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Abstract 10 

The use of different methods for physical flood vulnerability assessment has evolved over time, from traditional single-

parameter stage-damage curves to multi-parameter approaches such as multivariate or indicator-based models. However, 

despite the extensive implementation of these models in flood risk assessment globally, a considerable gap remains in their 

applicability to data-scarce regions. Considering that these regions are mostly areas with limited capacity to cope with disasters, 

there is an essential need for assessing the physical vulnerability of the built environment and contributing to an improvement 15 

of flood risk reduction. To close this gap we propose to link approaches with reduced data-requirements such as vulnerability 

indicators (integrating major damage drivers) and damage grades (integrating frequently observed damage patterns). First, we 

present a review of current studies on physical vulnerability indicators and flood damage models comprising stage-damage 

curves and the multivariate methods, which have been applied to predict damage grades. Second, we propose a new conceptual 

framework for assessing the physical vulnerability of buildings exposed to flood hazards specifically tailored to use in data-20 

scarce regions. This framework is operationalized in three steps, (i) developing a vulnerability index, (ii) identifying regional 

damage grades, and (iii) linking resulting index classes with damage patterns utilizing a synthetic what-if analysis. The new 

framework is a first step for enhancing flood damage prediction to support risk reduction in data-scarce regions. It addresses 

selected gaps in literature by extending the application of the vulnerability index for damage grade prediction through the use 

of a synthetic multi-parameter approach. The framework can be adapted to different data-scarce regions and allows integrating 25 

possible modifications of damage drivers and damage grades. 

Keywords: Data-scarce regions, vulnerability indicator, damage grade, flood, building, disaster risk reduction  

1 Introduction 

The magnitude and frequency of floods and their impact on elements at risk have increased globally (Quevauviller, 2014). 

Risks associated with floods are especially high for communities with limited capacity to resist impacts. Communities with a 30 

low resistance to impacts of hazards are often referred to as vulnerable. Although the definition of vulnerability varies in 

different fields of study, efforts to understand and reduce vulnerability are regarded as important steps for disaster risk 

reduction (UNISDR, 2015). UNISDR (2009) defined vulnerability as the conditions that make communities susceptible to the 

impact of hazards. These conditions may be linked to limited access to resources, to missing risk transfer mechanisms, and 

poor housing quality if elements at risk are considered. Focusing on the latter, poor housing conditions have been shown to be 35 
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a key factor if different regions exposed to the same hazard level are compared (Papathoma et al., 2003; Keiler et al., 2006). 

Although the vulnerability of a community has social, economic, physical, environmental, institutional and cultural dimensions 

(Birkmann et al., 2013), these dimensions are connected (Mazzorana et al., 2014). Fuchs (2009) and Papathoma-Köhle et al. 

(2011) identified physical vulnerability as a primer for other vulnerability dimensions. WHO (2009) also highlighted that there 

is a strong connection between physical vulnerability and other vulnerability dimensions, pointing out that the disruption of 40 

physical elements directly affects social and economic activities within a society. Physical vulnerability assessment supports 

evaluation of economic losses (Blanco-Vogt and Schanze, 2014), analysis of physical resilience (Papathoma-Köhle et al., 

2011), cost-benefit analysis (Holub and Fuchs, 2008), risk assessment for future system scenarios (Mazzorana et al., 2012), 

and decision-making by stakeholders responsible for hazard protection through e.g., resource allocation (Fuchs, 2009).  

Common approaches used for assessing physical vulnerability to flood hazards include stage-damage curves (vulnerability 45 

curves), vulnerability matrices, vulnerability indicators (Papathoma-Köhle et al., 2017), and more recently, multivariate 

methods. Stage-damage curves show the relationship between flood depths and the degree of impact (e.g., damage grades, 

relative or absolute monetary loss). These curves are developed using empirical data or expert knowledge (Merz et al., 2010). 

The empirical method requires data on flood depths and related building damage patterns or monetary losses after a flood 

event (Totschnig and Fuchs, 2013). These data allow searching for suitable curves to correlate flood depths to damage or 50 

losses. Synthetic methods are based on a what-if analysis derived from expert knowledge to determine expected damage for 

selected intervals of flood depths (Naumann et al., 2009; Merz et al., 2010; Romali et al., 2015). Multivariate methods deduce 

relationships between empirical building damage or loss data and multiple damage-influencing parameters statistically.  

Generally, both stage-damage curves and multivariate methods are used to predict flood damage. This ability to predict damage 

is increasingly seen as an important step towards disaster risk reduction (Merz et al., 2010). Stage-damage curves and 55 

multivariate methods used for damage prediction are commonly referred to as flood damage models. Most flood damage 

models are based on empirical damage or monetary loss data (see reviews by Merz et al. (2010), Jongman et al. (2012), 

Hammond and Chen (2015), Gerl et al. (2016)). However, due to the scarcity of such data in data-scarce regions, limitations 

exist in developing these models and consequently hindering the efforts to reduce disaster risk (Niang et al. 2015). More 

recently, Englhardt et al. (2019) reemphasized data-scarcity as the limiting factor in physical vulnerability assessment in 60 

developing countries. Few flood damage models have been developed using a synthetic and expert-based what-if analysis 

(e.g., Penning-Rowsell et al., 2005; Neubert et al., 2008, Naumann et al., 2009) aiming to reduce the dependency on empirical 

damage and loss data. However, synthetic approaches often use flood depth as the only damage-influencing parameter, leading 

to increased uncertainty in damage prediction (Pistrika et al., 2014; Schröter et al., 2014).  

Flood damage models have been applied to predict damage grades (e.g., Maiwald and Schwarz, 2015; Ettinger et al., 2016) or 65 

the monetary value of such damage (e.g., Thieken et al., 2008; Merz et al., 2013; Fuchs et al., 2019b). Better suitable for data-

scarce regions are damage grades, representing qualitative descriptions of frequently observed damage patterns within a region 

(for floods: moisture defects, cracks on supporting walls). As they are not dependent on information about monetary loss (e.g., 

insurance data), damage grades provide a good basis for damage estimation and enhance the comparability of flood impacts 

between different flood events, regions, and buildings types (Blong, 2003a). Besides, since damage grades are comparable for 70 

similar building types (Maiwald and Schwarz, 2015), they improve the transferability of flood damage models (Wagenaar et 

al., 2017). 

Another approach increasingly used to assess physical vulnerability is based on vulnerability indicators (Barroca et al., 2006; 

Barnett et al., 2008; Papathoma-Köhle et al., 2017). Several studies have re-emphasized the importance of identifying and 

understanding vulnerability indicators as a fundamental step in disaster risk reduction (e.g., UN/ISDR, 2015; Zimmermann 75 
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and Keiler, 2015; Klein et al., 2019). Vulnerability indicators are based on aggregated variables to communicate the state of a 

system (e.g., the resistance of a building) and to provide insights in the level to which this system will be impacted by a certain 

hazard level (Birkmann, 2006). Since the vulnerability indicator approach has a low requirement for empirical damage or loss 

data, the method has gained increasing popularity in data-scarce regions. In addition, vulnerability indicators supplement the 

use of stage-damage curves in a way that the overall picture on flood vulnerability becomes clearer. This clarity is achieved 80 

by an integration of multiple drivers of vulnerability providing a more holistic perspective of vulnerability-contributing factors. 

Papathoma-Köhle et al. (2017) recommended a combination of physical vulnerability assessment methods to take advantage 

of their individual strengths while minimizing their weaknesses. A combination of methods here refers to the integration of 

approaches (or techniques) from two different physical vulnerability assessment methods into one method (or model). Such a 

combination of methods that utilize expert-based approaches in place of data-driven methods, might provide a desirable 85 

compromise for data-scarce regions. For example, Godfrey et al. (2015), using Romania as a case-study, combined an approach 

based on vulnerability indicators and an approach based on stage-damage curves to develop an expert-based model for data-

scarce regions. However, wider applications of the method have shown to be restricted to regions where stage-damage curves 

for specific building types already exist. In addition, because of a limited sample size used to test the method, results may be 

biased (Godfrey et al., 2015).  90 

Only little has been known so far on the flood vulnerability and damage mechanism of buildings exposed in developing 

countries, such as in Africa. Adelekan et al. (2015) identified population and assets in African cities to be among the most 

vulnerable globally. Consequently, with climate change, the number of extreme events and catastrophic impacts in these 

regions is expected to increase (Mirza, 2003). In Africa particularly, the need to develop a systematic approach in evaluating 

preconditions of buildings and their impact by flood hazards has been stressed by stakeholders and researchers (Komolafe et 95 

al., 2015). Although sandcrete block and clay buildings are the most predominant building types in many African countries 

(Gasparini, 2013), flood damage models remained underdeveloped for such building types (Komolafe et al., 2015). Commonly, 

exposure and vulnerability are mainly assessed in a regional context based on very coarse data and aggregated land-use classes 

resulting in considerable uncertainties, especially in a rural context (de Moel et al., 2015). Thus, along with recent studies 

addressing flood exposure und vulnerability in data-scarce areas, there is a strong need to refine approaches for vulnerability 100 

and risk assessments in such regions.  

