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Abstract

Previous seismic damage reports have shown that the damage and collapse of buildings is the leading cause of
fatality and property loss, especially in developing countries. To better serve the risk analysis targeted at near-real-
time post-earthquake mitigation and pre-earthquake preparedness and resources allocation, this study develops a
fully reproducible grid-level residential building stock model for mainland China, by disaggregating urbanity level
census data of each province into 1kmx 1km scale and using population density profile as the proxy. To evaluate
the model performance, the modelled residential building stock value is compared with the net capital stock value
in Wu et al. (2014) using perpetual inventory method at provincial level. The modelled stock values in these two
studies are in good agreement for all the 31 provinces in mainland China. Furthermore, district level comparison
of the residential floor area developed in this study with records from statistical yearbook of Shanghai is also
conducted. It turns out that the floor area developed in this study is compatible with floor area recorded in the
yearbook of Shanghai. To further validate the applicability of the modelled results in seismic risk assessment, an
estimation of the scenario loss to modelled residential buildings is performed, by assuming the recurrence of 2008
Wenchuan M8.0 earthquake. The overall estimated loss approximates the loss value derived from damage reports
based on field investigation quite well. Both results indicate the reliability of the residential building stock model

developed in this study. The limitations of this study are discussed and directions for future work are recommended.

1. Introduction

With the theme of last year’s International Day for Disaster Reduction (IDDR2018) being “Target B: Reducing
the number of affected people by disasters by 2030”, the awareness of the impacts of natural disasters on human
society has been increasing over the years. Demands from public sector for quantification of disaster risk is thus
more urgent than before. As stated by Antonio Guterres, the current United Nations Secretary-General, in
IDDR2018, that “Disasters cost hundreds of billions of dollars (every year), hitting the poorest countries
disproportionately and pushing millions into poverty. We must tackle disaster risks and leave a more resilient
planet to future generations.” To better cope with the frequent occurrence of earthquakes and other natural hazards
(typhoon, flood, tsunami, etc.), the development of sound risk models for natural hazards should be given top

priority, since these hazards can lead to tremendous and often crippling economic losses especially in the countries



https://doi.org/10.5194/nhess-2019-385
Preprint. Discussion started: 6 January 2020
(© Author(s) 2020. CC BY 4.0 License.

35

40

45

50

55

60

65

70

of the developing world. According to the estimation in Daniell et al. (2011, 2017), from 1900-2016, 2.3 million
earthquake fatalities from 2233 fatal events occurred worldwide, with economic losses (direct and indirect)

associated with the occurrence of over 9,900 damaging earthquakes reached USD 3.41 trillion (in 2016 price level).

To develop a seismic risk model, three layers of information are essential: hazard, exposure and vulnerability.
Hazard refers to the occurrence frequency and severity of ground shakings generated by earthquakes. Exposure
captures the attributes of exposed elements in terms of value, location and relative importance (e.g. buildings,
critical facilities and infrastructure) to potential earthquake. Vulnerability describes the susceptibility of those
exposed elements to earthquake. Among the exposed elements, buildings are considered as the most important
asset category in seismic risk assessment, since the majority of loss and fatality that occurs during earthquakes are
related to building damage and collapse (Neumayer and Barthel, 2011; Yuan, 2008). As such, estimation of the
building stock and the values at risk is an important and integral part of any risk modeling effort. Specifically in
developing and disaster vulnerable countries like China, rapid urbanization process has led to massive increase in
both the asset value and population exposed to seismic hazards (Hu et al., 2010; Yang and Kohler, 2008). Therefore,

a country-level modelling of the building stock and its spatial distribution across China is essential.

Ideally, if the building stock value of the research portfolio is already known, e.g. in an insurance portfolio,
building attributes (i.e. the location, geometry, height, construction age and material, occupancy type etc.) are used
mainly for building vulnerability determination. However, in most cases, the building stock value is not available
and obtaining such detailed information for every building in a large region is not practicable. Therefore, the
aforementioned building attributes, which are usually provided at administrative level in census data, are also used
to estimate the building stock value. In this case, appropriate proxy (e.g. population density) is required to
disaggregate administrative level census data into finer scale. The use of proxy is quite a reasonable approach in
dasymetric modelling and has been frequently adopted in previous studies (e.g. Gunasekera et al., 2015; Silva et

al., 2015; Thieken et al., 2008).

