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Abstract 9 

  10 

This paper uses a coupled Hydrodynamic Agent-Based Model (HABM) to investigate the effect 11 

of direct or indirect warnings in flood incident response. This model uses the LISFLOOD-FP 12 

Hydrodynamic Model and the NetLogo (NL) agent-based framework and is applied to the 13 

2005 flood event in Carlisle, UK.  The hydrodynamic model provides a realistic simulation of 14 

detailed flood dynamics through the event whilst the agent-based model component enables 15 

simulation and analysis of the complex, in-event social response. NetLogo enables alternative 16 

probabilistic daily routine and agent choice scenarios for the individuals of Carlisle to be 17 

simulated in a coupled fashion with the flood inundation. Specifically, experiments are 18 

conducted using a novel, ‘enhanced social modelling component’, based on the Bass Diffusion 19 

Model.  From the analysis of these simulations, management stress points, predictable or 20 

otherwise, can be presented to those responsible for hazard management and post-event 21 

recovery. The results within this paper suggest that these stress points can be present, or 22 

amplified, by a lack of preparedness or a lack of phased evacuation measures. Furthermore, 23 

the methods here outlined have the potential for application elsewhere to reduce the 24 

complexity and improve the effectiveness of flood incident management. The paper 25 

demonstrates the influence that emergent properties have on systematic vulnerability and 26 

risk from natural hazards in coupled socio-environmental systems. 27 
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1. Introduction 45 

 46 

Flood hazard, or flood incident, management is a challenge that incorporates aspects of the 47 

natural sciences (hydrology, ecology, etc.), the social sciences (economics, politics, 48 

psychology, culture, etc.) and engineering. It is important for the efficiency and efficacy of 49 

decision-making processes to recognise that decision-making during floods involves what has 50 

been termed “technical complexity” (Nunes Correia, Fordham, Da Graca Raravia & Bernardo 51 

1998). Specifically, this is the social response to the hazard, and encompasses interactions 52 

between individuals, the diffusion of decision-making and collective, during-event, 53 

behaviours (Larsen, 2005). This complexity cannot, either theoretically or physically, be 54 

eliminated when planning for flooding incidents (Assaf & Hartford, 2002; Bennet & Tang, 55 

2017; Correia, Rego, Saravia & Ramos, 1998 and Dawson, Peppe & Wang, 2011) and can be a 56 

threat to effective planning processes (Axelrod, 1970; Nunes Correia et al., 1998).  In a 57 

broader sense, this complexity is a measure of the scale of the interactions within the affected 58 

area, encompassing dynamic multi-scale interactions and adaptions between individuals, 59 

groups, infrastructures, government and the economy, all contributing to the social, political 60 

and physical aspects of flood hazard management (Dugdale, Saoud, Pavard, & Pallamin, 2009; 61 

Fordham, 1992; IPCC, 2014; Kossiakoff & Sweet, 2002; Werrity, Houston, Ball, Tavendale & 62 

Black 2007 and Wisner, Blaikie, Cannon & Davies, 1994).  63 

 64 

Recent decades have seen strong emphasis being placed on multi-scale, participatory 65 

methods for dealing with floods resulting in a paradigm shift from flood defence to flood risk 66 

management (Assaf & Hartford, 2002, Dawson et al., 2011, DEFRA, 2007; IPCC, 2014 and 67 

Wisner et al., 1994). Such participation means the inclusive involvement of individuals and 68 

multiple agencies in the processes of hazard management, policy implementation and post-69 

event recovery. This emphasis is logical in that it aims to incorporate, as far as possible, the 70 

requirements of all those involved in the hazard planning process across a scale hierarchy that 71 

passes from government bodies to emergency services, and on to the affected individuals 72 

themselves. The complexity of such an ideal becomes apparent given that the intricate 73 

natures of human environments and environmental dynamics are, to a large degree, 74 

perceived as independent, and that when the two come into contact, complexity becomes 75 

amplified within a coupled socio-environmental system. For example, between 2010 and 76 

2015, UK Government policy for flooding underwent a transformation that sought to address 77 

some of the known complexities of flood incident management (DEFRA, 2007; Eberlen, Scholz 78 

& Gagliolo 2017; The Environment Agency, 2012 & 2016). The UK Government’s Department 79 

for Environment, Food & Rural Affairs (DEFRA) national framework for flood management 80 

emphasises the importance of localised decisions about flood risk and makes suggestions for 81 

developing community-based solutions to manage flood risk on a finer spatial scale. This 82 

transformation emphasised the need for innovative new approaches to managing the 83 

localised risk of flooding. This was expected to provide the foundation for better management 84 

at the larger scale as ‘good practice’ innovations spread across more communities. Thus, UK 85 

flood policy can be defined as moving from a top-down to bottom-up approach, often 86 

referred to as ‘alternative action’ (DEFRA, 2007; Kossiakoff & Sweet, 2002). 87 

 88 



 

Whilst both top-down and ‘alternative action’ bottom-up approaches will be likely to have 89 

divergent outcomes owing to the different emphasis each places on variables within their 90 

respective approaches, the shift towards a bottom-up strategy indicates an 91 

acknowledgement of the need for greater local participation in decision making; something 92 

which is difficult to achieve with the ‘black-box’ forms of assistance seen in most top-down 93 

approaches (Sabatier, 1986). Conversely, to formulate an effective bottom-up approach, the 94 

dynamics of the individual base elements, which in this model are individual people and are 95 

termed ‘agents’, must be specified to a relatively intricate degree of detail. This is because 96 

theory suggests individual and grouped responses will have a significant influence on the 97 

dynamics which emerge at higher systematic levels and so accounting for as much detail as 98 

possible at the individual level will have a bearing on the detail that can be developed within 99 

the descriptions of the whole system (Bresser-Pereira, Maravall & Przeworski, 1993 & Müller 100 

et al., 2013). Here, it is believed that Individual and grouped responses are defined by 101 

environmental, inter-personal interaction and interpretation (Alexander, 1980; Assaf & 102 

Hartford, 2002 and Axelrod, 1970) and that these are characteristic behaviours of sub-103 

systematic processes which are either not present or not considered in, coarser, top-down 104 

models of physical process; despite potentially having a significant influence on the outcome 105 

of an event in which they are involved (Nunes Correia et al., 1998). 106 

 107 

Agent Based Models (ABMs), defined as “a computational method for simulating the actions 108 

and interactions of autonomous decision-making entities in a network or system, with the 109 

aim of assessing their effects on the whole system” (Dawson et al., 2011), provide a potential 110 

means to characterise these interactions.  Essentially, this is a form of computerised model 111 

capable of simulating the emergent behaviour of complex systems. In such models, 112 

individuals and organisations are represented as ‘agents’ within a simulated environment 113 

(Railsback & Grimm, 2012). In recent years there has been a proliferation of ABM applications 114 

within the research community and examples of these applications relevant to flooding 115 

encompass: (i) the role of social media in flood evacuation processes (Du, Cai & Sun 2017); (ii) 116 

human perception, understanding and anticipation of flash floods (Morss, Mulder, Lazo & 117 

Demuth, 2016; Narsizi, Mysore, & Mishra, 2006); and (iii) the effectiveness of simultaneous 118 

and staged flood evacuation strategies (Chu, 2015; Dawson et al., 2011; Zarboutis & 119 

Marmaras, 2005).  A key issue for such applications is the development of realistic flooding 120 

scenarios to drive the behaviour of the modelled agents.   121 

 122 

Hydrodynamic models can produce this information so long as they are developed with high 123 

quality terrain and boundary condition information (see for example Neal, Schumann & Bates, 124 

2012), but to date ABM applications have not taken full advantage of the latest developments 125 

in flood inundation modelling.  To date, studies that have driven an ABM with a hydrodynamic 126 

model are those of Dawson et al  (2011), Lumbroso et al (2011) and Medina et al (2016), with  127 

Abebe’s coupled flood agent-institution modelling framework (Abebe at al., 2019) providing 128 

mentionable overlap also . In the example of Dawson’s model, a simple diffusive wave model 129 

which solves Manning’s equation over a raster grid of cells was implemented within an ABM 130 

to simulate a coastal flood and showed considerable potential. However, this study initially 131 

coded the hydrodynamic model directly within the ABM meaning advantage could not easily 132 



 

be taken of recent rapid developments in efficient numerical methods for solving the shallow 133 

water equations (Bates, Horrit & Fewtrell, 2010) and high-performance computing (e.g. Neal, 134 