Approaches using damage grades and/or damage indicators are in general more suitable for data-scarce areas, yet, so far there 

is a gap in systematically linking them. This paper aims to develop a conceptual framework for assessing the vulnerability of 

the built environment to floods in data-scarce areas. To do this, we first provide a review of physical vulnerability indicators 

for flood hazards, as well as an overview of flood damage models. Second, we develop a conceptual framework that links 105 

physical vulnerability indicators and flood damage grades by utilizing local expert knowledge. 

This paper is structured as follows: Section 2 provides an overview of available information on vulnerability indicators, 

including indicator selection, aggregation, and weighting, and unveils challenges and gaps of using this method. In Section 3, 

a brief review of flood damage models is presented with a particular focus on the use of damage grades and associated 

challenges. While Section 4 addresses the need for linking vulnerability indicators and damage grades, Section 5 introduces 110 

the conceptual framework for such linkage as well as the steps for operationalizing the framework. Discussions and conclusions 

are presented in the final Section 6. 
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2 Review of indicators for physical vulnerability to floods 

In this section, we present an overview of different studies using indicators to assess the vulnerability of buildings to flood 

hazards (for details see Table A1 in the appendix).   115 

2.1 Background 

A vulnerability index is obtained by selecting, weighting and aggregating vulnerability indicators. Generally, a vulnerability 

indicator is a parameter (or variable) that can influence and(or) communicate the degree of damage (or loss) of a system (e.g., 

a building). The indicator approach aims to simplify a concept through the use of an index (Heink and Kowarik, 2010; Hinkel, 

2011). Before establishing an index, a framework should be developed to address how major components of the indicator fit 120 

together (Birkmann, 2006; JRC and OECD, 2008). Moreover, the framework of such an index should allow adaption to 

possible future system changes such that it can be used to analyze potential disaster risk. Such adaptation may include possible 

changes in selected indicators or indicator weights. The framework includes a variety of elements (we refer to these as indicator 

elements), which helps to clearly outline the extent of applicability and validity of the derived index. Basic elements defining 

the framework of a vulnerability index include the aim, the vulnerability dimension, the spatial scale, and the region of 125 

application (see Table A1). 

A first step in developing a framework for indicators is to define the aim, including the different vulnerability dimensions to 

be assessed so that the indicators and the finally derived index fit into the overall risk assessment framework. Although some 

studies focus on one specific dimension of vulnerability (e.g., Dall’Osso et al., 2009) other studies examine multiple 

dimensions of vulnerability (e.g., Kienberger et al., 2009). The interaction between different vulnerability dimensions 130 

generates challenges for assessing vulnerability, as well as the use of a high number of indicators in multidimensional studies 

(Cutter and Finch, 2008). Birkmann (2006) noted that choosing a multidimensional study design is only worth the effort if 

data is available in certain quality and quantity, which in turn has to meet the scale requirements of the study (Birkmann, 2007; 

Fuchs et al., 2013; Kundzewicz et al., 2019). Consequently, the spatial scale for applying a vulnerability indicator approach 

varies depending on the availability of data (Marleen et al., 2017) and the aim of the assessment. Spatial scales for assessing 135 

vulnerability can be on micro-, meso- or macro-level. Micro-scale assessment is usually challenging in terms of data collection 

(Günther, 2006), in particular in developing countries with missing metadata on land-use, exposure, and population. Micro-

scale assessments can provide an overview of vulnerability (hotspot assessment) on a larger area, hence, decision-makers can 

use them in allocating resources for emergency response or risk mitigation. Other indicators operate on a larger scale, for 

instance, meso- (regional to national) and macro- (international) scale. Moreover, as vulnerability indicators are adaptive to a 140 

regional context, a set of indicators selected for a particular region may not necessarily be transferable to another region 

(Papathoma-Köhle et al., 2017, 2019).  

2.2 Application of physical vulnerability indicators 

Commonly applied steps, corresponding outputs, and methods for constructing a physical vulnerability index are presented in 

Figure 1. Different methods used in deriving the index include deductive (based on theories/basic assumptions), inductive 145 

(based on empirical data) and normative (based on value judgment) approaches. In physical vulnerability assessment for flood 

hazards using vulnerability indicators, the deductive approach is the most commonly applied method relying on expert 

judgment and information provided in the relevant scientific literature without any further empirical data. It is also common 

to use a combination of inductive and deductive approaches either during the indicator selection or during indicator weighting 
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and aggregation. Table 1 shows different studies that derived a physical vulnerability index to assess flood hazards and various 150 

methods employed. Since our attention is on data-scare regions, further discussions in this Section will be focused on the 

deductive and normative approaches since they do not rely on empirical data. 

2.2.1 Indicator selection 

The selection of indicators is one of the main challenges of vulnerability assessment (Marleen et al., 2017; Papathoma-Köhle 

et al., 2019) because a suboptimal selection of indicators will consequently lead to an information bias or even information 155 

loss (Günther 2006). Before a variable is qualified as an indicator, certain criteria have to be met to allow for consistency and 

methodical soundness. Important criteria for selecting a variable as an indicator include measurability, relevance, analytical 

and statistical soundness, etc. (see Birkmann (2006) and JRC and OECD (2008) for a complete list of criteria for indicator 

selection). Selected indicators should provide good guidance to capture how an element will be impacted (e.g., damage) by a 

phenomenon (e.g., flood hazard). Capturing physical vulnerability is a complex task, therefore, multiple indicators are usually 160 

required for a comprehensive evaluation. However, since indicators aim to reduce complexity, attention should be given to 

achieve a balance between the number of indicators selected and the reduction of complexity (Günther, 2006; Barroca et al., 

2008). 

The selection of vulnerability indicators can be categorized into two steps (cf. Table 1). In a preliminary step, an initial selection 

of a range of identified variables is carried out. This serves to identify all possible parameters that influence vulnerability 165 

within a region. As shown in Fig. 1, the preliminary selection is commonly carried out either using a deductive or normative 

approach. In the final step, the number of variables to be used for weighting or aggregation is reduced. The final selection can 

be based on data availability, statistical analysis, expert opinion or other evaluation procedures. For example, Kienberger et 

al. (2009) reported a spatial vulnerability assessment tool using the indicator approach. In their study, expert knowledge was 

used for the preliminary selection of indicators. Thereafter, based on structured rounds of questionnaire evaluation, a final 170 

selection was made based on a Delphi approach. The Delphi approach utilizes several indicator suggestions by different experts 

and combines the suggestions after a consensus is reached through several rounds of questionnaire exchange. During the 

Delphi process, pre-selected indicators that are identified to be less relevant are removed in order to arrive at a set of more 

effective indicators. The Delphi approach can be applied for selecting both primary indicators and their sub-indicators (e.g. 

building material as an indicator having sub-indicators of masonry, wood and reinforced concrete). In another study, Müller 175 

et al. (2011) used a combination of literature review, expert opinion, and suggestions by household owners in the study region 

for preselecting vulnerability indicators. However, the final selection of indicators was based on expert weighting through 

establishing a cut-off weight to determine important indicators. 

2.2.2 Indicator weighting 

After the selection of indicators, weights are assigned to allocate the extent to which each indicator is relevant with respect to 180 

the targeted vulnerability assessment. Prior to assigning weights to different indicators, a scoring is assigned for categories of 

indicators, for example, ‘building type’ as an indicator can have ‘reinforced concrete’, ‘masonry’ and ‘wooden’ buildings as 

sub-categories: we refer to these sub-categories as sub-indicators. The scoring of these sub-indicators, which is a form of 

internal weighting, results in information on the vulnerability of the individual indicator. For example, it is common to assign 

reinforced concrete buildings a score that assumes a lower vulnerability to flooding impact compared to masonry or wooden 185 

buildings if we assume a similar hazard magnitude (see the vulnerability classification by Maiwald and Schwarz, 2012). Both 
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the scoring of sub-indicators and the weighting of indicators can be carried out using (i) deductive, (ii) normative and (iii) 

inductive approaches.  

i. The deductive approach is based on research-based knowledge and conclusions of previous studies. The weighting is 

based on deduction, or inference from frameworks, a set of concepts, or theories on vulnerability (Hinkel, 2011). 190 

Commonly applied deductive weighting includes direct expert weights, expert weights in combination with literature 

analysis and the application of an Analytical Hierarchy Process (AHP) from expert knowledge.  