When disaggregating census data into a finer scale, it cannot be carried out by simply assuming that the assets
within an administrative unit are evenly distributed, since in reality people and buildings tend to be concentrated
in settlements e.g. along the riverside or within alluvial plains (Figueiredo and Martina, 2016). In this regard, more
sensible techniques have been applied and documented in the literature. For example, Silva et al. (2015)
disaggregated the building stock at parish level for mainland Portugal based on the population density profile at
30%30 arc-sec resolution cells from LandScan. The LandScan population density profile was produced by
apportioning best available census counts into cells based on probability coefficients, which in turn were derived

from road proximity, slope, land cover and night-time lights (Dobson et al., 2000).

In mainland China, the modelling of building stock value and its spatial distribution across China is scarcely done
at high-resolution (e.g. lkmX lkm scale). In those published studies related to building stock model development,
e.g. Yang and Kohler (2008) and Hu et al. (2010), the simulation and evolution of building stock value (taking the
mainland China as a whole) were designed and targeted for resource consumption and environmental impacts
purposes, which cannot meet the needs in risk analysis due to their coarse resolution. International projects e.g.
PAGER (Jaiswal et al., 2010) and Gunasekera et al. (2015) also conducted global exposure modelling that covered

the building stock value in mainland China. However, these global models cannot fully make use of the census
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data available in each country and usually assuming a uniform distribution of building stock value per capita for
each province or even for each country, which might be convenient, but not realistic, especially for unevenly
developed countries like China. A recent work of Wu et al. (2018) established a high-resolution (1kmx 1km scale)
asset value model based on the net capital stock value they estimated for 344 prefectures in mainland China using
the perpetual inventory method (Wu et al., 2014). However, their original asset data to be disaggregated into grid
level was actually restricted to prefecture level. Furthermore, the extent of the natural hazards, in most cases, are
dependent on the geological structure (earthquakes) or along the riverside (floods), instead of being restricted to
administrative boundaries. Therefore, to better cope with this spatial mismatch between natural hazards and
administrative boundaries, building stock models should be geo-coded with relatively high resolution and be

disaggregated from more detailed census data.

The organization of the following sections is as follows: the full list of data sources needed, and a detailed
description of the methodology used to develop the high-resolution building stock for mainland China will be
firstly introduced. Then, to evaluate the model performance, provincial and district level comparison of the
modelled results with that in previous studies and yearbook records will be conducted. Finally, an application of

the building stock model in seismic risk analysis will also be given.

2. Data Sources and Methodology

This section will introduce in detail the building related census data needed to develop the building stock model
and the methodology used to disaggregate the administrative level census data into grid level. The census data
used in this study for building stock modelling are extracted from the Tabulation of the 2010 Population Census
of the People’s Republic of China (hereafter abbreviated as the “2010-census”), particularly for residential
buildings. Like in most countries of the world, the national level population and housing census are carried out at
10-year interval, and currently the latest version was issued in 2010. In the 2010-census, there are two types of
tables: Long Table and Short Table. Long Table includes summaries based on the surveys of 10% of the total
population in mainland China, while the Short Table summaries are based on the surveys of the whole population.
Building stock model related census data (e.g. building occupancy type, height classes, construction material, etc.)
are extracted from the Long Table of the 2010-census. Supplementary demographic information (e.g. the total
population, the average number of people per family and average floor area per person) are extracted from the

Short Table of the 2010-census. The data of the 2010-census are summarized in Table 1.

In the 2010-census, for each of the 31 provinces, autonomous regions and municipalities in mainland China
(hereafter, all referred to as provinces), the building related census data in the Long Table are categorized into
three urbanity levels (urban, township and rural), based on the administrative belonging of the surveyed population.
The building related census data for each urbanity level of each province are listed in Table 2. Compared with
provincial level census data used in previous studies, one advantage of the 2010-census data is its further

categorization of data into three urbanity levels, which better reflects the regional difference within each province.

