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Abstract. Extreme weather events, such as droughts, have been increasingly affecting the agricultural sector causing several 

socio-economic consequences. The growing economy requires improved assessments of drought-related impacts in 

agriculture, particularly under a climate that is getting drier and warmer. This work proposes a probabilistic model which 

intends to contribute to the agricultural drought risk management in rainfed cropping systems. Our methodology is based on a 10 

bivariate copula-approach using Elliptical and Archimedean copulas, which application is quite recent in agrometeorological 

studies. In this work we use copulas to model joint probability distributions describing the amount of dependence between 

drought conditions and crop yield anomalies. Afterwards, we use the established copula models to simulate pairs of yield 

anomalies and drought hazard, preserving their dependence structure, to further estimate the probability of crop-loss. In the 

first step, we analyse the probability of crop-loss without distinguishing the class of drought, and in a second step we compare 15 

the probability of crop-loss under drought and non-drought conditions. The results indicate that, in general, Archimedean 

copulas provide the best statistical fits of the joint probability distributions, suggesting a dependence among extreme values of 

rainfed cereal yield anomalies and drought indicators. Moreover, the estimated conditional probabilities suggest that when 

drought conditions are below the moderate thresholds, the risk of crop-loss increases between 32.53% (cluster 1) and 32.6% 

(cluster 2) in the case of wheat, and between 31.63% (cluster 2) and 55.55% (cluster 2) in the case of barley.  From an 20 

operational point of view, the results aim to contribute to the decision-making process in agricultural practices. 

1 Introduction 

Agriculture is one of the activities most directly influenced by climate variability (Lesk et al., 2016; IPCC, 2012) and 

particularly by extreme weather events (IPCC 2012). The latter are a major source of risk in agricultural systems, often entailing 

substantial crop yield losses (Bokusheva et al., 2016; Kogan et al., 2015; Saadi et al., 2015). Despite the constrains associated 25 

with the application of certain governmental policies in the agricultural systems, the success of mitigating the consequences 

of climate extremes is largely dependent on the development of appropriate risk management strategies (Paredes et al., 2014; 

Quiroga et al., 2011). For this purpose, probabilistic information of the agricultural risk associated to certain meteorological 

conditions is currently a major requirement (Madadgar et al., 2017; Jayanthi et al., 2014; Iglesias and Quiroga, 2007), 
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particularly under the scope of the projected climate changes (Hernández-Barrera and Rodríguez-Puebla, 2017; Ferrise et al., 

2011).  

From both researcher’s and stakeholder’s perspective, the management of agricultural drought risk has been a challenging task 

for decades, mainly in regions dominated by high precipitation variability and recurrent dry and warm episodes, such as the 

Mediterranean region and in particular the Iberian Peninsula (IP) (Vicente-Serrano et al., 2014; Sousa et al., 2011; Martin-5 

Vide and Lopez-Bustins, 2006). Recent works have found significant negative trends of drought indexes in the IP based on 

long-term time-series including the entire 20th century, particularly in southern regions (Páscoa et al., 2017a; Sousa et al., 

2011), and the expected declining of crop yields due to future warming conditions is being pointed out (Hernández-Barrera 

and Rodríguez-Puebla, 2017; Ferrise et al., 2011).  

The assessment of yield variability based on crop and meteorological information is crucial for a more stable farmer income 10 

and management (Reidsma et al., 2010). The recently developed drought index SPEI (Standardized Precipitation 

Evapotranspiration Index (Vicente-Serrano et al., 2010)) is found to be particularly suitable for agricultural drought 

applications in Mediterranean regions (Zampieri et al., 2017) and shows significant correlations with crop yields in the IP 

(Ribeiro et al., 2018; Páscoa et al., 2017b). On the other hand, crop models describing the biological processes are one of the 

existing tools used to assess crop productivity, e.g. CERES (Crop Environment REsource Synthesis) models (Capa-Morocho 15 

et al., 2016; Hlavinka et al., 2010) and AquaCrop (Paredes et al., 2016; Vergni et al., 2015). These crop models are important 

tools in agrometeorological studies being able to compute irrigation requirements and yield simulations, and have been 

particularly useful for assessing the impacts of climate change on agricultural productions (Leng and Hall, 2019; Hlavinka et 

al., 2010). However, such models are limited in their ability to quantify the impact of climate variability on crop yields over 

larger scales (Estes et al., 2013)  and the detailed representation of crop’s biophysical interactions requires demanding 20 

parameterization settings and input data (Giménez et al., 2016; Paredes et al., 2016, 2014). Thus, empirical modelling 

constitutes an alternative to represent the large-scale impacts of drought conditions in the agricultural sector (Bokusheva et al., 

2016; Kogan et al., 2015; Matsumura et al., 2015; Vicente-Serrano et al., 2006) requiring lower computation costs than 

mechanistic modelling (Estes et al., 2013; Ferrise et al., 2011). 

In addition, the use of satellite-based data is increasing for agricultural purposes (Kogan et al., 2015; Rojas et al., 2011), and 25 

considerable correlations between remote-sensing of vegetation and crop yield are found in the IP (Ribeiro et al., 2018; 

Gouveia and Trigo, 2008; Vicente-Serrano et al., 2006). Some studies have considered the use of different remote sensing 

drought indicators to account for different crop sensitivities to drought, such as to moisture and thermal conditions over the 

vegetative cycle (Ribeiro et al., 2018; Bokusheva et al., 2016; Zarei et al., 2013; Kogan, 2001). Moreover, the establishment 

of models for estimating crop yield under drought influence, using the combination of different drought indicators and different 30 

time-scales of drought occurrence, have shown an added value in the performance of the crop yield simulations over the IP 

(Ribeiro et al., 2018; Hernandez-Barrera et al., 2017; Vicente-Serrano et al., 2006).  