Fewtrell, Bates & Wright 2010) architectures.  The coding environment in an ABM framework 135 

can never be as computationally efficient as writing software in a compiler language and 136 

solving dynamical equations on fine grids with numerical methods can therefore be extremely 137 

slow.  In addition, the lack of coding flexibility within ABM frameworks means that one cannot 138 

create more sophisticated model structures, such as hybrid 1D/2D hydrodynamic models, 139 

that are required to simulate fluvial flooding in urban areas.  The only reason for having the 140 

hydraulic model coded within the ABM is if the behaviour of the agents changes the 141 

development of the inundation.  In this situation it would be necessary to have the agent 142 

behaviour and flood dynamics co-evolve during the simulation and this two-way interaction 143 

can only be achieved by having the hydrodynamic model and ABM tightly coupled in the same 144 

code.  However, this is typically not the case when the agents in the model represent the 145 

general-public rather than specific flood management actors, and for this situation a one-way 146 

coupling is sufficient. Writing a hydraulic model within the ABM framework for these cases as 147 

no advantages therefore for many (perhaps most) flood types and leads to quite a few 148 

constraints. 149 

 150 

As a result, in the ‘tightly coupled’ approach of Dawson et al (2011) the computational costs 151 

were high, and this limited the domain size and resolution of the modelling that could be 152 

undertaken.  Instead of directly embedding the hydrodynamic model within the ABM, a more 153 

pragmatic solution when considering agents whose behaviour cannot affect the flood 154 

evolution is to indirectly couple a separate, and highly optimized, hydrodynamic model with 155 

an existing ABM framework.  This allows each code to be properly optimized for the task it 156 

performs and enables each to be more easily updated as new methods become available.  157 

This is the approach taken here, where we develop such a coupled hydrodynamic 158 

model/Agent-Based model framework (hereafter termed a Hydrodynamic Agent-Based 159 

Model, or HABM) and use this to address two currently unresolved questions relating to flood 160 

evacuation warnings.  These two specific questions are: 161 

 162 

1. During a flood, does the site-specific urban topography and morphology change the 163 

optimum evacuation warning strategy?   164 

 165 

2. Do people (agents) respond better to direct or indirect (word of mouth) evacuation 166 

warnings for a flood event?  167 
 168 

To date research on flood warnings and evacuation has examined the challenges and changes 169 

in thinking required to tackle the paradox of flood ‘control’ (Wisner et al., ch 6, 2015), the 170 

dynamic approaches required to address different forms of flood event (Berendracht, 171 

Viglione & Blöschl, 2017; Dawson et al., 2011; Gilligan, Brady, Camp, Nay & Sengupta, 2015; 172 

Smith & Tobin, 1979) and the roles of individuals and groups in flood warning and evacuative 173 

scenarios (Haer, Botzen & Aerts, 2016; Haer, Botzen & de Moel, 2016; Nunes Correia et al., 174 

1998). However, so far, little work has been conducted on whether evacuation strategies 175 

need to be tailored to the specific geographical setting or explored whether different modes 176 



 

of communication (direct or indirect) affect the evacuee’s response.  Answering these 177 

questions is important if effective warning strategies for specific places are to be developed. 178 

More broadly, answering these two questions encompasses the process of implementing 179 

alternative actions; these rely on positive social participation, diffusion of ideas and their 180 

implementation, and they require broader acknowledgement of, and a specific approach to 181 

addressing, the associated socio-environmental complexity (Wisner et al., 1994; Wong & Luo 182 

2005; Zarboutis & Marmaras, 2005). The HABM framework enables us to properly explore the 183 

systematic, cross-scale sensitivity of social complexity to the physical flood phenomena and 184 

shows where the loci of vulnerability are within an affected system. Therefore, the goal of 185 

HABM use for this study is not to eliminate complexity from consideration, but rather to 186 

harness it as a compliment to more specific physical considerations within comprehensive 187 

hazard management strategies. This is tested by applying it to a test case in Carlisle, UK. The 188 

overall aim is to offer an assessment of the value of alternative actions within flood hazard 189 

management as a whole (Dawson et al., 2011; Müller, Bohn, Dreßler & Groeneveld, 2013).  190 

2. Methods 191 

 192 

2.1 Study Area 193 

 194 

Carlisle, Cumbria UK, and specifically the approximate 10 km2 study area of the city illustrated 195 

in appendices: figure 1, is a flood prone city with a history of contemporary study (Correia et 196 

al., 1998; DEFRA 2007; The Environment Agency: 2006; 2012; 2016; Horrit, Bates, Fewtrell, 197 

Mason & Wilson, 2010; Neal et al., 2009; Neal, Keef, Bates, Bevan & Leedal, 2013).  Notable 198 

flood events have affected the city since 1700, with the recent 2015 flood event having been 199 

referred to as ‘unprecedented’ in scale due to the river Eden’s flood level rising 0.6 metres 200 

above the previous record flood level of 2005. The location of the city at the confluence of 201 

the rivers Eden, Caldew and Petteril means it is a useful source of data for hydrological 202 

research. As the county town of Cumbria, with a total population of 108,000, it is a location 203 

of significant social scale whilst also offering a case study which is suitably complex to develop 204 

new insights through modelling and simulation. 205 

 206 

The 2005 event affected approximately 1865 properties and led to the loss of 3 lives. The 207 

event had an estimated Annual Exceedance Probability (AEP) of 0.59% (1 in 170-year return 208 

period) and was a seminal event in that it prompted significant investment in the city’s flood 209 

defences. The 2005 LISFLOOD-FP data set (Horrit et al., 2010) provides a robust and reliable 210 

foundation on which to build the agent-based component of the coupled model. This data set 211 

used for the model simulation consists of a series of input files including raster grids of 212 

floodplain friction coefficients and elevation heights in 2D, ARC-ascii format, boundary 213 

identification, time-varying boundary conditions and hydrodynamics. Since 2005, Carlisle has 214 

been subjected to further large flood events in 2009 and 2012 with the mitigative measures 215 

deployed post-2005 successfully curtailing the impact of these. Furthermore, the 2015 event, 216 

overtopped the new defences and has led the Environment Agency to produce the Cumbria 217 

Flood Plan. A novel feature of this is that it introduces and promotes community-based flood 218 



 

resilience measures on a large scale for the UK. It is the essence of these measures that 219 

prompted the development of the coupled model with a view to better understanding the 220 

dynamics on which these measures were based (DEFRA, 2007; Dugdale et al., 2009; The 221 

Environment Agency: 2006; 2012; 2016). 222 

 223 

2.2. The flood modelling component: LISFLOOD-FP 224 

 225 

For a viable exploration of different individual responses to flooding, detailed, accurate and 226 

dynamic simulations of the flood at Carlisle were required. LISFLOOD-FP (Bates & De Roo, 227 

2000; Bates et al., 2010; Neal et al., 2009; 2012), is a 2D hydrodynamic model specifically 228 

designed to simulate floodplain inundation in an efficient manner over complex topography, 229 

as is the case in urban areas. LISFLOOD-FP is capable of simulating grids of up to 107 cells for 230 

dynamic flood events with airborne laser altimetry defining the DEM of the affected area. 231 

From this, the LISFLOOD-FP model can accurately simulate the dynamic propagation of flood 232 

waves by predicting water depths in each grid cell through a series of time steps, and over 233 

the complex topographic forms within floodplains. The ABM element of the coupled model 234 

can then operate from this reliable foundation using the model output as a boundary 235 

condition, enabling exploration of different hypotheses for social reactions and responses to 236 

the detailed, accurate and dynamic physical outputs generated by LISFLOOD-FP; by adding 237 

the related elements of policy and systematic change (Wheater, 2006; Wilson & Atkinson, 238 

2005).  Whilst LISFLOOD-FP was the chosen hydraulic model for the HABM, similar 2D-239 

hydraulic models could resolve flow problems to similar degrees of accuracy and this would 240 

mean that these alternative models could be utilised in place of the LISFLOOD-FP with the 241 

HABM modelling framework (Hunter et al., 2008; Landstrom, Whatmore & Lane, 2011; Neal 242 

et al., 2012).    243 

 244 

2.3. The social modelling components: HABM & NetLogo 245 

 246 

With LISFLOOD-FP producing an accurate representation of the flood at Carlisle, the related 247 

elements of flood incident policy options and agent behaviour were implemented through 248 

the separate ABM program of NetLogo (Railsback & Grimm, 2012; Wilensky & Rand, 2015). 249 

The HABM (figures 3 to 7), uses water depth output files from the LISFLOOD-FP at each model 250 

time-step within a simulated version of the affected area (figures 5 - 7). For the simulation of 251 

the Carlisle study area, a Digital Elevation Model (DEM), identical to that used by LISFLOOD-252 

FP as an input data set was used to provide a realistic topography for the flood-impacted area 253 

in NetLogo (NetLogo, 1999; Wilensky & Rand, 2015). In addition to the simulation of the flood 254 

event and physical landscape, NetLogo was used to generate a virtual population of agents 255 

to occupy the virtual version of Carlisle. Using a pseudo-random, number of generator and 256 

deterministic agent scheduling algorithms directed through probabilistic routines (Nunes 257 

Correia et al., 1998; Wilensky & Rand, 2015; Wong & Luo, 2005) this then simulated the 258 

population’s interaction with the environment and response to the flood event. This 259 

simulated interaction allows the possibility of identifying emergent properties likely to arise 260 

at the complex interface between the social and environmental systems. These emergent 261 

properties have a significant impact on objective 1, in that they occur subtly and at locations 262 