To disaggregate the urbanity-level based census data into grid-level, population density is used as the proxy, as is
a common practice in risk analysis (Aubrecht et al., 2013). The population density profile chosen in this study is

developed by Global Human Settlement (GHS) project of the European Commission in 2015, which was
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disaggregated from census or administrative units to geo-girds, informed by the distribution and density of built-
up area as mapped in their Global Human Settlement Layer (it is worth noting that this dataset has been updated
in 2019). In the 2015 GHS population density profile, the number of population in each geo-grid is given. When
compared to values from population counts they prove to be accurate (Gunasekera et al., 2015). The original
resolution of the 2015 GHS population density profile is 250mx250m, for calculation convenience it is resampled
to 1kmx1km resolution before further analysis. The provincial boundary (level 1) vector layer dataset defining

the spatial boundaries of mainland China is from the Global Administrative Areas (GADM, www.gadm.org).

With these data on population and residential building stock, a top-down spatial scaling method will be performed
to disaggregate the urbanity-level census data into 1kmX 1km resolution grids for each province in mainland China.
The flowchart in Fig. 1 provides an overview of this modelling process. Detailed explanations of each component

and step are as follows.

2.1: Assign urbanity attribute (urban/township/rural) to the geo-coded grids in the 2015 GHS population
density profile

As outlined above, the population and housing related census data for each of the 31 provinces in mainland China
are categorized into three urbanity levels: urban, township and rural. Therefore, the geo-coded grids in 2015 GHS
population density profile should also be assigned with an urbanity attribute first, before disaggregating the
urbanity-level based census data into each grid. For each province, this is achieved by applying the population

reallocation approach developed by Aubrecht et al. (2015) and also illustrated in detail in Gunasekera et al. (2015).

Following this population reallocation approach, the urban/township/rural population proportion of each province
can be derived from the Short Table of the 2010-census (as listed in Table 2). For example, in Shanghai City
(which is one of the four municipalities in China), the population proportion of urban/township/rural urbanity level
is 76.64%, 12.66% and 10.7%, respectively. Then the grids (1kmx1km) in 2015 GHS population density file of
Shanghai are sorted from the largest to the smallest, and the population in those largest and most populated geo-
codes grids are summed up and selected until the 2010-census urban population share (i.e. 76.64% for Shanghai)
is reached. These selected grids are thus assigned with urbanity attribute “urban”. The smallest population of these
selected grids is taken as the threshold to divide urban and non-urban grids (for Shanghai this urban/non-urban
population density threshold is 4827 per km?). For the remaining non-urban grids, the same process is repeated
iteratively until the township population proportion (i.e. 12.66% for Shanghai) is reached. These secondly selected
grids are assigned with urbanity attribute “township” and the smallest population among these grids is taken as the
threshold to divide township and rural grids (for Shanghai this township/rural population threshold is 2736 per
km?). The remaining grids are thus assigned with “rural” attribute. The distribution of the assigned

urban/township/rural grids in Baoshan District of Shanghai City is shown in Fig. 1 as an example.

Reiterate the above calculations for all the 31 provinces in mainland China, then all the geo-coded grids in the
2015 GHS population profile can be assigned with urban/township/rural attribute accordingly. The corresponding
population thresholds for each province are provided in Appendix Table Al.
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2.2: Step 1-Extract the building related census data from the Long Table of the 2010-census (statistics

derived from surveys of 10% population of mainland China.

