

Residential building stock modelling for mainland China

Danhua Xin¹, James Edward Daniell^{1,2,*}, Hing-Ho Tsang³, Friedemann Wenzel¹

¹Center for Disaster Management and Risk Reduction Technology (CEDIM) and Geophysical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, 76187, Karlsruhe, Germany

5 ²General Sir John Monash Scholar, The General Sir John Monash Foundation, Level 5, 30 Collins Street, Melbourne, Victoria, 3000, Australia

³Centre for Sustainable Infrastructure, Swinburne University of Technology, Melbourne, VIC 3122, Australia

**Correspondence to* James Edward Daniell (j.e.daniell@gmail.com)

Abstract

- 10 Previous seismic damage reports have shown that the damage and collapse of buildings is the leading cause of fatality and property loss, especially in developing countries. To better serve the risk analysis targeted at near-real-time post-earthquake mitigation and pre-earthquake preparedness and resources allocation, this study develops a fully reproducible grid-level residential building stock model for mainland China, by disaggregating urbanity level census data of each province into 1km×1km scale and using population density profile as the proxy. To evaluate
- 15 the model performance, the modelled residential building stock value is compared with the net capital stock value in Wu et al. (2014) using perpetual inventory method at provincial level. The modelled stock values in these two studies are in good agreement for all the 31 provinces in mainland China. Furthermore, district level comparison of the residential floor area developed in this study with records from statistical yearbook of Shanghai is also conducted. It turns out that the floor area developed in this study is compatible with floor area recorded in the
- 20 yearbook of Shanghai. To further validate the applicability of the modelled results in seismic risk assessment, an estimation of the scenario loss to modelled residential buildings is performed, by assuming the recurrence of 2008 Wenchuan M8.0 earthquake. The overall estimated loss approximates the loss value derived from damage reports based on field investigation quite well. Both results indicate the reliability of the residential building stock model developed in this study. The limitations of this study are discussed and directions for future work are recommended.

25 **1. Introduction**

With the theme of last year's International Day for Disaster Reduction (IDDR2018) being "Target B: Reducing the number of affected people by disasters by 2030", the awareness of the impacts of natural disasters on human society has been increasing over the years. Demands from public sector for quantification of disaster risk is thus more urgent than before. As stated by António Guterres, the current United Nations Secretary-General, in IDDR2018, that "Disasters cost hundreds of billions of dollars (every year), hitting the poorest countries disproportionately and pushing millions into poverty. We must tackle disaster risks and leave a more resilient planet to future generations." To better cope with the frequent occurrence of earthquakes and other natural hazards (typhoon, flood, tsunami, etc.), the development of sound risk models for natural hazards should be given top priority, since these hazards can lead to tremendous and often crippling economic losses especially in the countries

35 of the developing world. According to the estimation in Daniell et al. (2011, 2017), from 1900-2016, 2.3 million earthquake fatalities from 2233 fatal events occurred worldwide, with economic losses (direct and indirect) associated with the occurrence of over 9,900 damaging earthquakes reached USD 3.41 trillion (in 2016 price level).

To develop a seismic risk model, three layers of information are essential: hazard, exposure and vulnerability. Hazard refers to the occurrence frequency and severity of ground shakings generated by earthquakes. Exposure

- 40 captures the attributes of exposed elements in terms of value, location and relative importance (e.g. buildings, critical facilities and infrastructure) to potential earthquake. Vulnerability describes the susceptibility of those exposed elements to earthquake. Among the exposed elements, buildings are considered as the most important asset category in seismic risk assessment, since the majority of loss and fatality that occurs during earthquakes are related to building damage and collapse (Neumayer and Barthel, 2011; Yuan, 2008). As such, estimation of the
- 45 building stock and the values at risk is an important and integral part of any risk modeling effort. Specifically in developing and disaster vulnerable countries like China, rapid urbanization process has led to massive increase in both the asset value and population exposed to seismic hazards (Hu et al., 2010; Yang and Kohler, 2008). Therefore, a country-level modelling of the building stock and its spatial distribution across China is essential.

Ideally, if the building stock value of the research portfolio is already known, e.g. in an insurance portfolio, building attributes (i.e. the location, geometry, height, construction age and material, occupancy type etc.) are used mainly for building vulnerability determination. However, in most cases, the building stock value is not available and obtaining such detailed information for every building in a large region is not practicable. Therefore, the aforementioned building attributes, which are usually provided at administrative level in census data, are also used to estimate the building stock value. In this case, appropriate proxy (e.g. population density) is required to disaggregate administrative level census data into finer scale. The use of proxy is quite a reasonable approach in

disaggregate administrative level census data into liner scale. The use of proxy is quite a reasonable approach in dasymetric modelling and has been frequently adopted in previous studies (e.g. Gunasekera et al., 2015; Silva et al., 2015; Thieken et al., 2008).

When disaggregating census data into a finer scale, it cannot be carried out by simply assuming that the assets within an administrative unit are evenly distributed, since in reality people and buildings tend to be concentrated in settlements e.g. along the riverside or within alluvial plains (Figueiredo and Martina, 2016). In this regard, more sensible techniques have been applied and documented in the literature. For example, Silva et al. (2015) disaggregated the building stock at parish level for mainland Portugal based on the population density profile at 30×30 arc-sec resolution cells from LandScan. The LandScan population density profile was produced by apportioning best available census counts into cells based on probability coefficients, which in turn were derived from road proximity, slope, land cover and night-time lights (Dobson et al., 2000).

In mainland China, the modelling of building stock value and its spatial distribution across China is scarcely done at high-resolution (e.g. 1km×1km scale). In those published studies related to building stock model development, e.g. Yang and Kohler (2008) and Hu et al. (2010), the simulation and evolution of building stock value (taking the mainland China as a whole) were designed and targeted for resource consumption and environmental impacts

70 purposes, which cannot meet the needs in risk analysis due to their coarse resolution. International projects e.g. PAGER (Jaiswal et al., 2010) and Gunasekera et al. (2015) also conducted global exposure modelling that covered the building stock value in mainland China. However, these global models cannot fully make use of the census

85

105

data available in each country and usually assuming a uniform distribution of building stock value per capita for each province or even for each country, which might be convenient, but not realistic, especially for unevenly

- 75 developed countries like China. A recent work of Wu et al. (2018) established a high-resolution (1km×1km scale) asset value model based on the net capital stock value they estimated for 344 prefectures in mainland China using the perpetual inventory method (Wu et al., 2014). However, their original asset data to be disaggregated into grid level was actually restricted to prefecture level. Furthermore, the extent of the natural hazards, in most cases, are dependent on the geological structure (earthquakes) or along the riverside (floods), instead of being restricted to
- 80 administrative boundaries. Therefore, to better cope with this spatial mismatch between natural hazards and administrative boundaries, building stock models should be geo-coded with relatively high resolution and be disaggregated from more detailed census data.

The organization of the following sections is as follows: the full list of data sources needed, and a detailed description of the methodology used to develop the high-resolution building stock for mainland China will be firstly introduced. Then, to evaluate the model performance, provincial and district level comparison of the modelled results with that in previous studies and yearbook records will be conducted. Finally, an application of the building stock model in seismic risk analysis will also be given.

2. Data Sources and Methodology

- This section will introduce in detail the building related census data needed to develop the building stock model and the methodology used to disaggregate the administrative level census data into grid level. The census data used in this study for building stock modelling are extracted from the Tabulation of the 2010 Population Census of the People's Republic of China (hereafter abbreviated as the "2010-census"), particularly for residential buildings. Like in most countries of the world, the national level population and housing census are carried out at 10-year interval, and currently the latest version was issued in 2010. In the 2010-census, there are two types of
- 95 tables: Long Table and Short Table. Long Table includes summaries based on the surveys of 10% of the total population in mainland China, while the Short Table summaries are based on the surveys of the whole population. Building stock model related census data (e.g. building occupancy type, height classes, construction material, etc.) are extracted from the Long Table of the 2010-census. Supplementary demographic information (e.g. the total population, the average number of people per family and average floor area per person) are extracted from the 100 Short Table of the 2010-census are summarized in Table 1.

In the 2010-census, for each of the 31 provinces, autonomous regions and municipalities in mainland China (hereafter, all referred to as provinces), the building related census data in the Long Table are categorized into three urbanity levels (urban, township and rural), based on the administrative belonging of the surveyed population. The building related census data for each urbanity level of each province are listed in Table 2. Compared with provincial level census data used in previous studies, one advantage of the 2010-census data is its further categorization of data into three urbanity levels, which better reflects the regional difference within each province.

To disaggregate the urbanity-level based census data into grid-level, population density is used as the proxy, as is a common practice in risk analysis (Aubrecht et al., 2013). The population density profile chosen in this study is developed by Global Human Settlement (GHS) project of the European Commission in 2015, which was

120

- 110 disaggregated from census or administrative units to geo-girds, informed by the distribution and density of builtup area as mapped in their Global Human Settlement Layer (it is worth noting that this dataset has been updated in 2019). In the 2015 GHS population density profile, the number of population in each geo-grid is given. When compared to values from population counts they prove to be accurate (Gunasekera et al., 2015). The original resolution of the 2015 GHS population density profile is 250m×250m, for calculation convenience it is resampled
- 115 to 1km×1km resolution before further analysis. The provincial boundary (level 1) vector layer dataset defining the spatial boundaries of mainland China is from the Global Administrative Areas (GADM, <u>www.gadm.org</u>).