 

that significantly influence human responses within the coupled physical and social systems. 263 

This significance is found in the HABM’s capacity to reveal systematic emergent phenomena 264 

through the simulated co-evolution of a socio-environmental system, operating here through 265 

a flood event that has impact upon the basic daily routine (figure 2) and the complex co-266 

existent entities i.e. the more complex, responsive configuration of evacuating groups  267 

(figures 3 & 4). This then has a further impact on hypotheses regarding risk, vulnerability and 268 

resilience, with the HABM providing an opportunity to analyse and evaluate these terms, from 269 

a sub-systematic perspective. Here, sub-systematic is a term used to describe the 270 

development of individual (micro) to community (meso) level characteristics in response to 271 

the flood onset, with greater scope than has previously been possible with traditional 272 

approaches to flood incident management (Borschev & Filippov, 2004; Chen & Zhan, 2008; 273 

Gilbert & Troitzsch, 2005; Guo, Ren & Wang, 2008; Guyot & Holiden, 2006; Landstrom et al., 274 

2011; Namatame & Chen, 2016, Sanders & Sanders, 2004; Srbljinović & Škunca, 2003; Wei, 275 

Zhang & Fan, 2003)). 276 

 277 

 278 

2.4. The enhanced social modelling component: Bass Model 279 

 280 

For objective 2 of this paper, and in planning for effective flood impact management on a 281 

broader scale, we must incorporate elements from a whole range of activities (Axelrod, 1970; 282 

Berendracht et al., 2017). These include the spatial and temporal variations in phenomena 283 

(flooding in this instance), the non-linear relationship between small perturbations at a sub-284 

systematic level and large knock-on effects at a system-wide scale ( the macro-level ), the 285 

understanding that these effects can extend beyond the physical impacts of the phenomena 286 

and change social behaviours and routines within an affected area, thus changing the 287 

characteristic function of the system as a whole. This suggests that objectives 1 and 2 are 288 

intimately connected and so there is a need to consider the social dynamics and reflexive 289 

nature of the human system in response to the flood event within the framework of the 290 

hazard system to determine the sensitivity of the incident management response (Davies, 291 

1979). To better understand this relationship between human system and environmental 292 

phenomena (figure 2), the ABM was used to provide choices to the simulated agent 293 

population of Carlisle as part of a synthetic daily routine (figures 3 & 4), further details of 294 

which are to be found in section 3 of this paper. These agent choices and the routine were 295 

combined to synthesise the dynamics of the socio-environmental interface and from this, 296 

estimates were made for the influence that agent choices have on the characteristics of the 297 

system being simulated.  In the Carlisle HABM, the agents were given the choice of carrying 298 

out their normal, linear, routine during the flood scenario, of becoming warned and taking 299 

immediate action to evacuate, or of assessing this warning based on social interaction with 300 

other agents in the immediate vicinity, and then acting post-interaction(figure  4). The 301 

scenario of becoming warned and evacuating immediately is used in the HABM to reflect the 302 

government policy instruction of ‘what to do in a flood scenario’ in the most direct form. 303 

Within the model (DEFRA, 2007), this instruction is programmed as ‘pre-preparedness’ and it 304 

describes an adoption and undertaking of actions beyond the ‘normal’ daily routine, both 305 

modelled and real (Chen & Zhan, 2008; Chu, 2015).  306 



 

 307 

The Bass Diffusion Model provides a tool for interpreting the impact of these choices and 308 

actions, by representing agents who adopt certain actions at a given time. The model, 309 

originally conceived for marketing economics, is used to inform understanding of the diffusion 310 

of frequently purchased or adopted products, and is based on a principle derived from the 311 

following relationship (Bass, 1969): 312 

 313 

 314 

 315 

This states that “The portion of the potential market that adopts at time t, given that they 316 

have not yet adopted, is equal to a linear function of previous adopters” (Bass, 1969; Davies, 317 

1979). The basic premise of the model provides insight into interaction between adopters of 318 

the product within a population; it then classifies these adopters as ‘innovators’ or ‘imitators’. 319 

In the HABM, the ‘material product’ concept of the Bass Model is replaced with the a priori 320 

product of ‘knowledge’ regarding an imminent flood event, this is to say that agents within 321 

the model can simply be set to act out evacuative measures immediately at the start of the 322 

simulation and in all of the timesteps leading up to the flood inundation, if they choose to 323 

stay. These ‘innovative’ agents are also freely able to communicate these measures to 324 

proximal neighbouring agents who can then choose to imitate these informed agents; or carry 325 

on with what they are doing. it should be stated that the sociological dynamic of innovation 326 

and imitation is proliferated within the model by communication between agents who are 327 

proximal and so this simple binary distinction could be regarded as a potentially useful one 328 

for representing the apparently complex communication dynamics of a social system in a 329 

relatively simple manner.  330 

 331 

In the specific instance of the HABM, the innovators are set as pre-prepared prior to the flood 332 

simulation onset and the imitators are those who would not be prepared, but who are given 333 

the choice to adapt their routine at each timestep, based upon contact with the innovators. 334 

This situation, describing people who are in possession of knowledge regarding the flood 335 

event and then communicating it to those who are not, could have an impact on all aspects 336 

of response and evacuation, as it is a crucial component of the boundary between the 337 

processes of warning and response (Axelrod, 1970; Chen & Zhan, 2008; Chu, 2015). With 338 

specific reference to the Bass Model terminology, there are three parameters (or 339 

representative coefficients), that define the compatibility with the HABM, these are: 340 

 341 

• (M) - The potential market, these are the ultimate number of potential adopters, i.e. the 342 

population. This constitutes the number of members of the social system in which word-343 

of-mouth communication from past adopters is the driver of new adoptions. The Bass 344 

Model assumes that M is constant, though in practice and over longer periods, M is often 345 

slowly changing according to population change and product memory.  346 

• (p) – The coefficient of innovation, so-called because its contribution to new adoptions 347 

does not depend on the number of prior adoptions. Since these adoptions are due to 348 

some influence outside the social system, the parameter is also called the ‘parameter of 349 

external influence.'  350 



 

• (q) – The coefficient of imitation has an effect that is proportional to cumulative adoptions 351 

A(t), implying that the number of adoptions at time t is proportional to the number of 352 

prior adopters. In other words, the more that people talk about a product, the more other 353 

people in the social system will adopt it. This parameter is also referred to as the 354 

‘parameter of internal influence’. 355 

 356 

The other variables in the Bass Model relationship and calculated from M, p, q and t, are:  357 

• f(t) - The portion of M that adopts at time t, 358 

• F(t) - The portion of M that have adopted by time t, 359 

• a(t) - The adopters (or adoptions) at t, 360 

• A(t) - The cumulative adopters (or adoptions) at t. 361 

 362 

The outcomes of the coupled application of these three components (sections 2.1, 2.2 & 2.3) 363 

towards the two objectives are further illustrated in section 4 and are discussed further in 364 

section 5. 365 

 366 

Of further interest here is how to qualify the communication taking place within the HABM. 367 

In sociological terms, the imitative process involved is broadly one of inter-agent 368 

communication and collective response. According to the sociologist Gabriel Tarde and his 369 

Laws of Imitation (Tarde, 1903), as applied to ‘groups of people’, innovations must undergo a 370 

process of diffusion over time to gain a foothold and become a component in the decision-371 

making process linked to the innovation, be this adoption or rejection. Tarde’s process 372 

involved in the diffusion of innovation has undergone some revisions in the decades since 373 

being first proposed and can now be defined through the following five steps: 374 

 375 

• First Knowledge, 376 

• Attitude formation, 377 

• Adoption or rejection, 378 

• Implementation, 379 

• Confirmation of the decision. 380 

 381 

Via the Bass Model, the HABM for Carlisle allows a simulated engagement with the first four 382 

steps of Tarde’s process, the fifth being confirmed in the representation of the first four 383 

activities as the simulation advances over time. This interpretation of social imitation and 384 

adoption was used as a basis for investigating the influence of these processes in an event 385 

where time is relatively constrained and the stakes of action are high, such as during a flood 386 

onset. The values for this process of adoption were taken from the change in overall un-387 

prepared population in Carlisle transitioning to a ‘prepared state’ based upon contact with a 388 

‘pre-prepared’, or innovative, agent. This transition was represented by the percentage of the 389 

population in possession of the appropriate knowledge for effective flood evacuation who 390 

then reported this change back as an agent-orientated change of state throughout the 391 

simulation of the flood. This rate of change of state is then fed into the Bass Model functions 392 