Direct expert weights refer to weights assigned to indicators using the knowledge of experts by either questionnaires 

or interviews. Normally, a scheme of standardized weights (e.g. from 0 to 10) is provided for the weighting in order 

to maintain a comparable scale of weights by different experts. The often observed subjectivity of experts has, 195 

however, initiated some critical debates on this method (Karagiorgos et al., 2016; Thaler et al., 2019). As a result, 

Hinkel (2011) referred to weights directly from expert judgment as a rather weak form of a deductive argument which 

should only be used for the selection of indicators. 

Some vulnerability studies used weights from literature in combination with expert knowledge to formulate new 

weights to indicators. However, this is only possible if (i) the vulnerability of the region of interest has been previously 200 

studied or (ii) the region of interest is comparable (in building and hazard characteristics) to a previously studied 

region. For instance, Blanco-Vogt and Schanze (2014) and Krellenberg and Welz (2017) have utilized literature 

review to complement expert knowledge for assigning weights. Weighted variables from this study included building 

structure, building surrounding and coping capacity.  

Another commonly applied weighting method for physical vulnerability assessment is based on the Analytical 205 

Hierarchy Process (AHP), a multi-criteria decision tool utilizing a pair-wise comparison system (Saaty, 1980). The 

AHP assigns weights between pairs of indicators instead of evaluating each indicator relative to all other indicators. 

The pair-wise comparison evaluates which indicator, in every pair, is more important than the other one using a scale 

of 1 (equal importance) to 9 (extreme importance) (Chen et al., 2012). The decision on which indicator is more 

important can be evaluated from analyzing data or expert knowledge, however, the expression of the extent to which 210 

one indicator is more important than another is based on expert knowledge. For example, if we assume the same 

hazard level affecting both reinforced concrete and a clay building, it is most likely that the clay building will incur 

higher damage (see Maiwald and Schwarz, 2012). Therefore, based on such data, experts may weight a reinforced 

concrete building as less vulnerable than the clay building. However, assigning a value that qualifies the extent to 

which the reinforced concrete building is less vulnerable than clay building (e.g., moderate, high, very high) requires 215 

expert knowledge. Such expert knowledge will likely come from information on the quality of regional construction 

types, material or local protection. To ensure minimal subjectivity in a pairwise comparison, the Consistency Ratio 

(CR) is computed. The CR checks if the subjectivity of pair-wise comparisons are within an allowable limit. If the 

condition of CR is not fulfilled, a repetition of the process has to be carried out (Golz, 2016). Depending on the total 

number of indicators, the AHP can be computationally demanding.  220 

ii. Another form of weighting which is not very common in physical vulnerability assessment is the normative approach. 

Using the normative approach, weights can be assigned based on value judgment (Hinkel, 2011). The normative 

approach is based on the priorities of individuals. A common application of the normative approach is the equal 

weighting approach. Meaning, based on a value judgment, all parameters influencing vulnerability are taken to be 

equally important (Frazier et al., 2014). Adopting an equal weights approach is sometimes required in cases where 225 



 

 

7 

 

no consensus is reached on a suitable weighting alternative. In studies where multiple dimensions of vulnerability are 

considered, the equal weights approach will favor dimensions with a higher number of indicators if an unequal number 

of indicators is used. However, such irregularities can be corrected by a systematic normalization. Furthermore, Chen 

et al. (2012) noted that the equal weighting approach cannot properly handle indicators that are highly correlated 

because these are double-counted. Another implication of the approach, particularly at the aggregation step, was noted 230 

by Hinkel (2011): Equal weighting means all indicators are ideal replacements of each other, and low values in one 

indicator can be compensated by high values in another indicator. Other studies applying the equal weights approach 

include those of Balica et al. (2009), Behanzin et al. (2015), and Ntajal et al. (2016). Another example of the use of 

value judgment for weighting indicators was demonstrated by Müller et al. (2011) focusing on weighting preferences 

of homeowners. 235 

 

iii. A further possibility to weight indicators is based on the inductive approach. This approach uses observed data to 

generate weights (Hinkel, 2011). In physical vulnerability assessment, the Principal Component Analysis (PCA) is 

the main method employed for extracting weights. The PCA technique uses linear combinations to explain the 

variance in a data set by reducing the dimensions of the data set to few components (indicators) (JRC and OECD, 240 

2008). Hence, the PCA initializes a procedure whereby weights (factor loadings) are assigned to the indicators based 

on their variance in the original data set. This inductive approach is generally data-driven and difficult to apply in 

data-scarce regions. 

2.2.3 Indicator aggregation 

Indicators aggregation refers to a systematic combination (or joining) of indicator weights to create a single value. This value 245 

is usually referred to as an index. The index carries information on the extent to which an element can be impacted by a hazard 

relative to other elements, given the combined influence of selected indicators.  

Physical vulnerability assessment incorporates different types of indicators with non-uniform units, such as building material 

(no unit) and distance to the hazard source (meters). Therefore, before aggregating indicators, it is necessary to find a 

systematic and consistent means of representing the (sub-)indicators while retaining their theoretical range. Achieving a rather 250 

objective representation of different indicators is carried out by scaling. Asadzadeh et al. (2017) noted that the scaling of 

indicators is sensitive to the normalization and aggregation method; hence, it is important to adopt a scaling that fits the data 

and the overall vulnerability framework. In physical vulnerability assessment, it is common to adopt the ordinal scale to 

represent both qualitative or quantitative (sub-)indicators. On the ordinal scale, indicators are represented using an increasing 

or decreasing categorical order. The order selected is mostly subjective depending on the indicator framework and data 255 

property (JRC and OECD, 2008). A good example of the use of the ordinal scale was demonstrated by Dall’Osso et al. (2009) 

where five categories were used to transform all (sub-)indicators into an ordinal scale. 

Generally, several methods for indicator aggregation exist; however, a commonly applied method for physical vulnerability 

assessment is the additive method (see Table 1). This method is based on a summation of the product of the weights and scores 

(or the scaled value) of all selected indicators. The summation can be directly on scores of the indicators (direct additive 260 

method) or after multiplying weights and the scores of the indicators (weighted additive method). The result of the indicator 

aggregation is influenced by the applied aggregation technique as some approaches allow counterbalancing indicators with 

low values (compensation). In the additive method, a constant level of compensation, for indicators with lower values, is 

allowed (JRC and OECD, 2008). For example, the high indicator value of a building with poor construction material can be 
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compensated with a low indicator value because the building is located at a far distance from the river channel. If an equal 265 

weighing is applied in combination with a direct additive aggregation method, it will mean all indicators are perfect substitutes 

(Chen et al., 2012). Other methods of aggregation include the geometric and multi-criteria method (JRC and OECD, 2008), 

however, these methods are not usually applied in physical vulnerability assessment. 

The last step in aggregating indicators is a normalization which ensures that the output from indicator aggregation lies within 

defined intervals. These intervals should be suitable to communicate the extent to which an element at risk is vulnerable relative 270 

to others. JRC and OECD (2008) pointed out that the choice of a normalization approach should be related to data properties 

and underlying theoretical frameworks. Although there are several normalization techniques, most studies in physical flood 

vulnerability assessment apply the minimum-maximum normalization. In the minimum-maximum normalization, index 

outputs are bound within a fixed range, commonly between 0 (not vulnerable) to 1 (highly vulnerable). The minimum-

maximum normalization can increase the range of small-interval indicators or reduce the range of large-interval indicators. 275 

Hence, all indicators are allowed a proportionate effect on the aggregated index. Detailed descriptions of different 

normalization methods can be found in JRC and OECD (2008). Other studies, however, do not use any form of index 

normalization, for example, in Akukwe and Ogbodo (2015), weights from PCA were directly aggregated to create an index. 

2.3 Challenges and gaps in physical vulnerability indicators and indices 

Despite current success in the development of physical vulnerability indicators, few challenges persist. We identify these 280 

challenges for physical vulnerability indicators focusing on the potential for developing indicator approaches in data-scarce 

regions and in order to foster adaptability, transferability and harmonizing of indicators across spatial and temporal scales.  

Firstly, for the effective operationalization of an index in the vulnerability concept, there is a need for proper management of 

the underlying data. In many studies, data transformation methods (e.g., of missing data, scaling and normalization) are either 

not mentioned or only briefly highlighted. Such data operations considerably influence the index output as already 285 

demonstrated by several studies (e.g., UNDP, 1992; Tate, 2012; Mosimann et al., 2018; Chow et al., 2019) and, thus, data 

operations should be carried out using appropriate methods that fit the data type and indicator framework. During the indicator 

development, the following few points have to be clarified (i) relationship between indicators, (ii) scaling and normalization 

needed, (iii) necessary range of variables, (iv) data quality and quantity.  