With these data on population and residential building stock, a top-down spatial scaling method will be performed to disaggregate the urbanity-level census data into 1km×1km resolution grids for each province in mainland China. The flowchart in Fig. 1 provides an overview of this modelling process. Detailed explanations of each component and step are as follows.

2.1: Assign urbanity attribute (urban/township/rural) to the geo-coded grids in the 2015 GHS population density profile

As outlined above, the population and housing related census data for each of the 31 provinces in mainland China are categorized into three urbanity levels: urban, township and rural. Therefore, the geo-coded grids in 2015 GHS

125 population density profile should also be assigned with an urbanity attribute first, before disaggregating the urbanity-level based census data into each grid. For each province, this is achieved by applying the population reallocation approach developed by Aubrecht et al. (2015) and also illustrated in detail in Gunasekera et al. (2015).

Following this population reallocation approach, the urban/township/rural population proportion of each province can be derived from the Short Table of the 2010-census (as listed in Table 2). For example, in Shanghai City

- 130 (which is one of the four municipalities in China), the population proportion of urban/township/rural urbanity level is 76.64%, 12.66% and 10.7%, respectively. Then the grids (1km×1km) in 2015 GHS population density file of Shanghai are sorted from the largest to the smallest, and the population in those largest and most populated geocodes grids are summed up and selected until the 2010-census urban population share (i.e. **76.64%** for Shanghai) is reached. These selected grids are thus assigned with urbanity attribute "urban". The smallest population of these
- 135 selected grids is taken as the threshold to divide urban and non-urban grids (for Shanghai this urban/non-urban population density threshold is 4827 per km²). For the remaining non-urban grids, the same process is repeated iteratively until the township population proportion (i.e. 12.66% for Shanghai) is reached. These secondly selected grids are assigned with urbanity attribute "township" and the smallest population among these grids is taken as the threshold to divide township and rural grids (for Shanghai this township/rural population threshold is 2736 per
- 140 km²). The remaining grids are thus assigned with "rural" attribute. The distribution of the assigned urban/township/rural grids in Baoshan District of Shanghai City is shown in Fig. 1 as an example.

Reiterate the above calculations for all the 31 provinces in mainland China, then all the geo-coded grids in the 2015 GHS population profile can be assigned with urban/township/rural attribute accordingly. The corresponding population thresholds for each province are provided in Appendix Table A1.

145 2.2: Step 1-Extract the building related census data from the Long Table of the 2010-census (statistics derived from surveys of 10% population of mainland China.

As in many other countries, the population and housing census data in mainland China are particularly surveyed for residential buildings. Therefore, the building stock model developed in this study is for residential building stock. Related census data for assessment of residential building stock value include the number of families living

- 150 in building types grouped by building occupancy (i.e. residential, commercial, mixed), by number of storey (i.e. 1, 2-3, 4-6, 7-9, ≥10), and by construction material (i.e. steel/reinforced-concrete, mixed, brick/wood, other; hereafter steel/reinforced-concrete is abbreviated as steel/RC; and "mixed" refer to different combinations of masonry buildings). As already listed in Table 1, these data are extracted from the Long Table of the 2010-census, based on the survey of 10% of the total population in mainland China. Therefore, to evaluate the whole building
- stock value across China, these building related 2010-census data should be extended from 10% to 100% population first by multiplying the factor of 10 (namely factor *F0* in Step 1-1 of Fig. 1).

After multiplying the factor of 10, the overall number of families living in building types grouped by building storey or construction material is considered to be complete for each urbanity level of each province. With the family number living in each building type known, by multiplying the average number of population per family

160 (namely factor *F1* in Step 1-2 of Fig. 1), which is also provided in the Short Table of the 2010-census, the overall population living in building types grouped by storey (1, 2-3, 4-6, 7-9, \geq 10) or construction material (steel/RC, mixed, other, brick/wood) can thus be instantly derived for each province and each urbanity level.

Up to now, the geo-coded grids in the 2015 GHS population density profile have been assigned with urbanity attribute and the population living in each building type is also derived for each province and each urbanity level

165 from the 2010-census. It is noteworthy that the changes in population or building from 2010 to 2015 has not been considered yet. In rapid urbanization countries like China, the bloom of construction of buildings and the population inflow from township/rural areas to urban areas are significant. Therefore, the population derived from the 2010-census needs to be further amplified to the 2015 level, and mathematically this amplification factor (factor *F2* in Step 1-3 of Fig. 1) is assumed to be equal to the ratio between 2015 GHS population and 2010-census derived population (after amplified from 10% to 100% of the population).

As listed in the last column in Table 2, the amplification factor F2 varies across each urbanity level of each province (namely factor F2 in Step 1-3 of Fig. 1). For each province, F2 in the urban area is generally higher than in township/rural area, which is quite reasonable. However, it should be noted that the increase in building construction area from 2010 to 2015 is also assumed to be equal to the population increase. The reason behind

175 such an assumption and the performance of the residential building stock model will be further evaluated in the Results and Discussion section.

After getting the population living in each urbanity of each province amplified to year 2015, now this urbanitylevel based population data can be disaggregated into the geo-coded grids in 2015 GHS population density profile by using the apportionment weight (namely factor F3 in step 1-4 of Fig. 1). F3 is defined as the population share

180 of each grid relative to the summed population from grids within the same urbanity level of each province.

2.3: Step 2-Disaggregate population and building related census data from urbanity level into grid level.

As explained in Section 2.2, by multiplying the original building related records extracted from the 2010-census with factor *F0*, *F1*, *F2* and *F3* in Step 1 of Fig. 1, the population in each grid living in building types grouped by number of storey (1, 2-3, 4-6, 7-9, \geq 10) or by construction material (steel/RC, mixed, other, brick/wood) can be derived.

185 derived

To estimate the residential building stock value, the number of buildings with combination of both storey class and construction material need to be derived. Initially, from the five storey classes (1, 2-3, 4-6, 7-9, \geq 10) and the four building material classes (steel/RC, mixed, other, brick/wood), there will be 20 building sub-types. In the following description, we will first introduce how to reduce the principal number of building sub-types from 20 to

- 190 17 based on necessary assumption. Then we will estimate the number of population living in each of the 17 building sub-types. Based the information on average floor area per capita in each urbanity level (as given in the Short Table of the 2010-census), the total floor area of each of the 17 building sub-types in each grid can be derived. Finally, for each building sub-type, their replacement value emerges from a multiplication of the floor area with the construction price.
- 195 It is widely observed that most brick/wood buildings are with quite low height (1 or 2-3 storey), while steel/RC buildings are generally quite high with height of 10-storey or above. Therefore, it is further assumed that for "brick/wood" building type, there are only two storey classes (1, 2-3). While for "steel/RC", "mixed", and "other" building types defined in the 2010-census, all five storey classes (1, 2-3, 4-6, 7-9, ≥10) are available (namely *Assumption 1* in Step 2-1 of Fig. 1). Thus, the building sub-types in each grid are reduced from 20 to 17. The list of these 17 building sub-types is given in Table 3.

Currently, we know from Step 1 for instance in each grid the number of population living in buildings of the five storey classes, but do not know for each storey class how the population are distributed in the classes of the four construction materials. Also, we know for instance how many people live in steel/RC buildings but do not know how they are distributed into the five storey classes. The derivation of the number of population in each of the 17 building sub-types requires to find 17 unknowns from 9 equations. In order to solve this underdetermined linear problem, further reasonable approximations need to be made (namely *Assumption 2* in Step 2-2 of Fig. 1) to make sure that in each grid the sum of population living in the 17 building sub-types is equal to the population living in building types grouped by construction material or by storey class.

From here, the population living in each of the 17 building sub-types is derived by a series of distribution steps based on a prioritized ranking of building types and storey class from the aggregated inputs:

- 1. In each grid, brick/wood buildings are first placed into 1 storey class and subtracted from the total amount of brick/wood buildings.
- 2. Remaining brick/wood buildings are placed into 2-3 storey class.
- 10 storey values are placed in steel/RC class as a start as they are assumed to not be "mixed" masonry class.
 - 6

215

- 4. Similarly, the remaining steel/RC buildings are proportioned to other storey classes from highest to lowest, assuming that the least population in steel/RC would be in 1 storey class.
- 5. For "other" buildings, they are distributed into each of the five storey classes, based on the proportions of remaining buildings in each storey class (all four construction materials are considered) and the ratio between "other" buildings and "other + mixed" buildings.

220

6. For "mixed" buildings, they are distributed each of the five storey classes, based on the proportions of remaining buildings in each storey class (all four construction materials are considered) and the ratio between "mixed" buildings and "other + mixed" buildings.

The MATLAB script illustrating the above multi-variate equation solving process is provided in Data/Code Availability section.

2.4: Step 3-Derive the number of people living in each of the 17 building sub-types

area for Shanghai will be performed in the Results and Discussion section.