The statistical modelling of crop yield variability under drought conditions has been previously done to estimate drought-

related crop-losses (Ribeiro et al., 2018; Zampieri et al., 2017; Kogan et al., 2015). Some authors have estimated crop yield 
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probability distribution functions to find crop-specific risk levels and have applied Monte Carlo methods to generate large 

sample sizes of yield distributions over Mediterranean areas (Resco et al., 2010; Iglesias and Quiroga, 2007). At the country-

level in Europe, Naumann et al. (2015) have developed drought damage functions using a single power-law dependence 

between drought severity and the associated damage. At a regional level in the IP, regression techniques (Ribeiro et al., 2018; 

Hernandez-Barrera et al., 2017; Hernández-Barrera and Rodríguez-Puebla, 2017)  and artificial neural network (ANN) models 5 

(Ribeiro et al., 2018) have been used to model the response of rainfed winter cereal yields to drought conditions. A major 

conclusion in Ribeiro et al. (2018) was that there are stronger relationships between remote sensing indices and cereal yield in 

the northern sector of the IP, and between SPEI and cereal yield in the southern sector of the IP. This character of the response 

of crop yields to climate conditions highlights how it varies according to the location, type of crop, moment of the vegetative 

cycle, drought indicator and temporal scale. 10 

More recently, copula-based models have been applied for agricultural purposes, to model the dependence structures between 

crop yields and environmental conditions using joint distributions (Ribeiro et al., 2019; Madadgar et al., 2017; Bokusheva et 

al., 2016; Li et al., 2015). The concept of copulas is quite popular in financial risk modelling, and recently is becoming a 

valuable tool  to model the risks associated to climate hazards, such as droughts (Ganguli and Reddy, 2012; Mirabbasi et al., 

2012; Serinaldi et al., 2009). Based on the Sklar’s theorem (Sklar, 1959) a copula approach “joins” the probability of drought 15 

occurrence and the probability of crop-losses caused by the drought event. A detailed description about the use of copulas is 

provided by Nelsen (2013).  

A major advantage of copula methods is the generation of joint distributions independently of their marginal distribution 

functions (Maity, 2018; Nelsen, 2013). Copula functions show a great flexibility in modelling the dependence between 

individual variables (such as crop yield and drought indicators) with complex relationships without making heavy assumptions. 20 

In addition, copula functions are adequate for modelling rare events in multivariate distributions and to generate large samples, 

allowing to find the probability that individual variables will not exceed a certain extreme (tailed) value (Madadgar et al., 

2017). A recent study by Madadgar et al. (2017) have produced probability distributions of rainfed crop yields in Australia 

under drought impacts based on copula-based techniques, using the Standardized Precipitation Index (SPI) and the 

Standardized Soil-moisture Index (SSI). For crop insurance purposes at the farm-level in Kazakhstan, Bokusheva et al. (2015) 25 

modelled the joint distributions of wheat yields and two satellite-based drought indices (Vegetation Condition Index (VCI) 

and Temperature Condition Index (TCI)). At the global scale, Leng & Hall (2019) have also used copulas to assess the 

likelihood of yield loss in response to droughts based on SPI for the a historical period (1961–2016) and future period (2071–

2100) under the RCP8.5 emission scenario to investigate future changes in yield loss risk. The authors found that global wheat 

is more vulnerable to droughts than maize, rice and soybeans, and that global warming is expected to amplify drought-driven 30 

yield loss risk. 

In this study, a copula-based approach is adopted to model the joint probability density function of crop yield and the drought 

conditions for probabilistic yield assessment, based on the data and empirical analysis previously considered in Ribeiro et al. 

(2018). This method allows to estimate the dependence structures between the probability distributions of crop yield and 
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drought indicators using copula functions. The novelty and interest of this approach relates to the fact that this methodology 

will allow to estimate the likelihood of crop-loss and compare the expected losses under drought conditions and non-drought 

conditions in the IP. This key question poses as a current demand with most interest to stakeholders, such as farmers and 

insurance companies, to mitigate agricultural drought risk over the major agricultural areas in the IP.  

2 Data and methods 5 

2.1 Study area and data 

The exposure analysis performed by Ribeiro et al. (2018) allowed the identification of two clusters of provinces in the IP 

dominated by rainfed agricultural practices (Fig. 1), located approximately in the regions of Castilla-Léon (cluster 1 - northern 

region) and Castilla-La Mancha (cluster 2 – southern region). Given the suitability of using these two clusters for an agricultural 

drought analysis at the regional level, here we have considered the same area selection criteria: provinces with more than 50% 10 

of the territory occupied by agricultural areas and more than 50% of rainfed crops according to the CORINE Land Cover 

(2012) (for more details please see Ribeiro et al. (2018)). Considering previous requirements and for sequential purposes, the 

crop and drought hazard data used in Ribeiro et al. (2018) have been incorporated in the present study to analyse the 

distributions of probabilities. Spatial averages of annual yield anomalies (t/ha) of barley and wheat were computed over the 

two clusters during the period of 1986-2012, based on production (tons, t) and area (ha) information obtained from the 15 

Portuguese National Statistics Institute and the Spanish Agriculture, Food and Environment Ministry.  

