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Abstract. The generation of a tsunami by a landslide is a complex phenomenon that involves landslide dynamics, wave 

dynamics and their interaction. Numerous lives and infrastructures around the world are threatened by this phenomenon. 

Predictive numerical models are a suitable tool to assess this natural hazard. However, the complexity of this phenomenon 10 

causes such models to be either computationally inefficient or unable to handle the overall process. Our model, which is 

based on the shallow water equations, is developed to address these two problems. In our model, the two materials are 

treated as two different layers, and their interaction is resolved by momentum transfer inspired by elastic collision principles. 

The goal of this study is to demonstrate the validity of our model through benchmark tests based on physical experiments 

performed by Miller et al. (2017). A dry case is reproduced to validate the behaviour of the landslide propagation model 15 

using different rheological laws and to determine which law performs best. In addition, a wet case is reproduced to 

investigate the influence of different still water levels on both the landslide deposit and the generated waves. The numerical 

results are in good agreement with the physical experiments, thereby confirming the validity of our model, particularly 

concerning the novel momentum transfer approach. 

1 Introduction 20 

The generation of a tsunami by a landslide is a complex phenomenon that involves landslide dynamics, interactions between 

the landslide mass and a water body, propagation of a wave and its spread on the shore. A landslide could be either 

submarine, partially submerged or subaerial. Regions that combine steep slopes and water bodies are the most susceptible to 

landslide-generated tsunamis. For instance, fjords (Åknes: Ganerød et al., 2008; Harbitz et al., 2014; Lacasse et al., 2008, 

Lituya Bay: Fritz et al., 2009, Slingerland and Voight, 1979, Weiss et al., 2009), volcanos in marine environments 25 

(Stromboli: Tinti et al., 2008, Réunion Island: Kelfoun et al., 2010), and regions such as lakes and reservoirs in mountainous 

areas are prone to this phenomenon (Chehalis Lake: Roberts et al., 2013, Vajont: Bosa and Petti, 2011; Slingerland and 

Voight, 1979; Ward and Day, 2011; Kafle et al., 2019; Lake Geneva: Kremer et al., 2012, 2014, Lake Lucerne: Schnellmann 

et al., 2006). On lowland water bodies, landslide-generated tsunamis are also encountered when particular conditions exist, 

such as quick clays or glacio-fluvial deposit slopes (Rissa: L'Heureux et al., 2012, Nicolet Landslide: Jaboyedoff et al., 2009; 30 

Franz et al., 2015, Verbois reservoir: Franz et al., 2016). 

Landslide-generated tsunamis severely threaten lives and infrastructures, as evidenced in Papua New Guinea in 1998, where 

a submarine landslide killed 2200 people (Tappin et al., 2008). To assess this hazard, predictive models must be used. These 

models can be separated into 3 different types: 1) empirical equations from physical models (Enet and Grilli, 2007; Heller et 

al., 2009., Fritz et al., 2004, Miller et al., 2017, Kamphuis and Bowering, 1970; Slingerland and Voight, 1979), 2) physical 35 

models reproducing site-specific setups (Åknes: Harbitz et al., 2014, Vajont: Ghetti, 1962 in: Ghirotti et al. 2013), and 3) 

numerical models. Numerical models can be governed by different sets of equations, such as shallow water equations 

(Simpson and Castelltort, 2006; Harbitz et al., 2014; Franz et al., 2013, 2015, 2016; Kelfoun 2011; Kelfoun et al., 2010; 
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Mandli, 2013; Tinti and Tonini, 2013; Tinti et al., 2008), Boussinesq equations (Harbitz et al., 2014; Løvholt et al., 2013; 

2015), and 3D Navier-Stokes (3D-NS) equations of incompressible flows, which can be solved using Direct Numerical 40 

Simulation (DNS) (Pope, 2000; Marras and Mandli, 2021), Large Eddy Simulation (LES) (Lui et al., 2005; Kim et al., 2020) 

and Reynolds-Averaged Navier-Stokes (RANS) techniques (Abadie et al., 2010; Clous and Abadie, 2019). 

The assessment of natural hazards requires the use of predictive models, and in the case of numerical models, they need to be 

able to 1) reproduce sufficiently well the studied phenomenon while 2) being efficient in terms of computational resources 

and 3) easy to use and to implement. Particularly in the case of prospective studies, the uncertainties or unknown concerning 45 

the (tsunamigenic) landslides characteristics (e.g. landslide geometry, geotechnical parameters) could lead to drastically 

inaccurate results, even with a very precise model. The use of a multi-scenarios approach, applied for ranges of landslide 

characteristics, would provide a much more reliable assessment of the hazard. 

From this point of view, the models based on 3D-NS equations fulfil the first requirements but are particularly slow to run 

(Abadie et al., 2010; Clous and Abadie, 2019, Marras and Mandli, 2021). On the other hand, models based on 50 

approximations such as shallow water equations and Boussinesq equations, and their depth-averaged nature, inherently 

imply a loss in the quality of the reproduction of a specific case but permits to be used on standard computer with fast 

computational time. The difficulty to simulate the propagation of two different materials, the interaction between the 

landslide and the water, and the propagation on the shores using two-dimensional models is often solved by coupled 

approaches (Tan et al., 2018; Ma et al., 2015; Harbitz et al., 2014; Løvholt et al., 2015) or with an advanced multi-phase 55 

approach (Pudasaini, 2014; Kafle et al., 2019). These hybrid approaches are a good trade-off between reproduction quality 

and efficiency but not regarding the ease of use. Models based on simple shallow water equations are very efficient and and 

easy to implement, but inherently come with higher levels of approximations and incomplete physics, that lead to less 

accurate reproduction. Nevertheless, this lack could be compensated by the possibility to run many scenarios. 

Kelfoun et al. (2010) presented the Volcflow model, which has the ability to handle such behaviour and to address the 60 

quality-efficiency-usability requirement. In this model, the momentum transfer is performed by a set of equations that take 

into account the form drag and the skin friction drag, modified from the methodology reported by Tinti et al. (2006). Their 

approach is an elegant way to solve this type of problem; however, this method also relies on complex assumptions linked 

with the incompatibility between the two-dimensional model and the hydrodynamic shape of the sliding mass and its 

associated drag coefficient. Xiao et al. (2015) simulated momentum transfer through a so-called “drag-along” mechanism, 65 

which is relevant, but requires the implementation of coefficients that are subject to interpretation. The two-phase mass flow 

model proposed by Pudasaini (2012) simulates landslides and tsunamis within a single framework (Pudasaini, 2014; Kafle et 

al., 2019). 

