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Abstract.

Considering the likely increase of coastal flooding in Small Island Developing States (SIDS) due to climate change,
coastal managers at the local and global level have been developing initiatives aimed at implementing Disaster Risk
Reduction (DRR) and Adaptation measures. Developing science-based adaptation policies requires accurate coastal flood
risk (CFR) assessments, which in the case of insular states are often subject to input data with uncertain accuracy. We
analysed the impact of a number of uncertain inputs on coastal flood damage estimates: (i) significant wave height, (ii) storm
surge level and (iii) sea level rise (SLR) contributions to extreme sea levels, as well as the error-driven uncertainty in (iv)
bathymetric and (v) topographic datasets, (vi) damage models and (vii) socioeconomic changes. The methodology was tested
through a sensitivity analysis using an ensemble of hydrodynamic models (XBeach and SFINCS) coupled with a direct
impact model (Delft-FIAT) for a case study of a number of villages on the islands of SGo Tomé and Principe. Model results
indicate that for the current time horizon, depth damage functions (DDF) and digital elevation model (DEM) dominate the
overall damage estimation uncertainty. When introducing climate and socioeconomic uncertainties to the analysis, SLR
projections become the most relevant input for the year 2100 (followed by DEM and DDF). In general, the scarcity of
reliable input data leads to considerable predictive error in CFR assessments in SIDS. The findings of this research can help
to prioritise the allocation of limited resources towards the acquisitions of the most relevant input data for reliable impact
estimation.

1 Introduction

Small Island Developing States (SIDS) are increasingly under threat of coastal flooding, hindering the growth of their
economies and challenging the safety of their societies (OECD World Bank, 2016). The consequences that they will face due
to climate change-induced coastal flooding may overwhelm their intrinsic resilience. For example, sea level rise (SLR) will

exacerbate the impacts and frequency of coastal hazards at many islands around the world (Storlazzi et al., 2018; UN-
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OHRLLS, 2015). This situation has recently led to initiatives (e.g. Small Island States Resilience Initiatives SISRI by the
World Bank) aiming to increase the resilience of insular communities by using robust coastal flood risk (CFR) assessments
using hydrodynamical models as a necessary first step to develop sustainable adaptation strategies.

Risk is computed as a combination of hazard, exposure and vulnerability (Kron, 2005). Specifically, “hazard” is the
probability and magnitude of an event with negative impacts. “Exposure” means the assets that are exposed to the hazard,
and “vulnerability” refers to the damage inflicted upon the exposed asset, under a specific hazard. A coastal flood damage
assessment entails the computation of damages under a specific flood event, for a given vulnerability and exposure. To
estimate the overall CFR, damage assessments for every possible coastal flood event must be performed.

Existing hydrodynamic models can achieve satisfactory levels of accuracy in estimating flood hazards, particularly at the
local scale (Bertin et al., 2014; Dresback et al., 2013; Giardino et al., 2018; Monioudi et al., 2018; Storlazzi et al., 2018).
Nevertheless, CFR assessments are subject to a wide range of errors and uncertainties, divided into aleatory uncertainties,
i.e. related to the intrinsic randomness of reality, and epistemic uncertainties, due to imperfect knowledge and lack of data
(Uusitalo et al., 2015). The second type is particularly applicable to small islands as accurate input data is often scarce, due
to their remoteness and limited economic resources.

As a consequence, datasets covering the entire globe in low resolution must often be used in the absence of detailed local
data. These global datasets are often inaccurate, which negatively affect the trustworthiness of the model and ultimately the
outcome of the study. Cook and Merwade (2009), Kulp and Strauss (2019) and Van de Sande et al. (2012) have
acknowledged the unreliability of publicly available digital elevation models (DEMS) to represent the exposure to coastal
floods, while Cea and French (2012), Hare et al. (2011) and Plant et al. (2002) have highlighted the significant uncertainty
that low-resolution bathymetric datasets bring into coastal hazard modeling. Global bathymetric datasets (e.g. GEBCO) lack
information on nearshore depth, especially over reefs or in bays, while global topographic datasets (e.g. SRTM, ASTER)
experience contamination of terrain elevation data due to buildings, vegetation canopies, and other objects that are averaged
into the elevation representing each coarse pixel of the dataset. To reduce these errors, considerable efforts are being directed
to improve the quality of satellite-derived DEMs. Very recently, improved global datasets such as MERIT (Yamazaki et al.,
2017) and CoastalDEM (Kulp and Strauss, 2019) have been published, which correct for vegetation and building elevation
biases..

The damage assessment represents a step of a CFR analysis severely affected by both the paucity of reliable damage
information (Apel et al., 2004; Merz and Thieken, 2009; De Moel and Aerts, 2011; Prahl et al., 2016; Wagenaar et al., 2016),
and the simplifications that are necessary to quantify the vulnerability of human and natural assets. Furthermore, the
uncertainty of damage modeling is exacerbated in data-poor SIDS, where accurate data and models are lacking, requiring
strong assumptions. Indeed, often damage curves are taken from literature and applied in different areas making few, if any,
adjustments (Schroter et al., 2014; Wagenaar et al., 2016). Furthermore, extreme sea level (ESL) events constitute a
considerable portion of the uncertainties in a CFR analysis, as their statistical estimation method is based on extrapolating

from limited duration of recorded data and requires the choice of a probability distribution function (pdf) (Wahl et al., 2017).
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Finally, to develop long term adaptation plans, future risk estimates including changes to human and natural systems are
required, which introduce further assumptions and uncertainty. Indeed, both future climatological and societal changes can
significantly impact the model outcome, and disregarding them may lead to poor coastal zone planning and underestimation
of future damages (Bouwer, 2013; Bouwer et al., 2010).