With necessary assumption and approximation and by solving the multi-variate equations mentioned in Section 2.3, the population living in each of the 17 building sub-types can be derived for each grid. In the Short Table of 2010-census, the average residential floor area per capita is also given for each urbanity level of each province
(namely factor *F4* in Step 3-1 of Fig. 1). Therefore, the floor area of the 17 building sub-types in each grid can be directly derived. Comparison between the modelled floor area with statistical yearbook recorded residential floor

With the building floor area known in each grid, to model the building stock value, another key component is the replacement value per square meter of each of the 17 buildings sub-types (namely factor *F5* in Step 3-2 of Fig. 1).

- 235 Given the specialty/uniqueness of the building classification in this study, there is no official construction prices evaluated for the building types used here. Therefore, the unit construction price for each of the 17 building sub-types is derived (as listed in Table 3) by averaging the values given from different sources (e.g. 2015 China Construction Statistical Yearbook, the World Housing Encyclopedia, real-estate agency reports etc.). It should be noted that, due to the disparity of urbanization level, the actual construction price varies across urbanity levels and
- 240 provinces in mainland China. Therefore, when applying the residential building stock model to target area for risk analysis, the construction price should be modified accordingly. In this study, the set of averaged unit construction prices for the 17 building sub-types listed in Table 3 is used mainly to initially evaluate the replacement value of the residential building stock in each geo-coded grid.

2.5: Step 4-Derive the replacement value of the 17 building sub-types in each grid.

- As elaborated in Step 3, after multiplying the floor area with unit construction price, the replacement value of the 17 building sub-types within each grid can be evaluated. By summing up the replacement value of all the geocoded grids, the overall residential building stock value in mainland China can also be derived (in RMB of 2015 current prices). It is worth to emphasize that in this residential building stock model, the term "building replacement value" is used, which refers to the amount that will be needed to rebuild a property exactly as it was
- 250 prior to its destruction regardless of any depreciation due to its age, i.e. gross capital stock (Gunasekera et al., 2015).

3. Results and Discussion

3.1: Results----urbanity-level (urban/township/rural) based sum of modelled floor area and replacement value

- 255 Following the efforts of extensive data survey, collection and processing, with the modelling components and steps being explained in detail in Data Sources and Methodology section, a high-resolution (1km×1km) building stock model for mainland China targeted for future seismic risk assessment is established by disaggregating urbanitylevel based census data into grid level. Since the census data are mainly related to residential buildings, the model developed is thus particularly for residential buildings. As listed in Table 4, the modelled residential building floor
- 260 area and replacement value (unit: RMB, in 2015 current prices) in each grid are aggregated into urbanity level (urban/township/rural) for each province.

In 2015, the total modelled residential building floor area for mainland China reaches 42.64 billion m². By applying the same replacement price for the same building sub-type (in total 17) in all the urban/township/rural areas of the 31 provinces, the initially modelled residential building stock value in whole mainland China is approximately to

- 265 be 77.6 trillion RMB (in 2015 current prices). It is clear that, like all other building stock, the Chinese building stock is a complicated economic, physical and social system (Yang and Kohler, 2008). The vacant building stock is also accounted for, thus is seen for places like New Ordos City. The economic disparity and geographic climatic diversity are widely spanned and the standardization in building construction also varies in different periods. Therefore, it is mainly for calculation convenience that this study applies the same unit construction price for all the provinces and all the urbanity levels. However, to improve accuracy in future seismic risk assessment, the unit
- construction price of specific building types in the target study area should be adjusted accordingly.

3.2: Discussion

In this study, the building stock model is established through the disaggregation of urbanity-level based 2010census data into grid level by using 2015 GHS population density profile as the proxy. Due to the approximation and assumption made in this modelling process, the reasonability and consistency of the modelled results need to be cross validated. Due to the typical lack of official statistics on accumulated building stock value from the government (Wu et al., 2018), direct comparison of the modelled floor area and replacement value with that from census or statistical yearbooks for the whole mainland China is not available. Instead, the estimated stock value in previous studies is resorted to compare their modelled results with that in this study at provincial level.

280 3.2.1: Provincial-level based comparison between the modelled building value in this study and the net capital stock value estimated in Wu et al. (2014)

Previous studies on the capital stock estimation of mainland China mainly employed the perpetual inventory method (PIM), in which economy indicators e.g. gross fixed capital formation, total investment in fixed assets etc. were used. In general, these estimations are almost exclusively limited at national or provincial levels (Wu et al.,

285 2014). Such coarse spatial resolution forms a major obstacle in applying the model in disaster loss estimation, due to the mismatch between the hazard extent and the administrative boundary. To better address this gap, Wu et al., (2014) estimated the net capital stock value (WKS) for 344 prefectures in mainland China by using the perpetual

290

305

320

inventory method (PIM). In which, the WKS value (as listed in their Table A1) was calculated in 2012 current prices, with the depreciation of all exposed assets (i.e. residential and non-residential building structures, tools, machinery, equipment and infrastructure) being considered.

To better evaluate the reliability and consistency of the modelled results in this study, the estimated net capital stock value in Wu et al. (2014) for prefectures within the same province is aggregated into provincial level first, as shown in Table 4. The ratio between the modelled residential building stock value in this study (represented by "A") and the net capital stock value (represented by "C") in Wu et al. (2014) for each province is calculated in

295 column "(A)/(C)" of Table 4 for straightforward comparison. The value of (A)/(C) varies within the range of 0.31-0.65, which indicates the high consistency between the residential building replacement value modelled in this study in each province and the net capital stock value (for residential and non-residential buildings, infrastructure and other exposed elements) estimated in Wu et al. (2014), in spite of the differences in methodology and assumptions used in these two studies.

300 **3.2.2:** District-level based comparison between the modelled building floor area in this study and that recorded in statistical yearbook for Shanghai

A grid-level building stock model for Shanghai was developed in Wu et al. (2019), by disaggregating the districtlevel building floor area using building footprint map (extracted from high-resolution remote sensing data), combined with LandScan population density data as well as a financial appraisal of construction price according to building occupancy. However, Wu et al. (2019) did not separate residential floor area from non-residential floor

- area. Therefore, direct comparison of the modelled results from this study with their outputs is not available. On the other hand, yearbook records of the district-level residential and non-residential floor area, that were used in their study for model performance evaluation, turn out to be a good reference for this study to evaluate the modelled results at district-level, which can be extracted from Shanghai 2015 Statistical Yearbook.
- 310 To compare with the district-level residential floor area records in Shanghai statistical yearbook, the modelled floor area in each grid in Shanghai (Fig. 2) is aggregated into district level (as summarized in Table 5). As can be seen from Fig. 2 that grids with high floor area typically cluster in downtown area (including eight administrative districts, namely Yangpu, Hongkou, Zhabei, Putuo, Changning, Xuhui, Jing'an and Huangpu) and in Pudong district. This corresponds to the fact that these districts are the most developed in Shanghai. As can be further
- 315 validated from the 3D-view of population distribution in panel (c) of Fig. 2, these districts also have the highest population density in Shanghai.

Table 5 gives a summary of the population in 2015 GHS population density profile, the modelled floor area (classified by storey classes) in this study, as well as the 2015 statistical yearbook recorded population and floor area for districts/counties in Shanghai. For more direct comparison, the initially modelled floor area (without adjustment) and the yearbook recorded floor area in each district of Shanghai are plotted in Fig. 3. The correlation

between the initially modelled floor area and that recorded in yearbook turns out to be high, as indicated by the R² value (0.91). However, when it comes to the absolute floor area value, the total residential floor area modelled in Shanghai is around 808 km², while the yearbook recorded residential floor area is 611 km², which means the initially modelled results is overpredicted (around 1.3 multiples of the yearbook records). Therefore, additional

325 efforts are required to adjust the initially modelled results, to make the modelled floor area in each district more reasonably distributed and to de-amplify the overprediction of the overall modelled results.

As discussed in the modelling process in the Data Sources and Methodology section, it is clear that the disaggregation of urbanity level floor area into each grid has not integrated the development disparity of districts/counties within the same province. Therefore, the initially modelled floor area will be firstly rectified by

- 330 using the index of Uniform Construction Cost (UCC) to reflect the development inequality across districts in Shanghai, which has been used in previous studies (e.g. Gunasekera et al., 2015). The UCC index of each district in Shanghai is derived from the population and per capita GDP in 2015, which is defined as the triple root of the ratio between each district's GDP/capita and the average GDP/capita of Shanghai in 2015. As listed in Table 7, the higher the UCC index value, the more developed the corresponding district.
- 335 By multiplying the initially modelled floor area value with the UCC index in each district of Shanghai, the overall modelled floor area turns from 808 km² to 785 km². Although the overall floor area changes slightly, the application of UCC adjustment reallocates the floor area in each district, making it more consistent with the development level of each district. Meanwhile, compared with the recorded floor area of 611 km² for Shanghai in the yearbook, the UCC index adjusted floor area of 785 km² remains to be an obvious overprediction. Thus, de-
- amplification adjustment is needed as well. By checking the whole modelling process in Fig. 1 carefully, it is found out that the overprediction of the modelled floor area for Shanghai may be attributed to the use of amplification factor (*F2* in Step 1-3 of Fig. 1). *F2* is used to synchronously amplify the building related census data from year 2010 to 2015 level. Mathematically it is equal to the ratio between 2015 GHS population and 2010-census population for each urbanity level of each province. For example, the amplification factor *F2* in Shanghai is 1.33/1.34/1.29 for urban/township/rural level, respectively.