Regarding the quality-efficiency-usability requirement described hereinabove, the numerical model we propose in this study 

is a two-layer model that combines a landslide propagation model and a tsunami model. The proposed numerical model is 70 

based on the non-linear shallow water equations in an Eulerian framework of the flow field. The transfer of momentum 

between the two layers is performed by assuming a “perfect” collision, in the sense that there is no dissipation, neither in 

momentum nor in kinetic energy. Thus, it appears to be appropriate to compute the momentum transfer between two 

materials of which each cell has a certain velocity and a constant mass (or constant shape and constant density). This 

approach has the advantage of containing a limited number of coefficients to be implemented by the operator. The “lift-up” 75 

mechanism (i.e., the change in height of the water level due to bed rise) also contributes to wave generation. 

The aim of this study is to test the whole model (i.e., landslide and tsunami) and more specifically to examine the transfer of 

momentum between the two materials, in the scope of quality-efficiency-usability. Miller et al. (2017) provided a relevant 

benchmark test that highlights the momentum transfer through its effect on the granular flow deposit and on the amplitude of 

the generated wave. Moreover, the granular flow is gravitationally accelerated, which is a relevant aspect to test the 80 

behaviour of the numerical model. 
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2 Physical experiment of a granular landslide and wave 

Miller et al. (2017) investigated landslide-generated tsunamis. In their study, the landslide, which consisted of a 

gravitationally accelerated granular flow, was simulated alongside the wave. The interaction between the two elements was 

of particular interest, and their reciprocal effects were highlighted. The momentum transfer obviously affected the wave 85 

behaviour and also influenced the landslide deposit. 

Miller et al. (2017) and Mulligan et al. (2016) described the flume at Queen’s University in Kingston (ON), Canada, where 

their physical experiments were conducted. This apparatus consisted of a 6.7 m aluminium plate inclined at an angle of 30°, 

followed by a 33-m-long horizontal section, and ending in a 2.4-m-long smooth impermeable slope of 27°; the width of the 

flume was 2.09 m. Nine different scenarios were tested, in which the water depth was varied from h = 0.05 to 0.5 m; one of 90 

these scenarios was tested without water. For each scenario, 0.34 m3 (510 kg) of granular material was released from a box at 

the top of the slope. The granular material consisted of 3-mm-diameter ceramic beads, which had a material density of 2400 

kg/m3, a bulk density of 1500 kg/m3, an internal friction angle of 33.7°, and a bed friction angle of 22°. The flat floor of the 

flume was composed of concrete. The bed friction angle was estimated as approximately 35°. The wave amplitudes were 

determined by 5 probes, and the slide characteristics were captured with a high-speed camera (Cam 1). 95 

 

Figure 1: Sketch of the flume used in the physical model and implemented in the numerical model (modified from Miller et al., 

2017). 

3 Numerical model 

The numerical model presented in this article attempts to reproduce the experiments presented in Miller et al. (2017). The 100 

models for both the tsunami and the landslide simulations are based on the non-linear shallow water equations. The two 

layers are computed simultaneously (i.e., in the same iteration). The landslide layer is computed first and is considered as a 

bed change from the water layer (at each time step). The transfer of momentum also occurs at every time step. 

3.1 Depth-averaged models 

The model is based on two-dimensional shallow water equations: 105 

𝑈𝑡 + 𝐹(𝑈)𝑥 + 𝐺(𝑈)𝑦 = 𝑆(𝑈) , (1) 

where U is the solution vector and F and G are the flux vectors. These vectors are defined as follows: 

𝑈 =  [
𝐻
𝐻𝑢
𝐻𝑣

], (2) 
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𝐹 =  [
𝐻𝑢

𝐻𝑢2 + 1

2
𝑔𝐻2

𝐻𝑢𝑣

] , 𝐺 = [

𝐻𝑣
𝐻𝑢𝑣

𝐻𝑣2 + 1

2
𝑔𝐻2

] , (3) 

where H is the depth; u and v are the components of the depth-averaged velocity vector along the x and y directions, 110 

respectively; and g is the gravitational acceleration. The source term S differs for the landslide (Eq. 8) and tsunami models 

(Eq. 19). Thus, the two formulations of the source term are specifically described in their respective sections (Sect. 3.1.1 and 

3.1.2). The conservative discrete form is expressed as follows: 

𝑈𝑖,𝑗
𝑛+1 = 𝑈𝑖,𝑗

𝑛 − 
𝛥𝑡

𝛥𝑥
 [𝐹𝑖+1

2,𝑗 − 𝐹𝑖−1
2,𝑗] −  

𝛥𝑡

𝛥𝑦
 [𝐺𝑖,𝑗+1

2
− 𝐺𝑖,𝑗−1

2
] +  𝛥𝑡𝑆𝑖,𝑗

𝑛 , (4) 

where 𝐹𝑖+
1
2,𝑗

 is the intercell numerical flux corresponding to the intercell boundary at 𝑥 = 𝑥𝑖+
1
2
 between cells 𝑖 and 𝑖 + 1 115 

and 𝐺𝑖,𝑗+1
2
 is the intercell numerical flux corresponding to the intercell boundary at 𝑦 = 𝑦𝑗+1

2
 between cells 𝑗 and j + 1. The 

Lax-Friedrichs (LF) scheme defines these terms as follows (Franz et al., 2013; Toro, 2001): 

𝐹
𝑖+

1
2,𝑗

𝐿𝐹 = 
1

2
 (𝐹𝑖,𝑗

𝑛 + 𝐹𝑖+1,𝑗
𝑛 ) +

1

2
 
𝛥𝑥

𝛥𝑡
(𝑈𝑖,𝑗

𝑛 − 𝑈𝑖+1,𝑗
𝑛 ) , (5) 

𝐺
𝑖,𝑗+1

2

𝐿𝐹 = 
1

2
 (𝐺𝑖,𝑗

𝑛 + 𝐺𝑖,𝑗+1
𝑛 ) +

1

2
 
𝛥𝑦

𝛥𝑡
(𝑈𝑖,𝑗

𝑛 − 𝑈𝑖,𝑗+1
𝑛 ) , (6) 

This numerical scheme is chosen because of its non-oscillatory behaviour, its capacity to withstand rough beds, and its 120 

simplicity. See Franz et al. (2013) for more information concerning the choice of this numerical scheme. 