Drought conditions were investigated using the hydro-meteorological drought indicator SPEI and three satellite-based indices 

obtained from NOAA-AVHRR since 1981, namely the VCI (Kogan 1990), the TCI (Kogan 1995) and the Vegetation Health 

Index (VHI) (Kogan 1995). The monthly drought index SPEI gridded values, with spatial resolution of 0.5°, were computed 

based on precipitation and temperature values from the Climate Research Unit TS3.21 database (Harris et al., 2014), using a 20 

variety of time scales (1 to 12 months). The weekly global maps of VCI, TCI, and VHI were retrieved at 4km spatial resolution 

from NOAA’s ftp server (ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/VHP_4km/geo_TIFF/). While SPEI 

computation uses climatic water balance anomalies incorporating the role played by the evaporative demand on the occurrence 

of dry events (Vicente-Serrano et al., 2010), the remote sensing indices characterize the moisture, through the VCI, the 

temperature induced stress through the TCI and health of vegetation, through the VHI.  25 

Considering the vegetative cycle of wheat and barley, and in accordance with the results obtained by Ribeiro et al. (2018), the 

data of VCI, TCI, and VHI used in this work covered the period from week 35 (early September) to week 25 (late June), and 

data of SPEI covered January to June. Spatial averages of all these indicators were computed for each provincial cluster and 

used for further modelling of the joint probability between the drought hazard and cereal yield anomalies over the period 1986-

2012. Stepwise regression models (95% confidence level) were established to select the time scales and months of SPEI, 30 

together with the weeks of VCI, TCI, and VHI better related with wheat and barley annual yield (Ribeiro et al. 2018). The 

selection of the most relevant drought indicator for each cereal and cluster was performed based on the largest absolute value 
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of the standardized regression coefficients from the models developed in Ribeiro et al. (2018), in order to constitute pairs of 

cereal yield anomalies and drought indicators. Afterwards, for each cereal time series, the joint probability with drought 

conditions was estimated using one drought indicator.  

2.2 Copula-based method 

2.2.1 The concept of copula 5 

Copula functions are powerful tools used to estimate the joint distribution between variables (Madadgar et al., 2017; 

Bokusheva et al., 2016; Zhang et al., 2011). The concept of copula was firstly introduced by Sklar (1959) to decompose a joint 

cumulative distribution function 𝐹𝑋𝑌(𝑥, 𝑦) into two parts (Eq. 1): the marginal distribution functions 𝐹𝑋(𝑥) = 𝑢 and 𝐹𝑌(𝑦) =

𝑣, and the copula C describing the dependence part of the joint distribution, 

𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶(𝑢 , 𝑣),           (1) 10 

where the margins 𝑢  and 𝑣  are uniformly distributed on the interval [0,1] (Nelsen, 2013). This study adopts a bivariate 

modelling approach such that, for each pair (𝑋, 𝑌) of cereal and drought indicator over each cluster we considered bivariate 

copula functions to estimate the joint probability distributions. Trivariate copulas have been proposed in the analysis of 

hydrological extremes (Afshar et al., 2016; Bezak and Brilly, 2014; Saghafian and Mehdikhani, 2014), but the development 

of higher dimensional copulas exhibits very complex structures and further studies and evaluations are required. In comparison 15 

to high-dimensional copulas, the two-dimensional copulas involve much less computational cost and allows for more easily 

interpretable and illustratable relationships between the interval margins. For this reason, in the present study we restricted the 

analysis to the bivariate case using two-dimensional copulas, simplifying the results interpretation. 

There is a range of copula families described in the literature which are able to estimate the dependence between the univariate 

variables (Nelsen, 2013). The most commonly used copula families focus on the Archimedean and Elliptical classes (Maity, 20 

2018). There are three Archimedean copulas particular popular given their simple functional form and their different patterns 

of dependence captures – Clayton, Gumbel and Frank – while there are two most popular Elliptical copulas derived from 

Elliptical distributions – Gaussian and t-copula. These five copula functions are well-documented and have been employed in 

recent agrometeorological studies with a number of annual observations similar to our study (Madadgar et al., 2017; 

Zscheischler et al., 2017; Bokusheva et al., 2016). Table 1 summarizes the mathematical expressions of the referred copula 25 

functions considered in the present study.  

An important concept for studying extreme events is the tail dependence, whose importance is more critical than the overall 

dependence structure for risk analysis (Bokusheva, 2014). The joint tail behaviour describes the amount of dependence in the 

corners of upper-right and lower-left quadrants (i.e. joint extreme events), and its representation depends on the type of copula 

(Nelsen, 2013). The Frank, Gaussian and t-copula describe a joint symmetric structure with a symmetric tail dependence, i.e. 30 

the same degree of dependence in both pairs of extremes. The Clayton/Gumbel copulas have an asymmetric tail dependence 
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with greater dependence in the lower/upper tail suggesting greater probabilities of joint lower/upper extremes (i.e., 

lower/higher values of yield anomalies given lower/higher values of drought indicators). 