 

to produce diffusion curves like those seen in figures 8a & b and discussed in further detail in 393 

sections 4 and 5. 394 

 395 

 396 

3. Core model construction and system dynamics 397 

 398 

Given the complexity caused by the incorporation of these diverse elements within 399 

considerations of a flood hazard system, the benefits of a standardised flood incident 400 

management strategy based on an understanding of these dynamics might not be 401 

immediately apparent. Further management of complexity might necessarily arise through 402 

the required interactions between the individuals and organisations who might very well have 403 

conflicting interests linked to contrasting elements in their expertise or experience (Hart, 404 

Nilsson & Raphael, 1968; Hornor, 1998). Furthermore, the feedbacks within a flood hazard 405 

system, particularly an urban one, can lead to a spectrum of dampening and amplification of 406 

behaviours within the system, the dynamics of which could be influential on outcome, yet 407 

difficult to account for in a standardised flood incident management strategy (Assaf & 408 

Hartford, 2002; Dawson et al., 2011; Rasmussen, Pejtersen and Goodstein, 1994.) It is here 409 

where the HABM concept reaches out to the concepts of phenomenology, poststructuralism, 410 

structuration theory, structural functionalism and symbolic interactionism to inform the 411 

conception of a modelling framework that incorporates the important social notions of these 412 

disciplines and thus anchors the modelling element of the HABM to the cardinal philosophical 413 

and sociological concepts underlying it and the outputs produced. The appeal of this approach 414 

lies primarily in the novelty of the undertaking in addition to the application of concepts from 415 

disciplines such as sociology, philosophy and psychology, which complement the model by 416 

offering access to new terminology and theoretical bases for better representing social 417 

systems, focussed on relatedness rather than boundedness between the dimensions and the 418 

whole (Alexander, 1980) ; within a coupled modelling framework. Here, the benefit of a more 419 

holistic representation can lead to the development of a more effective and holistic 420 

understanding of how to manage social dynamics, responses and functions within physical 421 

models where they can have further impact on effective planning for and outcomes from the 422 

whole system and the components comprising that system (Smith & Tobin, 1979; Zarboutis 423 

& Marmaras, 2005). 424 

 425 

With these details in mind, and urban systems being the primary interest in this paper (figure 426 

2), the first step beyond bringing together the initial HABM components was to devise a 427 

conceptual format that describes the key dimensions of the urban system within a 428 

parameterised and reproducible framework. In this paper they will be primarily referred to as 429 

dimensions, alternatively they can be called ‘sets’ (or centres (Alexander, 1980), and can be 430 

broadly subdivided into three separate systems, that of the Environment, Community and 431 

Built Infrastructure (UNISDR, 2015; Wisner et al., 1994). Networks existing between these 432 

dimensions, resulting from the co-evolution of the dimensions, are characterised by the 433 

immediate practical and physical influence that each has on the behaviour of the other to 434 

create an operational whole. Conceptually, this is analogous to the notion of the Brunnian 435 

Link in mathematics and the poststructural, psychoanalytical concept for experience or 436 



 

jouissance, proposed by Jacques Lacan’s Borromean Rings construct in the 1970’s (Zupančič, 437 

2000). An urban system, concomitant with our physical perception and experience of it, can 438 

occur at the nexus of the topological sets illustrated in figure 2. Whilst these constituent 439 

dimensions could be deliberated in terms of scale, dynamic or boundary and seemingly 440 

experienced separately from one another by individuals or groups, it is important to 441 

understand that for the present analysis, the function of the urban system within the HABM 442 

framework arises in the form of the aforementioned  Brunnian link. This is as an “extended 443 

and unbroken continuum of connections wherein the whole is necessarily unbroken and 444 

undivided” so that life may be supported, experienced and proliferated therein (Alexander, 445 

1980).  446 

  447 

 448 

 449 
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 451 

 452 

 453 

 454 

 455 

 456 

 457 
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 460 

 461 

 462 
 463 
 464 
 465 
 466 
 467 
Figure 2: A simplified schematic illustrating the key centres of an urban system. Conceptualised from [Axelrod, 468 
1970, Wisner et al., 1994] and the terminology given within the Sendai framework 2015-2030 [UNISDR, 2015].  469 
 470 

Specifically, this link is a mathematical and topological term used to describe the triviality and 471 

non-triviality of connection between the sets. As applied to the HABM system concept, when 472 

disconnected from the complete, interconnected, system set, the system no longer exists and 473 

cannot be experienced by people within it. Utilising the terminology applied within 474 

mathematical topology, the individual systems become ‘trivial’ when disconnected from one 475 

another and ‘non-trivial’ when all are in contact within the dimensions of the systematic 476 

whole. Thus, the individual systems are experienced in combination with one another, where 477 

the boundaries, existing between these systems, would not be as discrete as those shown in 478 

figure 2. This would suggest an overlap in the systems whereby experience and interactions 479 

between these systems and people, life, occurs at the nexus of the three. A simplified scenario 480 

to support this understanding for Carlisle would be one where a community requirement for 481 



 

an advance in built infrastructure as a response to perceived, or experienced, environmental 482 

risk from flooding; something which could be considered an emergent characteristic from the 483 

onset of the flood hazard system. Consequently, were the topologies of each of the three 484 

dimensions existent separately, and not connected in a manner as suggested in figure 2, 485 

interactions between the elements of the three system sets, including the manifestation of 486 

physically hazardous phenomena, would not be possible (Alexander, 1980; Axelrod, 1970; 487 

Berendracht et al., 2017; Du et al., 2017; Dugdale at al., 2009; Eberlen et al., 2017; Fordham, 488 

1992; Guyot & Honiden, 2006; Holland, 2014; Liu et al., 2015; UNISDR, 2015). 489 

 490 

Thus, the simulations of the dynamics of Carlisle’s urban system for the HABM focused on 491 

establishing the linked characteristics between the three dimensions to model a non-trivial 492 

system. The use of an ABM enables this through a focus on the community dimension, 493 

through simulation of activities and interactions which may then be used as metrics for 494 

change according to a specific environmental event, in this instance the 2005 flooding of the 495 

Rivers Eden, Petteril and Caldew. To perform these simulations, a correspondence between 496 

the conceptualised urban system, representing the three inter-linked elements of figure 2 and 497 

the modelling framework illustrated in figure 3, was developed. Figure 3 is a schematic of this 498 

correspondence and represents the overlying workflow of the HABM for simulations of the 499 

2005 Carlisle flood. The layout for this figure was used to support workflow and model 500 

structure in relation to effective representation of the urban system shown in figure 2, within 501 

the ABM platform. The Layout of figure 3 is such that the structure of each set from figure 2 502 

corresponds with the processes taking place in NetLogo to represent that set. In sum:  503 

 504 

• The environmental set is simulated using the LISFLOOD-FP outputs and the site DEM,  505 

• The Built infrastructure is emulated using census data sets and street network 506 

information,  507 

• The community or social set overlaps both the built and environmental systems and 508 

is driven by the agent-orientated, probabilistic choice and interaction flowchart 509 

illustrated in figure 4.  510 

 511 

The details of the diagram in figure 3 are the cardinal NetLogo commands that overlap 512 

between the system sets and so enable the simulation of the three dimensions within the 513 

HABM. This establishes a tangible link between the conceptual complexity of the urban 514 

system experienced by people with that experienced by agents, who represent people, within 515 

the simulated version of the urban system. This transferral from a conceptual topological 516 

figure to a logical modelling schematic was an important step which was taken to link the 517 

modelling system to the physical system being modelled. Whilst the format presented in 518 

figure 3 is not particularly novel in the sense of workflow or process for an ABM, it is relatively 519 

novel in the sense of how it illustrates this link between a conceptual construct of a system, 520 

figure 2, and the workflow steps required in simulating this system and representing dynamics 521 



 

that can provide an analogue for events that occurred during an historical physical event, such 522 

as that in Carlisle during 2005. 523 

 524 

Figure 3: The core components of the HABM, an indication of the model cycle for these components, and the 525 
elements of the urban system (figures 1 and 2) that they demonstrate. The schematic follows a similar format 526 
to that of a Euler diagram [Whitehead & Russell, 1913], whereby the three centres of the urban system are 527 
shown to contain the respective components of the model representing their function within the HABM. These 528 
are (from right to left): Built Infrastructure, Community, Environment.  529 

 530 

Figure 4 further extends this conceptual approach through to the community element of the 531 

modelled system in offering simulated agents the choice to engage with a basic, probabilistic, 532 

daily routine within the simulated system as well as engage in emergency response actions 533 

following flood onset. This further enhances the realism of the simulated population of 534 

Carlisle and provides an analogue for how variations in the physical interaction with a flood 535 

might affect the evacuation response (Morss et al., 2016; Müller et al., 2013). The routine and 536 

decision tree format, formulated through the ODD (Overview Design concepts & Details) 537 

