisation 

approach (a) and the gamboostLSS approach (b). 

 

Both approaches achieve to identify the negligible influence of x2 on l, but the magnitude of 

the influence remains small-to-moderate for gamboostLSS and highly dependent on selection 

of the stopping boosting cut-off. On this aspect, the double-penalisation procedure appears to 

be more robust. This should however be confirmed in a more extensive benchmark exercise 

that could be a line for future research of the present work. 

 

Reference 

Thomas, J., Mayr, A., Bischl, B., Schmid, M., Smith, A., & Hofner, B. (2018). Gradient 

boosting for distributional regression: faster tuning and improved variable selection via 

noncyclical updates. Statistics and Computing, 28(3), 673-687. 

 

I also have some concerns about the model selection : since here the authors are not interested 

in predicting new values, are AIC and BIC the best selection criteria to use ? In particular, for 

an explanatory model, the QQ plots can be a better tool and may leeds to different conclusion. 

For example, in the case of parametric uncertainty, I would go for the Gumbel model (figure 

9). Could the authors precise why the use AIC and BIC in this case and how could they go 

further ? 

<Authors’ reply> The use of AIC,BIC criteria is guided by best practices in the domain of 

nonstationary extreme value analysis (e.g., Kim et al., 2017; Salas and Obeysekera, 2014), and 

more particularly recommended for choosing among various fragility models (e.g. Lallemant 

et al., 2015); see also an application of these criteria in the domain of nuclear safety by Zentner 

(2017). We agree however with referee #1 that further explanations should be given regarding 

model selection based on information criteria, because the perspectives differ when using AIC 

or BIC: 

- On the one hand, AIC-based analysis considers a model to be a probabilistic attempt to 

approach the infinitely complex data-generating truth – but only approaching not 

representing (Höge et al. 2018: Table 2). This means this type of analysis aims at 



addressing which model will best predict the next sample, i.e. it provides a measure the 

predictive accuracy of the different models (Aho et al., 2014: Table 2); 

- On the other hand, the purpose of BIC-based analysis considers each model as a 

probabilistic attempt to truly represent the infinitely complex data-generating truth 

assuing that the true model exists and is among the candidate models (Höge et al. 2018: 

Table 2). This perspective is different from the one of AIC and focuses in an 

approximation of the marginal probability of the data (here lEDP) given the model (Aho 

et al., 2014: Table 2); hence giving some insights to address which model generated the 

data, i.e. it measures goodness of fit. 

 

Testing both criteria, AIC or BIC, thus provides both visions on the problem of model selection. 

This will be more clearly described in a new sub-sect. 2.2 entitled “Model Selection.” 

 

Regarding the comment on QQ plot, we agree that it can be used to validate model with the 

goal of explaining the observations. Yet, we only partly agree with referee #1 about its role for 

model selection. In current practices, QQ plots are rather used for model checking and not 

model selection, i.e. to control the model fit by examining the residuals once the model has 

been selected, and to identify why the model is adequate (or not). Its effectiveness has clearly 

been shown in statistical literature, but when restricted to visual inspection (see e.g. Loy et al., 

2016). Plotting the relative differences between the theoretical quantiles and the ones given by 

the Gaussian and the GEV models may be envisaged to improve the identification of the 

discrepancies. In addition, we propose to complement this diagnostic by the analysis of the PP 

plot as well. This will enable us to better emphasize the goodness of fit for large quantile levels. 

See below an example of presentation. 

 
Figure: Diagnostic plots to check the validity of the considered model: (a) QQ plot for the 

deviance residuals for the NOsmo2 model; (b) QQ plot for the deviance residuals for the 



GEVsmo2 model with epistemic uncertainty; (c) QQ plot on Gumbel scale; (d) PP plot on 

Gumbel scale. 

 

It should also be underlined that using QQ(or PP) plots only account for one part of the problem 

of model selection, i.e. goodness of fit. It does not account for the complexity of the considered 

model contrary to information criteria like BIC (or AIC). The advantages of information criteria 

is to include the first aspect (or predictive capability when using AIC) but also a correction 

related to the complexity of the model; here provided by the number of model parameters. 