Several studies have attempted to quantify the uncertainty in flood risk estimates, both for coastal (Hinkel et al., 2014; De
Moel et al., 2012; Vousdoukas et al., 2018b) and riverine floods (Apel et al., 2004; Egorova et al., 2008). Vousdoukas et al.
(2018b) and De Moel et al. (2012) performed an uncertainty analysis on CFR assessments for two case studies in Europe,
indicating the quality of coastal protection information and the shape of the depth damage functions (DDFs) as the most
influential input for flood damage estimates uncertainty, respectively.

A quantification of the relative contribution of the uncertainty sources has yet not been conducted for SIDS, where the
scarcity of input data exacerbates the model outcome error and uncertainty. We therefore present a method to directly
compare the relative importance of uncertainty sources on the estimation of coastal flood damages, extending the analysis to
present-day and future risk predictions by modeling future damages for the years 2050, 2070 and 2100. For this purpose, this
study describes a developed framework that examines different uncertainty sources, including the components contributing
to ESLs, namely (i) significant wave height, (ii) storm surge level and (iii) SLR projections; (iv) bathymetry dataset; (v)

DEM,; (vi) damage models and (vii) socioeconomic growth.

2 Case Study

The methodology was applied to two coastal villages Pantufo and Praia Abade in the Democratic Republic of SGo Tomé
and Principe, an archipelago that comprises two main islands and several islets, located in the Gulf of Guinea (Fig. 1a). The
two villages were selected based on their high vulnerability to coastal flooding hazards and on the availability of local
information to conduct the CFR assessment. The small size and location of the islands, in combination with their colonial
history, have significantly hampered their economic development, increasing their susceptibility to natural disasters and
hindering a sustainable future for the communities (Deltares and CDR, 2019). The village of Pantufo is situated on the north
east side of the island of S8 Tomé (Fig. 1b), bordered by a partially sandy and rocky beach (Fig. 1c). The village of Praia
Abade is located on a north-east side of the island of Principe, at the southern end of a bay (Fig. 1b) and it is bordered by a
sandy pocket beach (Fig. 1d). Fishing represents the main economic activity for both villages. Near the coastline, houses are
often made of wood or poor-quality concrete and elevated to prevent flooding damages.

Both communities are on the lee side of the islands sheltered from the largest and most frequent southerly swell waves. The
area is not in the track of tropical cyclones and storms, experiencing a calmer wave climate than other extratropical regions
(Alves, 2006). However, these communities are still prone to hazardous rainfall and coastal flooding from occasional big

southerly swells, which damage buildings and fishing boats (Deltares and CDR, 2019).
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3 Data and Methods
3.1 Modeling Approach

Coastal flood damages at the two villages were estimated using a chain of models and data as shown in Fig. 2. Hazard,
exposure and vulnerability were modelled separately and are show in green, orange and yellow boxes. Most of the input data
are characterised by uncertainties that contribute to uncertainty in the final damage estimates. The major sources of
uncertainty considered in this study are highlighted with red boxes in Fig. 2: (i) significant wave height; (ii) storm surge
level; (iii) SLR projections; (iv) bathymetry dataset; (v) DEM; (vi) damage models and (vii) socioeconomic growth.

Coastal floods are driven by nearshore ESLs, computed as a combination of mean sea level, tidal level, SLR, storm surge
level and short waves contribution, based on the peak six hours of a 24-hour time frame reference storm. To describe the
storm, which has a temporal resolution of 1 hour, a storm surge water level was imposed over a spring tidal water level, and
offshore waves are explicitly included (Fig. 3). The nearshore wave boundary conditions are computed using transformation
matrixes in the DELFT3D-WAVE (SWAN) model (Booij et al., 1994) as described in Deltares and CDR (2019).

To transform the nearshore ESLs, we used cross-shore transects (Fig. 2) of the nonhydrostatic version of the model of
XBeach (Roelvink et al., 2009, 2018; Smit et al., 2010). These transects had a minimum grid size of 1 m, running from
approximately 20 m water depth offshore to an inland elevation of approximately 10 m.

Flood maps representing the coastal flood hazards were computed using a 2-D SFINCS (Leijnse et al., 2020) model, with
land surface elevation derived from a DEM (Fig. 2). SFINCS is a computationally-efficient coastal zone flood model, and
covered the area of interest with a rectilinear grid and a spacing of 5 m. SFINCS is forced with water levels taken at 2 m
water depths from the XBeach cross-shore transects (Fig. 2)

The damage assessment was conducted through the model Delft-FIAT (Slager et al., 2016). FIAT (Flood Impact
Assessment Tool) is a flexible Open Source toolset, where direct damages are estimated at the unit level (e.g. a single
building or piece of infrastructure). Combining information on the exposed assets, DDFs, and flood maps, expected damages
from single events were obtained (Fig. 2).

DDFs define, for each asset type, the relation between a given flood depth and the consequent direct damages (Messner and
Meyer, 2005) and are widely used in flood damage modeling due to their simplicity (Schroter et al., 2014). In this analysis,
arbitrarily chosen 100-year return period extreme sea levels event were modelled since, for this case, events with smaller
return periods had only a small difference in intensity and computed flood damages than the 100-year return period event.

The analysis focused on direct and tangible damages to boats and buildings.
3.2 Data

Multiple data sources were used as a basis to perform the CFR analysis. Table 1 contains an overview of the uncertainty
sources investigated, indicating their baseline values and the variations from it, for each different input variable investigated.

The baseline scenario uses a combination of the best available input data (i.e. highest resolution or value in which we have

4



10

15

20

25

30

the highest confidence). To estimate the uncertainty in our CFR analysis, we tested variations from this baseline scenario
using alternative available data sources or high and low percentiles of a given probability distribution. Each input variable

and related source of uncertainty for present and future conditions is described in the next two sections.