Secondly, it is important to understand the sensitivity of the vulnerability index depending on the use of deductive, inductive 290 

and normative approaches. So far, no detailed sensitivity analysis has been carried out focusing on physical vulnerability 

indicators, except for Fernandez et al. (2016) who have taken the first steps by analyzing the sensitivity to different aggregation 

methods. JRC and OECD (2008), Tate (2012) and Papathoma-Köhle et al. (2019) have stressed the need for such internal 

validation to assess the robustness of indices and evaluate the influence of each approach on the index stability. Such analysis 

can convey information on the suitability of different approaches for specific data-sets, hence providing useful guidance for 295 

further indicator development.  

Furthermore, after developing the vulnerability index, it is important to assess how well the index performs by using hazard 

impact metrics such as building damage or monetary loss data. However, in physical vulnerability assessment, index 

performance evaluations have only rarely been carried out (Eriksen and Kelly, 2007; Müller et al., 2011). A performance test 

will allow robust evaluation of underlying indicator frameworks and basic assumptions (Eddy et al., 2012) and will also 300 

identify the suitability of selected indicators with respect to the indicator aim (Birkmann, 2006). Few studies, however, provide 

a qualitative description (e.g., level of agreement) as performance analysis using a comparison of the deduced index and 
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observed damage data (e.g., Godfrey et al., 2015; Sadeghi-Pouya et al., 2017) or based on visualizations of the spatial 

agreement using GIS maps by comparing hotspots and observed damage (e.g., Fernandez et al., 2016). In general, lack of 

performance test might likely be due to (i) the scarcity of empirical data and (ii) the lack of a systematic linkage between the 305 

vulnerability index and building damage or monetary loss.  

Furthermore, vulnerability indices have been identified to lack a stand-alone meaning outside a relative comparison of building 

vulnerability (Tarbotton et al., 2012; Dall’Osso and Dominey-Howes, 2013). This is a major limitation given the quality of 

information contained in the vulnerability index. Further investigation on additional applicability of the vulnerability index 

should be carried out. Papathoma-Köhle et al. (2017) recently recommended a combination of methods to fully explore the 310 

potential in individual vulnerability assessment methods. Such a combination is particularly encouraged for data-scarce 

regions. 

3 Review on flood damage models 

Flood damage models show the relationship between the extent of building damage and damage- (or vulnerability-) influencing 

factors. First, we focus on an analysis of background information on flood damage models and the application and used 315 

methods. Second, we will identify the challenges and current gaps in the context of data-scarce regions. 

3.1 Background 

Flood damage models provide the basis for decision-making through multiple applications, such as cost-benefit analysis of 

mitigation measures (Thieken et al., 2005; Schröter et al., 2014), economic impact assessment (Jongman et al., 2012), planning 

and implementation of individual mitigation measures (Walliman et al., 2011), and flood risk mapping (Meyer et al., 2012). 320 

In general developing flood damage models require clear communication of model parameters; e.g., if the model is based on 

an individual damage parameter (stage-damage curves) or if the model comprised multiple damage-influencing parameters 

(multivariate methods). Further important information includes data source and sample size, method of analysis to extract the 

significance of variables, the scale of application, damage-influencing parameters and status of validation or performance test. 

The different choice of parameters and methods considered within the flood damage models already sets the conditions 325 

regarding the model transferability and guide further model development. In Table 2, we highlight these parameters for several 

studies. 

Stage-damage curves are continuous curves relating to the magnitude of a hazard process (X-axis) to the damage state of a 

building (Y-axis), usually expressed as the degree of loss (Fuchs et al., 2019a). Individual buildings are represented as points 

in the XY axis system and then the function that ensures the best fit may be chosen (Totschnig et al., 2011). Empirically 330 

developed stage-damage curves are widely used for assessing flood hazard risk where the number of affected buildings is large 

enough to deduce a reliable curve (Fuchs et al., 2019a). The shape of the empirically derived stage-damage function depends 

on the population and spread of data related to buildings within the inundation area under consideration as well as the type of 

function chosen. Synthetic stage-damage curves are based on expert-knowledge to describe a relationship between flood 

damage with flood depth for a specific building or land-use type. Synthetic curves can be developed independently (e.g., 335 

Penning-Rowsell et al., 2006; Neubert et al., 2008; Naumann et al., 2009) or supported by empirical data (e.g., NRE, 2000). 

For data-scarce regions, utilizing the synthetic (what-if) analysis can serve as an important first step for establishing flood 

damage models. More details on the synthetic what-if analysis are given by Penning-Rowsell et al. (2005), Neubert et al. 

(2008) and Naumann et al. (2009).  
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Multivariate methods utilize empirical data to relate multiple damage-influencing variables and building damage by applying 340 

a variety of statistical methods (see Table 2). Such empirical data can be collected from insurance companies (e.g., Chow et 

al., 2019), through field surveys (e.g., Ettinger et al., 2016), or by telephone interviews (Thieken et al., 2005; Schwarz and 

Maiwald, 2008; Maiwald and Schwarz, 2015). As demonstrated by Cervone et al. (2016), empirical data can also be collected 

using social media accounts. Multivariate models may become more common in the near future since they offer a more 

comprehensive approach compared to the stage-damage curves. Schröter et al. (2014) evaluated the applicability of flood 345 

damage models and showed that models that consider a higher number of damage-influencing variables demonstrated 

superiority in predictive power both spatially (transfer to other regions) and temporally (different flood events). The 

multivariate method has been shown to better explain the variability in damage data (Merz et al., 2004) and reduce uncertainty 

in flood damage prediction (Schröter et al. 2014).  

3.2 Application of flood damage models 350 

The applications of both stage-damage curves and multivariate methods vary depending on the user requirements. These user 

requirements may range from estimating damage grades (e.g., Ettinger et al., 2016), estimating absolute or relative monetary 

loss (e.g., Thieken et al., 2008) or both (e.g., Maiwald and Schwarz, 2015). In particular, the use of damage grades is especially 

encouraged for data-scarce regions since it relies only on observable damage patterns within a region and expert knowledge. 

In addition, damage grades are well understandable by experts and non-experts making them easy communication tools. One 355 

of the most prominent damage grades is the European Macroseismic Scale EMS-98 for earthquakes (Grünthal 1998) which 

was later used as a basis to develop damage grades for flood hazards by Schwarz and Maiwald (2007).  

Developing a damage grade requires data (or knowledge) on regional building damage patterns resulting from flood impact. 

Damage patterns, which are repeatedly observed within a region, can be categorized into damage grades (Schwarz and 

Maiwald, 2007). Grünthal et al. (1998) and Maiwald and Schwarz (2015) noted that damage grades should not only consider 360 

the physical effects of damage but also the number of buildings that show such effects. Hence, in developing damage grades, 

the focus should be given to both physical damage features and their corresponding proportion. Damage grades express 

frequently observed damage patterns as categories on an ordinal scale whereby numbers are assigned to each damage pattern 

with higher numbers depicting a higher degree of damage (see Table 3). Damage grades vary from non-structural to structural 

damage. Non-structural damage refers to damage that does not immediately affect the structural integrity of a building. 365 

Examples of non-structural damage by floods include moisture defects or light cracks on building finishes. Structural damage 

mostly occurs on load-bearing elements of the building, for example, cracks or collapse of walls, beams, columns (Milanesi et 

al., 2018).  

Generally, there is a wide range of damage patterns available to describe how buildings respond to flood impact. However, 

including all these patterns will lead to unnecessarily complex flood damage models. Nonetheless, damage grades should be 370 

detailed enough to capture predominantly observed patterns of damage within a region. In such a way, damage grades serve 

as a compromise between comprehensiveness and simplicity (Blong 2003b). Grünthal (1993) recommended guidelines for 

good practice in developing damage grades, including (i) checking a wide range of information sources and consider their 

value, (ii) focusing more on repetitive damage than on extreme damage pattern, and (iii) additionally considering undamaged 

buildings. As an additional recommendation, Blong, (2003b) suggested that damage models should be flexible enough to allow 375 

integration of new damage patters over time. An example of such flexibility is demonstrated in Maiwald and Schwarz (2015, 

2019) when expanding an originally five-category damage grade scheme to a six-category scheme. Damage grades are not 

affected by temporal changes (increase or decrease) in market value or wages, which can affect relative and absolute losses 
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(Blong, 2003a). Due to this robustness to changes, they are easily transferable to regions with comparable building and hazard 

characteristics. This transferability is particularly important for data-scarce regions, where resources are limited for 380 

comprehensive data collection campaigns. Other characteristics of damage grades include simplicity, clarity, reliability, 

robustness, and spatial suitability (Blong, 2003b).  

3.3 Challenges and gaps in flood damage models 

Predicting damage grades using commonly-applied stage-damage curves and multivariate methods has some weaknesses. 