3.1.1 Landslide model 

The simulation of granular flow utilizes widely used rheological laws, among which the most commonly encountered are the 

Coulomb, Voellmy, and Bingham rheological laws (Iverson et al., 1997; Hungr and Evans, 1996; Longchamp et al., 2015; 

Pudasaini and Hutter, 2007; Pudasaini, 2012; Kelfoun, 2011, McDougall, 2006; Pouliquen and Forterre, 2001). The 125 

continuum equations used are the previously described equations. The source term S specifically governs the forces driving 

the landslide propagation: 

𝑆 =  𝛥𝑡 [ 

0
𝐺𝑅𝑥/𝜌𝑠 + 𝑃𝑇𝑥/𝜌𝑠 − 𝑇𝑥/𝜌𝑠 − 𝑀𝑇𝑠𝑥 𝜌𝑠⁄

𝐺𝑅𝑦/𝜌𝑠 + 𝑃𝑇𝑦/𝜌𝑠 − 𝑇𝑦/𝜌𝑠 − 𝑀𝑇𝑠𝑦 𝜌𝑠⁄
]. (7) 

where ρs is the landslide bulk density, T is the total retarding stress, and MTs is the momentum transfer from the water to the 

sliding mass. The driving components of gravity GR and pressure term PT are defined as follows (Pudasaini and Hutter, 130 

2007): 

𝐺𝑅𝑥 =  𝜌𝑔𝐻𝑠 𝑠𝑖𝑛 𝛼𝑥               𝐺𝑅𝑦 =  𝜌𝑔𝐻𝑠 𝑠𝑖𝑛 𝛼𝑦 (8) 

𝑃𝑇𝑥 =  𝜌𝑔𝐾𝑥
𝜕

𝜕𝑥
(𝐻𝑠

2 𝑐𝑜𝑠 𝛼𝑥)  𝑃𝑇𝑦 =  𝜌𝑔𝐾𝑦
𝜕

𝜕𝑦
(𝐻𝑠

2 𝑐𝑜𝑠 𝛼𝑦) (9) 

where Hs is the landslide thickness, α is the bed slope angle, and K is the earth pressure coefficient. The density ρ is the 

apparent density of the landslide. This means that ρ is equal to the density of the slide ρs when the slide is subaerial and ρ = 135 

ρs-ρw (density of the water) when the slide is underwater (Kelfoun et al., 2010; Skvortsov, 2005). Since each term is divided 

by ρs in Eq. (7), the relative nature of the density becomes effective. The total retarding stress T (Tx, Ty) is composed of the 
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resisting force (frictional resistance) between the landslide and the ground. T differs depending on the chosen rheological 

law. 

The simple Coulomb frictional law Coul (MacDougall, 2006; Kelfoun et al., 2010; Kelfoun, 2011; Pudasaini and Hutter, 140 

2007; Longchamp et al., 2015) is defined as follows: 

𝑇𝑥 = 𝐶𝑜𝑢𝑙𝑥 =  𝜌𝐻𝑠(𝑔 𝑐𝑜𝑠 𝛼𝑥) 𝑡𝑎𝑛 𝜑𝑏𝑒𝑑
𝑢𝑠

‖𝑉‖
 (10) 

𝑇𝑦 = 𝐶𝑜𝑢𝑙𝑦 =  𝜌𝐻𝑠(𝑔 𝑐𝑜𝑠 𝛼𝑦) 𝑡𝑎𝑛 𝜑𝑏𝑒𝑑
𝑣𝑠

‖𝑉‖
 (11) 

where φbed is the bed friction angle and V (us, vs) the slide velocity. 

The Coulomb rheology can be used considering flow with either isotropic or anisotropic internal stresses. This difference is 145 

handled with the use of the earth pressure coefficient K (Hungr and McDougall, 2009; Kelfoun, 2011; Iverson and 

Denlinger, 2001; Pudasaini and Hutter, 2007). For the isotropic case, K is set to 1 (Kelfoun, 2011). In the anisotropic case, K 

designates whether the flow is in compression (positive sign) or in dilatation (negative sign), for which the coefficients are 

denoted as Kpassive or Kactive (Hungr and McDougall, 2009; Pudasaini and Hutter, 2007), respectively. These terms are defined 

as follows: 150 

𝐾𝑎𝑐𝑡/𝑝𝑎𝑠𝑠 = 2
1±[1−(𝑐𝑜𝑠 𝜑𝑖𝑛𝑡)

2(1+(𝑡𝑎𝑛 𝜑𝑏𝑒𝑑)2)]
1
2

(𝑐𝑜𝑠 𝜑𝑖𝑛𝑡)
2 − 1 (12) 

𝐾𝑥 = {
𝐾𝑎𝑐𝑡𝑖𝑣𝑒,

𝜕𝑢𝑠

𝜕𝑥
> 0

𝐾𝑝𝑎𝑠𝑠𝑖𝑣𝑒,
𝜕𝑢𝑠

𝜕𝑥
< 0

     𝐾𝑦 = {
𝐾𝑎𝑐𝑡𝑖𝑣𝑒,

𝜕𝑣𝑠

𝜕𝑦
> 0

𝐾𝑝𝑎𝑠𝑠𝑖𝑣𝑒,
𝜕𝑣𝑠

𝜕𝑦
< 0

 (13) 

where the variable φint is the internal friction angle. 

The Voellmy rheology Voel combines Coulomb frictional rheology with a turbulent behaviour: 

𝑇𝑥 = 𝑉𝑜𝑒𝑙𝑥 = 𝐶𝑜𝑢𝑙𝑥 + 𝜌
𝑢𝑠‖𝑉‖

𝜉
 (14) 155 

The first term is the Mohr-Coulomb frictional law, whereas the second term, which was originally presented by Voellmy 

(1955) for snow avalanches, acts as drag and increases the resistance with the square of the velocity. The turbulence 

coefficient ξ corresponds to the square of the Chézy coefficient, which is related to the Manning coefficient n by 𝐶 =

 𝐻𝑠
1

6⁄  𝑛⁄  (MacDougall, 2006). The turbulence coefficient presented in Kelfoun (2011) is equivalent to the inverse of the 

turbulence coefficient presented herein times g (1/(ξg)). However, the physical basis of the Voellmy rheology is questionable 160 

(Fisher et al., 2012). 