3.2.1 Present scenario

Significant wave height

The ERA-Interim dataset (Dee et al., 2011) by ECMWF (European Centre for Medium-Range Weather Forecast), which
covers the period from January 1%, 1989 until present, was used. The dataset provides 6-hourly significant wave height (Hs)
data and was used to estimate the 100-year return period event for Hs, conducting an extreme value analysis (EVA)*. A peak
over threshold technique (Caires, 2011) was conducted on the nearshore wave conditions, fitting a Generalised Pareto
Distribution (GPD) (Pickands, 1975) to the peaks of clustered excesses over a threshold. The 98" percentile of the Hs
distribution was selected as threshold, as recommended by Wahl et al. (2017). To ensure the clustered peaks were
independent and identically distributed, 60-hour consecutive extremes were not sampled together.

Commonly, extreme hydrodynamic boundary conditions are represented with probability distributions. However, these
distributions are fit to measured data and attempt to estimate values for return periods longer than the length of the available
data, thus already introducing uncertainty in the model. Furthermore, the nearshore wave conditions were estimated from
transformation matrices in the DELFT3D-WAVE (SWAN) model, which increases the uncertainty of Hs by introducing
model errors. Therefore, the uncertainty was taken into account by using the 5™, 50" and 95" percentile values of Hs (Table
2) in XBeach (Fig. 2).

Storm surge

The estimation of storm surge levels was based on the dataset by Muis et al. (2016), a global water level reanalysis based
on daily maxima over the time period 1979-2014. In an identical manner to Hs, the 5%, 50™ and 95™ percentile values for the
100-year? storm surge level were estimated (Table 2), aiming to reproduce its uncertainty. The probability distribution of
storm surge and significant wave height were assumed to be independent of each other, therefore without making use of a

joint probability distribution.

Bathymetry
Bathymetry controls the wave transformation mechanisms and ultimately the flooding on land. Therefore, uncertainty and
errors in bathymetric datasets could lead to an increased uncertainty in wave and storm surge simulations, increasing the

potential for modeling error and biases.

1 10-year period 50" percentile value and 90 percent confidence interval values: 1.24 m (1.19-1.31 m)
2 10-year period 50" percentile value and 90 percent confidence interval values: 1.06 m (1.04-1.08 m)
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To explore the role of bathymetry data uncertainty, two datasets were used. The General Bathymetric Chart of the Oceans
(GEBCO) (Weatherall et al., 2015), a publicly available bathymetric dataset, was compared to a locally collected dataset
(Deltares and CDR, 2019). GEBCO has a coarser horizontal resolution than the local dataset (approximately 900 m and 50-
100 m, respectively). Using bathymetry data points with coarse resolutions to generate a digital seabed introduces several
errors and uncertainty, due to the unresolved terrain variability between measured points (Hare et al., 2011; Plant et al.,
2002). The local measurements were taken during a campaign in December 2018, when cross-shore transect profiles were

collected at the two communities, using a handheld echo sounder (Deltares and CDR, 2019).

Digital elevation model

Digital elevation models are numerical representations of the earth surface elevation. Similar to bathymetric datasets,
DEMs with lower resolution will introduce more uncertainty, due to interpolation errors. Furthermore, systematic errors that
stem from a bias in the elevation values are often included in the datasets and have a considerable impact on flood risk
estimates (Bove et al., 2020; Cook and Merwade, 2009; Kulp and Strauss, 2019; Paprotny et al., 2019; Van de Sande et al.,
2012). Indeed, global and satellite-derived DEMs often have a low vertical accuracy for CFR assessments, being surface
models where terrain elevation values may be overestimated due to land cover (e.g., tree canopies and the built
environment).

During the site campaign, topography information was derived from Unmanned Aerial Vehicle (UAV) imagery (Deltares
and CDR, 2019), using the Drone2Map software from ESRI, and referenced to the WGS8 vertical datum. UAV-derived
DEMs have been proven to show higher vertical accuracy than satellite-derived DEMs (Gongalves and Henriques, 2015;
Hashemi-Beni et al., 2018; Leitdo et al., 2016). The UAV measurements were horizontally and vertically referenced using
one Ground Control point in EGS 1984 ellipsoid vertical datum. In order to quantify the effect of the DEM vertical accuracy
on flood estimates, multiple globally available, satellite-derived datasets were collected and compared against the UAV-
derived DEM. The latter, with a horizontal resolution of roughly 10 cm, was assumed to have the highest vertical accuracy.
The investigated satellite-derived DEMs include TanDEM-X, TerraSAR-X, MERIT, ASTER and SRTM. Their horizontal

resolution and vertical accuracy are described in Table 3.

Depth damage function

Depth damage functions (DDFs) describe the vulnerability of the assets at risk in the event of a flood, relating a given flood
depth to a damage factor that indicates the percentage of the lost asset value. DDFs span a large variety of flooding types and
building strengths, allowing for the computation of different damage scenarios (Schroter et al., 2014). However, numerous
simplifications are introduced in designing such curves, such as fitting them to sparse data values and often disregarding
important processes like wave forces and flooding duration. This is partly due to the high complexity of damage physics
(which still lack thorough understanding) and to the scarcity of buildings information (Apel et al., 2004; Merz et al., 2007;
Merz and Thieken, 2009; Wagenaar et al., 2016). In SIDS, locally-derived DDFs are rarely available, forcing risk modelers
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to apply DDFs originally derived for different geographic areas and flood types. The uncertainty of this input was
represented by using a variety of possible shapes and types used in CFR analyses retrieved from literature. Figure 4 and
Table 4 contain a summary of the DDFs used in this study. Generally, two main types of DDFs are used. Convex curves are
representative of more flood-resilient assets that only undergo significant damages at high flood depths (e.g. American
Samoa and DSM curves in Fig. 4). On the other hand, a concave shape represents less flood-resilient building, undergoing
significant damages already at small flood depths (e.g. Sint Maarten or JRC curves in Fig. 4). Concave-shaped DDFs may be
preferable at most SIDS, representing buildings in developing countries. Economic values for different building types were
collected during site visits (Deltares and CDR, 2019). In this research, a single economic value was used to represent an

average building in each community.