In reality, the increase of population in each urbanity level may not necessarily lead to the proportional increase of its residential floor area. Therefore, de-amplification of the initially modelled area for the whole Shanghai is attempted here. The derivation of the de-amplification factor of Shanghai is achieved by summarizing the product between the amplification factor of each urbanity level (F2) and its modelled floor area proportion. As shown in Table 6, the final de-amplification factor of Shanghai is 1.32.

After further applicating the de-amplification factor to the modelled floor area in Shanghai (which is 785 km² in total with UCC index adjustment), the final modelled floor area in each district of Shanghai is listed in Table 5. To better illustrate the difference between the initially modelled floor area and that adjusted by UCC index and de-amplification factor in each district of Shanghai, the comparison of modelled floor area (before and after

- 355 adjustment) with statistical yearbook recorded floor area is plotted in Fig. 3. After adjusting the modelled floor area for each district of Shanghai with UCC index and de-amplification factor 1.32, for eight out of ten districts, the modelled floor area has a better match with yearbook records, except that Pudong district and Downtown are downwards deviating from the yearbook records after applying the de-amplification factor (Fig. 3). This is also easy to understand, since Pudong and Downtown are the most prosperous areas in Shanghai with increasing
- 360 population inflow. Therefore, the increase of residential floor area in these two districts can be regarded as proportional to the increase of population. Thus, the de-amplification adjustment may not be appropriate for these two districts.

350

However, in general, after the adjustment of initially modelled floor area by UCC index and the de-amplification factor, the overall modelled floor area in Shanghai turns to 594 km², only a 3% difference compared with the statistical record of 610.9 km² (Table 5). As can be more clearly seen from Fig. 3, the value of the correlation indicator R² improves from 0.91 (before adjustment) to 0.94 (after adjustment). This further indicates the reasonability of the adjustment made and the reliability of the modelled residential floor area in this study for Shanghai.

3.2.3: Application of the model to seismic loss estimation

370 Since the model developed in this study is mainly targeted for seismic risk analysis, the performance of the model is further evaluated by its application to the estimation of empirical loss in scenario earthquake.

The hazard component used for this loss assessment test is the macro-seismic intensity map of the 2008 Wenchuan Ms8.0 earthquake (Fig. 4), which was issued by the China Earthquake Administration (CEA) based on the postearthquake field investigations. The vulnerability function used was the empirical loss function developed in

- 375 Daniell (2014, Page 242) for mainland China. This empirical loss function was developed based on reported seismic damage and loss related to earthquakes that occurred in mainland China in the past few decades. Such information was retrieved through extensive collection of damage and loss records from journals, books, reports, conference proceedings and even newspapers, etc. Finally, based on the modelled residential building floor area in this study for Sichuan province and the unit construction price listed in Table 3, the estimated empirical loss to
- 380 residential buildings caused by the recurrence of the Wenchuan Ms8.0 earthquake is around 432 billion RMB (in 2015 current price). The distribution of loss ratio, i.e., the ratio between the estimated loss and the residential building stock value in counties/districts of Sichuan Province that were damaged in the Wenchuan Ms8.0 earthquake is shown in Fig. 5.
- In other reports and studies on the loss assessment of Wenchuan earthquake, e.g. in Yuan (2008), the estimated loss to residential buildings was around 170 billion RMB (in 2008 current price). The officially issued loss estimated by the Expert Panel of Earthquake Resistance and Disaster Relief (EPERDR, 2008) to residential buildings in Sichuan province was around 98.3-435.4 billion RMB, with the median around 212.32-247.25 billion RMB (in 2008 current price). It should be noted that in those studies, the unit construction price used for rural/urban/township buildings replacement was around 800-1500 RMB per square meter, which is 1/2.5-1/1.5 of
- 390 the unit construction price used in this study as listed in Table 3. To reduce the gap in construction price used in this study and in previous studies, the estimated loss value (432 billion RMB) in this study is further divided by 1.5-2.5, so that the final loss estimate is around 144-288 billion RMB (in 2015 current price). Therefore, the estimated loss range, based on the buildings stock model developed in this study and the empirical loss function developed in Daniell (2014), is quite compatible with that given in previous studies. This compatibility further
- 395 validates the robustness of our residential building stock model. Thus, the grid level building stock model developed in this study can be regarded as a reliable component input for further seismic risk assessment.

4. Conclusion

In this paper, a grid-level residential building stock model (in terms of floor area and replacement value) targeted for seismic risk analysis for mainland China is developed, by using 2015 GHS population density profile as the proxy and by disaggregating the urbanity level 2010-census data into 1km×1km scale for each province. To evaluate the model performance, the residential building stock value is compared with the net capital stock value estimated in Wu et al. (2014) using a perpetual inventory method at provincial level. The modelled stock value in these two studies are indeed quite consistent for all the 31 provinces in mainland China. Furthermore, district level comparison of the residential floor area developed in this study with records from the statistical yearbook of

- 405 Shanghai is also conducted. It turns out that the floor area developed in this study is highly compatible with the floor area recorded in the yearbook of Shanghai. An adjustment to the modelled results is applied in order to more reasonably reflect the development disparities among districts within Shanghai. To further validate the performance of the model in seismic risk assessment, an empirical loss estimation for a recurrence of the 2008 Wenchuan M8.0 earthquake is performed. By reducing the gap in unit construction price used in this study and in
- 410 previous studies, the overall estimated loss compares well with loss derived from damage reports based on field investigation. These results indicate the reliability of the geo-coded grid-level residential building stock model developed in this study. It is flexible for updates when more detailed census or statistics data are available, and it can be conveniently combined with hazard data and vulnerability information for risk assessment.
- A limitation of this work is the focus on the residential building stock, as this exposure is accessible with the detailed census data. Although the damage to and the collapse of buildings is the main cause of fatalities and economic loss, damage to non-residential buildings (office, school, hospital, hotel, warehouse, factory, shop, cinema, etc.) as well as to life-line networks, infrastructures are not negligible. Therefore, future efforts should be made to estimate the stock value of non-residential buildings and infrastructures at risk. Furthermore, the replacement value developed in this study did not integrate the depreciation of the exposed buildings. Future work should target these deficiencies to better serve seismic risk analysis and loss mitigation strategies.

Data/Code Availability

- 2015 Global Human Settlement (GHS) population density profile: <u>http://data.europa.eu/89h/jrc-GHS-ghs_pop_gpw4_globe_r2015a</u>.
- 2. 2010 China Sixth Population Census Tabulation: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm
- 425 3. 2015 China Statistical Yearbook On Construction: http://tongji.cnki.net/kns55/navi/YearBook.aspx?id=N2017020307&floor=1
 - 4. 2015 Shanghai Statistics Yearbook: http://tjj.sh.gov.cn/html/sjfb/201701/1000201.html
 - 5. Global Administrative Areas (GADM): www.gadm.org
- 6. An example illustrating the multi-variate equation solving process in Data Sources and Methodology section(the following two files are also available from the online supplementary document):
 - 12

(a) Input file: https://www.jianguoyun.com/p/DdOYRvoQgPb4Bhi-hdUB

(b) MATLAB script: https://www.jianguoyun.com/p/DcAageEQgPb4BhjHhdUB

Author contribution

DX conducted the data collection and preparation, results analysis, model validation and prepared the draft 435 manuscript. JD guided the data collection and preparation process, developed the modelling methodology and performed the calculation and co-analysed the results. HT and FW supervised the project and provided advice and feedback in the process. All authors contributed to the revision of the manuscript.

Competing interests

The authors declare that they have no conflict of interests.

440

References

Aubrecht, C., Steinnocher, K., K O Stl, M., Z U Ger, J. and Loibl, W.: Long-term spatio-temporal social vulnerability variation considering health-related climate change parameters particularly affecting elderly, Natural Hazards, 68(3), 1371–1384, 10.1007/s11069-012-0324-0, 2013.

445 Aubrecht, C., Gunasekera, R., Ishizawa, O. and Pita, G.: The flipside of "urban"—A novel model for built-upadjusted rural-urban pattern identification and population reallocation, in CDRP Working Paper (Country Disaster Risk Profiles Initiative), The World Bank-Social, Urban, Rural & Resilience (GSURR), Disaster Risk Management (DRM) Washington DC, USA., 2015.

Daniell, J.: Development of socio-economic fragility functions for use in worldwide rapid earthquake loss estimation procedures, Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany., 2014.

Daniell, J. E., Khazai, B., Wenzel, F. and Vervaeck, A.: The CATDAT damaging earthquakes database, Natural Hazards and Earth System Sciences, 11(8), 2235–2251, doi:10.5194/nhess-11-2235-2011, 2011.

Daniell, J. E., Schaefer, A. M. and Wenzel, F.: Losses Associated with Secondary Effects in Earthquakes, Front. Built Environ., 3, doi:10.3389/fbuil.2017.00030, 2017.

455 Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C. and Worley, B. A.: LandScan: a global population database for estimating populations at risk, Photogrammetric Engineering and Remote Sensing, 66(7), 849–857, 2000.

Expert Panel of Earthquake Resistance and Disaster Relief (EPERDR): Comprehensive Disaster and Risk Analysis of Wenchuan Earthquake, Science Press, Beijing, China., 2008.