The Bingham rheology combines plastic and viscous rheological laws and is defined as follows (Skvortsov, 2005): 

𝑃𝑙𝑎𝑠𝑡𝑥 =
𝑢𝑠

‖𝑉‖
𝑇0(1 + 𝑑1) (15) 

𝑉𝑖𝑠𝑐𝑥 =
2𝜇𝑠𝑢𝑠

𝐻𝑠(1−(
𝑑1
3

))

 (16) 

𝑇𝑥 = 𝐵𝑖𝑛𝑔ℎ𝑎𝑚𝑥 = 𝑃𝑙𝑎𝑠𝑡𝑥 + 𝑉𝑖𝑠𝑐𝑥  (17) 165 

where T0 is the yield stress, which is the stress at which the slide to starts or stops to move; μ is the dynamic viscosity; and d1 

is the relative thickness of the shear layer. The latter variable is used to mimic the behaviour of Bingham flow that contains 
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two distinct layers: a solid layer (the plug zone) and a shear layer (the shear zone, d1). The determination of d1 can be 

performed automatically (e.g., Skvortsov, 2005), but in this study, the use of a constant value provided better results. 

3.1.2 Tsunami model 170 

For the tsunami model, the source term S includes a consistency term and a momentum transfer term and is defined as 

follows: 

𝑆 =  𝛥𝑡

[
 
 
 

0

−𝐻𝑤𝑔0.5
𝜕

𝜕𝑥
(𝐵) +

𝑀𝑇𝑤𝑥

𝜌𝑤

−𝐻𝑤𝑔0.5
𝜕

𝜕𝑦
(𝐵) +

𝑀𝑇𝑤𝑦

𝜌𝑤 ]
 
 
 

. (18) 

where Hw is the water thickness, B is the bed elevation (including the thickness of the sliding mass), and MTw is the 

momentum transfer from the slide to the water. The first term confers consistency to the model, which has been validated in 175 

Franz et al. (2013). The second term is the momentum transfer between the landslide and the water. 

The wet-dry transition is realized by an ultrathin layer of water hmin that covers the whole topography (or the dry state). This 

permits the avoidance of zeros in the water depth array. Nevertheless, such a situation would lead to water flowing down the 

slopes after some iteration. Thus, to prevent this numerical artefact, the thin layer is governed by viscous equations (Turcotte 

and Schubert, 2002): 180 

𝑄𝑥 =

[
 
 
 
 

𝐹𝑖
𝐿𝐹

𝜌𝑤
𝑞𝑥

2

𝐻𝑤
+ 𝜌𝑔

1

2
𝐻𝑤

𝜌𝑤𝑢𝑤𝑣𝑤

𝐻𝑤 ]
 
 
 
 

 (19) 

where 

𝑞𝑥 = − (𝑠𝑖𝑛 𝛼𝑥 +
𝜕

𝜕𝑥
 (𝐻𝑤))

𝜌𝑤𝑔𝐻𝑤
3

3𝜇𝑤
 (20) 

A threshold Retr is set for a Reynolds number that determines which set of equations (between viscous equations and shallow 

water equations) is used at each location in the tsunami model: 185 

𝑅𝑒 =  
𝜌𝑤𝑢𝑤𝐻𝑤

𝜇𝑤
 (21) 

𝐹
𝑖+

1

2

𝐿𝐹 = {
𝐹

𝑖+
1

2

𝐿𝐹 , 𝑅𝑒 > 𝑅𝑒𝑡𝑟 , 𝐻𝑤 > ℎ𝑚𝑖𝑛 

𝑄𝑥 , 𝑅𝑒 < 𝑅𝑒𝑡𝑟 , 𝐻𝑤 < ℎ𝑚𝑖𝑛

 (22) 

3.1.3 Momentum transfer 

The interaction between the landslide and the water proposed by Kelfoun et al. (2010) is based on a formulation of drag both 

normal and parallel to the displacement. This formulation involves two coefficients that need to be set manually, which is a 190 

manipulation this study aims to avoid. Moreover, they claim that their equation is a rewritten form of the equation presented 

in Tinti et al. (2006). However, in the latter, the depth of the landslide Hs is taken into account, whereas in Kelfoun et al. 

(2010), they account for the gradient of the landside depth. 

In Xiao et al. (2015), the so-called “drag-along” approach also entails undesired user-defined coefficients from our point of 

view and, when applied in our, never fit the experimental data. 195 
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Regarding those two unsatisfying approaches, we decided to try an unconventional method. Based on a semi-empirical 

approach that fits the experimental data, the implementation of momentum transfer in our code is inspired by the rigid 

collision principle. This principle is relevant because 1) the kinetic energy of the system is conserved, 2) a true interaction 

between particles is not possible in a model based on shallow water equations (absence of the third dimension), and 3) the 

exchange of momentum between the landslide mass and the water is perfectly symmetric. 200 

As a reference case, we consider velocity changes during the elastic collision of two rigid bodies. The conservation of 

momentum in elastic collision is given by the following expression: 

𝑚𝑠𝑢𝑠𝑏 + 𝑚𝑤𝑢𝑤𝑏 = 𝑚𝑠𝑢𝑠𝑎 + 𝑚𝑤𝑢𝑤𝑎  (23) 

As the kinetic energy is also conserved, the following constraint applies: 

1

2
𝑚𝑠𝑢𝑠𝑏

2 +
1

2
𝑚𝑤𝑢𝑤𝑏

2 =
1

2
𝑚𝑠𝑢𝑠𝑎

2 +
1

2
𝑚𝑤𝑢𝑤𝑎

2   (24) 205 

where uw and us are the velocities for the ‘water’ and the ‘slide’ masses, respectively (subscript b = before collision and 

subscript a = after). 