2.2.2 Fitting of the copula functions 

The estimation of the copula parameters can be performed using different methods based on maximum likelihood, such as 

Maximum Likelihood Estimate (MLE), Inference Functions for Margins (IFM) or Canonical Maximum Likelihood (CML) 5 

(Maity, 2018). With MLE, both individual margins and copula parameters are estimated together, whereas with IFM the 

marginal parameters are first estimated individually. In this study the statistical inference of the copula functions is performed 

with the CML method, which stands for a nonparametric estimation of the margins. In this way, the individual variables were 

first transformed to the unit scale (pseudo-observations) using the kernel density estimator of the Cumulated Distribution 

Function (CDF), without making assumptions about the marginal distributions (Fig. 2). The drawback of the shorter sample 10 

size is surpassed by the nonparametric estimation of the margins, which avoids heavy assumptions about their distributions, 

even when the available sample is rather small (Fahr, 2017; Corder and Foreman, 2011). The fitting of the bivariate copula 

functions was then applied to the pseudo-observations and the dependence parameters were estimated by means of maximum 

likelihood (Fig. 2). Figure 2 summarizes the main steps of the copula-based approach adopted in the present study. For a 

detailed description on fitting methods please see Maity (2018). 15 

The Akaike’s Information Criteria (AIC) is frequently employed as a model selection tool in copula modelling (Li et al., 2015; 

Mirabbasi et al., 2012). Therefore, the selection of the best copula function for each pair of cereal and drought indicator was 

made based on the evaluation of AIC values calculated as AIC = –2 × (sum of log-likelihood) + 2 × (number of parameters) 

(Fig. 2). The copula function minimizing the AIC value was selected for each case. For verification purposes, the leave-one-

out cross-validated log-likelihood was also computed during the estimation of the parameters. This step was performed to 20 

confirm the reliability of the selected copula models and we found that, in general, the same functions are selected with both 

the AIC and the cross-validated log-likelihood criteria. For this reason, and given the wide use of the AIC, only the results for 

model selection based on the AIC will be presented.  

2.2.3 Probability of Non-Exceedance and Conditional Probability of Non-Exceedance 

After the estimation of the copula parameters, the established models are used to simulate 1000 pairs of uniformly distributed 25 

data (Fig 2). In the present study, let 𝐹𝑋𝑠𝑖𝑚
(𝑥) = 𝑢𝑠𝑖𝑚 denote the simulated CDF of yield x and 𝐹𝑌𝑠𝑖𝑚

(𝑦) = 𝑣𝑠𝑖𝑚 the simulated 

CDF of drought indicator y. The data generation using the joint relationship preserves the dependence structure between the 

margins. The simulated data in the range [0, 1] is transformed back to the original scale using the kernel estimations of the 

inverse CDF, originating 𝑋𝑠𝑖𝑚 and 𝑌𝑠𝑖𝑚, respectively. 

First the copula simulations were used to estimate the risk of crop-loss in terms of the probability of not exceeding a threshold 30 

value of yield, i.e., Probability of Non-Exceedance (PNE) (Fig. 2). In this study we considered the threshold of minus one 
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standard deviation (−𝑋𝑠𝑡𝑑) of each cereal yield anomalies time-series, as we are focused in real losses of yield and not just 

values below the mean (Eq. 2). 

𝑃𝑁𝐸−𝑋𝑠𝑡𝑑
= 𝑢𝑠𝑖𝑚(−𝑋𝑠𝑡𝑑) =  𝑃𝑟(𝑋𝑠𝑖𝑚 ≤ −𝑋𝑠𝑡𝑑)        (2) 

The PNE gives information about how likely the occurrence of a yield value below a certain threshold is. In other words, it 

gives the expected chance in percentage that the negative yield anomaly will not exceed (i.e. is not higher than) minus one 5 

standard deviation (-1 std).  

Afterwards we have partitioned the simulated data points of 𝑋𝑠𝑖𝑚 into those corresponding to drought (e.g. SPEI <= -0.84 

(Agnew, 2000) and/or VHI <= 40 (Kogan, 2001)) and non-drought conditions (e.g. SPEI > -0.84  and/or VHI > 40) (Fig. 2). 

The respective CDFs were used to estimate the risk of crop-loss in terms of the Conditional Probability of Non-Exceedance 

(CPNE) given by Eq. 3 and 4, where 𝑌𝑡ℎ−𝑑𝑟 is the drought threshold, respectively -0.84 and 40 when the SPEI and VHI/TCI 10 

are used. 

𝐶𝑃𝑁𝐸−𝑋𝑠𝑡𝑑|𝑑𝑟𝑜𝑢𝑔ℎ𝑡 = 𝑃𝑟(𝑋𝑠𝑖𝑚 ≤ −𝑋𝑠𝑡𝑑|𝑌𝑠𝑖𝑚 ≤ 𝑌𝑡ℎ−𝑑𝑟  )       (3) 

𝐶𝑃𝑁𝐸−𝑋𝑠𝑡𝑑|𝑛𝑜𝑛_𝑑𝑟𝑜𝑢𝑔ℎ𝑡 = 𝑃𝑟(𝑋𝑠𝑖𝑚 ≤ −𝑋𝑠𝑡𝑑|𝑌𝑠𝑖𝑚 > 𝑌𝑡ℎ−𝑑𝑟)       (4) 

For the purpose of validation and estimation of confidence intervals, the theoretical values of the above CPNE were inferred 

from the copula functions using the Eq. 5 and Eq. 6 (deduced from the definition of conditional probability), 15 

𝐶𝑃𝑁𝐸−𝑋𝑠𝑡𝑑|𝑑𝑟𝑜𝑢𝑔ℎ𝑡 =
𝐶(𝑢−𝑠𝑡𝑑,𝑣𝑡ℎ−𝑑𝑟)

𝑣𝑡ℎ−𝑑𝑟
         (5) 

𝐶𝑃𝑁𝐸−𝑋𝑠𝑡𝑑|𝑛𝑜𝑛_𝑑𝑟𝑜𝑢𝑔ℎ𝑡 =
𝑢−𝑠𝑡𝑑−𝐶(𝑢−𝑠𝑡𝑑,𝑣𝑡ℎ−𝑑𝑟)

1−𝑣𝑡ℎ−𝑑𝑟
        (6) 

where 𝑢−𝑠𝑡𝑑 = 𝐹𝑋(−𝑋𝑠𝑡𝑑)  and 𝑣𝑡ℎ−𝑑𝑟 = 𝐹𝑌(𝑌𝑡ℎ−𝑑𝑟)  are the marginal probabilities of crop-loss and drought occurrence 

obtained from the kernel-based univariate CDFs. The lower and upper bound of the 95% confidence interval (ci) of the 

estimated copula dependence parameters were considered using the Eq. 5 and 6 in order to obtain the confidence interval of 20 

CPNE coming from the inaccuracy of the copula parameter and to address if the CPNE using simulations (Eq. 3 and Eq. 4) 

lies within the 95% confidence level. 