These weaknesses are either manifest in both, data-rich and data-scarce regions, or specific to the latter. For example, despite 385 

the wide usage of stage-damage curves, several studies have highlighted inherent uncertainties particularly regarding damage 

predictions since they consider only flood depth as the damage-influencing parameter (e.g., Merz et al., 2004, 2013; Vogel et 

al., 2012; Pistrika et al., 2014; Schröter et al., 2014; Wagenaar et al., 2017; Sturm et al., 2018b, 2018a; Fuchs et al., 2019b). 

These studies have demonstrated that flood damage is not only influenced by water depth but also by other hazard parameters 

(e.g., velocity and duration) and building characteristics (e.g., construction type, quality, and material). For instance, Merz et 390 

al. (2004) demonstrated the poor explanatory power of flood depth in explaining the variance in a data set. Although applying 

multivariate methods reduced uncertainties associated with models based on a single damage-influencing parameter, in data-

scarce regions a disadvantage of the multivariate method is the lack of empirical data for developing and validating such 

models. 

Several other challenges exist in data-scarce regions, which further limits the development of flood damage models. Merz et 395 

al. (2010) noted that selecting a method depends on data availability and knowledge of damage mechanisms. The absence of 

insurance against damage from natural hazards and effective government compensation schemes, typical for many data-scarce 

regions, contribute to a lack of data to support physical flood vulnerability assessment. For example, Komolafe et al. (2015) 

reported that no research institute or agency has a central database to document flood damage in many African countries such 

as Nigeria. They further pointed out that such scarcity of damage data might be related to the fact that the practice of flood 400 

insurance is uncommon and government compensation after flood disasters are flawed. As such, people immediately repair 

their buildings after a flood event. Additionally, regulatory policies on building standards are less well implemented in many 

areas. Similar observations were made by Englhardt et al. (2019) in Ethiopia, pointing out a considerable difference in building 

quality and value, especially in rural areas. Also, in Nigeria, FGN (2013) reported that over 60 percent of households acquire 

their houses through private resources and initiatives, thus, only a few use the services of formal institutions. This often leads 405 

to substantial differences in the quality of buildings, consequently increasing the challenges in developing building-type 

vulnerability assessment schemes. In addition, such difference in building quality further limits the application of flood damage 

models that use relative or absolute monetary losses due to a high range in replacement costs and property values. 

4 The need for linking indicators and damage grades 

A combination of damage grades (representing repeatedly-observed damage patterns) with vulnerability indicators (capturing 410 

important damage-influencing variables within a region) using an expert-based what-if approach offers a convenient and 

comprehensive method for assessing flood damage. This allows to tailor flood damage models to specific needs of data-scarce 

regions, and simultaneously to take advantage of the strengths of the methods while limiting their individual weaknesses.  

Several weaknesses highlighted in Sections 2.3 and 3.3 have limited the assessment of assessing physical vulnerability. 

However, specific aspects of these approaches can be utilized for data-scarce regions. Although the vulnerability index has 415 
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been identified to lack a stand-alone meaning, its combination with damage grades will extend its applicability for damage 

prediction. Besides, the use of damage grades will help to evaluate the performance of vulnerability indices. Current flood 

damage models were identified to be either data-intensive (multivariate methods) or to not consider other damage-influencing 

variables (stage-damage curves). However, an integration of damage grades with vulnerability indicators can provide a suitable 

model to overcome these challenges. This integration can be fostered through utilizing the expert-based synthetic what-if 420 

analysis, which has been applied for developing synthetic stage-damage curves. 

To demonstrate the added value of this linkage, we use a combination of (i) observed flood damage data, (ii) a hypothetical 

physical vulnerability index for two regions A and B, and (iii) two flood damage models developed for predicting damage 

grades. The observed damage data (see Fig. 2) was documented from a field survey conducted after the 2017 flood event in 

Suleja and Tafa, Nigeria. The flood event was caused by prolonged rainfall for about 12 hours between 8 and 9 July 2017. The 425 

flood event resulted in the loss of lives and damaged hundreds of buildings and infrastructure (Adeleye et al., 2019). A field 

study was conducted in March 2018 in order to document damage to the built environment and to interview affected 

homeowners. From the documented cases, we use three buildings to illustrate the potential weakness that may occur in using 

only a vulnerability index approach and the added value of the suggested linkage with damage grades.  

The three buildings shown in Figure 2 are constructed from sandcrete block (Fig. 2, buildings i, ii) and clay bricks (Fig. 2, 430 

building iii). The buildings have different damage patterns ranging from moisture defects on walls resulting in peeling-off of 

plaster material and slight cracks (e.g., building i), partial collapse of supporting wall (e.g., building ii) and complete collapse 

(e.g., building iii). A hypothetical physical vulnerability index is considered for the two regions A and B (see Fig. 2). In the 

two regions, hypothetical vulnerability indicators were assigned as main damage-influencing parameters. Indicators for region 

A included building material, building condition, distance to channel and flood depth. Indicators for region B included building 435 

age, building quality, sheltering effect and flood depth. Vulnerability indices for regions A and B both express relative 

vulnerability from 0 (low vulnerability) to 1 (high vulnerability). Hypothetical vulnerability indices, after aggregating 

identified indicators, are given in Figure 2. We further consider two damage grades presented by Maiwald and Schwarz (2015) 

for Germany and by Ettinger et al. (2016) for Peru. We use identified damage patterns on the buildings from the field study to 

assign a damage grade to each building.  440 

From Fig. 2, we see that although we can use the developed index to identify which building is highly or moderately vulnerable 

within a region, we cannot compare the indices between different regions because they contain aggregated information from 

different parameters. However, in the case of damage grades, although they were developed in two different regions, qualitative 

descriptions of these grades can be used to assign damage grade classes for the identified damage patterns in buildings i, ii, iii 

(Fig. 2).  445 

A combination of physical vulnerability indicators and damage grades using the synthetic approach has a number of advantages 

for data-scarce areas. These include: 

i. Employing the synthetic what-if analysis to link damage grades and damage drivers allow to overcome high data 

requirements of the multivariate method. Consequently, the linkage will capture multiple damage-influencing 

variables. Also, using the damage grades will allow to carry out performance checks on the effectiveness and 450 

robustness of selected vulnerability indicators. 

ii. The linkage will enable to compare consequences of flood hazards across spatial and temporal scales in data-

scarce regions. Spatial comparability can be achieved through the identification of similar damage characteristics 

(Fig. 2) between regions with similar building types and hazard characteristics. Temporal comparability can be 
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achieved by relating the severity of observed damage grades between different flood events since damage grades 455 

are not readily affected by market values or wages. In addition, using similar hazard scenarios damage can be 

estimated and compared between regions while still considering individual damage drivers (Fig. 2).  

iii. Since damage grades are physically observable features, the linkage will foster the provision of an easy 

communication tool for stakeholders and community residents on the consequences of hazards.  

5 Conceptual framework 460 

In this section, we present a new conceptual framework that aims to link physical vulnerability indicators and damage grades 

in order to make use of their individual strengths for data-scarce regions. We first provide background information on 

terminologies used within the framework and second present step-by-step details on how to operationalize the framework. 

5.1 Background for operationalizing the new framework 

Vulnerability indicators are used to capture damage-influencing variables, which include characteristics of flood hazard, the 465 

built environment, and its surroundings. Damage grades represent the physical consequences of hazard impacts on a building 

that depends on both hazard and building characteristics. Figure 3 shows the conceptual framework and the proposed approach 

for linking physical vulnerability indicators and damage grades, the terminology is given below: 

Vulnerability: The degree to which an exposed building will experience damage from flood hazards under certain 

conditions of exposure, susceptibility, and resilience (adapted after Balica et al., 2009).  470 

Impact (action) and resistance parameters: The framework considers two major damage-influencing parameters, 

action (impact) and resistance parameters. The action and resistance parameters have been identified by Thieken et 

al. (2005) and Schwarz and Maiwald (2007) as the primary classes of damage drivers. Impact (or action) parameters 

relate to the flood parameters comprising of hazard frequencies and magnitudes (Thieken et al., 2005). Resistance 

parameters are related to the predisposition of the building to suffer damage, either permanently (e.g., building 475 

material) or temporarily (e.g., measures for flood preparedness) (Thieken et al., 2005). In the framework, resistance 

parameters comprise elements of the building and its surroundings, which are divided into susceptibility, exposure, 

and local protection parameters.  

Exposure: Refers to the extent to which a building is spatially or temporarily affected by a flood event (adapted after 

Birkmann et al., 2013). Exposure parameters include features of the natural and built environment that either increase 480 

or decrease the impact of floods on buildings, such as topography and distance to the flood source.  

Susceptibility: Refers to the disposition of a building to be damaged by a flood event (adapted after Birkmann et al., 

2013). Susceptibility parameters relate specifically to the structural characteristics of the building at risk, neglecting 

any effects of local protection measures that may provide flood protection.  