3.2.2 Future scenarios

To perform future risk analyses, changes in the drivers and receptors of risks must be accounted for; thus, climatic changes
and socioeconomic development were included in the study. To account for future climatic changes, only SLR was included.
Other processes, such as astronomical tides, storm surge levels, wave heights and local morphology were assumed to be
constant in time. This is consistent with other uncertainty studies (Hinkel et al., 2014; VVousdoukas et al., 2018b), where only
the mean sea level was assumed to be affected by climate change. However, the future predictions of the mentioned
processes can have a significant uncertainty and impact on estimated flood damages, particularly under climate change
(Chowdhury et al., 2006; Karim and Nobuo, 2008)

Sea level rise scenario

The dataset of global probabilistic projection of sea levels under the Representative Concentration Pathway (RCP) 8.5
scenario, developed by the Joint Research Centre (JRC) (Vousdoukas et al., 2018a) was used. The choice of RCP 8.5 relies
on the fact that the 90% confidence interval of this projection also captures most of the 90% confidence interval values under
the RCP 4.5 scenario. In our approach, SLR scenarios were used to increase the static water level (Fig. 2). However, the
range of future SLR remains uncertain, considering the variability of the numerous processes that affect it. Therefore,
choosing a single SLR scenario limits the understanding of the system susceptibility to future flood risk and hides the
uncertainty in the prediction. To reproduce this uncertainty, the 5™, 50" and 95™ percentiles values of SLR projections for
the study area, were simulated (Table 5), for the three future time horizons 2050, 2070, and 2100.

Socioeconomic scenario

For the case of S0 Tomé and Principe, urbanization and global development trends drive an increase in the number and
value of exposed assets in coastal communities, for both mid- and long- term time horizons (2050, 2070 and 2100) (Deltares
and CDR, 2019). Riahi et al. (2017), in collaboration with the IPCC panel, have developed a set of possible societal

developments, Shared Socioeconomic Pathways (SSPs), which vary according to the efforts adopted to mitigate and adapt to
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climate change pressures. They are designed to span a wide range of uncertainty in future human developments and define
future economic variables, such as the gross domestic product (GDP). The dataset used is publicly available and produced by
the International Institute for Applied Scientific Analysis®>. GDP and population growth rate were used in this analysis as a

proxy to compute future asset values as follows:

Asset Value Growth = —2Pts . _Povulations (1.1)

GDPg1g Populationzgig

where GDP, ¢ is the GDP at the year t, under the SSP s. Three SSPs (SSP 2, 3 and 4) were considered to reproduce
socioeconomic growth uncertainty, as they cover the largest range of GDP growth values for the year 2100 (Fig. 5).
Although some SSP scenarios are only compatible with certain RCP scenarios at the global or regional scale (van Vuuren
and Carter, 2014), at the local scale of individual and small countries RCP and SSP may not be necessarily correlated, since

RCP represent a global process while SSP reflect more the socioeconomic development of the single country.

3.3 Baseline scenario and variations

We conducted a sensitivity analysis on the full parameter space of model inputs (Table 1). This led to combinations of: (a)
3 H;s scenarios (b) 3 storm surge scenarios (¢) 2 bathymetry scenarios (d) 6 DEM scenarios (¢) 7 DDF scenarios (f) 3 SLR
scenarios (g) 3 SSP scenarios over (h) 4 different time horizons (current*, 2050, 2070 and 2100) ultimately leading to a total
of 21,168 simulations for each community.

We considered the following scenario as “baseline”: offshore ESLs described by the 50" percentile of storm surge, Hs and
SLR, the locally measured bathymetry, the DEM derived by UAV aerial imagery, the DDF developed for S&o Tomé and
Principe and the “business as usual” SSP 3. For each input and simulation, the ratio of change of the damage estimate from
the simulation with the baseline value for that input was computed. Values higher and lower than one express, respectively,
an over- and under-estimation of the damages, while the range of values expresses the introduced uncertainty around each

input parameter, as summarised in Table 1.

4 Results

The computed flood maps for Praia Abade and Pantufo for the baseline scenario are shown in Fig. 6. Praia Abade is more
flood-prone than Pantufo, where the coastal topography is steeper and the village on higher ground. The effect of each input
on the estimated damages is presented as the ratio between estimated damages for a given scenario compared to the baseline

scenario, for different time horizons (Fig. 7). Changes in the range of results through time for a particular input may be

3 Download Link: https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmIpage&page=about
4 For the current time horizon, no SLR and SSP scenarios are present, reducing the number of simulations required
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explained by both a variation of the intrinsic uncertainty of the input, but also by a change of its sensitivity due to the
influence of another input. For example, a change in the terrain slope may alter the sensitivity of flood damages to changes

in the storm surge level.

Hydrodynamic forcing

As expected, varying the values of Hsand storm surge affects the estimated damages by between 0.5-1.75 and 0.7-1.6 times
the baseline scenario, respectively, in the current time horizon (Fig. 7a, yellow and turquoise boxes). Both their impacts on
output uncertainty decrease in time, as can be seen from the decreasing size of the boxes and whiskers in Fig. 7b-c-d. As

these inputs are assumed stationary in time, their impact reduction is due to the influence of other inputs to their sensitivity.