ENVIRONMENT BUILT INFRASTRUCTURE 

COMMUNITY 



 

protocol (Wilensky & Rand, 2015), with a view to potentially producing ‘emergent’ behaviour 538 

for the modelled system, was initially referenced from the synthetic daily routine and 539 

transport model used for simulating storm-surge evacuation by Dawson (et al., 2011). The 540 

adopted elements of this routine were the basic formatting seen in figure 4, whereby 541 

probabilities were assigned to activities for the agents in the model. Of note here is that a 542 

discrete transport model was not included in this model for these initial findings as it was felt 543 

that there has already been recent and significant advances in this area of interest (for 544 

example: Coates et al., 2014; Pyatkova et al., 2019; Mostafizi, Wang & Dong, 2019).  The 545 

activities of interest were engaged with on a point-to-point basis as the agents navigated 546 

through the simulated system of Carlisle until flood onset. With onset, the agents within the 547 

simulated system can then choose to engage with the emergency routine or continue with 548 

the elements of a daily routine until the next timestep. As there is already a wealth of 549 

evidence available (see for example: Assaf & Hartford, 2002; Berendracht et al., 2017; Chu, 550 

2015; Du et al., 2017; Dugdale et al., 2009; Eberlen et al., 2017) to suggest that the time of 551 

event onset is influential in event outcome, this time-dependency was not implemented 552 

within the simulations for Carlisle. This choice was made in favour of developing streamlined 553 

simulations that emphasised agent-agent interactions between event onset and end. 554 

However, time-dependency is something which is easily implemented within NetLogo if 555 

desired and indeed was implemented in later iterations of the HABM for different 556 

applications. In addition to this agent-agent focus, non ‘pre-prepared’ agents may also engage 557 

with ‘pre-prepared’ agents in the model and initiate emergency action based upon their 558 

interaction, demonstrating a synthesised form of communication and response. The 559 

development of this step in the modelling procedure was crucial to allow interpretation of 560 

the influence of an adopted policy directive on inter-agent interaction and choices made 561 

during the onset of the flood event which may ultimately notbe time-dependent in nature 562 

(DEFRA, 2007;Landstrom et al., 2011; Liu et al., 2015; Morss et al., 2016; UNISDR, 2015; 563 

Waldorp, 1993).   564 

 565 

The format of figure 4 was beneficial in this instance as it offers a basic format for agents 566 

operating within the model of Carlisle, a format by which they can navigate along the street 567 

network in a manner reflective of what might be expected during an average day in Carlisle. 568 

The probabilistic format of the routine ensures that upon each timestep agents will be at 569 

specific points within the network. Whilst this attenuates the representative complexity of 570 

the model, it is believed that it offers enough complexity of choice and action to reflect the 571 

potential reality of a complex social and flood onset situation within Carlisle. The probabilities 572 

shown in figure 4 were adapted slightly from the original synthetic routine proposed by 573 

Dawson et al. to be more generalised and, for computational efficiency within NetLogo, were 574 

implemented to be acted out on each time step, rather than continuously over flood onset.  575 

 576 

 577 

 578 

 579 



 

Figure 4: An overview of the agent choice & probabilistic routine tree used to guide agent processes through 580 
the simulated environment of Carlisle. Informed by reference to (Bennet & Tang, 2017) & (Dawson et al., 2011). 581 

 582 

In section 4, figures 5 to 7, the product of the co-action between the components of figures 583 

2, 3 & 4 can be seen. These figures illustrate the model in a preliminary state of simulation 584 

and so the full agent population is not in action. Whilst the largely autonomous processes of 585 

NetLogo, outlined in section 2, influenced the extent to which the simulated agents engaged 586 

with the routine and the choices provided, the implementation of a routine acted to 587 

attenuate not only the representative complexity of the situation, but the outright 588 

stochasticity of the NetLogo agents also. This means that whilst the agents would be 589 

interacting with ‘commands’ e.g. ‘leave home point’ or ‘stay at home point for t(n)’, these 590 

commands are not too far removed from a realistic analogue of basic choices a human might 591 

make on a given day ( Bernardini, Camilli, Quagliarini & D’Orazio, 2017; Chu, 2015; Dawson et 592 

al., 2011) with the possible actions of the daily and emergency routines being more reflective 593 

of general and reactive behaviours expected during a flood onset (Du at al., 2017; Dugdale et 594 

al., 2009). The spatial distribution of the agent population within the HABM was informed 595 

with national UK Census statistics for Carlisle. However, as census data does not identify 596 

individuals against specific addresses, the distribution of agents within the simulated HABM 597 

environment was implemented in a slightly more utilitarian manner than the demographic-598 

based distribution seen in Dawson (Dawson et al., 2011), by  using a linear function of the 599 

population of Carlisle with agents being allocated to home points within the model according 600 

to building footprint (Bennet & Tang, 2017; Borschev & Filippov, 2004; Dechter & Pearl, 1986).  601 



 

 602 

In terms of the Bass Model variables discussed earlier, (M) is represented by 108,000 agents 603 

(in the final simulations), the total population of Carlisle (The Environment Agency, 2016); (p), 604 

here, represents the 50% estimate by the EA for the population of Carlisle currently deemed 605 

as ‘signed up to flood warnings’ or pre-prepared  and in possession of the, defined within the 606 

HABM as innovative, knowledge to respond to the flood upon onset (The Environment 607 

Agency, 2012). The coefficient (q) roughly equates to 30% which represents the one-third 608 

likelihood of those who encounter the innovators (p) adopting the innovation as defined by 609 

the Bass Model in a scenario where the rate of adoption between innovation and adaptation 610 

is linear or seamless (Bass, 1969).  Despite this somewhat ideological perception of human 611 

communication (Jakkola, 1996), this rate of conversion was kept consistent in the instance of 612 

the Carlisle simulations as no evidence was found to suggest that social factors were present 613 

within Carlisle that would adversely affect it (widespread prejudice, social unrest, a despotic 614 

government etc.). In total 200,000 simulations were performed using this methodology within 615 

the NetLogo BehaviourSpace tool. These differed through scaling of ‘pre-preparedness’ 616 

between 0 and 100% and the outputs of interest from these simulations were the rate of 617 

change from ‘un-prepared’ to an ‘evacuative’ state, based upon agent contact and the 618 

number of potential casualties linked to the change of preparedness (%). Finally, regarding 619 

the status of ‘potential casualties’ within the HABM, this is a term and metric of the HABM 620 

used to describe agents physically impacted by the flood. This term does not account explicitly 621 

for ‘death’, rather it is a measure of those agents who may become cut-off from a clear escape 622 

route or inundated during evacuative procedure and actual agent fatality was extremely rare 623 

during the simulations. The simulation of fatality was defined differently to physical fatality 624 

in that it was only presented when an agent’s grid cell became inundated, to a third of an 625 

agent’s height, for one time-step, having had all escape routes cut off  (Assaf & Hartford, 2002; 626 

Landstrom et al., 2011; Roland & Moriarty, 1990). 627 

 628 

4. Results 629 

 630 

Within the appendices, figures 5 to 7, there are examples of these simulated flood sequences 631 

for the 2005 Carlisle flood by the HABM, showing inundation areas and agent locations, both 632 

prior to the flood (figure 5) and at later stages (figures 6 and 7) after flood onset and agents 633 

have been variously alerted. The time taken to model this process in NetLogo, over one 634 

complete event simulation, ranged from 45 seconds (2019) to 3 minutes 30 seconds (2017). 635 

The side panels on the left-hand side of the figures outline the basic controls for the model, 636 

whilst the charts on the right show model predictions for potential casualties in relation to 637 

populations and pre-preparedness, which is an apriori knowledge of the flood, as previously 638 

stated. These figures are representations of the modelled culmination of the concepts 639 

discussed in sections 1, 2 and 3 and illustrated in figures 2 to 4 within the NetLogo interface. 640 

 641 

In applying the Bass model to the Carlisle HABM, two diffusion curves were produced (figures 642 

8 a & b). These represent inter-agent communication regarding the adoption of policy 643 

instructions to either evacuate the area immediately, i.e. to adopt an innovative instruction, 644 

or to follow an imitative one after checking with nearby agents and only then deciding how 645 



 

to respond. The coefficient (q) is typically represented by a much smaller value than 30% in 646 

traditional applications of the model (Mahajan, Muller & Bass, 1990). However, owing to the 647 

elevated risk involved in adopting, or not adopting, the product of evacuative knowledge 648 

during a hazard scenario, the traditionally small value of (q) has been scaled up significantly. 649 

This is to represent a one-third likelihood (~ 30%) of those who encounter the innovator (p) 650 

agents, receiving the flood warning by communication and adopting directly from them. 651 

Whilst this is a manipulation of the Bass Model function, it remains consistent with the Bass 652 

Model theory, stipulating that human adoption of a process or product is more likely to 653 

happen based upon internal systematic influence, or imitation, rather than through external 654 

influence on the social system, or by innovation. Wherein the available choices may be 655 

reduced to ‘yes’, ‘no’ and ‘maybe’, probabilistically represented as roughly one-third each for 656 

a given scenario (Dechter & Pearl, 1986; Hart et al., 1968; Hornor, 1998; Mahajan et al., 1990; 657 