As in many other countries, the population and housing census data in mainland China are particularly surveyed
for residential buildings. Therefore, the building stock model developed in this study is for residential building
stock. Related census data for assessment of residential building stock value include the number of families living
in building types grouped by building occupancy (i.e. residential, commercial, mixed), by number of storey (i.e.
1, 2-3, 4-6, 7-9, >10), and by construction material (i.e. steel/reinforced-concrete, mixed, brick/wood, other;
hereafter steel/reinforced-concrete is abbreviated as steel/RC; and “mixed” refer to different combinations of
masonry buildings). As already listed in Table 1, these data are extracted from the Long Table of the 2010-census,
based on the survey of 10% of the total population in mainland China. Therefore, to evaluate the whole building
stock value across China, these building related 2010-census data should be extended from 10% to 100%

population first by multiplying the factor of 10 (namely factor 0 in Step 1-1 of Fig. 1).

After multiplying the factor of 10, the overall number of families living in building types grouped by building
storey or construction material is considered to be complete for each urbanity level of each province. With the
family number living in each building type known, by multiplying the average number of population per family
(namely factor F/ in Step 1-2 of Fig. 1), which is also provided in the Short Table of the 2010-census, the overall
population living in building types grouped by storey (1, 2-3, 4-6, 7-9, >10) or construction material (steel/RC,

mixed, other, brick/wood) can thus be instantly derived for each province and each urbanity level.

Up to now, the geo-coded grids in the 2015 GHS population density profile have been assigned with urbanity
attribute and the population living in each building type is also derived for each province and each urbanity level
from the 2010-census. It is noteworthy that the changes in population or building from 2010 to 2015 has not been
considered yet. In rapid urbanization countries like China, the bloom of construction of buildings and the
population inflow from township/rural areas to urban areas are significant. Therefore, the population derived from
the 2010-census needs to be further amplified to the 2015 level, and mathematically this amplification factor (factor
F2in Step 1-3 of Fig. 1) is assumed to be equal to the ratio between 2015 GHS population and 2010-census derived
population (after amplified from 10% to 100% of the population).

As listed in the last column in Table 2, the amplification factor F2 varies across each urbanity level of each
province (namely factor 2 in Step 1-3 of Fig. 1). For each province, F2 in the urban area is generally higher than
in township/rural area, which is quite reasonable. However, it should be noted that the increase in building
construction area from 2010 to 2015 is also assumed to be equal to the population increase. The reason behind
such an assumption and the performance of the residential building stock model will be further evaluated in the

Results and Discussion section.

After getting the population living in each urbanity of each province amplified to year 2015, now this urbanity-
level based population data can be disaggregated into the geo-coded grids in 2015 GHS population density profile
by using the apportionment weight (namely factor 3 in step 1-4 of Fig. 1). F3 is defined as the population share

of each grid relative to the summed population from grids within the same urbanity level of each province.
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2.3: Step 2-Disaggregate population and building related census data from urbanity level into grid level.

As explained in Section 2.2, by multiplying the original building related records extracted from the 2010-census
with factor F0, F1, F2 and F3 in Step 1 of Fig. 1, the population in each grid living in building types grouped by
number of storey (1, 2-3, 4-6, 7-9, >10) or by construction material (steel/RC, mixed, other, brick/wood) can be

derived.

To estimate the residential building stock value, the number of buildings with combination of both storey class
and construction material need to be derived. Initially, from the five storey classes (1, 2-3, 4-6, 7-9, >10) and the
four building material classes (steel/RC, mixed, other, brick/wood), there will be 20 building sub-types. In the
following description, we will first introduce how to reduce the principal number of building sub-types from 20 to
17 based on necessary assumption. Then we will estimate the number of population living in each of the 17
building sub-types. Based the information on average floor area per capita in each urbanity level (as given in the
Short Table of the 2010-census), the total floor area of each of the 17 building sub-types in each grid can be derived.
Finally, for each building sub-type, their replacement value emerges from a multiplication of the floor area with

the construction price.

It is widely observed that most brick/wood buildings are with quite low height (1 or 2-3 storey), while steel/RC
buildings are generally quite high with height of 10-storey or above. Therefore, it is further assumed that for
“brick/wood” building type, there are only two storey classes (1, 2-3). While for “steel/RC”, “mixed”, and “other”
building types defined in the 2010-census, all five storey classes (1, 2-3, 4-6, 7-9, >10) are available (namely
Assumption I in Step 2-1 of Fig. 1). Thus, the building sub-types in each grid are reduced from 20 to 17. The list
of these 17 building sub-types is given in Table 3.