Local protection: Refers to deliberate or non-deliberate measures that are put in place and can reduce the impact of 485 

the floods on a building. These measures can be directly included in the building structure e.g. elevation of the 

entrance door, or measures located in the immediate surrounding of a building. While many local structural protection 

measures may not be primarily constructed as a protection mechanism against floods, they reduce the impact of floods 

on a building (Holub and Fuchs, 2008; Attems et al., 2020). In the context of this framework, a fencing wall will be 

an example of a local protection measure.  490 
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5.2 Operationalizing the framework 

In order to operationalize the new framework, three phases are proposed, (i) developing a vulnerability index, (ii) developing 

a damage grade classification, and (iii) linking the vulnerability index to the damage grade classification.  

5.2.1 Phase 1: Developing a vulnerability index 

We develop a vulnerability index aimed at systematically integrating damage-influencing parameters. These parameters 495 

represent vulnerability indicators or damage drivers adapted for a selected region. As a result, we structure indicators into 

impact and resistance parameters as shown in Fig. 3 (phase 1). In order to allow an evaluation of how different components 

contribute to damage, we categorize resistance parameters into separate components, exposure, susceptibility, and local 

protection. Application of the method is aimed at the micro-scale level, however, it can be applied at meso- or macro-scale if 

data are available. Generally, the selection, weighting, and aggregation of indicators are similar to the procedure discussed in 500 

Section 2.2. Since our focus is on data-scarce regions, we focus the framework on expert-based approaches. 

Indicators are mainly selected using expert surveys. Where possible, experts should include individuals from different 

disciplines in order to have a wide-ranging assessment. Expert surveys are carried out by conducting standardized interviews 

using questionnaires. The main focus of the questionnaire is on asking each expert to identify parameters representing damage 

drivers within a region. A set of indicators can be identified and included in the questionnaire, with the support of a literature 505 

review. Experts can then either select from the suggested indicators or propose new ones. All variables suggested by experts 

at this step serve as pre-selected indicators. 

Indicator (or parameter) weighting is carried out using an expert-based approach. Here, experts are asked to weight how each 

pre-selected variable influences damage. The weighting is carried out using a scale of influence table based on Saaty (1980), 

as shown in Table 4. Because the table by Saaty (1980) is originally used for making a pair-wise comparison between two 510 

parameters, it was slightly modified so as to be used in weighting pre-selected parameters with respect to how they influence 

flood damage. The scale (Table 4) will help to bring consistency and comparability in weighting when using the framework. 

Using Table 4, experts can assign a certain influence (e.g., slight, strong) for each pre-selected indicator. For each parameter, 

a mean value of the assigned weights from all experts is calculated and checked based on Table 4. The mean value here 

represents the central value used to communicate how all the experts evaluate a parameter based on its influence on damage 515 

within a region. The mean weights for each parameter are used for the final selection of indicators. For example, a mean weight 

of 2 from Table 4 will infer that on average, experts consider the parameter to have only a slight effect on damage. A decision 

has to be made on a threshold (e.g., 1, 2 or 3 from Table 4) for parameter inclusion for the final selection. The threshold will 

depend, however, on the specific need (e.g., level of accuracy) or aim (e.g., identifying major damage-influencing parameters) 

of the study. Only parameters included in the final selection will be used in the indicator aggregation step. Next, using mean 520 

values for each indicator that has passed the final selection, the AHP is implemented to determine indicator weights (see 

Section 2). For detailed information on the procedure for implementing the AHP, we refer the reader to JRC and OECD (2008) 

and Saaty (1980). 

A normalized weighted additive method is used for aggregating indicators. As shown in Fig. 3 (phase 1), selected parameters 

for exposure are aggregated to derive a Building Exposure Index (BEI). The BEI is a measure of the extent to which a building 525 

is likely to be damaged as a result of (i) the spatial location relative to the flood source and (ii) surrounding buildings. Indicators 

for susceptibility and local protection are aggregated to derive a Building Predisposition Index (BPI). The BPI provides a 
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measure of the extent to which a building is likely to be damaged based on the building characteristics and available protection 

measures. Both BEI and BPI are aggregated to derive a Building Resistance Index (BRI). The BRI measures expected 

resistance a building can offer at a specific degree of impact, given its predisposition and exposure. Hence, given the same 530 

degree of hazard impact, a building with a high BRI (high resistance) is expected to experience less damage compared to a 

building with a low BRI (low resistance). As pointed out earlier, a building-type vulnerability classification can be challenging 

in data-scarce areas. Therefore, we propose the use of the BRI to classify buildings into different resistance classes (e.g., low, 

moderate and high). Such classifications of buildings into vulnerability categories have been shown to facilitate a better 

understanding of the distribution of damage data (Schwarz and Maiwald, 2008). Elements within the same vulnerability class 535 

are expected to experience similar damage when impacted by the same degree of hazard.  

The last step in phase 1 is to utilize the additive model to aggregate flood hazard parameters (e.g., depth, duration) in order to 

derive a Building Impact Index (BII). The BII is used to express the combined effect of hazard parameters on a building 

structure. The BII is computed using interview data collected after a flood event (Malgwi et al., submitted). 

5.2.2 Phase 2: Developing the damage grades 540 

We adopt a slightly modified procedure outlined in Naumann et al. (2009) for developing damage grades. Figure 3 (phase 2) 

shows the systematic steps for developing the damage grades using an expert-based approach. The main aim of this step is to 

identify commonly observed damage patterns within a region and categorize them into classes. As such, basic outputs of this 

phase are classes of different damage patterns ordered into damage grades.  

Sourcing for damage patterns within a region is carried out by analyzing observed damage data or by structured interviews 545 

with experts or community residents. Such structured interviews are undertaken using questionnaires in flood-prone 

communities. Community residents or experts are asked which damage patterns are observed after flood events. They are also 

asked on how frequent these observed patterns occur after floods. In addition, questions on which damage types are usually 

repaired (or replaced) after flood events can be asked. From such information, the original damage can be deduced. Other 

sources of information are literature review, review of damage reports, news and social media (videos and images). Such a 550 

wide range of information sources is particularly encouraged by Grünthal (1993) in order to have a comprehensive damage 

grade classification. Attention should also be given to the proportion of buildings observed to exhibit each damage grade 

(Grünthal, 1993). The damage grades should not focus on isolated (uncommon) damage patterns, but more attention should 

be given to frequently observed patterns. 

We present an overview of a synthetic method for developing a damage model as described by Naumann et al. (2009). The 555 

necessary steps include: 

i. Identification of building types and building representatives: A first step for developing a flood damage model is to 

assess building types within a region and select building representatives (Walliman et al., 2011; Maiwald and 

Schwarz, 2015). The assessment of building types can be carried out based on field surveys, expert surveys or remote 

sensing. Where a large-scale building assessment is required, a method conceptualized by Blanco-Vogt and Schanze 560 

(2014) for semi-automatic extraction and classification of buildings can be applied. The representatives should include 

building types (material, form of construction and quality) that are predominant within a region. Additionally, 

Naumann et al. (2009) noted other attributes used for classifying buildings, these include the period of construction 

and the original use, the characteristic formation of buildings, and spatial patterns and geometry. In the framework, 

we use the BRI for classifying buildings into different categories since it ideally captures parameters that influence 565 
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damage. A suitable classification for the BRI is a generic categorization into ‘low BRI’ class, ‘moderate BRI’ class 

and ‘high BRI’ class (Fig. 3, Phase II). The class represents buildings that will offer a low (low BRI), medium 

(moderate BRI) and good (high BRI) resistance if we consider the same impact magnitude. Such a generic building 

classification, which is not building-type based, is especially suitable in areas with a high variability in building 

quality. From each BRI class, a representative building is selected. Suitably, these representatives can be selected 570 

from different building types and should communicate the typical characteristics of buildings in the BRI class. 

ii. Identification and grading of regional damage patterns: Flood damage to buildings can be generally categorized into 

three major parts, these include water penetration damage (moisture), chemical damage (pollution and contamination) 

and structural damage (Schwarz and Maiwald, 2007; Walliman et al., 2011). These three general damage categories 

can serve as a basis for developing further damage classification in regions where such damage assessment was not 575 

previously carried out. For each BRI representative, different patterns of damage are identified. Patterns that are 

repeatedly observed are indications of a damage grade category (Maiwald and Schwarz, 2015). Where the damage 

patterns for different representatives are the same, a single damage grade scheme can be adopted. However, where 

the damage patterns are substantially different, the damage grade is adapted for each BRI representative. This step 

ensures that predominant building and damage types are considered. 580 

In the next step, identified damage patterns are assigned to a scale representing the degree of damage severity. A 

commonly applied scale for damage grades is the ordinal scale (e.g., Table 3). The ordinal scale provides suitable 

classes for damage grades since the intervals between different categories are not consistent. For example, in Table 