In sum, first we describe the joint probability of drought hazard and yield anomalies and simulate pairs of data preserving their 

dependence structure. After that, probability of crop-loss (PNE) and conditional probability of crop-loss (CPNE) are estimated, 

addressing whether the probability of crop-loss under drought conditions is higher than during non-drought conditions, and if 25 

distinguish drought severity is important. The probability distributions (based on a normal kernel function) of the generated 

yield anomalies are also analysed for graphical visualisation of the area corresponding to crop-loss. 
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3 Results  

3.1 Fitting copula models 

The estimates of the dependence between the yield anomalies and drought hazard were performed using the selected drought 

indicators resumed in Table 2. This selection of drought indicators highlights that the response of crop yields to climate 

conditions vary according to the location, type of crop, moment of the vegetative cycle and the temporal scale. While annual 5 

yield anomalies in cluster 1 are better characterized by short-term responses to the drought conditions based on the weekly 

values of TCI and VHI, the annual yield anomalies in cluster 2 are better characterized by the monthly response to the dry 

conditions based on the SPEI. In terms of predictability, the effects of temperature (TCI) and vegetation health (VHI) during 

late growth stages (weeks 23 and 22 correspond approximately to end of May and beginning of June, respectively for wheat 

and barley) are the most influential conditions in the northern cluster. On the other hand, the yields in cluster 2 are influenced 10 

by drought conditions described by SPEI much earlier, in the beginning of the intermediate growth stages (February and April 

with 5 and 1 month of time-scale, respectively for wheat and barley). In this way, the importance of including multiple drought 

response time scales is evidenced for predictability purposes and assessment of drought-related crop-losses.  

Figure 3 shows the non-parametric estimations of the CDF of the individual variables from Table 2, here used to transform the 

variables to the unit scale (pseudo-observations) for the copula modelling. A good agreement with the ECDF is suggested (Fig. 15 

3) and the crop-loss and drought thresholds used in this study ( −𝑋𝑠𝑡𝑑  and  𝑌𝑡ℎ−𝑑𝑟  respectively) are illustrated. A 

straightforward way of visualization of the association between the cereal yields and drought conditions was first carried out 

based on the scattering of the uniform pseudo-observations of the margins (Fig. 3 – bottom). Most of the transformed data 

points are concentrated along the diagonal line (Fig. 3 – bottom), mainly due to the correlations between the yield and selected 

drought indicators (Ribeiro et al., 2018). Most of the works based on copulas have estimates of the marginal distribution 20 

functions (Afshar et al., 2016; Bokusheva et al., 2016; Mirabbasi et al., 2012), whereas this procedure has no requirement for 

prior knowledge of the marginal distributions, entailing therefore less heavy assumptions. 

The estimates of the dependence between the yield anomalies and drought indicators were performed using the copula 

functions from Table 1 (Gaussian, t-copula, Clayton, Frank and Gumbel). Table 3 indicates each copula dependence parameter 

estimates (, df or ) and respective AIC values. Based on the values of AIC, a Gaussian copula, a Clayton copula and two 25 

Gumbel copulas were eligible to perform the best fits (Table 3). In general, the Archimedean copulas are better suited to 

estimate the joint distributions between crop yield and drought indicators in most of the cases (Table 3), with the exception of 

barley in cluster 1, which is better fitted by a Gaussian copula. Given that AIC penalizes the number of estimated parameters 

(Wilks, 2006), t-copulas are not expected to be chosen, since they have two parameters that control the tail dependence. 

The selected copula functions (Table 3) suggest that, in general, the relationship between yield and drought conditions is 30 

described by an asymmetric dependence in the tails of the joint distributions, except in the case of barley in cluster 1. This 

feature is illustrated in Fig. 4, showing the different shapes and contours of the selected copula densities. While wheat in cluster 

1 and 2 shows a stronger dependence in the upper tail of the joint distributions based on Gumbel copulas (suggesting higher 
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probability of observing a higher value of yield anomalies given a high value of the drought indicators), barley in cluster 2 

shows stronger dependence in the lower-left tail based on a Clayton copula, suggesting higher probability of finding a lower 

value of yield anomalies given a low value of the drought indicators. The randomly generated yield and drought data was 

transformed back to the original scales (Fig. 4 bottom panel) and the respective scatter plots indicate that more extreme values 

are generated using the joint distribution relationships. In general, the modelling of the joint distributions leads to results close 5 

to the real observations (Fig. 4 bottom panel).  