465

460 Figueiredo, R. and Martina, M.: Using open building data in the development of exposure data sets for catastrophe risk modelling, Natural Hazards and Earth System Sciences, 16(2), 417–429, doi:10.5194/nhess-16-417-2016, 2016.

Gunasekera, R., Ishizawa, O., Aubrecht, C., Blankespoor, B., Murray, S., Pomonis, A. and Daniell, J.: Developing an adaptive global exposure model to support the generation of country disaster risk profiles, Earth-Science Reviews, 150, 594–608, doi:10.1016/j.earscirev.2015.08.012, 2015.

Hu, M., Bergsdal, H., Voet, E. van der, Huppes, G. and Müller, D. B.: Dynamics of urban and rural housing stocks in China, Building Research & Information, 38(3), 301–317, doi:10.1080/09613211003729988, 2010.

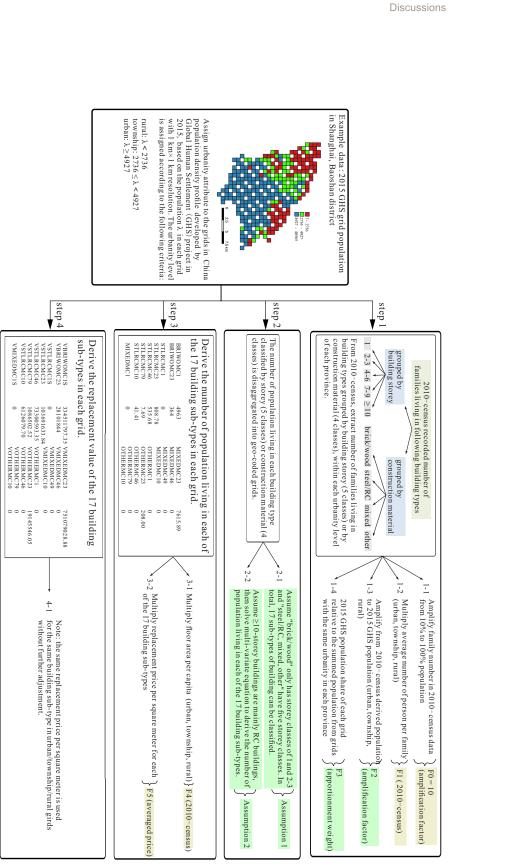
Jaiswal, K., Wald, D. and Porter, K.: A global building inventory for earthquake loss estimation and risk management, Earthquake Spectra, 26(3), 731–748, doi:10.1193/1.3450316, 2010.

470 Neumayer, E. and Barthel, F.: Normalizing economic loss from natural disasters: a global analysis, Global Environmental Change, 21(1), 13–24, doi: 10.1016/j.gloenvcha.2010.10.004, 2011.

Silva, V., Crowley, H., Varum, H. and Pinho, R.: Seismic risk assessment for mainland Portugal, Bulletin of Earthquake Engineering, 13(2), 429–457, 2015.

Thieken, A. H., Olschewski, A., Kreibich, H., Kobsch, S. and Merz, B.: Development and evaluation of
 FLEMOps-a new Flood Loss Estimation Model for the private sector, WIT Transactions on Ecology and the
 Environment, 118, 315–324, 2008.

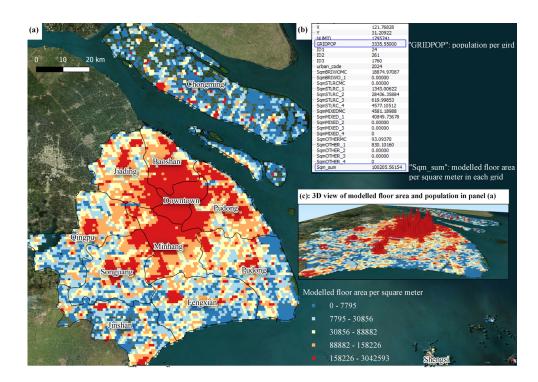
Wu, J., Li, N. and SHI, P.: Benchmark wealth capital stock estimations across China's 344 prefectures: 1978 to 2012, China Economic Review, 31, 288–302, doi:10.1016/j.chieco.2014.10.008, 2014.


Wu, J., Li, Y., Li, N. and Shi, P.: Development of an asset value map for disaster risk assessment in China by
spatial disaggregation using ancillary remote sensing data, Risk Analysis, 38(1), 17–30, doi:10.1111/risa.12806, 2018.

Wu, J., Ye, M., Wang, X. and Koks, E.: Building asset value mapping in support of flood risk assessments: A case study of Shanghai, China, Sustainability, 11(4), 971, doi:10.3390/su11040971 2019.

Yang, W. and Kohler, N.: Simulation of the evolution of the Chinese building and infrastructure stock, Building
Research & Information, 36(1), 1–19, doi:10.1080/09613210701702883, 2008.

Yuan, Y.: Impact of intensity and loss assessment following the great Wenchuan Earthquake, Earthquake Engineering and Engineering Vibration, 7(3), 247–254, doi: 10.1007/s11803-008-0893-9, 2008.


Natural Hazards on Natural Hazards on Natural Hazards of Sciences

and Earth System

Methodology section. Figure 1: Flowchart of the residential building stock modelling process for mainland China. Detailed explanations of each component and step are given in the Data Sources and

Figure 2. An example illustrating the modelled floor area for Shanghai: (a) the distribution of modelled floor area in each grid with resolution of 1km×1km; (b) This table shows the modelled floor area (unit: m²) of the 17 building sub-types in one example grid, as well as the total population "GRIDPOP" and the total modelled floor area "Sqm_sum" in each grid; (c) the 3D view of the modelled floor area and the population distribution (the height of cuboid in each grid is proportional to its population density; the colour of each cuboid represents the modelled floor range). This figure is plotted using QGIS platform (https://qgis.org/en/site/) and the background aerial map is provided by Bing map service (Copyright: under the © Microsoft® BingTM Maps Platform APIs' terms of use, last updated May 2018).

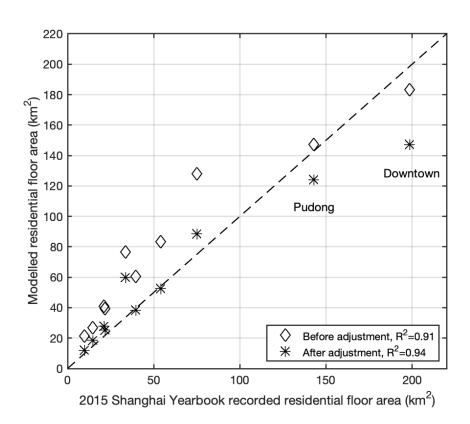


Figure 3: Comparison of the modelled floor area (before and after adjustment) with 2015 Shanghai Yearbook recorded floor area for each district of Shanghai.

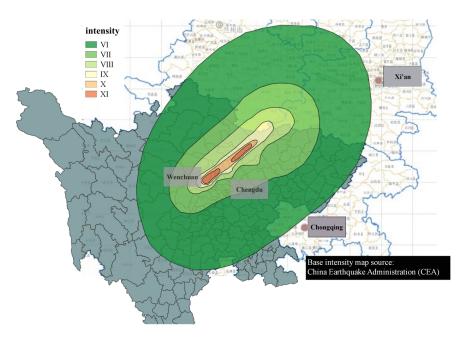
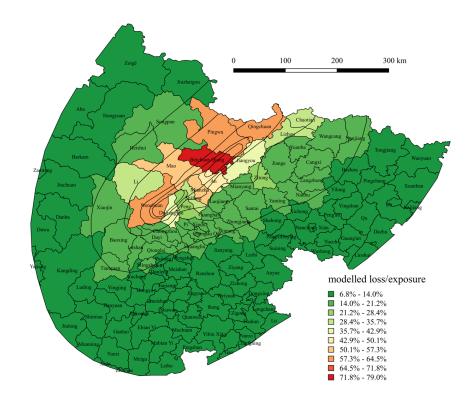



Figure 4. Macro-seismic intensity map of 2008 Wenchuan Ms8.0 earthquake, modified after the original map issued by China Earthquake Administration (CEA).

Figure 5. Distribution of estimated residential building loss ratio (the ratio between loss and exposed stock value) in affected districts/counties in Sichuan Province, by using the exact intensity map of the 2008 Wenchuan Ms8.0 earthquake as the hazard input. The black contours indicate the intensity levels within Sichuan Province (as shown in Figure 4).

Table 1: Main data sources used in this study. Accesses to these data are provided in the Data/Code Availability section.