Bayesian information criterion generally penalizes more complex models more strongly than 

does the AIC. 

 

Regarding the comment on the selection of the Gumbel model, we agree with referee #1. This 

aspect was outlined in the original version of the manuscript as follows: “The estimated shape 

parameter reaches here a constant value of 0.07 (+/-0.05), hence indicating a behaviour close 

to the Gumbel domain”. This result could be seen as an additional element supporting the 

flexibility of the proposed approach based on GEV, which encompasses the Gumbel 

distribution as a particular case. 
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2.2 Application case 

The selection of the ground-motion records if not described precisely enough from my point of 

view, for example the scaling levels are not stated. E.g. return levels for with quantity ? The 

records are non-linear and non-stationary in time, so how the spectrum is computed and 

scaled? The computational time for running seems to be omitted, it might be interesting to give 

an idea if a more important database could be generated. 

<Authors’ reply> We thank the reviewer for his/her interest in the inner workings of the 

ground-motion selection procedure: we agree that the conditional spectrum approach used here 

is currently not sufficiently described. Therefore, we propose to replace the initial text in lines 

212-222 by the following text: 

“Thanks to the consideration of reference earthquake scenarios at various return periods, the 

scaling of a set of natural records is carried out to some extent, while preserving the consistency 

of the associated response spectra. The steps of this procedure hold as follows: 



 Choice of a conditioning period: the spectral acceleration (SA) at T* = 0.38s 

(fundamental mode of the structure) is selected as the ground-motion parameter upon 

which the records are conditioned and scaled. 

 Definition of seismic hazard levels: six hazard levels are arbitrarily defined, and the 

associated annual probabilities of exceedance are quantified with the OpenQuake 

engine (www.globalquakemodel.org), using the SHARE seismic source catalogue 

(Woessner et al., 2013), for an arbitrary site in Southern Europe. The GMPE from Boore 

et al. (2014) is used to generate the ground motions, assuming soil conditions 

corresponding to Vs,30 = 800 m/s at  the considered site. Data associated with the mean 

hazard curve are summarized in Table 2. 

 

New Table 2: Estimation of the seismic hazard distribution for the application site. 

Scaling level 
SA(0.38s) [g] 

Annual Probability of 
Exceedance 

Return Period 

#1 0.185 4.87E-2 20 y 

#2 0.617 4.99E-3 200 y 

#3 0.836 2.50E-3 400 y 

#4 1.492 5.00E-4 2,000 y 

#5 2.673 5.00E-5 20,000 y 

#6 3.882 5.00E-6 200,000 y 

 

 Disaggregation of the seismic sources and identification of the reference earthquakes: 

the OpenQuake engine is used to perform a hazard disaggregation for each scaling level. 

A reference earthquake scenario may then be characterized through the variables [Mw; 

Rjb; ε] (i.e., magnitude, Joyner-Boore distance, error term of the ground-motion 

prediction equation), which are averaged from the disaggregation results (Bazzurro & 

Cornell, 1999). This disaggregation leads to the definition of a mean reference 

earthquake (MRE) for each scaling level. 

 Construction of the conditional spectra: for each scaling level, the conditional mean 

spectrum is built by applying the GMPE to the identified MRE. For each period Ti, it is 

defined as follows (Lin et al., 2013): 

𝝁𝒍𝒏𝑺𝑨(𝑻𝒊)| 𝒍𝒏 𝑺𝑨(𝑻
∗) = 𝝁𝒍𝒏𝑺𝑨(𝑴𝒘, 𝑹𝒋𝒃, 𝑻𝒊) + 𝝆𝑻𝒊,𝑻∗ ∙ 𝜺(𝑻

∗) ∙ 𝝈𝒍𝒏𝑺𝑨(𝑴𝒘, 𝑻𝒊) (7) 

where µlnSA(Mw,Rjb,Ti) is the mean output of the GMPE for the MRE considered, ρTi,T* 

is the cross-correlation coefficient between SA(Ti) and SA(T*) (Baker & Jayaram, 2008), 