3.2 Probability of Non-Exceedance and Conditional Probability of Non-Exceedance using copula simulations 

After estimating the joint distribution functions and simulating pairs of data preserving the modelled dependence structures, 

we evaluate and compare the Probability of Non-Exceedance (PNE) and Conditional Probability of Non-Exceedance (CPNE) 

as a function of the crop-loss threshold. In this way, we evaluate if distinguishing drought severity leads to different risk values 10 

of crop-loss in comparison to disregarding a drought threshold (using only simulations of yield) and compare the probability 

of crop-loss under drought and non-drought conditions (by means of both simulations of yield and respective drought 

indicator). One of the key advantages of estimating the values of PNE and CPNE by means of the copula simulations is the 

use of larger samples which entail more joint extreme values based on the joint behaviour of crop yields and drought hazard. 

Figure 5 shows the PNE curves and the distributions of the simulations of yield anomalies with the respective crop-loss area 15 

correspondent to the probability (%) of the yield anomaly not exceeding -1std. The PNE curves indicate more than 19% chance 

of having crop losses in all cases. According to Fig. 5, wheat at cluster 1 is the cereal with the highest risk level (22%) followed 

by barley in cluster 1 (19.8%), wheat in cluster 2 (19.4%) and barley in cluster 2 (19.2%) (Fig. 5). As mentioned before, the 

wheat’s left tail area (negative yield anomalies) is slightly higher in cluster 1, suggesting a higher risk of wheat loss in the 

northern sector of the IP.  20 

The following target was to compare the likelihood of crop-loss under drought and non-drought conditions. Figure 6 shows 

the simulated crop yield anomalies during drought (orange left-sided boxplots) and non-drought (blue right-sided boxplots) 

events. As expected, the boxplots show lower (and negative in average) values of yield anomalies during drought events in 

comparison with non-drought episodes. Although the number of samples simulated under drought conditions is smaller than 

under non-drought conditions (Fig 6), the use of copula simulations enhances the amount of simulated joint low extremes (i.e. 25 

co-occurrence of crop-loss and drought events).  

The differences in terms of crop-losses between cereals and regions is much evident when differentiating the climatic 

conditions (Fig. 7), particularly during drought conditions. Figure 7 shows that the values of CPNE under drought (non-

drought) conditions are above (below) the values of PNE illustrated in Fig. 5. In comparison with the distributions of yield 

simulations without conditioning to specific thresholds of the drought indicators shown in Fig. 5, in Fig. 7 the distributions of 30 

the yield simulations during drought events show a shift to the left towards negative values of yield anomalies, while the 

distributions of yield simulations during non-drought events show a shift to the right towards positive values of yield anomalies 

(Fig. 7). The case of barley in cluster 1 is quite distinct exhibiting a drought-related barley-loss almost 3 times higher than the 
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value illustrated in Fig. 5 (19.8%), supporting the importance of conditional probabilities for agricultural drought risk purposes. 

The conditional probability of wheat-loss (Fig. 7), is also higher when focusing on drought conditions, although it is less than 

two times the values shown in Fig. 5. 

Regarding the drought-related barley-loss, the distribution of barley in cluster 1 is more shifted to negative yield anomalies, 

stressing that the drought risk of barley-loss is higher on cluster 1 (59.2%) than on cluster 2 (39.4%), while it is quite similar 5 

on both clusters in Fig. 5. While barley suggests higher conditional probabilities of crop-loss under drought conditions in 

cluster 1, wheat suggests higher conditional probabilities of crop-loss under drought conditions in cluster 2 (46.7%) in 

comparison to cluster 1 (36.5%). Among all the cases, the highest level of drought-related crop-loss is 59.2% observed in the 

case of barley in cluster 1, followed by wheat in cluster 2 with 46.7% chances of crop-loss under dry conditions.  

The theoretical CPNE based on Eq. 5 and 6 (Table 4) agrees quite well with the estimates of the CPNE in Fig. 7, thus 10 

corroborating the representativeness of the copula experiment using 1000 simulations. Nevertheless, the use of simulations 

allows to increase the sample size and to generate more joint extreme values based on the dependence structures characterized 

by the selected copulas. In addition, the effect of the copula parameters ( or ) inaccuracy due to the finiteness of available 

sample is considered in Table 4 in terms of the 95% confidence level interval of CPNE based on the confidence interval of the 

copula parameters taken from Table 3.  Table 4 shows that the theoretical CPNE under drought conditions still remain well 15 

above the CPNE under non-drought, with their difference taking the smallest value at the lower bound of the copula parameter 

confidence interval. In most cases, those differences are positive, as expected from the effect of drought on crop yield, despite 

the relative finiteness of the sample to fit the copula models.  

The results show that CPNE based on simulations (Fig. 7) and theoretical equations (Table 4) indicate that the probabilities of 

crop-loss increase when drought conditions occur, even considering the two-sided confidence bound values of the copula 20 

parameters. Moreover, the results indicate that the CPNE using the simulations (Fig. 7) lies within the estimates of CPNE 

using the two-sided confidence bound values of the copula parameter at the 95% level of confidence (Table 4). The only 

exception is the case of barley in cluster 2 considering the lower bound of , which gives greater probabilities of crop-loss 

during non-drought conditions rather than during drought conditions, suggesting that other factor than water stress is the cause 

of crop-failure. This result has to do with the negative value of the copula parameter in the lower confidence bound ( = -0.38), 25 

thus suggesting a weak dependence between crop-loss and drought conditions in this case. However, at the 80% confidence 

level ([0.03, 1.55]) the values of the copula parameter confidence bounds are both positive and give higher CPNE under 

drought conditions. This lack of accuracy of the CPNE at the 95% in the case of barley in cluster 2 may be the reason why the 

CPNE under drought conditions are not the highest of all cases, as would be expected from a Clayton copula (which is known 

for capturing lower tail dependence).  30 
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4 Discussion 