We assumed that the mass before collision remained constant after collision. Under this simplifying assumption, the two 

conservation equations can be used to solve for the two velocities after collision: 

𝑢𝑠𝑎 = 
(𝑚𝑠𝑢𝑠𝑏−𝑚𝑤𝑢𝑠𝑏+2𝑚𝑤𝑢𝑤𝑏)

(𝑚𝑠+𝑚𝑤)
  (25) 210 

𝑢𝑤𝑎 =
(2𝑚𝑠𝑢𝑠𝑏−𝑚𝑠𝑢𝑤𝑏+𝑚𝑤𝑢𝑤𝑏)

(𝑚𝑠+𝑚𝑤)
  (26) 

The discrete “finite control volume” masses m, having lateral lengths dx and dy, are defined as follows: 

𝑚𝑠 = 𝜌𝑠 ∗ 𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝐻𝑠  (27) 

𝑚𝑤 = 𝜌𝑤 ∗ 𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝐻𝑤   (28) 

Using this notation, the above expressions for velocity changes during collision can be rearranged in a form similar to the 215 

time- and space-discretized depth-averaged momentum equation: 

𝜕(𝜌𝑠𝐻𝑠𝑢𝑠)

𝜕𝑡
≈ 𝜌𝑠𝐻𝑠(𝑢𝑠𝑎 − 𝑢𝑠𝑏)/𝑑𝑡 =  

2

(
1

𝐻𝑤𝜌𝑤
+

1

𝐻𝑠𝜌𝑠
)
(𝑢𝑠𝑏 − 𝑢𝑤𝑏)/𝑑𝑡 (29) 

𝜕(𝜌𝑤𝐻𝑤𝑢𝑤)

𝜕𝑡
≈ 𝜌𝑤𝐻𝑤(𝑢𝑤𝑎 − 𝑢𝑤𝑏)/𝑑𝑡 =  

2

(
1

𝐻𝑤𝜌𝑤
+

1

𝐻𝑠𝜌𝑠
)
(𝑢𝑠𝑏 − 𝑢𝑤𝑏)/𝑑𝑡  (30) 

where dt is the time discretization. Note that dx and dy are cancelled out. The right-hand sides of Eqs. (29) and (30) represent 

the momentum exchange source terms during collision. 220 

 

The momentum transfer during the collision reference case was modified by a ‘shape factor’ SF as a fitting parameter to 

reproduce the laboratory experiments from Miller et al. (2017), resulting in the following expressions: 

𝑀𝑇𝑠𝑑𝑡 = 𝑆𝐹
2

(
1

𝐻𝑤𝜌𝑤
+

1

𝐻𝑠𝜌𝑠
)
(𝑢𝑤𝑏 − 𝑢𝑠𝑏)  (31) 
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𝑀𝑇𝑤𝑑𝑡 = − 𝑆𝐹
2

(
1

𝐻𝑤𝜌𝑤
+

1

𝐻𝑠𝜌𝑠
)
(𝑢𝑠𝑏 − 𝑢𝑤𝑏)  (32) 225 

The shape factor SF is defined from experiments to match the wave amplitude and the landslide deposit. This shape factor 

consists of a non-dimensional value that depends on the ratio between the maximum landslide thickness 𝑠𝑚𝑎𝑥  at impact 

(recorded during the simulation by the numerical code) and the still water level h: 

𝑆𝐹 = 0.145(𝑠𝑚𝑎𝑥 ℎ)⁄ 1.465 (33) 

The choice of the values presented in Eq. (33) is a compromise to accurately fit the wave amplitude and the landslide deposit 230 

considering different still water levels. The deviation between the experiment and the numerical model using different value 

of SF (SF as in Eq. 33, SF + 50% and SF – 50%) are illustrated in Fig. 2. 

 

Figure 2: (a) Graph showing the difference between the Am values from Miller et al. (2017) and Miller et al. (2017) (blue line) and 

the Am values from the numerical simulation using different values in Eq. (33). Note that the value used in Eq. (33) (red line) is not 235 
the best fitting curve. (b) Graph showing the difference between the positions of the apex of the landslide deposits observed in 

Miller et al. (2017) and Miller et al. (2017) (blue line) and the positions obtained from the numerical simulations.  

3.2 Computation time 

All the simulations are performed on a conventional computer. It is an Acer Aspire V17 Nitro. The computations are 

performed on an Intel® Core ™ i7-7700HQ CPU @ 2.80GHz with 16 Go of RAM. For a complete simulation, i.e. 240 

simulation that includes landslide and wave propagation, for a duration of 30 s (as presented in Fig. 9), the computation time 

is of 16’650 s. The cell size is 0.01 x 0.01 m and the grid size is 45.2 m x 2.1 m (949’000 cells). 

4 Results 

The landslide and the tsunami models are computed in two-dimensions (x and y), whereas the results, such as the landslide 

thickness or the water elevation, can be represented visually in the third dimension (z), or in other words, in 2.5D, as 245 

illustrated in Fig. 3. 
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Figure 3: 2.5D numerical representation of the near-field section of the flume with water depth h = 0.2: (left) initial condition of 

the landslide (water level not displayed), (centre) landslide deposit (water level not displayed), and (right) landslide deposit (not 

coloured) with the generated wave. 250 

In this study, everything is computed in two-dimension, but the interpretations and the presentation of the results is done 

through longitudinal cross-sections across the centre of the numerical flume (Fig. 4). The Fig. 4 illustrate the generation of 

the wave: at 0 s, the landslide impacts the water; at 0.3 s, the landslide velocity is greater than the water velocity and the 

momentum is transferred; at 0.6 s, the front of the slide starts to stop while the back continues to transfer the momentum to 

the water; at 0.9, the momentum transfer is nearly completed and the wave propagates along the flume. The simulation does 255 

not reproduce perfectly the real generation behaviour due to the shallow water approximations that does not model the 

impact crater as observed in Miller et al. (2017).  

 

Figure 4: Cross-section of the landslide and water surface during numerical simulation of the generation of the wave. 

4.1 Landslide 260 

This section presents the results concerning the granular landslide. Furthermore, this section discusses the behaviour of the 

landslide propagation using different rheological laws and the effect of the water depth on the landslide deposit. 

4.1.1 Dry case 

The dry case investigates the propagation of the granular material using various rheological laws. The rheological laws 

implemented herein are the Voellmy, Coulomb (flow with isotropic and anisotropic internal stresses) and Bingham 265 

rheological models. The velocities, the thicknesses and the deposit shapes obtained through the numerical simulation are 

compared to those data obtained from the physical experiment to identify and select the best solution. 
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Table 1: Rheological parameters used for the different rheological laws. 