Massiani & Gohs, 2015; Sultan, Farley & Lehmann, 1996).  658 

 659 

The fundamental difference between (p) and (q) is generated from this external-internal 660 

distinction. Aligning this further with the sociological notions of Tarde, (p) is a representation 661 

of an external factor that requires a change in operation of the internal system dynamics (q) 662 

over time, thought of as an attunement, harmonisation or, in more traditional terms that may 663 

be thought of as an acceptance (Tarde, 1903). This means that for an innovative process (p) 664 

to become a naturalised component of the internal system dynamics (q), a significant amount 665 

of time may be required for innovation to lead to imitation when there is a risk involved ( 666 

Wheater, 2006). In this application, the Bass model gives an indication of this duration based 667 

on the relative probabilistic magnitudes of (p) and (q) for a population of 108,000 agents. The 668 

overall significance of this application is that it allows conclusions to be made as to how 669 

influential external policy protocols are for the population in relation to their internal ‘sense’ 670 

during flood event response (Massiani & Gohs, 2015; Sultan et al., 2003).  671 

 672 

The curves illustrated in figures 8a and b are the separate curves for the process of adoption 673 

based upon the optimised Bass Model values for the coefficient of innovation (p) at 50% and 674 

coefficient of imitation (q) at approximately 30% over 200,000 simulations for the Carlisle 675 

model. The three separate lines are illustrations of the three different iterations of the 676 

model’s standard differential equation as functions of continuous and discrete time (Bass, 677 

1969). Correspondence between the curves represents an agreement between the model’s 678 

functions and the data being plotted. Broadly, the curves show that the innovation of external 679 

directive, seen in figure 8a (p), is more effective at promoting an immediate process of 680 

evacuation as a lower number of the simulated population changing state over time would 681 

suggest that a large proportion of the original innovators choose to act in the early onset of 682 

the flood and evacuate the area without hesitation. The negative aspect of this function is 683 

that there will be less agents available to communicate the innovative process and influence 684 

the less prepared agents and so this process of innovation will take longer to diffuse 685 

throughout the agent population leading to less agents taking appropriate action over a 686 

longer duration of flooding, exposing themselves to potential danger.  687 

 688 



 

The curve for figure 8b, (q), is the internal function for evacuative measures, which is reliant 689 

on agent-agent interaction and suggests that the internal dynamics for the adoption of 690 

evacuative measures, that is to say the adoption of the same actions as the agency directive 691 

but not directly from the external directive (e-mail, text alerts etc.), according to 692 

communication and contact between agents, within the total flood affected population of 693 

Carlisle, is more influential over a shorter duration than the operation of (p). The variance 694 

between the three lines would suggest that there is some disagreement between the baseline 695 

functions of the Bass Model differential equation and those for discrete and continuous time 696 

functions for (q) and it is believed that this is likely related to the unusually high value 697 

attributed to the 30% likelihood of agents agreeing to imitate the innovative agents and 698 

become imitators, as well as the general stochasticity related to the reliance on ‘proximal 699 

contact’ for communication between agents, which is likely but not guaranteed in any 700 

situation; particularly in one as potentially frenetic as that involving a flood. 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 



 

 710 
Figures 8 a & b: Example Bass diffusion curves for p or innovation (top), and q, or imitation (bottom), at Carlisle 711 
during the 2005 flood. Shown is the type of knowledge and subsequent action taken based upon choices made 712 
by agents acting within the HABM. 713 

 714 

This bridge between sociological and theoretical concepts of process diffusion, or between 715 

internal and external components, provides insight into the relationship existent between 716 

policy and the responsive behaviour. Furthermore, the Bass Model’s use in the analysis of 717 

flood response dynamics is a broadly useful one, providing quantitative evidence of 718 
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behaviour, in the form of diffusion curves (figures 8a & b) and, for the dynamics of during-719 

event agent communication, thus implementing Tarde’s sociological laws into the modelling 720 

process. In addition, it represents both the ‘innovative’ i.e. individual response to policy 721 

direction, and the ‘imitative’ processes related to this direction, which certainly have 722 

influence on the micro, and potentially macro, scale human responses to flood events 723 

(Bernardini, 2017, Guyot & Honiden, 2006).  724 

 725 

As the flood depths in the Carlisle dataset were relatively shallow beyond the river channel 726 

during the early time-steps, very few agents were presented with a potentially fatal scenario 727 

that they could not escape from, registering them as a ‘potential casualty’ instead of a fatality. 728 

Broadly, a fatal scenario in this instance was determined by total cell inundation surrounding 729 

an agent and preventing them from leaving. Whilst there are examples of models utilising 730 

depth and velocity as determinants for a fatal scenario (Chen & Zhan, 2008; Chu, 2015; 731 

Dawson et al., 2011) these were not functions implemented in this preliminary model but 732 

were implemented in the later iterations of the HABM. Whilst the HABM should not be 733 

regarded as a full predictive tool, it does enable the visualisation of individual and group 734 

interactions, which might lead to potential casualty over repeated simulations. This is a 735 

valuable insight given that it is often difficult to identify comparable levels of detail from 736 

historical examples and their related data for micro-scale factors that are influential in event 737 

outcome.Illustrated in appendices: figure 9, once overall ‘preparedness’ of the agent 738 

population of Carlisle exceeds 30%, either through increased social interaction or directly 739 

from policy instruction, the likelihood of ‘casualty’ resulting from the flood scenario actually 740 

increases. This was an unexpected outcome and might, at first, seem counter-intuitive but is 741 

thought to be attributable to Carlisle’s urban ‘fabric’ (topography and morphology). When 742 

agents select to respond to the flood collectively and all at the same time, congestion of exit 743 

routes leads to an overall reduction in of movement away from flood inundated areas, so 744 

increasing agent exposure to the hazard (Wei et al., 2003; Werrity et al., 2007). This possibility 745 

is a valuable new insight produced by the HABM. Figure 9 illustrates the range of results from 746 

the 200,000 simulations of the 2005 Carlisle flood. Across these simulations, the percentage 747 

of the population pre-warned of the flood event was varied between 10 and 100 %. The 748 

current DEFRA estimation for Carlisle is that 50% of the population (~ 54,000 people) are 749 

classed as ‘prepared’ for a flood (termed ‘population warned’ or ‘pre-prepared’ in the HABM 750 

simulations). The population warned within the HABM will initiate evacuative behaviours, 751 

according to policy instruction, within the first hours (~ 1-3 timesteps) of the flood inundation 752 

taking place and are able to communicate this action to surrounding agents from the outset 753 

of the simulation, largely by-passing the time required for the autonomous decision-making 754 

process during the event and engaging directly with the apparent agent preference for 755 

imitative behaviour.  756 

 757 

To assume that a higher percentage of pre-prepared agents would lead to an overall reduction 758 

in potential casualties would be a logical assumption to make (Axelrod, 1970; Chen & Zhan, 759 

2008; Dawson et al., 2011; The Environment Agency, 2016). As highlighted by figures 9 and 760 

11, overall potential casualties for the simulated population of Carlisle shows an increasing 761 

trend for higher percentages of pre-warned agents, particularly above 80% preparedness. As 762 



 

already mentioned, this reflects the way in which Carlisle has been constructed around the 763 

confluence of the river(s) Eden, Petterill and Caldew. It highlights the deficiencies of this urban 764 

structure when a large inundation event forces significant numbers of agents to evacuate 765 

through a limited number of escape routes (figure 10), (Gilligan et al., 2015; Sanders & 766 

Sanders, 2004). According to the HABM results, Carlisle’s agent population has a distinct 767 

‘preference’ for evacuation to the south-west of the city, along the arterial A595. This 768 

preference was established through visual assessment of the simulations and was likely 769 

determined by the number of sub-routes that had access to the A595 and that were not cut-770 

off by flood waters. Indeed, the most densely populated areas of Carlisle are divided into four 771 

distinct areas by the three rivers shown in figure 1 and so this preferred escape route is only 772 

immediately available to those who are either pre-prepared, reside within the immediate 773 

vicinity of the A595, or who live or work to the west of the Eden and Caldew. As the flood 774 

progresses beyond the first 5-6 hours of propagation, the number of escape routes diminishes 775 

yet the number of agents prepared to evacuate has increased significantly. This creates a 776 

backlog in the system whereby more agents choose to stay in their immediate vicinity or to 777 

evacuate at the same time as everyone else, exacerbating the system congestion and 778 

increasing agent exposure to the flood inundation. Whilst agent choices do vary from 779 

simulation to simulation according the choices of their routine and the type of agents they 780 

make contact with, this pattern of evacuation occurs across the whole set of simulations, and 781 

so could be taken as an indicator of likely choices made by the population of Carlisle if a flood 782 

happened today. 783 

 784 
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 801 

 802 

Figure 10: An aerial image of Carlisle illustrating the preferential direction for escape to the south west along 803 
the A595. Further illustrated are the most prominent chokepoints (red crosses) for reduced evacuative flow of 804 
people between 80 and 100% preparedness. These points were identified from the HABM as the nodes in the 805 
street network overlay which have the most consistently high densities of agents throughout the range of 806 
simulations. (Contains OS data © Crown copyright and database right (2019))   807 