3, the difference in severity between damage grades 1 and 2 is not the same as between 2 and 3. Minimum damage 

(usually water contact with external walls or water penetration) and maximum damage (complete collapse or washing 585 

away of a building) have to be decided. Additionally, a decision has to be made on how many damage grades to 

consider. As earlier pointed out, a balance has to be set between comprehensiveness and simplicity. Where difficulties 

exist in deciding which damage grade is of higher or lower severity, local technicians or other persons familiar with 

constructive issues can be asked to estimate repair cost for each damage grade. In this case, a high repair cost will 

infer a higher damage grade. 590 

5.2.3 Phase 3: Expert ‘what-if’ analysis 

With a focus on data-scarce regions, we present steps to link damage-influencing variables (from phase 1) and predominant 

damage patterns (from phase 2). Expert knowledge is utilized to predict damage grade(s) for each representative building type 

(BRI class) using synthetic flood depths. The synthetic flood depths will represent scenario-based flood depths, which are 

typical for a region. Intervals for synthetic flood depths are integrated using the BII (Fig. 3).  595 

In the what-if analysis, expert knowledge on regional flood damage mechanisms is crucial. Based on a given flood depth, 

experts propose a probable damage grade for a specific building type. Estimating a single damage grade for a given water 

depth can result in uncertainties. Therefore, we propose the use of three probable damage states to capture the range of possible 

damage. Figure 3 (phase 3) shows an idealized curve depicting the relationship between damage grades, BII and BRI. The 

methodical steps for linking damage grades with the BRI and BII were adopted from and modified after Naumann et al. (2009) 600 

and Maiwald and Schwarz (2015). Steps for the linkage include: 

i. To develop suitable intervals for the BII, such as flood depths in steps of 0.5 or 1 meter intervals. 
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ii. For each defined interval of BII, local experts estimate the expected damage for each BRI class. Experts should 

provide three possible damage grades for each BII interval. The possible damage grades should include (i) most-

probable damage grades, (ii) lower-probable damage grades, and (iii) higher-probable damage grades. As an 605 

example, if a representative building type (e.g., one-story sandcrete block building) is selected from the BRI 

category “low resistance”, experts will estimate for each BII interval (e.g., 1 m water depth) the damage to be 

expected. Such damage estimates can be (i) most-probable: slight cracks on supporting walls, (ii) lower-probable 

damage: only water penetration, and (iii) higher-probable damage: heavy cracks on supporting walls.  

iii. For each BRI class, a suitable curve is used to join most-probable, lower-probable and higher-probable damage 610 

for all BII values, as exemplified in Figure 3 (phase 3). 

6 Conclusion 

With increasing magnitudes and frequencies of floods, assessing the physical vulnerability of exposed communities is crucial 

for reducing risk. The success of risk reduction methods is even more critical for data-scarce areas, which are mostly 

developing countries with limited capacity to cope with flood risk. Physical vulnerability assessment incorporates the 615 

identification of major damage drivers and the evaluation of possible future damage to exposed buildings. For data-scarce 

regions, such a vulnerability assessment, which can be adapted to regional building types, may serve as a first step in overall 

risk reduction. In this study, we presented reviews and concepts for assessing the physical vulnerability of buildings. Two 

approaches considered were the vulnerability indicator method, which is used for identifying regional damage drivers, and the 

damage grades approach, used for classifying commonly observed damage patterns. In the review, we provided background 620 

information, applications and specific challenges for implementing these approaches in data-scarce regions. The review 

provides a state of the art in physical vulnerability assessment, particularly in expert-based methods, and can serve as a useful 

source of information for future studies. The proposed conceptual framework focused on linking the vulnerability indicator 

method to damage grades using an expert-based approach. Combining such methods has been identified as a useful way to 

enhance the utility and robustness of individual physical vulnerability assessment methods while limiting their weaknesses. 625 

The proposed framework focuses on enhancing regional adaptability of physical vulnerability assessment methods and 

fostering model transfer between different data-scarce regions. Three phases were required to operationalize the framework, 

(i) developing a vulnerability index, (ii) identifying predominant damage grades or patterns, and (iii) carrying out a what-if 

analysis to link identified damage grades to flood characteristics for each category of building resistance.  

In developing the vulnerability index, we considered hazard parameters (BII) and variables relating to the characteristics of a 630 

building and its surroundings (BRI). The BRI aggregates information on exposure, susceptibility and local protection of a 

building, hence connects the resistance of a building relative to other buildings assuming the same hazard magnitude. The 

proposed classification of the BRI is not based on building types (e.g., Maiwald and Schwarz, 2015) but is rather a classification 

based on aggregated information on exposure, susceptibility, and local protection such as property-level adaptation measures. 

We recommend such a generic classification of building types (e.g., low, moderate, high resistance) especially in regions with 635 

high variation in building quality. Systematic documentation of regional building damage patterns is required for the 

framework so that frequently observed damage patterns (e.g., moisture defects, cracks on supporting elements, partial collapse, 

complete collapse) can be integrated into a damage grade classification. As the framework is not case-study sensitive, damage 

categories from other studies can provide a useful basis for categorizing damage grades. Furthermore, expert-based what-if 

analysis is used to assign identified damage grades to each interval of the BII (e.g., 0.5m intervals). As shown in Fig. 3, this is 640 

carried out for each class of the BRI (e.g., low, moderate, high resistance). Where empirical data are available, even in limited 



 

 

18 

 

quantity, they should be used to support the what-if analysis. The use of three damage states (most probable, lower probable 

and higher probable) for each BII interval is proposed so that the actual damage, for a given impact level and a specific BRI 

class, can be captured. This range can be reduced as empirical damage data becomes available. In particular, the potential of 

citizen-based data sources such as information taken from interviews or social media offers a good opportunity for damage 645 

data collection. The framework is flexible, allowing vulnerability indicators and damage grades to be updated when new post-

flood data becomes available. Consequently, curves generated between BII, BRI and damage grades can be continuously 

updated over time. In this way, the new framework allows temporal changes in damage drivers to be integrated.  

The use of the new framework is recommended especially in data-scarce regions where information on damage drivers and 

damage patterns are limited. Its applicability for predominant building types, such as the sandcrete block and clay buildings in 650 

Africa, has the potential to promote disaster mitigation in such regions. The application of the new framework to evaluate and 

compare model performance with a data-driven model is also encouraged. Such an analysis will communicate the success of 

the framework and also allow for further improvement. Based on the modular structure of the framework, it has the potential 

to be adapted for different environments, hazard types, and vulnerability types. 
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Tables 920 

Table 1: Applications of physical vulnerability indicators including methods used for variable selection, weighting, and aggregation, and parameters needed for assessing physical (building) 

vulnerability. (AHP = Analytical Hierarchy Process, PCA = Principal Component Analysis). 

Author(s) Variable selection Variable weighting Vulnerability 

aggregation 

 

Parameters considered  

(pertaining to building vulnerability) 

 Preliminary Final (used in 

model or equation)  

Approach Consideration for 

scoring/weighting 

 

  

Balica et al. (2009) Literature 

 

Experts Equal (no) 

weights 

Conditions that induce 

flood damage 

Direct additive method Flood depth, duration, velocity and return 

period, proximity to the river, land use, 

topography (slope), building codes 

Kienberger et al. 

(2009) 

Experts  Experts (Delphi 

approach) 

AHP Relative importance 

and contribution to the 

vulnerability of people 

Weighted additive 

method 

Buildings, 

infrastructure (transportation system), 

land cover 

Müller et al. (2011) Literature,  

field survey, 

experts  

 

Experts 

  

Expert 

knowledge, 

household 

surveys 

Relevance of selected 

variables with respect 

to flood risk  

Weighted additive 

method 

Material for roof, walls, and floor, the position 

of building in relative to the street level, 

the proportion of green spaces per building 

block, flood protection measures 

Kappes et al. (2012) Literature  Experts Expert 

appraisals 

Ability of the building 

to withstand the impact 

of the process 

Weighted additive 

method 

Building type, building use, building condition 

(using age and maintenance), building material, 

number of floors, row towards the river, trees 

towards the river 

Thouret et al. 

(2014) 

Literature, 

experts 

Experts Equal 

weights, 

experts, 

PCA 

Weakness relative to a 

given hazard 

magnitude 

Direct additive method Heterogeneity of city block (using building size 

and use), building type (height and number of 

story, construction material, roof type, and 

building condition), the shape of the city block, 

building density 

Blanco-Vogt and 

Schanze (2014) 

Literature, 

experts 

Literature, 

experts 

Literature, 

experts 

 

General resistance 

characteristics after 

flooding (biological, 

chemical and material) 

Weighted additive 

method 

Building height, size, elongatedness 

(height/width ratio), building compactness, 

adjacency, roof, slabs, external fenestration, 

external wall, floor 
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Godfrey et al. 