Bathymetry

Modeling the damages using the coarser GEBCO bathymetry dataset rather than with the locally-measured dataset,
increases the mean damage distribution of 1.25 with respect to the baseline scenario and under the current time horizon (Fig.
7a, blue box). This is due to the lower elevation values in the nearshore given by GEBCO, which leads to higher waves
nearshore. This suggests that the coarse resolution of GEBCO does not resolve nearshore bathymetry features that have an
impact on wave dissipation. Similar to storm surge and Hs, the impact of bathymetry on the damage estimates decreases in
time, with the boxes and whiskers decreasing in size in Fig. 7b-c-d. Figure 8 shows the histograms of damages for the
current time horizon (1,260 simulations) using a single bathymetry dataset, highlighting the effect of using one dataset over
another. Comparing the distribution of estimated damages for the current time horizon from all input combinations with a
single bathymetry dataset shows an increase in the mean for both locations when GEBCO is used while the width of the 50
percent confidence interval of results increases by 20 percent. This indicates that the GEBCO profiles are more sensitive to

changes in other input conditions than the locally collected profiles.

Digital elevation model

Most DEMs highly underestimate flood risk compared to the UAV-derived DEM (Fig. 7a, green box). The global DEMs
indicate that almost no flooding will occur, as a result of their low vertical accuracy and positive bias. For both locations,
TanDEM-X has the highest vertical accuracy amongst all satellite-derived DEMs with a positive bias of 3.2 m in Praia
Abade and 2.9 m in Pantufo (Table 6), although it underestimates the damages (Fig. 9). The impact on damage uncertainty is
considerable for all four time-horizons, particularly in 2100, with estimated damages ranging between 0.25 and 2.9 times the
baseline scenario (Fig. 7d, green box). This indicates that the effect of DEMs becomes more sensitive in time to changes in
other input conditions. TerraSAR-X is the only DEM underestimating the elevation, explaining the considerable number of
upper outliers in the box plots (Fig. 7a-b-c-d green boxes).

Comparing the distribution of estimated damages from all input combinations but using only the UAV-derived vs.

TanDEM-X datasets, one can see that the latter results in a considerably smaller mean damage in Pantufo (from 73,000 to
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43,000 Euros (EUR), Fig. 9a) and Praia Abade (from 89,000 to 35,000 EUR, Fig. 9b). Furthermore, the 50 percent
confidence interval is reduced. An explanation of the very low reliability of satellite-derived DEMs for our case study might
be found in the negative correlation between their vertical accuracy and terrain slope. Indeed, Gorokhovich and
Voustianiouk (2006) have found an increase in the prediction error given by SRTM on steeper slopes and mountainous

areas, such as the volcanic islands of Sdo Tomé and Principe.

Depth damage function

The estimated damages show a considerable uncertainty and spread of results depending on the DDF applied. For the
current time horizon, DDFs hold the largest impact on model outcome of any input variable, with estimated damages ranging
between 0.25 and 4 times the baseline scenario (Fig. 7a, purple box). Their range of uncertainty only slightly decreases
through time (Fig. 7b-c-d). The majority of alternative DDFs are concave and show lower impacts compared to the convex
baseline DDF, in particular for low flood depths (Fig. 4), therefore resulting in a box with a mean smaller than one (Fig. 7,

green boxes).

Sea level rise

SLR initially has a similar impact on the uncertainty of the damages for the year 2050 as H; and storm surge (Fig. 7b, black
box), although this significantly increases for time horizons further in the more distant future. Indeed, sea level rise has the
most considerable spread of results in the year 2100, 0.5-3.7 times the baseline scenario (Fig. 7d, black box). This is partially
due to the increasing uncertainty in SLR estimates for the year 2100, as future climate modeling assumptions become weaker

for longer time horizons.

Socioeconomic scenarios

The uncertainty brought by socioeconomic changes is limited in this framework. Indeed, varying the selected SSP does not
yield a significant variation of the model outcome, and the highest spread of results is found for the year 2100 (0.6-1.3 times
the baseline, Fig. 7d), when uncertainties in the prediction of social development become larger. However, including
socioeconomic factors in the risk estimates increases the economic value of the assets at risk, and thus increases the potential
damage. Figure 10 shows the computed damages through time, using three modeling approaches: including only climate
change-induced SLR, including only socioeconomic changes, and including both. Future damages are remarkably higher
when taking the economic development of the communities into account. When both changes are included the damages of
the baseline scenario increase by a factor of 35 in Pantufo and 50 in Praia Abade for the year 2100 (Fig. 10a-b, blue line).
Combining SLR and socioeconomic growth increases the damages non-linearly, as the former increases the hazard and the

latter affects the value of exposed assets, therefore acting on different risk components.
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4.1 Relative Importance

To obtain an estimate of the uncertainty of each input variable through time, the range of possible values within the damage
estimate of each input is considered (Fig. 7). The relative importance of each variable is computed as the ratio between its
range of possible values and the sum of all ranges of possible values of each input, scaled to unity. DDFs and DEMs have
the largest relative importance of all investigated input variables for the current time horizon (Fig. 11). For future risk
estimates, the uncertainty due to SLR continuously increases and becomes dominant for the year 2100, followed by DDFs
and DEMs. Socioeconomic changes have a somewhat more constrained relative impact, although they increase in time. Hs,
storm surge, and bathymetry have the smallest relative effect on damage estimates, decreasing with time. However, their
impact decreases also absolutely, as their range of results becomes narrower through time (Fig. 7a-b-c-d, yellow, turquoise
and blue boxes). Their reduction is linked to the change in mean sea level due to SLR, which leads to the exceedance of

thresholds in the elevation that reduce the sensitivity of flood damage estimates to these inputs.