Currently, we know from Step 1 for instance in each grid the number of population living in buildings of the five
storey classes, but do not know for each storey class how the population are distributed in the classes of the four
construction materials. Also, we know for instance how many people live in steel/RC buildings but do not know
how they are distributed into the five storey classes. The derivation of the number of population in each of the 17
building sub-types requires to find 17 unknowns from 9 equations. In order to solve this underdetermined linear
problem, further reasonable approximations need to be made (namely Assumption 2 in Step 2-2 of Fig. 1) to make
sure that in each grid the sum of population living in the 17 building sub-types is equal to the population living in

building types grouped by construction material or by storey class.

From here, the population living in each of the 17 building sub-types is derived by a series of distribution steps

based on a prioritized ranking of building types and storey class from the aggregated inputs:

1. Ineach grid, brick/wood buildings are first placed into 1 storey class and subtracted from the total amount

of brick/wood buildings.

2. Remaining brick/wood buildings are placed into 2-3 storey class.

3. 10 storey values are placed in steel/RC class as a start as they are assumed to not be “mixed” masonry

class.
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4. Similarly, the remaining steel/RC buildings are proportioned to other storey classes from highest to lowest,

assuming that the least population in steel/RC would be in 1 storey class.

5. For “other” buildings, they are distributed into each of the five storey classes, based on the proportions
of remaining buildings in each storey class (all four construction materials are considered) and the ratio

between “other” buildings and “other + mixed” buildings.

6. For “mixed” buildings, they are distributed each of the five storey classes, based on the proportions of
remaining buildings in each storey class (all four construction materials are considered) and the ratio

between “mixed” buildings and “other + mixed” buildings.

The MATLAB script illustrating the above multi-variate equation solving process is provided in Data/Code

Availability section.

2.4: Step 3-Derive the number of people living in each of the 17 building sub-types

With necessary assumption and approximation and by solving the multi-variate equations mentioned in Section
2.3, the population living in each of the 17 building sub-types can be derived for each grid. In the Short Table of
2010-census, the average residential floor area per capita is also given for each urbanity level of each province
(namely factor F4 in Step 3-1 of Fig. 1). Therefore, the floor area of the 17 building sub-types in each grid can be
directly derived. Comparison between the modelled floor area with statistical yearbook recorded residential floor

area for Shanghai will be performed in the Results and Discussion section.

With the building floor area known in each grid, to model the building stock value, another key component is the
replacement value per square meter of each of the 17 buildings sub-types (namely factor F5 in Step 3-2 of Fig. 1).
Given the specialty/uniqueness of the building classification in this study, there is no official construction prices
evaluated for the building types used here. Therefore, the unit construction price for each of the 17 building sub-
types is derived (as listed in Table 3) by averaging the values given from different sources (e.g. 2015 China
Construction Statistical Yearbook, the World Housing Encyclopedia, real-estate agency reports etc.). It should be
noted that, due to the disparity of urbanization level, the actual construction price varies across urbanity levels and
provinces in mainland China. Therefore, when applying the residential building stock model to target area for risk
analysis, the construction price should be modified accordingly. In this study, the set of averaged unit construction
prices for the 17 building sub-types listed in Table 3 is used mainly to initially evaluate the replacement value of

the residential building stock in each geo-coded grid.

2.5: Step 4-Derive the replacement value of the 17 building sub-types in each grid.