 Shear zone 

relative 

thickness 

 [-] 

Yield stress 

[Pa] 

Dynamic 

viscosity 

[Pa∙s] 

Turbulence 

coefficient 

[m/s2] 

Bed friction 

angle 

aluminium [°] 

Bed friction 

angle concrete 

[°] 

Int. friction 

angle 

[°] 

 d1 T0 μ ξ φbed φbed φint 

Bingham 0.6 12 1.6 - - - - 

Voellmy - - - 250 11 35 - 

Coulomb 

(isotropic) 
- - - - 22 35 - 

Coulomb 

(anisotropic) 
- - - - 22 35 33.7 

 

The Bingham rheology is set by best fit with a shear zone relative thickness d1 of 0.6, a yield stress T0 of 12 Pa, and a 270 

dynamic viscosity μ of 1.6 Pa∙s. 

Concerning the Voellmy rheology, the determination of the turbulence coefficient ζ is performed by trial and error to obtain 

the best fit (back analysis). Thus, the turbulence coefficient ζ, as described in Hungr and Evans (1996) and in McDougall 

(2006), is set to 250 m/s2. The bed friction angle 𝜑𝑏𝑒𝑑  of 22°, given in Miller et al. (2017), was reduced to 11°. Indeed, the 

Voellmy rheology uses significantly lower values (Hungr and Evans, 1996). This study uses the same ratio (~0.5) between 275 

“classical” 𝜑𝑏𝑒𝑑  and “Voellmy” 𝜑𝑏𝑒𝑑  as the one presented in Hungr and Evans (1996) for cases with similar friction angles 

and turbulence coefficients (“Voellmy” 𝜑𝑏𝑒𝑑  = 11°). 

Regarding the two Coulomb models, we use the bed friction angle 𝜑𝑏𝑒𝑑  of 22°, as measured in the physical experiment 

(Miller et al., 2017). In addition, the anisotropic Coulomb rheological model considers the internal friction angle 𝜑𝑖𝑛𝑡, which 

is 33.7° (Miller et al., 2017). 280 

In Miller et al. (2017), the velocity and the thickness of the landslide at impact are estimated through high-speed camera 

footage analysis with a still water depth h of 0.25 m. To measure the same variables of the simulated granular flow, the 

values are recorded using a corresponding window (Cam 1, Fig. 1). 

Figure 5 shows the temporal evolution of the flow thickness and velocity captured at the numerical equivalent location of 

Cam 1 (Fig. 1). The numerical models do not fit the physical simulation very well. This poor fit can be explained by the 285 

diffuse nature of a granular flow boundary that is not replicable by the shallow water assumption (continuum mechanics) and 

by the absence of expansion in the numerical moving mass. Nevertheless, the results from the numerical and physical models 

are close enough to validate globally the different numerical models without allowing their differentiation. 

 

Figure 5: Landslide properties at impact (numerical equivalent location of Cam 1) with a still water depth h of 0.25 m. (a) Time 290 
series of slide thickness for different rheological laws (numerical model) compared with the mean thickness in the physical model. 

(b) Time series of depth-averaged slide velocity for different rheological laws (numerical model) versus the mean velocities in the 

physical model (modified from Miller et al., 2017). 
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Consequently, analysing the deposit (Fig. 6) is the way to identify the best fitting rheological model. The Bingham 

rheological model does not correctly reproduce the shape of a granular deposit. The Voellmy model performs better than the 295 

Bingham model in this respect, but in comparison with the two Coulomb frictional models, the Voellmy model is not 

satisfactory. Indeed, the two Coulomb rheological models (anisotropic and isotropic) fit the best with the observed deposit, 

which was expected because frictional rheological laws are typically developed to describe granular flows. The rear parts of 

the deposits are correctly located, whereas the fronts are slightly too distant. However, this imperfection is negligible and 

could be attributed to numerical diffusion. The deposit simulated with the isotropic Coulomb model is slightly closer to the 300 

real deposit than that simulated with the anisotropic model; this method has the advantage of being simple (only the bed 

friction angle 𝜑𝑏𝑒𝑑  is implemented). 

 

Figure 6: Cross-section of the landslide deposit using different rheological laws compared with the deposit in the physical 

experiment. 305 

Since the velocities and the thickness are of a realistic magnitude, the deposit shapes of the two Coulomb models correctly 

reproduce the real case. Furthermore, due to the ease of implementation, the isotropic Coulomb model is the finally chosen 

rheological model. In Sect. 4.1.2, this model is used to study the wet cases. 

4.1.2 Wet cases 

This section investigates the interaction between the landslide and the water. More precisely, this section investigates the 310 

effect of the momentum transfer on the deposit shape for different water levels. Figure 7a shows the results for still water 

depths h of 0.05, 0.08, and 0.1 m. The deposits resulting from the numerical simulation (solid lines) are compared with the 

physical model observations (dashed lines), which shows a rather good similarity when focusing on the height of the piles. 

The numerical deposition shape for a still water depth h of 0.05 m fits well the physical shape, also regarding the spread. 

Concerning still water depths h of 0.08 and the 0.1 m, the numerical granular flows stop further than the real flows. 315 

At still water depths h of 0.17, 0.2, and 0.25 m (Fig. 7b), the numerical and physical results are in good agreement; however, 

the “tails” and the apexes of the deposits are located slightly farther away in the numerical simulation. 
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Figure 7: Cross-section of the granular flow deposit for different still water depths h (0.05 to 0.25 m) (modified from Miller et al., 

2017). 320 

In contrast, for still water depths h of 0.38 and 0.5 m (Fig. 8), the deposit shapes obtained by the numerical simulations stop 

slightly ahead of the real deposits. Nevertheless, the deposits are of equivalent heights. 

 

Figure 8: Cross-section of the granular flow deposit for two still water depths h (0.38 and 0.5 m). For comparison, the red line 

illustrates the landslide deposit for a still water depth h of 0.38 m without momentum transfer (modified from Miller et al., 2017). 325 

The momentum transfer acts correctly on the granular flow as the global correspondence between the numerical and physical 

deposition pattern is good. In fact, it is the combination of the momentum transfer (Eqs. 31 and 32) with the relative density 

ρ (Eqs. 7 to 11) that performs well. This is highlighted by the simulated granular landslide without momentum transfer, 

which travels excessively far (Figure 8, red line). The travel distance in this case is even greater than that in the dry case (the 

result of the isotropic Coulomb model presented in Fig. 6) due to the effect of the relative density ρ. Indeed, the “drop in 330 

density” when the granular flow enters the water body reduces the total retarding stress T in particular (Eqs. 10 and 11; 

alongside PT (Eq. 9) and GR (Eq. 8), which is negligible on flat surfaces). It is worth noting that without momentum transfer 

or relative density, the model would lead to the same deposit as the dry case. 