5 Discussion

This paper presents an investigation of multiple uncertainty sources in relation to CFR assessment at two small islands,
highlighting the consequences of the scarcity of reliable input data for SIDS. The results provide a useful indication and
highlight the need of collecting higher quality data. Furthermore, the impact of SLR predictions becomes significantly more
important with time, becoming dominant for risk estimates at the end of this century. The baseline scenario is composed by
the best available input data (i.e. value in which we have most confidence or with the highest resolution). To assess the
uncertainty in our CFR analysis, we varied this scenario based on alternative available data sources or high and low
percentiles of a given probability distribution, estimating the impact brought by each uncertainty source on the damage
estimation. However, there are several assumptions that go into these estimates, which are discussed below.

5.1 Assumptions & Limitations

Present-day scenario

We used advanced hydrodynamic models which enabled us to include short wave processes and their effect on floods, an
aspect that can lead to intensified flooding consequences (Storlazzi et al., 2018). However, each model contains numerous
assumptions and simplification that translate into further uncertainties in the output estimate (Loucks and Van Beek, 2017;
Uusitalo et al., 2015). These model uncertainties were disregarded as we focussed only on uncertainties related to data input.

We performed a global sensitivity analysis, exploring the whole input space domain. All possible input combinations were
tested, leading to the presence of dependencies in the behaviour and response of some inputs. This approach has the
advantage of examining input combinations that may include non-linear interactions (Uusitalo et al., 2015). Most notably, Hs
and storm surge have experienced a decrease in their impact on damage estimates uncertainty in more distant time horizons

(Fig. 7a-b-c-d). This was linked to the action of SLR, which led to a change in the terrain slope at the coastline that altered
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the sensitivity of damage estimates to changes in storm surge and Hs. This demonstrates how uncertainty in one input
variable can affect the uncertainty in the estimate brought by another input variable. To further improve the presented
methodology, a Monte Carlo analysis that considers a pdf for each uncertain input to estimate the pdf of the expected
damages could be performed, although the computational effort is prohibitive.

The choice of uncertainty sources and their range of values and datasets, although subjective, allows for an indication of the
most important uncertainty regarding risk analyses in SIDS. The choice of inputs that were analysed was balanced carefully
between comprehensiveness of the analysis and computational expenses. Therefore, several factors were discarded,
including small scale adaptation measures that are not represented in the DEMs and other sources of flood hazards (e.g.
rainfall events).

Compound flooding events (e.g. coastal and riverine) can significantly increase the damages than single events only
(Kumbier et al., 2018; Wahl et al., 2015; Ward et al., 2017), and further research could estimate the added uncertainty.
Moreover, the interdependency between different ESL components has been neglected, although tide and sea level changes
are often correlated, adding further uncertainty in the analysis (Devlin et al., 2017). The combination of storm surge peak
with the spring-neap tidal variability (Vousdoukas et al., 2018b) has also been disregarded, to model a worst-case scenario
where the storm peak and spring high tide occur simultaneously (Fig. 3).

Separate datasets with different recorded lengths were used for the statistical estimation of the storm surge level and
significant wave height 100-year return period values, which is an additional source of uncertainty in the damage prediction.

Finally, in the damage estimation, only direct and tangible damages were considered, whereas loss of life, natural habitat

and other indirect damages were discarded, therefore leading to an underestimation of the total damages.

Future scenarios

Societal developments have been implemented in a rather simplistic way, considering only future asset and population
growths. In particular, migration patterns, global economic trends, technological advancement, projected land use, and
wealth distribution could be included to further strengthen the methodology. However, the results have still shown the
detrimental effect of disregarding socioeconomic changes, responsible for an increase of a factor 50 in the damage estimates
(Fig. 104, blue line).

The spatial distribution of houses built in the future was assumed to be identical to the current one. Since people may
relocate to areas with lower flood risk, this assumption could result in an overestimation of the damages. Furthermore, the
possibility of exceeding the level of available land for new constructions is not considered, which may have led to estimating
an unrealistic population growth in the communities. Moreover, only one representative type of building was included in the
analysis, using a weighted averaging approach based on the distribution of building types. This assumption could yield to an
underestimation of flood damages in the case that most of highly valuable buildings are in the most hazard-prone area.

Nevertheless, this assumption was supported by the heterogeneous spatial distribution of buildings in Praia Abade and
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Pantufo. The investigation of uncertainty in future exposure has not been extensively studied but can have a strong impact on
the risk assessment (Bouwer, 2013).

Climate change impacts on future risk predictions were only considered in a limited way, evaluating just the role of SLR.
Changes in significant wave height, storm surge and bathymetry were omitted from our analysis, as in other similar studies

(Hinkel et al., 2014; Vousdoukas et al., 2018b), which leaves their impact on future damage estimates unquantified.

Applicability of the results to other locations
The methodology was applied to two coastal communities, respectively on the islands of Sdo Tomé and Principe. Although
the two villages were located at two different islands, with rather different local geomorphology, the results were rather

similar. Therefore, we believe that the general findings from this research could be translated to other SIDS.

6 Conclusions

This study aims to better understand uncertainty of input data in coastal flood risk (CFR) in Small Island Developing States
(SIDS). The methodology and outcomes were derived based on an assessment of two villages located on the two islands of
S4o Tomé and Principe where locally-measured data was available to be compared with publicly-available global datasets.
Investigating the uncertainty propagation from imperfect input data along the whole risk assessment may guide the allocation
of limited financial resources to collect the most relevant data more accurately for CFR analyses in SIDS.