ε(T*) is the error term value at the target period T* = 0.38s, and σlnSA(Mw, Ti) is the 

standard deviation of the logarithm of SA(Ti), as provided by the GMPE. The associated 

standard deviation is also evaluated, thanks to the following equation: 

𝝁𝒍𝒏𝑺𝑨(𝑻𝒊)| 𝒍𝒏 𝑺𝑨(𝑻
∗) = 𝝁𝒍𝒏𝑺𝑨(𝑴𝒘, 𝑹𝒋𝒃, 𝑻𝒊) + 𝝆𝑻𝒊,𝑻∗ ∙ 𝜺(𝑻

∗) ∙ 𝝈𝒍𝒏𝑺𝑨(𝑴𝒘, 𝑻𝒊) (8) 

The conditional mean spectrum and its associated standard deviation are finally 

assembled in order to construct the conditional spectrum at each scaling level. The 

conditional mean spectra may be compared with the uniform hazard spectra (UHS) that 

are estimated from the hazard curves at various periods. As stated in Lin et al. (2013), 

the SA value at the conditioning period corresponds to the UHS, which acts as an upper-

bound envelope for the conditional mean spectrum. 

 Selection and scaling of the ground-motion records: ground-motion records that are 

compatible with the target conditional response spectrum are selected, using the 

http://www.globalquakemodel.org/


algorithm by Jayaram et al. (2011): the distribution of the selected ground-motion 

spectra, once scaled with respect to the conditioning period, has to fit the median and 

standard deviation of the conditional spectrum that is built from Eq. 7 and 8. The final 

selection from the PEER database (PEER, 2013) consists of 30 records for each of the 

6 scaling levels (i.e., 180 ground-motion records in total). 

 

The non-linear dynamic analyses are performed on a high performance-computing cluster, 

enabling the launch of the multiple runs in parallel (e.g., a ground-motion of a duration of 20s 

is processed in around 3 or 4 hours). Here, the main limit with respect to the number of ground-

motion records is not necessarily related to the computation cost, but more to the availability of 

natural ground motions that are able to fit the conditional spectra at the desired return periods.” 
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2.3 Results 

The models compared here do not include parametric models (polynomials, nonlinear...) and 

the selected models are the non-linear smooth models. One question is related to the ability of 

this models to extrapolate beyond the range of variation of the training set? It might be 

interesting to compare to classical parametric models (if any) of with some polynomials 

models to also investigate the extrapolation ability. 

<Authors’ reply> Regarding the problem of extrapolation ability, though of interest, we are 

not fully convinced that this is within the scope of our study.  

 

- Considering the study without uncertainty, the selection of the ground-motion records 

is performed in order to cover a wide range of plausible earthquake scenarios (hence of 

PGA) in particular by considering an upper bound for PGA of 30 m/s² (i.e. ~3g) for 

return periods up to large values of 200,000 years (see reply to comment 2.2). 

Extrapolating outside this upper bound may not be considered physically realistic; 

 

- Considering the study with uncertainty, the mechanical and geometrical parameters are 

here bounded and extrapolating outside the considered range may suffer from a lack of 

realism as well. In a more generic case, for instance with uncertainties represented by 

unbounded probability distributions, the problem could however appear. This aspect is 

now clearly outlined in the discussion section Sect. 5. 

 

We however totally agree with referee #1 that the problem of extrapolation is more stringent 

when nonstationary is related to temporal covariates as outlined for instance by Salas and 

Obeysekera (2014). 

https://ngawest2.berkeley.edu/


Including a larger number of parametric models may be of interest, but the proposed models 

should remain realistic. Current practices in seismic vulnerability analysis mostly focus on 

simple linear models, because in most situations data suggest it and because they remain 

interpretable. Models of intermediate complexity like polynomial models of second order are 

rarely used. We choose not to include them in the current analysis.  