This study investigated the usefulness of copula methods in estimating the likelihood of drought risk in wheat and barley 

cropping systems, when applied to two regions in the IP. Here we proposed to model the joint probability of yield and drought 

hazard using copulas, based on a prior analysis of the association between drought and crop-loss (Ribeiro et al., 2018). The 

advantage of using a probabilistic approach is to meet the ambitious challenge of helping farmers and stakeholders in managing 5 

their operations, by identifying the probability of crop-loss under specific drought conditions. Hernández-Barrera and 

Rodríguez-Puebla (2017) and Ferrise et al. (2011) have shown that projected warmer and drier climate will lead to wheat yield 

shortfall over the IP and Mediterranean, respectively, highlighting the importance of establishing novel statistical approaches 

for agricultural drought risk analysis. Other crops rather than rainfed cereals are also expecting significant losses during the 

next century in the IP (Saadi et al., 2015; Resco et al., 2010; Quiroga and Iglesias, 2009), and the here proposed crop-specific 10 

approach could be applied to other agricultural systems under drought conditions for different regions around the world.  

The novelty of the presented models, in comparison to other works addressing climate risk in the IP (e.g. Ribeiro et al., 2018; 

Resco et al., 2010; Iglesias and Quiroga, 2007), is the focus on the impacts associated with droughts and on the joint probability 

of rainfed yield anomalies and drought hazard. Previous works using copulas in hydro-climatology studies have tended to 

focus on the joint distribution of different characteristics of the hazardous events, such as frequency, intensity, severity, 15 

duration, among others ( Li et al., 2015; Chen et al., 2013; Mirabbasi et al., 2012). Moreover, the restriction to the bivariate 

case allowed for a simpler interpretation of the results, in contrast to higher dimension copulas (Afshar et al., 2016; Ganguli 

and Reddy, 2013), for instance by adding as copula variables, other factors influencing crop yield beyond drought.  

More recently, copulas have been applied to estimate the joint behaviour of drought conditions and the associated impacts in 

agricultural systems (Leng and Hall, 2019; Ribeiro et al., 2019; Madadgar et al., 2017; Bokusheva et al., 2016), instead of 20 

using drought information only. We have adopted a similar approach to reproduce time-, regional-, and crop-specific 

dependence of drought conditions, and the probability distribution of crop yield anomalies under drought conditions was 

estimated for risk analysis. In addition, the use of different drought indicators in this study represents an advantage since crops 

react differently to several factors at distinct moments and locations, highlighting the importance of quantifying the 

contributions of different drought indices on a regional scale (Peña-Gallardo et al., 2019; Zarei et al., 2013). A recent study by 25 

Peña-Gallardo et al. (2019) focused on the responses of wheat and barley cropping systems to different drought indices over 

Spain, have shown the different efficacies of several drought indices, stressing the importance of the multiscalar character of 

droughts, in particular of the SPEI. Similarly, and in accordance to previous work by the authors (Ribeiro et al., 2018), the 

present study shows the adequacy of SPEI for the assessment of the agricultural risks associated to droughts in the IP, and 

advances the added value of using the remote sensing of vegetation.  30 

Overall, the results of the estimated copula functions have shown that Archimedean copulas are suitable to model the joint 

behaviour of yield anomalies and droughts , suggesting a dependence between extreme values of rainfed cereal yield anomalies 

and drought indicators, and the subsequent simulated distributions of crop yield anomalies are quite consistent with the 
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observations. The results highlighted that the use of copulas for probabilistic assessment allow the estimation of the dependence 

in the tails of the distribution and were able to give the likelihood of crop-loss under drought conditions. This feature is of the 

most interest in risk analysis given that it models the joint probability of occurrence of crop-loss and drier events. Moreover, 

this study suggests the relevance of impact-centric approaches (also referred in literature as ‘bottom-up’ approaches 

(Zscheischler et al., 2018) to identify and characterize the hazards which lead to the larger impacts. 5 

Moreover, it is important to stress that crop anomalies decline much more when drought conditions are below the mild or 

moderate threshold, suggesting a high agricultural drought risk level of wheat and barley in both clusters. While values of PNE 

the crop-loss threshold were low and similar for wheat in cluster 1 and barley in cluster 2, the values of CPNE the crop-loss 

threshold during drought years are considerably larger. The higher probability of crop-loss obtained when analysing only 

drought conditions agrees with Páscoa et al. (2017b), which have shown a very high agreement between low wheat yield 10 

anomalies and drought conditions in the IP, even on provinces where the linear correlation is no-significant.  

Although there is a greater risk of crop-loss during drought conditions, some losses can still be expected during non-drought 

events, particularly in cluster 2 (14.1% and 7.77% in the case of wheat and barley, respectively). In the northern sector (cluster 

1) the probabilities of crop-loss under non-drought conditions have the lower values, displaying 3.97% in the case of wheat 

and 3.65% in the case of barley. Some studies point to crop damages attributable to excessive wet soils (Zampieri et al., 2017; 15 

Rosenzweig et al., 2002) due to delayed planting or later harvest, nutrients runoff, development of pests and diseases, among 

others, highlighting the complexity of quantifying agricultural risk levels for management purposes, and the non-linear relation 

between crop yield and climate conditions. The lower values of CPNE under non-drought conditions in cluster 1 support the 

fact the slightly high values of PNE in cluster 1 are mainly dominated by drought conditions. 