4.2 Wave 

This section investigates the momentum transfer between the slide and the generated wave This effect is analysed for 335 

different still water depths h (0.05, 0.1, 0.2, and 0.5 m) through probes located at different distances from the bottom of the 

slope (2.3, 15, and 25 m; Fig. 9). Concerning the case with the smallest still water depth (h = 0.05 m), the numerical 

simulation reproduces the wave observed in the physical experiment well in terms of amplitude and timing at each probe. 
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Indeed, the percentages of deviation of the simulated wave compared to the physical one, respectively to the probes are + 9.7 

%, - 3.5 % and - 6.1 %. Note that the simulated wave is taller than the real wave in the very near field (2.3 m gauge). For a 340 

still water depth h of 0.1 m, the timing is good at the 2.3 m gauge, but, as previously described, the numerical wave is taller 

(+ 51 %). Concerning the gauges at 15 and 25 m, the wave celerity is faster and its amplitude is smaller in the numerical 

simulation than in the physical experiment (respectively - 11.9 % and - 41.2 %). Moreover, the wave train observed in the 

physical model is non-existent in the numerical model. Except for the equivalence in amplitude in the near field, the same 

observations apply for a still water depth h of 0.2 m, with respective deviation of + 4.8 %, - 16.2 % and - 25 %. For a still 345 

water depth of 0.2 m, a reflected wave is present at the 25 m gauge after approximately 23 s. The numerically simulated 

wave arrives slightly earlier than the observed wave. Concerning the case of a still water depth h of 0.5 m, the simulated 

wave is smaller than the real wave (respectively - 29.7 %, -13.9 % and -12.3 %) and the reflected wave (at 28, 23, and 18 s) 

is visible at the 3 gauge locations with a good correspondence in terms of time. Those discrepancies are due to the 

approximations inherent to the shallow water equations and are discussed in Sect. 4.3. In particular, the non-reproduction of 350 

train waves is due to the absence of frequency dispersion. 

 

Figure 9: Time series of the relative water surface elevation/h for different still water depths h (.0.05, 0.10, 0.20 and 0.50 m) 

observed at different wave probes/gauges (2.3, 15, and 25 m) (modified from Miller et al., 2017). 

4.2.2 Impulse product parameter 355 

Heller and Hager (2010) proposed a relationship between the landslide characteristics and the near-field maximum amplitude 

of the generated wave through the concept of the impulse product parameter P. The impulse produce parameter includes the 

governing parameters related to the landslide and the still water depth. The maximum wave amplitude can be predicted as a 
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function of P through Eq. (37). This approach is relevant to our study because it inherently considers the momentum transfer 

occurring during wave generation. The following values are captured at the impact zone (Cam 1, Fig. 1) for the sliding mass 360 

and in the near-field area for the wave. The relative maximum near-field wave amplitude Am is defined by the following 

expression: 

𝐴𝑚 = 0.25 𝐹𝑟1.4 𝑆𝑅
0.8  (34) 

where SR is the relative landslide thickness and Fr is the Froude number, which are defined as follows: 

𝑆𝑅 = 𝑠𝑚𝑎𝑥 ℎ⁄  (35) 365 

𝐹𝑟 =  𝑢𝑠 √(𝑔ℎ)⁄   (36) 

The relationships between P, Fr and SR were found empirically through a large set of tests based on different landslide setups 

(Fritz et al., 2004). The impulse product parameter P defined by Heller and Hager (2010) is expressed as follows: 

𝑃 = 𝐹𝑟 𝑆𝑅

1
2⁄  𝑀

1
4⁄  {𝑐𝑜𝑠[(6 7⁄ )𝛼]}

1
2⁄   (37) 

where M is the relative landslide mass, which is defined by the following expression: 370 

𝑀 = 𝑚𝑠 (𝜌𝑤𝑏ℎ2)⁄   (38) 

where ms is the landslide mass and b is the flume width. The near-field relationship between the P and Am is defined as 

follows (Heller and Hager, 2010): 

𝐴𝑀 = 
4

9
𝑃

4
5⁄   (39) 

Figure 10 shows this relationship with the results of Miller et al. (2017) alongside the results of the present study. The two 375 

dashed lines represent the same relationship ± 30%. A large set of data collected in flume experiments (Fritz et al., 2004; 

Heller and Hager, 2010) falls between those limits for P<9. 

 

Figure 10: Maximum relative wave amplitude Am as a function of the impulse product parameter P. (solid line) AM from Eq. (39), 

(dashed lines) AM from Eq. (39) ± 30%, (solid shapes) data from the physical model (Miller et al. 2017), and (hollow shapes) data 380 
from the numerical simulation (this study). 
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The near-field relationships between P and Am obtained in the present study correspond well with those obtained by Miller et 

al. (2017) (Fig. 10). The two different trends observed for P<5 (h = 0.17, 0.20, 0.25, 0.38, and 0.5 m) and P>5 (h = 0.05, 

0.08, and 0.1 m) are also present in both physical experiments and numerical simulations. The decreasing maximum relative 

wave amplitudes Am of the second set (h = 0.05, 0.08, and 0.1 m) obtained in the physical experiments have been explained 385 

by scale effects (Heller, 2011; Miller et al., 2017) and braking bores (Miller et al., 2017). On the other hand, for P<9 (as 

originally presented in Heller and Hager, 2010), the results of this study are located within a range of ±30%. 

4.3 Discussion 

The numerical model displays a taller wave in the near field, which can be explained by the fact that the model does not 

reproduce the breaking of the wave. This lack also implies that the model cannot consider the impact crater as long as the 390 

steepness of the water surface is not steeper than sub-vertical. This discrepancy is inherent to the shallow water model and its 

two-dimensional nature.  

The physical experiments produce wave trains for water levels of 0.1 and 0.2 m. This phenomenon is not reproduced by the 

numerical model because of the absence of breaking in the unstable numerical waves, (Miller et al., 2017; Ruffini et al., 

2019) along with the lack of modelling frequency dispersion (Ruffini et al., 2019). These mismatches are due to the 395 

incomplete physics inherent to shallow water equations approximations. 