 

In order to provide some elements to referee #1, the following figure shows that a second-order 

polynomial GEV model (denoted GEVpoly1,2 whether it is applied on µ or ) is not identified 

by the AIC/BIC analysis as the “most appropriate” model (compared to the smooth GEV). 

 

 

Figure: Model selection criteria (AIC (a) and BIC (b)) for the different models considering the 

derivation of a FC without parametric uncertainty. 

In current practices, when non-linearity is suspected, more complex non-parametric models are 

generally preferred based for instance on neural networks (see e.g., Wang et al., 2018) or on 

kernel smoothing (see e.g. Mai et al., 2017) because they enable to derive from the data the 

non-linearity by avoiding to specify the form/shape of the non-linearity. This is also the 

advantage of the proposed approach. Comparison to these alternatives is here out of the scope 

of the present study and we choose to underline this perspective in the discussion section Sect. 

5.  

 

If my understanding is correct, the uncertainties in the estimation of the marginal effects are 

neglected in computing the fragility curves, that is the reason why the are no uncertainties on 

figure 7. However, in figures 12 and 13, uncertainties linked to the variability of the input 

variables are shown. As is, it difficult to know which source of uncertainties is the highest and 

a discussion on this point would add a great value to the paper. 

<Authors’ reply> We totally agree with the referee #1 and have completed the analysis by 

incorporating the uncertainties on the regression coefficients (Eq. 5). The following procedure 

is conducted to account for the mechanical and geometrical uncertainties: 

 Step 5.1: the considered IM is fixed at a given value; 



 Step 5.2: for the considered IM value, a large number (here chosen at n=1000) of 

samples of U are randomly generated; 

 Step 5.3: for each of the randomly generated U samples, the failure probability is 

estimated for the considered IM value; 

 Return to step 5.1. 

The result of the procedure corresponds to a set of n FCs from which we can derive the median 

FC as well as the uncertainty bands based on the pointwise confidence intervals at different 

levels. These uncertainty bands thus reflect the uncertainty on the mechanical/geometrical 

parameters. This procedure can be extended by accounted also the uncertainty on the fitting of 

the probabilistic model (e.g., GEV or Gaussian) by randomly generating the corresponding 

model parameters at step 5.2 (by assuming that they follow a multivariate Gaussian 

distribution). 

 

In Sect. 4, we now discuss in more details two cases: (1) with uncertainty on the 

geometrical/mechanical parameters only (termed as “epistemic uncertainty”); (2) with the 

uncertainty on the fitting as well (i.e. uncertainty on the model parameters). See below a 

possible presentation of the results (new Figure 13). Such presentation will be used to compare 

the implications of both types of uncertainty. 

 

 
New Figure 13. Fragility curve (relating the failure probability Pf to PGA) considering 

epistemic uncertainties only (left), and fitting uncertainty as well (right). (a,b) GEV-based FC; 



(c,d) FC based on the normal assumption. The coloured bands are defined based on the 

pointwise confidence intervals derived from the set of FCs (see text for details). 

 

3. Technical remarcks 

- Both formula, figures and tables should be centered to be easier to read; - in figures 10 and 

11, 

<Authors’ reply> We apologize for this lack of readability but we followed the instructions 

provided in the word template of NHESS where the equations, tables and figures are formatted 

as “justified” (https://www.natural-hazards-and-earth-system-

sciences.net/for_authors/manuscript_preparation.html). 

 

- some variables seems to be evenly distributed and some other (e.g. E_IC, nXi_RC, e5 in 

figure 10) seems to be random : it seems that all of them should be uniform of the range of 

variation stated in Table 1 ?  

<Authors’ reply> We checked this aspect (see figure below) and it seems that it is only a 

visual effect related to the parametrisation of the ticks on Figure 10. 

 

 
 

- The link functions are not stated precisely in table 2; 

<Authors’ reply> This is now specified. 
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