With the present study is not possible to establish sharp conclusions about the adequacy of the copula models to a specific type 20 

of drought indicator (remote sensing or hydro-meteorological), since only one type of drought indicator was considered for 

each cereal. In contrast, Bokusheva et al. (2016) have found that Gumbel copulas provided better fits representing the joint 

distribution of VCI and wheat, while Frank copulas described better the dependence between TCI and wheat yields, in 

Kazakhstan. Madadgar (2017) modelled the conditional probability density functions of crop yields under wet and dry 

conditions using SPI and SSI and found that a Clayton copula was the best function to model the dependence structures. 25 

Similarly, Leng and Hall (2019) have also used the same copula families and found that from 10 countries 5 of them featured 

Clayton copulas to fit the joint distribution between wheat production and SPI. However, the referred studies were somehow 

more restrictive as they do not take advantage from using both remote sensing and hydro-meteorological drought indicators, 

and do not select the most important one a priori.  

To further the research, the application of SPEI methodology to climate projections of precipitation and temperature holds an 30 

added-value to estimate drought risk levels for the next century. Likewise, the use of seasonal drought forecasts is also quite 

plausible in the approach presented in this study. Nevertheless, the presented results indicated the likelihood of crop-loss based 

on drought conditions observed much earlier than the harvest time, particularly in cluster 2 using SPEI (February and April 

with 5 and 1 month of time-scale). Hence, given the uncertainty associated to the seasonal forecasts for regional drought 
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predictability in the IP, the use of past information for predictability studies is still successfully used (Pires and Ribeiro, 2016) 

and continues to be a source of information from an operational point of view. Other potential usefulness of this methodology 

for future research is the evaluation of its suitability at the province level and the assessment of whether other hazards (such 

as heat waves) are amplifying the impact of droughts on crop’s harvest.  

5 Conclusions 5 

The agricultural drought risk levels estimated in the present work aimed to improve the effectiveness of the agricultural 

management of rainfed cereals in the major agricultural areas of the IP. The main findings of this study are summarized below: 

- The dependence structure between crop yield anomalies and drought conditions is mainly asymmetrical, suggesting the 

existence of dependence among extreme values of yield anomalies and drought indicators. 

- The differences between the unconditional and the conditional probability suggest that the risk of wheat-loss and barley-10 

loss can be underestimated without conditioning the probabilities of non-exceedance crop thresholds to specific drought 

levels.  

- The conditional probabilities of non-exceedance suggest that the risk of wheat-loss and barley-loss increases when drought 

events aggravate from normal or wet to moderate or severest conditions. 

- The values of conditional probabilities of crop-loss under dry conditions suggest that the risk of drought-related barley-15 

loss is more likely to occur in the northern sector, while the risk of drought-related wheat-loss is more likely in the southern 

sector, suggesting that sowing in cluster 1 (cluster 2) could be more focused on wheat (barley). 

- The overall results show the importance of the concept of conditional probability to distinguish different meteorological 

settings associated to crop-losses and the applicability of the Copula Theory. The use of copula simulations for the analysis 

of the co-occurrence of dry and low-yield extreme events have shown the additional value of this methodology for the 20 

estimation of drought-related crop-failure. 

- Nevertheless, minor wheat- and barley-losses can still be expected during normal or wet conditions, stressing the 

complexity of the interactions between the agricultural systems and the climate. Particularly, under the current climate 

change context, further high-impact-centric analysis are required, involving the cascading effects of different climate 

hazards.  25 
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Figure 1: Provinces with more than 50% of the territory occupied by agricultural areas and more than 50% of rainfed crops (yellow) 

according to CLC2012, and selected clusters of provinces. Cluster 1 provinces: Zamora (I), Valladolid (II), Palencia (III), Burgos 

(IV) and Segovia (V). Cluster 2 provinces: Toledo (VI), Cuenca (VII), Ciudad Real (VIII) and Albacete (IX). 

 5 

Figure 2 – Scheme of the copula-based approach adopted in the present study. 
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Figure 3 – Empirical cumulative distribution functions (ECDF, blue points), kernel density estimation of the CDF (red line), crop-

loss and drought thresholds (dotted black vertical line), respective marginal probabilities of crop-loss and drought occurrence 

(dotted black horizontal line) and pseudo-observations (scatter) of the margins on the interval [0,1]. 
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Figure 4 – Selected joint Probability Distribution Functions (PDF) where u and v are scalar values on the interval [0,1] (top), contours 

showing the two-dimensional view of PDFs (middle) and observed (red triangles) and copula-based simulations (density squares) 

scatter plots of crop yields and drought indicators (bottom). 
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Figure 5 – Probability of non-exceedance (PNE) function (%) of yield anomalies (top) in both clusters based on the derived 

simulations from the estimated copulas and respective probability density estimates (bottom). On the bottom panels, the red values 

indicate the probability of crop-loss which is also indicated in the top panels by the intersected dashed lines indicating the threshold 

of crop-loss and respective PNE value.  5 

 

Figure 6 - Wheat and barley yield simulations differentiating drought (orange) and non-drought conditions (blue) according to the 

respective drought indicator denoted in parenthesis in the x-tick label. The numbers on top of the boxplots denote the sample size of 

the simulations under the different climatic conditions.  
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Figure 7 – Conditional probability of non-exceedance (CPNE) function (%) based on the derived copula simulations (top) and 

respective probability density estimates (bottom) under drought (orange) and non-drought conditions (blue). On the bottom panels, 

the orange and blue values indicate the probability of crop-loss under the different climatic conditions, which is also indicated in the 

top panels by the intersected dashed lines indicating the threshold of crop-loss and respective CPNE value. 5 

 

 