On the other hand, the fronts of the waves are very different. The “excess” volume of water at the front of the numerical 

wave is also partially explained by the lack of energy dissipation that would occur during breaking. On average, the 

simulated water level located at the wave train “match” the trough and the crests. For those cases, the imperfect 

reproductions are, however, sufficiently close in terms of celerity and volume to be considered relevant. This consideration 400 

was in addition confirmed by the good match of the reflected wave (e.g. Fig. 9, h=0.2, x=25, 23 s). 

The general observation of the evolution of the wave (Fig. 9) shows that the decay occurring in the physical experiment is 

present in the numerical simulation. This fact also strengthens the general validity of the whole numerical model. 

Inherently, as the impulse product parameter values obtained through a wide set of experiments (Heller and Hager, 2010; 

Miller et al., 2017) fall into an envelope of ±30%, our near-field results, which also fall into these limits, strongly confirm 405 

the validity of our model and our momentum transfer approach. However, the scale effects and the breaking bores affecting 

the maximum relative water amplitude Am for P>5 performed in laboratory experiments cannot explain the similar effect 

observed on the numerical results as phenomenon such as surface tension, frequency dissipation and breakers were not 

implemented in the numerical model. 

5 Conclusions 410 

This study aimed to validate our two-layer landslide-generated tsunami numerical model, based on the non-linear shallow 

water equations, particularly concerning the momentum transfer between the landslide and the water. This is performed 

through the reproduction of the physical experiments conducted by Miller et al. (2017). A dry case is simulated to document 

the behaviour of the landslide propagation model using different rheological laws. In addition, a wet case is reproduced to 

investigate the influence of different still water levels on both the landslide deposit and the generated waves. 415 

The dry case shows that the two Coulomb rheological models (flow with isotropic or anisotropic internal stresses) correctly 

reproduce the deposit observed in the physical model studied by Miller et al. (2017). The isotropic Coulomb model is the 

simplest and easiest to implement and is chosen to study the wet case. 

The numerical simulation of the wet case investigates the abilities of the model to correctly handle momentum transfer. This 

case focuses on both the effect of the water on the landslide deposit and the effect of the landslide on the resulting wave. 420 

These effects are investigated through different water levels, and it appears that the landslide deposit obtained by the 
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numerical simulations fits well with the physical model observations. On the other hand, the numerical waves behave 

similarly to the waves in the physical model. Despite imperfections due to the limitations inherent to the non-linear shallow 

water equations (no impact crater, no wave breaking), the combined results from investigating these two effects permits us to 

consider that, overall, the model simulate relatively well the complex phenomenon occurring during the interaction between 425 

the landslide and the water. In addition, the choice to transfer the momentum through the simple “perfect” collision principle 

is verified to be relevant. 

A comparison involving the impulse product parameter particularly highlights that our model satisfactorily reproduces the 

physical experiment of Miller et al. (2017). The values of Am versus P presented in Heller and Hager (2010) are based on 

their 211 experiments in addition with 137 experiments performed by Fritz et al. (2002) and 86 by Zweifel (2004). Hence, 430 

the validity of our model is further strengthened by the fact that the results of our model also fit reasonably well (+/-30%) 

with those experiments. 

Finally, we consider our model as a tool of choice for the assessment of landslide-generated tsunami hazards considering the 

complexity of the phenomenon reproduced, the acceptable reproduction of the laboratory experiments and the possibility to 

perform multi-scenario studies thanks to its efficiency and ease of use. 435 
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Notation 

The following symbols are used in this article: 

Am = maximum measured wave amplitude [m] 

AM = theoretical maximum wave amplitude in the near-field [m] 

B = bed elevation [m] 

b = flume width [m] 

C  = Chézy coefficient [-] 

d1 = shear layer relative thickness [-] 

F = flux vector in x direction [-] 

Fr = Froude number [-] 

G = flux vector in y direction [-] 

g = gravitational acceleration [m/s2] 

GR = driving component of gravity [Pa] 

H = layer depth [m] 

h = still water level [m] 

hmin = minimum water thickness (ultrathin layer) [m] 

Hs = landslide thickness [m] 

Hsa = landslide thickness after collision [m] 
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Hsb = landslide thickness before collision [m] 

Hw = depth of the water [m] 

Hwa = depth of the water after collision [m] 

Hwb = depth of the water before collision [m] 

K = earth pressure coefficient [-] 

LF = Lax-Friedrichs scheme 

M = relative landslide mass [-] 

ms = landslide mass [kg] 

MTs = momentum transfer (water to slide) [Pa] 

MTw = momentum transfer (slide to water) [Pa] 

n = Manning roughness coefficient [-] 

PT = pressure term [Pa] 

P = impulse product parameter [-] 

Re = Reynolds number [-] 

Retr = Re threshold [-] 

S = source term [-] 

SR = relative landslide thickness [-] 

SF = shape factor for momentum transfer [-] 

smax = maximum landslide thickness [m] 

T = total retarding stress [Pa] 

T0 = yield stress [Pa] 

U = solution vector [-] 

u = velocity vector component in x direction [m/s] 

us = landslide velocity in x direction [m/s] 

usa = landslide velocity in x direction after collision [m/s] 

usb = landslide velocity in x direction before collision [m/s] 

uw = water velocity in x direction [m/s] 

uwa = water velocity in x direction after collision [m/s] 

uwb = water velocity in x direction before collision [m/s] 

v = velocity vector component in y direction [m/s] 

V = full velocity vector [m/s] 

vs = landslide velocity in y direction [m/s] 

vw = water velocity in y direction [m/s] 

x = longitudinal coordinate [m] 

y = transverse coordinate [m] 

z = vertical coordinate [m] 

α = bed slope angle [°] 

Δt = time step [s] 

η = wave amplitude [m] 

μs = landslide dynamic viscosity [Pa s] 

μw = water dynamic viscosity [Pa s] 

ξ = turbulence coefficient [m/s2] 

ρ = apparent density [-] 

ρs = landslide bulk density [kg/m3] 

ρsa = landslide bulk density after collision [kg/m3] 
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ρsb = landslide bulk density before collision [kg/m3] 

ρw = water density [kg/m3] 

ρwa = water density after collision [kg/m3] 

ρwb = water density before collision [kg/m3] 

φbed = bed friction angle [°] 

φint = internal friction angle [°] 
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