As elaborated in Step 3, after multiplying the floor area with unit construction price, the replacement value of the
17 building sub-types within each grid can be evaluated. By summing up the replacement value of all the geo-
coded grids, the overall residential building stock value in mainland China can also be derived (in RMB of 2015
current prices). It is worth to emphasize that in this residential building stock model, the term “building
replacement value” is used, which refers to the amount that will be needed to rebuild a property exactly as it was
prior to its destruction regardless of any depreciation due to its age, i.e. gross capital stock (Gunasekera et al.,

2015).
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3. Results and Discussion

3.1: Results----urbanity-level (urban/township/rural) based sum of modelled floor area and replacement

value

Following the efforts of extensive data survey, collection and processing, with the modelling components and steps
being explained in detail in Data Sources and Methodology section, a high-resolution (1kmx 1km) building stock
model for mainland China targeted for future seismic risk assessment is established by disaggregating urbanity-
level based census data into grid level. Since the census data are mainly related to residential buildings, the model
developed is thus particularly for residential buildings. As listed in Table 4, the modelled residential building floor
area and replacement value (unit: RMB, in 2015 current prices) in each grid are aggregated into urbanity level

(urban/township/rural) for each province.

In 2015, the total modelled residential building floor area for mainland China reaches 42.64 billion m?. By applying
the same replacement price for the same building sub-type (in total 17) in all the urban/township/rural areas of the
31 provinces, the initially modelled residential building stock value in whole mainland China is approximately to
be 77.6 trillion RMB (in 2015 current prices). It is clear that, like all other building stock, the Chinese building
stock is a complicated economic, physical and social system (Yang and Kohler, 2008). The vacant building stock
is also accounted for, thus is seen for places like New Ordos City. The economic disparity and geographic climatic
diversity are widely spanned and the standardization in building construction also varies in different periods.
Therefore, it is mainly for calculation convenience that this study applies the same unit construction price for all
the provinces and all the urbanity levels. However, to improve accuracy in future seismic risk assessment, the unit

construction price of specific building types in the target study area should be adjusted accordingly.
3.2: Discussion

In this study, the building stock model is established through the disaggregation of urbanity-level based 2010-
census data into grid level by using 2015 GHS population density profile as the proxy. Due to the approximation
and assumption made in this modelling process, the reasonability and consistency of the modelled results need to
be cross validated. Due to the typical lack of official statistics on accumulated building stock value from the
government (Wu et al., 2018), direct comparison of the modelled floor area and replacement value with that from
census or statistical yearbooks for the whole mainland China is not available. Instead, the estimated stock value in

previous studies is resorted to compare their modelled results with that in this study at provincial level.

3.2.1: Provincial-level based comparison between the modelled building value in this study and the net

capital stock value estimated in Wu et al. (2014)

Previous studies on the capital stock estimation of mainland China mainly employed the perpetual inventory
method (PIM), in which economy indicators e.g. gross fixed capital formation, total investment in fixed assets etc.
were used. In general, these estimations are almost exclusively limited at national or provincial levels (Wu et al.,
2014). Such coarse spatial resolution forms a major obstacle in applying the model in disaster loss estimation, due
to the mismatch between the hazard extent and the administrative boundary. To better address this gap, Wu et al.,

(2014) estimated the net capital stock value (WKS) for 344 prefectures in mainland China by using the perpetual
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inventory method (PIM). In which, the WKS value (as listed in their Table A1) was calculated in 2012 current
prices, with the depreciation of all exposed assets (i.e. residential and non-residential building structures, tools,

machinery, equipment and infrastructure) being considered.

To better evaluate the reliability and consistency of the modelled results in this study, the estimated net capital
stock value in Wu et al. (2014) for prefectures within the same province is aggregated into provincial level first,
as shown in Table 4. The ratio between the modelled residential building stock value in this study (represented by
“A”) and the net capital stock value (represented by “C”) in Wu et al. (2014) for each province is calculated in
column “(A)/(C)” of Table 4 for straightforward comparison. The value of (A)/(C) varies within the range of 0.31-
0.65, which indicates the high consistency between the residential building replacement value modelled in this
study in each province and the net capital stock value (for residential and non-residential buildings, infrastructure
and other exposed elements) estimated in Wu et al. (2014), in spite of the differences in methodology and

assumptions used in these two studies.

3.2.2: District-level based comparison between the modelled building floor area in this study and that

recorded in statistical yearbook for Shanghai

A grid-level building stock model for Shanghai was developed in Wu et al. (2019), by disaggregating the district-
level building floor area using building footprint map (extracted from high-resolution remote sensi