The uncertainty investigation was performed using an ensemble of hydrodynamic and impact models, estimating flood
damages for a 100-year event. Different input sources of uncertainty were investigated, including (i) significant wave height,
(i) storm surge level, (iii) SLR projections to ESLs, (iv) bathymetry and (v) topography datasets, (vi) damage models
(DDFs) and (vii) socioeconomic changes.

Considerable uncertainty is found in the estimation of flood damages, highlighting the challenges of performing CFR
analyses for SIDS. For the current time horizon, the choice of DDF, followed by topography information (DEM), are the
main contributors affecting the uncertainty of the output, varying the estimated damages, with a factor ranging between 0.25-
4 and 0.3-2.5, respectively relative to the baseline case. For future damage estimates, SLR predictions become the input with
the highest impact on damages estimates. DEM and DDF still carry considerable uncertainty and are ranked second and third
in importance (Fig. 11). SLR and especially economic and population growth drive enormous increases in future expected
risk, with mean damage estimates of the baseline scenario increasing by up to a factor 50 from the present day. Nevertheless,
socioeconomic changes have a smaller uncertainty compared to other inputs, partially due to their limited model
implementation. We thus recommend future research in improving the implementation of socioeconomic changes in risk
modeling. Hs, storm surge and bathymetry have a more confined impact on the overall damage estimate uncertainty and their

relative weight slightly decreases through time.
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Using low-quality input data leads to a significant error in the prediction, together with a variation in the level of
uncertainty reproduced by the model. This negatively affects the model’s trustworthiness, as it may give unwarranted
confidence in its output. Complex hydrodynamic models that include multiple physical processes and which can achieve a
high level of accuracy in the prediction already exist. However, the efforts put into developing these models can be futile
whenever incorrect input data is used, suggesting that the improvement of data-collecting techniques should become a
priority. If reducing uncertainty requires obtaining additional information, then the value of this additional information must
exceed the cost of obtaining it. This value will be the reduction of the uncertainty brought by the information.

Furthermore, we recommend focusing on improving DEM quality, collecting damage information, and improving the
reliability of SLR projections, as they represent the critical factors affecting the uncertainty in coastal flood damage

estimates in SIDS.
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Principe

% Praia Abade

Sao Tomé

Pantufo

Figure 1 Case Study site. (a) Geographical location of the islands of S&o Tomé and Principe in the Gulf of Guinea. (b)

Geographical location of the communities of Pantufo and Praia Abade on the two islands. (c) Aerial view of the community of

10 Pantufo and (d) Praia Abade. (a) and (b) are provided by ESRI, DigitalGlobe and the GIS community. (c) and (d) were
reproduced with permission from CDR International.
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Figure 2 Schematic representation of the modeling chain used to carry out the damage assessment and including the different
source of uncertainties analysed (red boxes). The blue rectangles show the numerical models (XBeach and SFINCS) and tools
(Delft-FIAT). The inputs used to model the hazard, exposure and vulnerability are included in orange, green and yellow boxes,
respectively. Inputs used to model the present condition are represented with rectangles, whereas those used for future scenarios
are represented with ellipses. Extreme sea levels are estimated by combining mean sea water levels, astronomical tides, storm
surges and single waves. The earth surface is represented by bathymetric and digital elevation model (DEM) data. The inundation
map produced by SFINCS is combined with depth damage functions (DDFs) and asset value to compute flood damages. Sea level
rise (SLR) and socioeconomic growth are used to assess future predictions. Arrows indicate the data flow.
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Figure 3 Qualitative example of the hydrograph of the storm water level: surge level (blue) and astronomical tide (black) over the
length of a 24 hours storm. The red lines mark the modeled central 6 hours of the storm.
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Figure 4 Overview of the different DDFs investigated in the study, including: concave (Baseline, JRC, Lisbon, S. Maarten and
Tsunami) and convex (American Samoa, and Damage Scanner Model (DSM)) types. See Table 3 for details of curves.
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GDP growth factor since 2018

2020 2030 2040 2050 2060 2070 2080 2090 2100

Year

Figure 5 GDP growth factors for five different SSP scenarios through time. The different lines indicate the projected GDP
growth according to the 5 SSPs. The black dashed lines indicate the three simulated time horizons and the range of used GDP
5 projections.

Figure 6 Flood depth map estimated by SFINCS for the baseline scenario for Pantufo (a) and Praia Abade (b). Flood depths are
expressed in meters. Both aerial images were reproduced with permission from CDR International.
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Figure 7 Absolute impacts on damage estimate uncertainty. Box plots of the ratio of damages from the baseline scenario for Hs,
storm surge, bathymetry, DEM, DDFs, SLR and SSP. (a, b, ¢ and d), for the four time horizons (present-day, 2050, 2070 and 2100).
Mean values are represented by the black lines inside the boxes. The 25th and 75th percentiles are indicated by the edges of the
boxes. The black thin whiskers extend to 1.5 times the interquartile distance, outside of which are outliers, shown with red crosses.
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The black dashed line shows the reference of the baseline scenario.
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Figure 8 Impact of using global bathymetric data versus local measured data. Histograms of damages from all 1,260 simulations
of the present scenario, using a single bathymetry dataset, the locally-collected bathymetry (blue histograms) and GEBCO (orange

histograms) for Pantufo (a) and Praia Abade (b). Dotted lines indicate the width of the 50 percent confidence interval. Damages
are expressed in Euros (EUR).
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Figure 9 Impact of using global DEMs versus local DEMs. Histograms of damages from all 1,260 simulations of the present
scenario, using a single DEM dataset, the UAV-derived (blue histograms) and TanDEM-X (orange histograms) for Pantufo (a) and
Praia Abade (b). Dotted lines indicate the width of the 50 percent confidence interval. Damages are expressed in Euros (EUR).
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Figure 10 The relevance of socioeconomic changes. (a) Damages under the baseline scenario expressed in Sao Tomean Dobras
(STD) for Pantufo and (b) Praia Abade over time, differentiated by contributing factors: damages driven only by climate change
induced SLR (red), damages driven only by socioeconomic changes (green) and damages driven by both (blue).
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Figure 11 Inputs relative contribution to damage estimate uncertainty. Relative importance of the investigated inputs (Hs, storm
surge, bathymetry, DEMs, DDFs, SLR and SSP) effect on the damage estimate uncertainty over the four time horizons considered.