 

As is illustrated in figure 11, with less than 30% preparedness, agents within the HABM  show 808 

a preference for evacuation away from Carlisle during the earlier stages of the flood onset 809 

and so the social response to the flood is slow when there are fewer people in Carlisle to 810 

disseminate the message of evacuation. This finding further reinforces the results presented 811 

in the diffusion model (figures 8 a & b). Without a threshold number of the population being 812 

aware of the impending flood there is less likelihood of contact with unaware agents. This 813 

means that the response dynamics are more reliant on the innovative procedures of policy 814 

uptake and arbitrary choice, both of which are shown to be less likely to produce a successful 815 

evacuation outcome. The transition from micro to macro level response, from individual 816 

agent interaction up to a large group response to changes in the environment, is realistically 817 

a much more complex process than that illustrated in the HABM model. Thus, as a starting 818 

point for testing hypotheses related to transitory-scale flood hazard response, it is a useful 819 

tool for exploring the related and inherent complexity of the socio-environmental interface 820 

present during a flood event (Wilensky & Rand, 2015; Wisner et al., 1994; Wong & Luo, 2005). 821 
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 838 

Figure 11: A representation of the key results shown in Figure 9 together with concepts that can be associated 839 
with them. It is expected that these percentages will vary with model parameterisation and changes in the area 840 
modelled. 841 
 842 

5. Discussion 843 

 844 

From further interpretation of figures 8 a & b, 9, 10 and 11 it is reasonable to infer that the 845 

agents within the HABM, representing the local population of Carlisle, demonstrate a further 846 

preference for basing their response to a flood event on interaction with their surrounding 847 

neighbours, a social response, rather than acting directly from policy instruction.  The 2005 848 

event in Carlisle significantly overtopped existing defences, meaning that local and possibly 849 

larger scale management actions would have been of little consequence to the event 850 

dynamics and so it is here where the social response becomes influential in the risk and 851 
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resilience dynamics of the event (De Groot and Schuitema, 2012; Kinzig  et al., 2013 ). With 852 

respect to these dynamics of response, the rate of innovation (Figure 8a) impacts less of the 853 

Carlisle population over a greater duration compared the rate of imitation (Figure 8b). It is 854 

believed that this could be because there is a higher number of the influential, aware or pre-855 

prepared, agents leaving the vicinity of the flood prior to, or in the early timesteps of, flood 856 

onset and so the message of adoption from these agents becomes less likely to diffuse 857 

through the rest of the population (seen in figures 5 to 7). Conversely, when the remaining 858 

proportion of the population begin to experience the effects of the flood and a greater 859 

number of this population’s daily routine becomes disrupted, a greater number of this 860 

population will transition to the choice scenario (figure 4) and begin checking with those 861 

agents around them about what an appropriate response will be. This proliferates the 862 

imitative process of evacuation and so would explain why the rate of imitation is more 863 

influential over a shorter period, particularly when the compact social network of Carlisle, 864 

facilitated by a relatively constrained urban topology and morphology; is considered. 865 

 866 

A likely explanation of the slightly better correspondence between the curves of Fig. 8a 867 

compared to Fig. 8b is that they represent a direct instruction at the outset of the simulation 868 

and so there is less time for choice to be considered, with agents taking direct action as soon 869 

as possible. The issue with this is that the agents carrying the innovative knowledge will 870 

encounter less agents as the event unfolds over time, having taken evacuative action from 871 

the outset and left the area where the rest of the agents may not have encountered the flood 872 

inundation yet and are therefore continuing with their daily routine. Consequently, when the 873 

function of (q) is considered, a more effective and efficient process for diffusing the 874 

evacuative information amongst the modelled population of agents is seen. To understand 875 

why this is the case one must consider the dynamics at play in a broad sense, (q) is a descriptor 876 

for internal influence and, within the HABM, is reliant on agent-agent interaction whilst (p) is 877 

the innovative directive from a distal governmental agency which is reliant on engagement 878 

from the population and so to simplify this process as much as possible for these simulations, 879 

this directive was designated as an instruction to ‘take evacuative measures immediately’. 880 

Worthy of note here is that, for the applied parameters, the Bass Model is considered a 881 

pessimistic forecasting tool with more optimistic alternatives, which have potential for 882 

application in similar scenarios, being based on the shifted Gompertz and Weibull 883 

distributions, both of which have superior forecasting and theory testing capabilities but do 884 

not offer such a balance between normative and non-normative interpretation, necessary for 885 

this format of analyses, as is the case with the use of the Bass Model (Jakkola, 1996). 886 

 887 

Within the HABM specifically, the format for agent distribution and seeding is more 888 

generalised, and the framework of the daily routine is more direct, than in comparable 889 

models. This is, in some ways, a concession in relative precision, justified by the sustainable 890 

operation of the model within the NetLogo format (Rasmussen et al., 1994; Wilensky & Rand, 891 

2015; Wong & Luo, 2005). Furthermore, with the primary application of this model being 892 

concentrated on the development of understanding regarding the complex nature of human 893 

interaction with the urban and natural environments, under extraordinary or unusual 894 

circumstance, the production of interpretable metrics using a new, interdisciplinary tool is 895 



 

considered to be a significant first step in enhancing understanding in this area. The general 896 

form of complexity explored in this paper has certainly been subject to greater scholarly 897 

interest in recent times and this has been evident through the proliferation of publications on 898 

the subject and related phenomena, particularly through the last decade (Liu et al., 2015). As 899 

a result of this, complexity science has increasingly undergone a process of extension into 900 

quite different scientific fields (Alexander, 1980; Axelrod, 1970; Wilesnky & Rand, 2015). This 901 

process, whilst a necessary element of scientific progress, has in some way acted to separate 902 

theory from application and has led to a diminished emphasis on cross-disciplinary 903 

applicability, leaving potentially useful scientific tools isolated or limited by the technological 904 

capability of the time. This has furthered the highly fragmented development of agent-based 905 

models and modelling frameworks (Axelrod, 1970; Müller et al., 2013; Namatame, 2016). 906 

These largely fall into one of two polar groups: those which over-emphasise a very specific 907 

use through a reductive process of refinement to meet validative expectations, or those which 908 

place themselves at the extremity of validation because of the physically unimaginable 909 

complexity that is being modelled (Ormerod & Rosewell, 2009). It is here, despite any 910 

shotcomings, where the value of the HABM is found; at the point of bifurcation between these 911 

groups  (Assaf & Hartford, 2002; Eberlen & Scholz,2017; Guo et al., 2008; Liu et al., 2015; 912 

Morss et al., 2016; Nunes Correia et al., 1998; Waldorp et al., 1993; Wei et al., 2003; Werrity 913 

et al., 2007).  914 

 915 

The provision of a probabilistic framework (Figure 4) for the ‘pseudo-random’, this being a 916 

term which describes the large array of numbers underlying the agent’s movements (i.e. 917 

leave, stay, etc.),  within the model environment (which are effectively limitless but are also 918 

bounded by the fractal (self-replicating) ‘stochasticity’ of the model layer implemented within 919 

NetLogo), has great importance for the general and trans-disciplinary application of the 920 

methods in this paper. This is particularly the case in the absence of empirical certainty for 921 

how the real population of Carlisle might individually act on the day. But the framework 922 

provides some necessary, general, parameters for human response in the event of a flood 923 

and so greatly reduces the possibility of an entirely chaotic modelling scenario, whilst also 924 

maintaining a realistic representation of choices that represent systematic functions of the 925 

community, infrastructure, and environmental dimensions within the urban and flood hazard 926 

system. Finally, it allows reproducibility for the HABM where components of future hydro-927 

sociological models could simply be substituted for those of the HABM (Landstrom et al., 928 

2011, Sabatier, 1986; Wong et al., 2005). 929 

 930 

In reality, the social elements of the complexity explored here are as unpredictable as they 931 

are dynamic: this challenges forecasting behaviours in addition to their understanding. As 932 

evidenced in this paper, the social elements are represented by many different participants 933 

who adapt and influence one another, interacting in intricate ways that continually reshape 934 

their individual and collective responses. When performed collectively, these interactions 935 

form systems which are characterised by multi-scale interactions between the micro 936 

(individual) to the macro (demographic, economic and governmental). The collective 937 

coalescence of multi-scale interactions have been termed ‘Complex Adaptive Systems’ and 938 

they have a significant underpinning from research focused on their inter-disciplinary and 939 



 

methodological design so as to better understand the significant challenges presented by 940 

their complexity (Dugdale et al., 2009; Gilligan et al., 2015; Holland, 2014; Liu at al., 2015; 941 