Data source	Data description	Resolution	Data location	Indicator in the text	Notes
2010 China Sixth Census Short Table	Overall population		Table 1-1a, 1-1b, 1-1c	N/A	Based on surveys of 100% of the population in mainland China
2010 China Sixth Census Long Table	Number of families living in buildings grouped by usage (residential, commercial, mixed) Number of families dwelled in buildings grouped by storey number (1, 2-3, 4-6, 7-9, ≥10) Number of families dwelled in buildings grouped by construction material (stecl/RC, mixed, other, brick/wood)	urban/township/rural level for each of the 31 provinces/municipalities in mainland China; (the urbanity level in the census is defined according to the administrative belonging of the surveyed population)	Table 9-1a, 9-1b, 9-1c	N/A	Based on surveys of 10% of the overall population in mainland China
2010 China	Average population per family		Table 1-1a, 1-1b, 1-1c	D3 of Fig. 1	Based on surveys of 100% of the
Sixth Census Short Table	Average residential floor area per person (unit: square meter)	-	Table 1- 14a, 1-14b, 1-14c	D4 of Fig. 1	population in mainland China
2015 GHS population density profile	provides the population density in each geo-coded grid	1km×1km	N/A	λ	The original resolution is 250m×250m and was resampled to 1km×1km
2015 Shanghai Statistics Yearbook	GDP and population in each district	District level	Page 495- 545	N/A	To derive the uniform construction cost (UCC)
2015 China Construction Yearbook	Yearly construction value added in each province	Provincial level	Table 1-2	N/A	These data are used to evaluate modelled building stock value

13317	85386	102010		20666	000000	193447	80859	774	19305	675858	2.54	30.97	21732071	Zhejiang	1031
		102015	11176	36704	93027	45555	21262	172	7122	200602	2.59	31.27	6531449	Yunnan	1030
	2227	5449	12	47	1580	4798	2930	7	973	8394	2.45	31.81	289534	Tibet	1029
	94628	88699	6435	12124	129144	24343	32261	84	2686	201621	2.56	28.00	6578245	Xinjiang	1028
	156521	58333	20356	28570	143755	12083	34902	167	2606	237060	2.65	25.51	10012251	Tianjin	1027
	247875	218827	46396	136824	198299	79975	47158	630	9628	499024	2.67	30.70	15732199	Sichuan	1026
	163209	90187	9702	18683	157087	47879	53815	87	4319	282847	2.88	25.77	9837996	Shanxi	1025
-	249438	268377	104766	27780	304794	116799	60506	928	9991	604654	2.52	25.11	20557127	Shanghai	1024
-	356038	348873	30670	67205	432226	88326	252471	242	15616	855282	2.80	32.41	28921044	Shandong	1023
-	173753	89287	23620	37356	122687	56478	33723	362	4820	269044	2.70	28.81	9021036	Shaanxi	1022
	26113	13527	2630	6292	20737	8035	4877	62	1229	41342	2.74	27.77	1470242	Qinghai	1021
-	34483	24606	1202	1313	44770	7958	10922	29	1829	64336	2.71	28.38	2215109	Ningxia	1020
	87092	105902	3658	11690	133932	24977	84432	631	6951	251738	2.67	24.86	8302698	Inner Mongolia	1019
	381031	321935	58885	211530	366106	28046	111439	843	7122	768884	2.57	25.76	22172958	Liaoning	1018
	108325	175788	15829	96067	149906	13029	59861	1777	4910	329782	2.62	25.21	10270924	Jilin	1017
-	76679	111658	7385	48457	85663	46727	17052	201	3594	201690	3.19	29.76	7844695	Jiangxi	1016
	469388	325288	60185	65052	412115	224580	129293	802	14961	876264	2.81	33.86	30857658	Jiangsu	1015
-	201615	132713	20266	62887	160007	92165	32935	501	9813	358447	2.89	33.45	12911981	Hunan	1014
	298109	180316	35653	126270	179474	132838	40937	349	12733	502439	2.82	33.22	17537483	Hubei	1013
	307902	190648	17533	64920	244091	122569	79535	215	7612	521036	3.05	34.02	18527056	Henan	1012
	188650	163427	16691	173283	130862	20020	122051	418	6911	455996	2.58	23.72	14367419	Heilongjiang	1011
	211716	155581	19435	29889	230919	42944	100741	96	3950	419978	2.95	30.10	14836541	Hebei	1010
	10814	41510	7112	13124	13787	14288	9674	89	1602	56383	3.17	25.42	2327452	Hainan	1009
_	75834	78055	7404	49256	50766	38055	17373	19	5141	157713	2.82	25.94	5485811	Guizhou	1008
	138730	86601	11955	52485	99335	53876	26305	264	5912	238044	2.93	30.71	8478357	Guangxi	1007
_	663772	748196	183699	412315	453172	299326	152601	513	34218	1466895	2.63	26.37	56519993	Guangdong	1006
-	66665	78731	9074	34161	75051	21076	24489	107	3134	160717	2.68	26.69	5282457	Gansu	1005
-	124702	213350	30332	79915	135725	97680	30557	736	13488	360721	2.70	30.29	12699884	Fujian	1004
-	112494	131656	81270	85383	39087	39448	17185	247	3956	258417	2.65	29.77	8391462	Chongqing	1003
	212873	226367	148238	21919	193270	33290	127740	886	6482	517975	2.40	27.81	18597540	Beijing	1002
	176462	135377	17775	20922	175486	82489	44093	287	9035	331730	2.71	29.42	12162978	Anhui	1001
						-	urban								
brick- wood	mixed	steel/R C	≥10	7-9	4-6	2-3	-	mixed	comme rcial	living					
шатсі та)	(storey class)	()			occupancy		per family	arca per capita	pop.	Province	y"+"0"+" Prov_ID"
group	Number of families grouped by construction	Numbe	height	building	s grouped b	Number of families grouped by building height	Number	uped by	Number of families grouped by	Number of	Person	Floor	2015 CHe		"Urbanit

Table 2: Residential building stock modelling related data extracted from the Tabulation of the 2010 Population Census of the People's Republic of China (abbreviated as "2010-

22

3014	3013	3012	3011	3010	3009	3008	3007	3006	3005	3004	3003	3002	3001		2031	2030	2029	2028	2027	2026	2025	2024	2023	2022	2021	2020	2019	2018	2017	2016	2015	2014	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001
Hunan	Hubei	Henan	Heilongjiang	Hebei	Hainan	Guizhou	Guangxi	Guangdong	Gansu	Fujian	Chongqing	Beijing	Anhui		Zhejiang	Yunnan	Tibet	Xinjiang	Tianjin	Sichuan	Shanxi	Shanghai	Shandong	Shaanxi	Qinghai	Ningxia	Inner Mongolia	Liaoning	Jilin	Jiangxi	Jiangsu	Hunan	Hubei	Henan	Heilongjiang	Hebei	Hainan	Guizhou	Guangxi	Guangdong	Gansu	Fujian	Chongqing	Beijing	Anhui
37755133	28165214	58426898	17284909	41534503	4368909	22795976	28020960	38073367	16457361	16023424	13097499	3290554	33868749		14032915	9948973	434071	3536191	1604748	16239393	8095334	3396024	19633228	8393227	1234007	1035570	5916056	5202389	4483838	12539807	17599234	15928705	10287748	18079108	7326077	17723090	1986929	6142030	10216390	17954335	3949838	8616342	6393138	1548053	13372970
34.27	38.64	32.23	20.92	30.09	21.29	27.92	28.82	25.99	21.94	41.24	42.04	35.39	34.04		38.53	30.04	33.52	26.04	29.64	34.47	25.43	30.25	32.14	28.85	21.94	24.82	24.38	26.23	22.51	33.57	39.53	36.74	38.10	32.04	22.67	30.74	23.78	28.39	34.43	26.41	25.92	37.67	34.91	33.20	32.20
3.54	3.40	3.58	3.19	3.50	3.63	3.29	3.47	3.74	3.89	3.16	2.72	2.76	3.12		2.66	3.29	2.89	2.75	2.98	2.80	3.24	2.45	3.03	3.05	3.06	3.14	2.74	2.75	2.70	3.54	3.00	3.18	3.12	3.60	2.63	3.40	3.42	3.12	3.34	3.52	3.17	3.09	2.73	2.52	2.95
1008324	805308	1593259	472849	1138877	109378	657275	788492	825588	444734	447940	436237	85494	972114		435571	249892	10835	95090	36626	494678	208837	100049	555539	218969	28364	25273	172725	168663	139477	283781	493818	413160	267951	435993	230438	454034	45035	159970	264485	357650	101071	224647	187287	41959	355306
0066	11381	18790	3926	6755	771	13176	7837	7932	2789	13851	8496	2139	12697		17019	15089	1334	2368	889	24545	7124	3066	16773	10349	1806	1397	9637	5618	4710	10796	16021	16084	11284	14307	7764	12232	2592	12522	12263	15136	5160	11851	7816	1129	19130
2170	807	715	1647	525	69	244	834	862	233	615	810	89	1032		321	538	69	50	6	2048	292	715	117	295	1694	58	1622	94	1966	1125	436	1397	318	304	526	203	51	41	480	348	124	318	357	143	477
496152	395220	1263614	469755	1108487	101212	526145	494076	473821	434394	152099	215548	81788	594442	rura	78393	95990	5712	57285	20978	133695	128133	24233	412345	103810	15491	16542	124351	100064	90313	57795	194665	107304	65151	242151	152211	338450	26889	65929	94666	119634	58128	44154	35957	21808	144219
516168	405959	341472	3174	32754	8248	137494	294396	328499	12043	279696	219389	2698	384935	al	215994	113777	5333	7087	1965	170345	41454	44272	53861	63776	4641	2590	14566	11565	10161	138466	224247	216464	136106	151413	13711	45232	15458	60006	111560	161452	13450	105240	71385	2812	160370
5569	12191	6231	2668	3591	437	5485	7474	27016	911	27946	6337	2877	5062		143891	49076	1058	32598	12727	141458	42626	29262	102936	53427	9622	7308	41832	51923	37025	80093	86379	90305	59020	53669	54825	73026	4359	34332	58971	60743	30226	65529	40448	16414	67744
262	2267	554	1148	510	217	1206	300	3542	94	1860	3076	93	259		9590	5598	39	301	559	64579	2929	638	2235	6133	386	176	1422	9229	6460	17102	2299	12926	18152	2676	16851	3484	607	11785	11002	27235	4198	18822	41156	710	1426
73	1052	178	30	290	35	121	83	642	81	190	383	177	113		4722	540	27	187	1085	9146	819	4710	935	2172	30	54	191	1500	228	1121	2249	2245	908	391	604	6074	314	440	549	3722	229	2753	6157	1344	677
113888	87280	170146	5933	65563	22309	80232	100152	168179	23583	105558	34275	2991	122416		88524	85728	5633	31109	5896	144800	49930	35992	105549	61288	8482	6140	43195	51280	34567	144491	99148	103618	75159	91696	26869	90952	19912	44016	53729	124661	31721	100650	46425	6224	95625
408562	373421	778487	44163	351042	16584	208026	424443	388958	50990	152003	160849	19546	440296		262572	73181	2406	21827	13066	259633	87194	46750	177664	115983	9814	7109	35332	52098	30467	98662	264939	225168	150951	240373	70838	165751	12356	89287	175149	175520	30839	83984	112018	20550	182264
427367	286599	632719	339849	689663	68949	247780	210891	244088	233241	108638	146892	63298	399437		92204	58444	2961	34576	18217	80423	66418	19423	274908	30075	8928	12255	90983	69815	73754	45425	142526	92116	47125	114219	130084	204531	14449	28725	42500	63890	34944	28551	23805	15964	91921
68407	69389	30697	86830	39364	2307	134413	60843	32295	139709	95592	102717	1798	22662		9290	47628	1169	9946	135	34367	12419	950	14191	21972	2946	1166	12852	1088	5399	5999	3226	8342	6000	4012	10411	5032	910	10464	5370	8715	8727	23313	12855	350	4626
1.05	1.01	1.01	1.13	1.04	1.09	1.03	1.01	1.22	0.94	1.10	1.08	1.36	1.10		1.16	1.14	1.23	1.32	1.44	1.11	1.16	1.34	1.13	1.20	1.27	1.23	1.17	1.08	1.14	1.20	1.15	1.16	1.18	1.11	1.17	1.12	1.22	1.14	1.10	1.37	1.17	1.18	1.20	1.42	1.21