5 Table 1 Overview of all uncertainty sources investigated (input variable), with descriptions of their source of uncertainty,
baseline value and the variations from the baseline value as used for the CFR analysis.

Input variable Source of uncertainty Baseline Variations Number  of

scenarios

Significant ~ Wave | Uncertainty associated with | 50" percentile | 5" and 95" | 3

Height the extreme value analysis | of the pdf of the | percentiles  of
& Storm Surge level | (EVA) extreme values | the pdf of the
(Table 2) extreme values
(Table 2)
Bathymetry Horizontal and  vertical | Locally- Bathymetry 2
resolution, errors in the | measured retrieved from
dataset and interpolation GEBCO
between data points
Digital elevation | Horizontal and  vertical | Locally- Multiple 6
model resolution, errors in the | measured DEMs
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dataset and interpolation

between data points

(The
investigated

satellite-derived

DEMs include
TanDEM-X,
TerraSAR-X,
MERIT,
ASTER and
SRTM.  Their
horizontal
resolution and
vertical
accuracy  are
described in
Table 3)
Depth damage | Transfer of damage | Locally- Multiple
function functions retrieved from other | retrieved DDFs (Table 4)
flood events and other
regions. Neglect of physical
factors, such as flood duration
or flow velocity.
Sea level rise | Uncertainty associated with | 50th percentile | 5" and 95"

projections

extrapolating, based on given

of the pdf of

percentiles  of

data, as well as with reliability | projected sea | the pdf of
of climate models level rise projected  sea
level rise
Shared Uncertainty related to future | SSP 3 —| SSP 2 and 4
Socioeconomic predictions of socioeconomic | “business as | (Fig.5)
Pathway developments usual”

Table 2 Overview of Hsand storm surge variations considered and corresponding to the 5, 50" and 95 percentile. The baseline

value is italicised.

Percentile

H; Praia Abade [m]

Hs Pantufo [m]
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5t 1.05 1.24 1.05

50t 1.18 1.35 1.08

95t 1.38 1.53 1.15

Table 3 Overview of investigated globally available satellite DEMs: TanDEM-X, SRTM, MERIT, ASTER and TerraSAR-X.
Horizontal resolution and global error metrics of RMSE and Mean Error (ME) for the vertical accuracy are also provided.

DEM Source Horizontal Vertical
Resolution Accuracy
TanDEM-X Wessel et al. (2018) 90m RMSE = 3.16 m; ME
= 1.06 m (Hawker et
al., 2019)

Shuttle Radar Topography | Jarvis et al. (2008) 30m RMSE = 4.03 m; ME

Mission (SRTM) = 2.16 m (Hawker et
al., 2019)

Multi-Error Removed | Yamazaki et al. (2017) 90 m RMSE = 2.32 m; ME

Improved Terrain (MERIT) = 1.09 m (Hawker et
al., 2019)

Advances Spaceborne | NASA/METI/AIST/Japan 90m RMSE = 868 m
Thermal Emission and | Spacesystems and Science (2009) (Tachikawa et al., 2011)
Reflection Radiometer
(ASTER)

TerraSAR-X Produced by GeoVille in 2013, | 10m Not Available

derived from TerraSAR-X imagery

Table 4 Overview of the considered depth damage functions (DDFs), their geographical application area and flood type.
Different DDF curves are shown in Figure 4.

Depth Damage Function | Reference Geographical Application | Flood Type
(DDF) Area
JRC Huizinga et al. (2017) Africa Coastal and riverine
S. Maarten Vojinovic et al. (2008) Sint Maarten (SIDS) Coastal and pluvial
Lisbon Hinkel et al. (2014) Lisbon Coastal
Tsunami Tarbotton et al. (2015) Averaged over several | Coastal (Tsunami
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countries induced)
Damage Scanner Model | Kok et al. (2005) Netherlands Riverine
(DSM)
American Samoa Paulik et al. (2015) American Samoa (SIDS) Coastal
Baseline Deltares and CDR (2019) Sd0 Tomé and Principe | Coastal and pluvial
(SIDS)

Table 5 Overview of the considered SLR projections for the study area for the year 2050, 2070 and 2100, according to
Vousdoukas et al. (2016). The baseline value is italicised.

Sea Level Rise [m]

Percentile Year 2050 Year 2070 Year 2100
5t 0.19 0.31 0.53

50t 0.30 0.49 0.87

g5t 0.47 0.98 2.05

5 Table 6 Error metrics of the studied publicly available DEMs for the two locations. The bias and error standard deviation from
the UAV-derived DEM for SRTM, MERIT, TanDEM-X, ASTER and TerraSAR-X, in Praia Abade and Pantufo.

Location SRTM MERIT TanDEM-X ASTER TerraSAR-X
Praia Abade Bias [m] 6.43 6.35 3.23 6.90 Not available
Error Standard Deviation | 0.95 0.55 0.54 0.73 Not available
[m]
Pantufo Bias [m] 4.63 4.48 2.93 5.81 -1.35
Error Standard Deviation | 0.97 0.89 0.68 0.69 2.30
[m]
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