Morss et al., 2016.) 942 

 943 

Ultimately, the design of, “holistic risk management strategies requires an accurate 944 

understanding of the level of risk across the various layers of society. One important 945 

remaining limitation in our understanding of flood risk is the way individuals perceive and 946 

respond to risk. Even if we manage to model population density and flood inundation with 947 

increasing accuracy, assumptions about peoples’ risk reducing behavior, willingness to 948 

relocate, and access to information play a key role in the actual level of risk” (Jongman, 2018, 949 

pg. 2). Individual perception is an extremely complex phenomena and representing this from 950 

event and systematic complexity is paramount for developing further understanding of the 951 

nature of the physical-social interactions discussed here, so that evacuations may be better 952 

organised and the greatest number of lives may be saved in the event of a complex event, like 953 

a flood (Berendracht et al., 2017). Consequently, the non-linear characteristics associated 954 

with complex adaptive systems, including influential systematic processes such as 955 

heterogeneity, phase transition and emergence, require that our methods, such as those 956 

illustrated in the HABM, also attempt to represent the general complexity of adaptive 957 

systems. Given that such systems exist as macro networks of partially connected micro 958 

structures (fundamentally via individuals interacting in different groups which adapt to 959 

changes in the surrounding environment), the methods must then also include microscale 960 

models which are able to simultaneously simulate cross-scale operations, interactions and 961 

responses amongst multiple participants (Assaf & Hartford, 2002; Dawson et al., 2011), to 962 

provide interested parties with access to more representative insights of what is and could 963 

be unfolding in reality. 964 

Finally, during the 2005 flood, as modelled by the HABM for this paper, three deaths occurred. 965 

During the 2015 flood event in Carlisle, the River Eden exceeded the 2005 flood level by 966 

600mm, yielding only one fatality but with a much greater economic impact (The Environment 967 

Agency, 2016). Even with the  generalised ‘potential fatality’ metric implemented into the 968 

HABM, set as such due the low number of actual fatalities which occurred during the 2005 969 

event, if the results of the model’s simulations are to be believed; then there is a much greater 970 

potential for a fatal impact within the flood inundation area than that which presented itself 971 

during the actual events of Carlisle in 2005 and 2015. Here, the true importance of the HABM 972 

and Bass Model results is that they offer a counter-intuitive scenario to be further 973 

deliberated, one which could prove significant for flood hazard management in Carlisle and 974 

risk management overall. 975 

 976 

 977 

6. Conclusion and future development 978 

 979 

This paper began by proposing two specific questions: 980 

 981 



 

1. During a flood, does site-specific urban topography and morphology, change the optimum 982 

evacuation warning strategy?   983 

 984 

2. Do people (agents) respond better to direct or indirect (word of mouth) evacuation 985 

warnings during a flood event?  986 

 987 

These questions were formulated to explore the UK governmental shift towards alternative, 988 

bottom-up, action for addressing flood vulnerability and risk, as especially affected by agent 989 

response and urban morphology. These objectives simplify what is a very complex scenario 990 

and so with respect to this complexity, a methodological framework for addressing these two 991 

objectives was formulated and demonstrated, producing results via a coupled hydrodynamic 992 

and agent-based model: the HABM. This model was used to explore the complexity of human 993 

responses and behaviours during a flood event with a view to better specifying the two basic 994 

elements of the flood hazard system, a physical flood interacting with a human urban system. 995 

From this investigation, a range of implications were uncovered by the model simulations of 996 

response and behaviour. Based upon observation of these implications, some practical 997 

recommendations can be made for flood warning delivery and strategy as follows: 998 

 999 

• Agents operating within a system of change show a preference for action via a socially 1000 

imitative process as opposed to one which operates from innovation. This would 1001 

suggest that bottom-up approaches towards warning and evacuation would benefit 1002 

from incorporating measures that harness this understanding of group processes. 1003 

• Owing to the influence of site topography on the outcomes of social response, and the 1004 

creation of potential congestion points within affected sites, a phased response to 1005 

flood events should be an actionable option within flood warning strategy and 1006 

delivery. 1007 

• During the process of issuing a flood event warning, the geography (topography and 1008 

morphology) of the affected site can significantly influence the success or failure of 1009 

the evacuative process and so due attention to this influence should be given during 1010 

planning. This reaction phase involving the response and movement of people does 1011 

not normally receive much attention and likely should. 1012 

• Whilst it might be a desirable goal to achieve a 100% preparedness within a flood-1013 

prone area, the results from the HABM simulations suggest that this may not be 1014 

necessary, or even desirable. Simulations support the idea that the 50% estimate of 1015 

the EA for Carlisle is the best value for efficient evacuation, owing to the social 1016 

dynamics and the topography of the site. The design of ‘optimal’ impacts for a ranging 1017 

of percentages of prepared people, and for sites with differing layout and population 1018 

dynamics, needs to be critically considered in future flood response strategies.   1019 

 1020 

There are significant questions that arise from these recommendations which require 1021 

further analysis. Enhanced development of the HABM and the related themes will look to 1022 

provide this further analysis in the form of the following: 1023 

 1024 



 

• The nature of the agent decision-making process in locations where interaction is 1025 

concentrated, e.g. is social response hastened where there is a higher population 1026 

density? 1027 

• The nature of agent response with respect to the physical attributes of the flood 1028 

event, e.g. attenuation of the flood hydrograph & variations in flood volume 1029 

influencing the process of evacuation. 1030 

• Different urban morphologies: will these give dramatically different results to those 1031 

produced for Carlisle?   1032 

 1033 

Whilst not a predictive tool, the implications of the results herein outlined, coupled with such 1034 

future developments of the HABM, are useful in providing greater scope for including and 1035 

quantifying relevant operative factors that are involved in flood vulnerability, risk and 1036 

resilience as related to urban systems. The HABM offers a dynamic method for simulating 1037 

important actions linked to these where the agents themselves cannot affect the flood 1038 

evolution, with the potential to enhance quantitative analyses in support of the decision-1039 

making process for flood hazard management. This paper demonstrates that such 1040 

quantification can involve not only flooding itself, but also potential human responses. These 1041 

may exacerbate the risk if they are not accounted for during planning, or they may be 1042 

diminished through improved response planning. Other hazard environments may similarly 1043 

be analysed using the approach here outlined, providing many points of further discussion 1044 

and consideration for stakeholders involved with risk assessment. The HABM can be a 1045 

welcome and useful analytical tool for supporting and expanding on these points whilst 1046 

moving forward.  1047 

 1048 

 1049 

Data availability: The population data was accrued and modified from the 2011 aggregate 1050 

NOMIS (ONS) database found at: https://www.nomisweb.co.uk/census/2011 1051 

This was cross-referenced with the supporting flow data found at: 1052 

https://wicid.ukdataservice.ac.uk/ 1053 

Building footprint data was taken from OSM, copyrighted to OpenStreetMap contributors 1054 

and available from: https://www.openstreetmap.org/ 1055 

The LISFLOOD dataset for Carlisle can be requested directly from Dr. Jeffrey Neal with 1056 

further details on the LISFLOOD-FP available at: 1057 

http://www.bristol.ac.uk/geography/research/hydrology/models/lisflood/ 1058 

Bass Model curves were informed by information found on The Bass’s Basement Research 1059 

Institute webpage, © 2008, 2009, 2010 Bass’s Basement Research Institute, at: 1060 

http://www.bassbasement.org/BassModel/Default.aspx 1061 

The prototype Netlogo code for this model is currently still being used and modified as an 1062 

active component of Thomas O’Shea’s PhD thesis but it will be made available via open-1063 

source repository on the NetLogo Modelling Commons page at:  1064 

http://modelingcommons.org/account/login under the title of this paper. 1065 
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Appendices  

Figure 1: The total area of interest at Carlisle. An approximate area of 10km2 was simulated in the HABM modelling runs. (QGIS, 2020.) 



 

 
Figure 5: An overview of the preliminary HABM. Shown here as an example are agents engaging in the daily routine (green) prior to the initiation of the LISFLOOD-FP flood 

inundation. These figures represent only a small proportion (<1000 agents) of the full agent populations (~ 108,000 agents) simulated in the final model run.



 

 

 

Figure 6: Agents marked in red have become aware of the incoming flood and are taking evacuative action. Changes in agent colour on the GUI (Graphic User Interface) 

indicate that members of the sample population are transitioning to a ‘potential casualty’ as the flood encroaches their vicinity but also that the likelihood of casualty 

occurring will diminish over time as the message of ‘preparedness’ diffuses through the population. 



 

 
Figure 7: Further to preparedness and potential casualty, an indication of areas in which agents are likely to stay, areas from which they are most likely to move as well as 

the areas through which they are most likely to pass may be observed within the HABM GUI. Explicated further in figure 10.  
 

 



 

Figure 9: Box plot illustrating the range of values, sampled from 1000 agents (the most computationally stable sample size for batch runs on the available architecture) 

within the full agent population (108, 000), for the total number of potential casualties vs. % of population pre-warned for Carlisle over 200,000 simulations. 