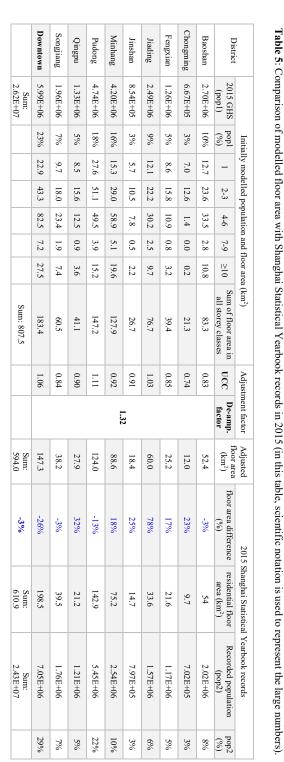
384 60829	-	ω	1649	58732	544733	152558	807	17587	740469	2.67	49.12	22254831	Zhejiang	3031
) 2470 592 68863	2470 592	-	F	6950	296513	461191	1276	10742	756974	3.89	25.61	30987983	Yunnan	3030
13	13	26	-	360	17858	27819	718	1260	44816	4.95	27.55	2468309	Tibet	3029
82 28 11730	28	82		4345	2663	309505	115	2226	314397	3.55	22.35	13521011	Xinjiang	3028
110 249 233	249	110		3345	686	74498	30	570	78318	3.21	25.95	3007476	Tianjin	3027
1425 764 147168	764	1425		16573	574735	1067677	3253	36122	1625052	3.10	36.63	47518958	Sichuan	3026
103	103	290		6348	38553	481296	593	4921	521669	3.44	25.09	19386995	Shanxi	3025
264	264	49		3415	57352	31644	1153	1752	90972	2.37	38.83	2871449	Shanghai	3024
399 103 77610	103	399		6807	40165	1511164	182	8748	1549890	3.07	31.95	49116344	Shandong	3023
348 230 6033	230	348		3360	94599	481090	497	6711	572916	3.54	31.22	20689727	Shaanxi	3022
10	10	7		181	2789	69459	1521	604	71842	4.06	18.51	3342860	Qinghai	3021
64 13 494	13	64		4863	1965	80927	35	1371	86461	3.54	22.12	3527454	Ningxia	3020
245	245	77		3644	6301	331674	1167	4773	337168	2.97	22.17	11385344	Inner Mongolia	3019
390 106 31856	106	390		3709	6643	512930	237	3994	519784	3.12	25.95	16672483	Liaoning	3018
676 59 11283	59	676		4561	3170	347297	2523	2220	353543	3.35	20.98	12897767	Jilin	3017
355 118 184327	118 1	355		8390	373710	251425	1410	6578	627420	3.86	33.81	26204945	Jiangxi	3016
893 2817 77218	/ 187	568		17344	444382	27007C	666	13096	978352	3.03	42.35	32006376	Jiangsu	3015

Construction	Storey class	Building type	Construction price (RMB/m ²
material	Storey class	abbreviation	in 2015 current price)
brick/wood	1	BRIWOMC1	2050
brick/wood	2-3	BRIWOMC23	2350
	1	STLRCMC1	3700
	2-3	STLRCMC23	3900
steel/RC	4-6	STLRCMC46	4100
	7-9	STLRCMC79	4300
	≥10	STLRCMC10	4500
	1	MIXEDMC1	2800
	2-3	MIXEDMC23	3000
mixed	4-6	MIXEDMC46	3200
	7-9	MIXEDMC79	3400
	≥10	MIXEDMC10	3600
	1	OTHERMC1	2600
	2-3	OTHERMC23	2800
others	4-6	OTHERMC46	3000
	7-9	OTHERMC79	3200
	≥10	OTHERMC10	3400

Table 3: Averaged construction price per square meter for each of the 17 building sub-types used in this study to estimate the building stock value in mainland China.

capital stock value estimated in Wu et al. (2014) using perpetual inventory method (in this table, scientific notation is used to represent the large numbers). Table 4: Modelled residential building floor area and replacement value for urban/township/rural area of 31 provinces/municipalities in mainland China and comparison with net

Prov_ID	Province	Initially	Initially modelled residential floor area (m ²)	idential)	(A): Initia building : (RMB i	(A): Initially modelled residential building stock replacement value (RMB in 2015 current price)	residential ment value nt price)	(C): Net capital stock value modelled in Wu et al. (2014, RMB in 2012 current price)	(A)/(C)
		urban	township	rural	urban	township	rural		
01	Anhui	3.57E+08	4.30E+08	1.15E+09	5.08E+11	4.97E+11	1.08E+12	3.86E+12	0.54
02	Beijing	5.16E+08	5.13E+07	1.16E+08	1.92E+12	1.48E+11	2.22E+11	3.85E+12	0.59
03	Chongqing	2.50E+08	2.23E+08	5.50E+08	5.63E+11	4.29E+11	8.25E+11	2.98E+12	0.61
04	Fujian	1.40E+08	2.46E+08	1.07E+09	3.61E+11	5.14E+11	2.02E+12	4.73E+12	0.61
05	Gansu	1.41E+08	1.02E+08	3.61E+08	2.31E+11	1.14E+11	2.71E+11	1.56E+12	0.39
90	Guangdong	1.11E+09	4.16E+08	1.40E+09	2.97E+12	8.05E+11	1.74E+12	1.07E+13	0.52
07	Guangxi	2.27E+08	2.94E+08	8.84E+08	5.42E+11	5.78E+11	1.29E+12	4.74E+12	0.51
80	Guizhou	1.42E+08	1.74E+08	6.36E+08	2.19E+11	1.98E+11	4.88E+11	2.08E+12	0.44
60	Hainan	1.82E+07	2.37E+07	1.43E+08	3.98E+10	3.87E+10	1.63E+11	7.86E+11	0.31
10	Hebei	3.90E+08	5.16E+08	1.33E+09	7.75E+11	8.23E+11	1.56E+12	6.82E+12	0.46
11	Heilongjiang	3.37E+08	1.65E+08	3.64E+08	8.39E+11	2.56E+11	3.68E+11	3.19E+12	0.46
12	Henan	6.30E+08	5.79E+08	1.88E+09	1.12E+12	1.02E+12	2.56E+12	9.30E+12	0.51
13	Hubei	5.82E+08	3.92E+08	1.09E+09	1.30E+12	6.09E+11	1.40E+12	5.44E+12	0.61
14	Hunan	4.31E+08	5.83E+08	1.29E+09	7.75E+11	7.86E+11	1.36E+12	5.22E+12	0.56
15	Jiangsu	8.27E+08	5.98E+08	1.73E+09	2.72E+12	1.67E+12	3.91E+12	1.27E+13	0.65
16	Jiangxi	2.33E+08	4.20E+08	8.84E+08	3.85E+11	5.35E+11	8.45E+11	2.93E+12	0.60
17	Jilin	2.48E+08	9.70E+07	2.79E+08	1.04E+12	2.60E+11	5.10E+11	4.52E+12	0.40
18	Liaoning	4.35E+08	1.14E+08	5.86E+08	1.68E+12	2.92E+11	1.07E+12	6.82E+12	0.45
19	Inner Mongolia	2.01E+08	1.38E+08	2.60E+08	1.20E+12	4.73E+11	5.94E+11	5.39E+12	0.42
20	Ningxia Hui	6.27E+07	2.57E+07	7.80E+07	1.83E+11	5.62E+10	1.22E+11	8.53E+11	0.42
21	Qinghai	4.07E+07	2.56E+07	6.07E+07	1.26E+11	5.47E+10	8.76E+10	6.26E+11	0.43
22	Shaanxi	2.59E+08	2.42E+08	6.46E+08	7.19E+11	5.22E+11	9.62E+11	4.25E+12	0.52
23	Shandong	7.49E+08	5.27E+08	1.85E+09	1.74E+12	1.05E+12	3.23E+12	1.32E+13	0.46
24	Shanghai	4.70E+08	1.10E+08	1.68E+08	1.99E+12	3.68E+11	3.92E+11	4.57E+12	0.60


	1.48E+14	3.38E+13	1.49E+13	2.89E+13	2.40E+10	8.04E+09	1.06E+10	In total:	
_	7.80E+12	2.84E+12	8.98E+11	1.20E+12	1.59E+09	4.10E+08	4.56E+08	Zhejiang	31
	3.27E+12	8.14E+11	3.30E+11	2.83E+11	8.66E+08	2.33E+08	1.77E+08	Yunnan	30
	3.37E+11	8.57E+10	3.06E+10	2.41E+10	6.92E+07	1.22E+07	8.73E+06	Tibet	29
	2.19E+12	2.92E+11	1.96E+11	5.37E+11	3.10E+08	8.60E+07	1.81E+08	Xinjiang	28
	3.88E+12	3.27E+11	1.90E+11	1.43E+12	1.18E+08	4.45E+07	2.19E+08	Tianjin	27
-	5.77E+12	1.81E+12	7.67E+11	7.95E+11	1.76E+09	5.51E+08	4.72E+08	Sichuan	26
-	3.27E+12	5.89E+11		6.58E+11 3.61E+11	4.86E+08	2.06E+08	2.53E+08	Shanxi	25

equal. depreciated asset value of residential, non-residential buildings, and infrastructure as well; (d) The building construction price used in this study and that in Wu et al. (2014) are not The modelled floor area and replacement value in this study are particularly for residential buildings; (c) The net capital stock value estimated in Wu et al. (2014) refers to the Note: (a) In this study, for each of the 17 building sub-types in each grid of urban/township/rural level in each province/municipality, the same unit construction price is used; (b)

001

Shanghai; "De-amp. factor" is the averaged de-amplification factor, derived in Table 6 and used to adjust the amplification of population from 2010 census to 2015 GHS population; "Downtown" area includes eight administrative districts of Shanghai, namely Yangpu, Hongkou, Zhabei, Putuo, Changning, Xuhui, Jing'an and Huangpu Note: In "Adjustment factor" column, "UCC" is the abbreviation of Uniform Construction Price, derived in Table 7 and used to adjust the development disparity in districts of

 Table 6: Derivation process of the de-amplification factor "1.32" in Table 5.

	1.29	22%	1678	3024
1.32	1.34	15%	110.4	2024
	1.33	63%	469.6	1024
De-amp. factor	Amp. Factor from 2010 census to 2015 GHS population	Ratio (%)	Modelled floor area (km ²), without adjustment	Shanghai urbanity

111

Discussions

Table 7: Derivation of Uniform Construction Cost (UCC) in Table 5 from Shanghai 2015 Statistical Yearbook, to reflect the development disparity among districts of Shanghai (in this table, scientific notation is used to represent the large numbers).

District	Population	District GDP	GDP/capita	UCC
Baoshan	202400	1.10E+11	54147	0.83
Chongming	70160	2.72E+10	38791	0.74
Fengxian	116760	6.68E+10	57246	0.85
Jiading	156620	1.63E+11	104084	1.03
Jinshan	79710	5.70E+10	71509	0.91
Minhang	253950	1.84E+11	72603	0.92
Pudong	545120	7.11E+11	130414	1.11
Qingpu	120830	8.27E+10	68476	0.90
Songjiang	175590	9.69E+10	55212	0.84
Downtown	704540	7.96E+11	113012	1.06
	sum: 2425680	sum: 2.29E+12	average: 94607	

Note: "Downtown" area includes eight districts of Shanghai located in the downtown area, namely Yangpu, Hongkou, Zhabei, Putuo, Changning, Xuhui, Jingan and Huangpu.

 \odot

Appendix

Table A1: The population thresholds used to divide the grids in 2015 GHS population density profile into urban/township/rural level.

Province	Province ID	Population	ot each urba	Population of each droanity level in 2010-census	JULO-CETISUS	do r	i opulation sitate (70)	(10)		Tranom (T-T)
		urban	township	rural	sum	urban	township	rural	PT1 (urban/township)	PT2 (township/rural)
Anhui	-	12182587	13394530	33923351	59500468	20.47%	22.51%	57.01%	13991	8069
Beijing	2	15563215	1295477	2753676	19612368	79.35%	6.61%	14.04%	2709	1784
Chongqing	з	8681611	6614192	13550367	28846170	30.10%	22.93%	46.97%	11194	5415
Fujian	4	12548384	8513556	15832277	36894217	34.01%	23.08%	42.91%	6177	2621
Gansu	5	5258935	3932250	16384078	25575263	20.56%	15.38%	64.06%	15175	9350
Guangdong	6	52388382	16641873	35290204	104320459	50.22%	15.95%	33.83%	4427	2521
Guangxi	7	8352777	10065066	27605918	46023761	18.15%	21.87%	59.98%	11711	5087
Guizhou	8	5537562	6199971	23011023	34748556	15.94%	17.84%	66.22%	18126	10384
Hainan	9	2324288	1984228	4362969	8671485	26.80%	22.88%	50.31%	8098	3658
Hebei	10	14388021	17187307	40278882	71854210	20.02%	23.92%	56.06%	5670	2402
Heilongjiang	11	14122516	7201199	16990276	38313991	36.86%	18.80%	44.34%	3845	1483
Henan	12	18331493	17888274	57810172	94029939	19.50%	19.02%	61.48%	15203	8451
Hubei	13	17928160	10516925	28792642	57237727	31.32%	18.37%	50.30%	11667	6345
Hunan	14	12738442	15714621	37247699	65700762	19.39%	23.92%	56.69%	13563	5881
Jiangsu	15	30166466	17205022	31289453	78660941	38.35%	21.87%	39.78%	6554	3341
Jiangxi	16	7504291	11995669	25067837	44567797	16.84%	26.92%	56.25%	11309	3403
Jilin	17	10196745	4451454	12804616	27452815	37.14%	16.21%	46.64%	6150	2849
Liaoning	18	22021184	5166779	16558360	43746323	50.34%	11.81%	37.85%	3486	1874
Inner Mongolia	19	8011564	5708610	10986117	24706291	32.43%	23.11%	44.47%	11152	5041
Ningxia	20	2059295	962727	3279328	6301350	32.68%	15.28%	52.04%	11659	7624
Qinghai	21	1368033	1148221	3110469	5626723	24.31%	20.41%	55.28%	11850	5088
Shaanxi	22	8837175	8222162	20268042	37327379	23.67%	22.03%	54.30%	13716	6862
Shandong	23	28364984	19255743	48171992	95792719	29.61%	20.10%	50.29%	6587	3373
Shanghai	24	17640842	2914256	2464098	23019196	76.64%	12.66%	10.70%	4927	2736
Shanxi	25	9414053	7746486	18551562	35712101	26.36%	21.69%	51.95%	8763	3873
Sichuan	26	15915660	16428768	48073100	80417528	19.79%	20.43%	59.78%	14668	8133
Tianjin	27	8858126	1419767	2660800	12938693	68.46%	10.97%	20.56%	3141	1868
Xinjiang	28	6071803	3263949	12480063	21815815	27.83%	14.96%	57.21%	10473	3618
Tibet	29	272322	408267	2321576	3002165	9.07%	13.60%	77.33%	9751	4483
Yunnan	30	6324830	9634242	30007694	45966766	13.76%	20.96%	65.28%	18128	8118
Zhejiang	31	20386294	13163915	20876682	54426891	37.46%	24.19%	38.36%	5594	2504

if $\lambda < PT2$, rural. according to the population density λ in each grid with 1km×1km resolution. The detailed criteria are that: if $\lambda \ge PTI$, the grid is assigned as **urban**; if $PTI > \lambda \ge PT2$, township; Note: For each province, PT1 and PT2 are two population thresholds used to assign the grids in 2015 GHS population density profile with urban, township and rural attributes,