(2015) 

Literature, 

experts 

Experts AHP  Based on hazard 

impact 

Normalized weighted 

linear combination 

Floor height, number of floors, structural 

type, building size, wall material, presence of 

basement, number of openings, quality of 

construction, building maintenance, protection 

wall 

Behanzin et al. 

(2015) 

Literature Experts Equal (no) 

weights 

- Direct additive method Building material, roof material, floor material, 

land cover around the building 

Akukwe and 

Ogbodo (2015) 

Literature PCA  PCA Significance in 

explaining the variance 

in indicator data set 

Weighted additive 

method 

Building material, proximity to water, flood 

depth, flood frequency 

Fernandez et al. 

(2016) 

 

Literature PCA No weights 

and PCA 

Significance in 

explaining the variance 

in the data set 

Direct and weighted 

additive method 

Building density, number of floors, construction 

period, building material 

Ntajal et al. (2016) Literature, 

experts 

Experts Equal (no) 

weights 

- Direct additive method Distance to the river, flood depth, flood 

duration, building and roof material, land cover 

(the area around the building) 

Krellenberg and 

Welz (2017) 

Literature, 

experts 

Experts Equal (no) 

weights 

Probability to be 

exposed under certain 

socio-environmental 

conditions  

Direct additive method Building quality, building structure, protection 

wall, trees in foreyard, roof form, land cover, 

housing condition 

Sadeghi-Pouya et 

al. (2017) 

Literature, 

experts  

Experts Experts 

(scoring) 

Variable influence on 

vulnerability 

Direct additive method Building quality (material), building age, 

number of floors, land use 

Carlier et al. (2018) Literature  Literature, 

experts 

Experts Total consequence of a 

natural hazard on an 

element at risk 

Weighted additive 

method  

Building material, building condition, building 

age, building function, opening in hazard 

direction, building in the area affected by flood 

(recurrence interval), land cover 
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Table 2: Applications of flood damage models, indicating the data source, approach for evaluating variable significance, the scale of application, the parameters needed for developing the 

vulnerability function, and, where appropriate, the validation or performance test (PCA = Principal Component Analysis). 925 

Author Case study/ 

region of 

application 

Study aim Data source for 

physical 

vulnerability 

indicators 

Variable 

significance  

Scale of 

application 

Sample 

size   

Parameters considered for 

developing the vulnerability 

function (pertaining to physical 

-building vulnerability) 

Validation or 

performance 

test 

Thieken et al. 

(2005) 

Germany Investigation of 

flood damage and 

influencing 

factors 

Computer-aided 

phone interviews 

PCA and 

quantile 

classification 

Micro-scale 

(individual 

building) 

1697 Flood depth, duration and 

velocity, contamination, 

precautionary measures, building 

type, building size, building 

quality  

  

Thieken et al. 

(2008) 

Germany Develop a model 

for flood loss 

(direct monetary) 

estimation for 

private sector 

Computer-aided 

phone interviews 

(Multi)factor 

analysis  

Micro-scale 

(individual 

building) and 

meso-scale 

(regional) 

1697 Flood depth, building type 

(occupancy), building quality, 

precaution, contamination 

Using a 

different data 

set 

Vogel et al. 

(2012) 

Germany Flood damage 

assessment of 

residential 

buildings 

Computer-aided 

phone interviews 

Bayesian 

network 

Micro-scale 

(individual 

building) 

1135 Flood depth, velocity and 

duration, contamination, return 

period, precautionary measures, 

building type (occupancy), 

building size (floor space), 

building value, number of flats in 

a building  

Using a 

subset of 

training data 

(bootstrap 

samples) 

Merz et al. 

(2013) 

 Germany Develop tree-

based damage 

prediction models 

and compare their 

performance to 

established 

models 

Computer-aided 

phone interviews 

Regression trees 

and bagging 

decision trees 

 

 

Micro-scale 

(individual 

building) 

1103 Flood depth, velocity and 

duration, contamination, return 

period, precautionary measures, 

building type (occupancy), 

building size (floor space), 

building quality 

Using a 

subset of 

training data 

Spekkers et 

al. (2014) 

The 

Netherlands 

Investigate 

damage-

influencing 

factors and their 

relationships with 

rainfall-related 

damage 

Insurance data 

data and data 

from government 

agencies 

Poisson 

(decision) trees 

Meso-scale 

(district) 

  Rainfall (intensity, volume, and 

duration) related variables, 

building age, ground floor area, 

real estate value  

Using a 

subset of 

training data 
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Ettinger et al. 

(2016) 

Peru Analysis of 

building 

vulnerability 

Field Survey and 

analysis of high 

spatial resolution 

images 

Logistic 

regression 

Micro-scale 

(individual 

buildings) 

898 Distance from the channel, 

distance from bridge, shape of 

city block, structural building 

type (material), building footprint 

Using a 

subset of 

training data 

Maiwald and 

Schwarz 

(2015) 

Germany Develop 

engineering 

vulnerability-

oriented for 

damage and loss 

prediction 

Questionnaire 

survey, computer-

aided phone 

interviews, 

evaluation of 

damage reports, 

flood simulation 

Tangent 

hyperbolic 

(damage grade) 

and an 

exponential 

function 

(relative loss) 

Micro-scale 

(individual 

building) and 

meso-scale 

(regional) 

  Flood depth and velocity, specific 

energy (flood depth, velocity, and 

acceleration due to gravity), 

building type, presence of 

basement, building location with 

respect to flow direction, number 

of stories 

Using a 

different data 

set 

Wagenaar et 

al. (2017) 

The 

Netherlands 

Prediction of 

absolute 

(monetary value 

for content and 

structural) flood 

damage 

Experts, flood 

simulation, 

cadastre 

information 

Bagging trees Micro-scale 

(individual 

buildings) 

4398 Damage data (content and 

structural), flood depth, duration 

and velocity, building footprint, 

return period, building age, 

building area (footprint, living), 

basement, detached house 

Using a 

'withheld' part 

of the data set 
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Table 3: Damage grades developed by Maiwald and Schwarz (2007) showing structural and non-structural damage to 

buildings. For each damage grade class, a description and a graphical representation are shown. The grey colour in the 

graphical representation indicates flood depth. 

Damage 

grade class 

 

Damage Description Graphical representation 

 Structural Non-structural 

 

  

D1 No Slight Only penetration and  

pollution 

 

D2 No to slight Moderate Slight cracks in  

supporting elements 

Impressed doors and  

windows 

Contamination 

D3 Moderate Heavy Major cracks and/or  

deformations in  

supporting walls and  

slabs 

Settlements 

D4 Heavy Very heavy Structural collapse of  

supporting walls, slabs 

D5 Very heavy Very heavy Collapse of the building  

or of major parts of the  

building 

 930 

  



 

 

32 

 

Table 4: Table of influence for indicator weighting, ranging from slight influence of an indicator (1) to extreme influence (9) 

(modified after Saaty (1980)). 

1 2 3 4 5 6 7 8 9 

Slight 

influence 

Slight to 

moderate 

influence 

Moderate 

influence 

Moderate 

to strong 

influence 

Strong 

influence 

Strong to 

very 

strong 

influence 

Very 

strong 

influence 

Very 

strong to 

extreme 

influence 

Extreme 

influence 
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Figures 935 

Figure 1: Steps and commonly applied methods for developing a physical flood vulnerability index. Steps include the 

indicator selection, the indicator weighting, and the indicator aggregation. Green box (applied for initial indicator selection) 

and blue box (applied for final indicator selection) 

 940 
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Figure 2: Illustration of the need for linking vulnerability index and damage grades using real damage cases (i, ii, and iii) 

documented after a 2017 flood in Suleja/Tafa, Nigeria, hypothetical vulnerability indicators and regions (A and B), and damage 

grades developed from studies by Maiwald and Schwarz (2015) and Ettinger et al. (2016).  945 
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Figure 3: The proposed conceptual framework, linking vulnerability indicators to damage grades so that vulnerability to the built environment can be better assessed in data-scarce regions. 

The framework consists of three consecutive steps (phases) from the vulnerability index development (assuming different building characteristics but similar hazard magnitudes) to the 950 

damage grades (assuming different building characteristics and changing hazard magnitudes) and finally an expert-based “what-if”-evaluation, leading to functions linking damage grades 

from phase II to Building Impact Indices (BIIs) from phase I for each BRI class. 
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Appendix 

Table A1: Overview of common elements for framing the vulnerability indicator approach for flood hazards, indicating the hazard type and vulnerability dimensions, the implementation 955 

in the risk cycle, the scale, and the index output as well as the data source (PTVA = Papathoma-Koehle Vulnerability Assessment Model). 

Author Hazard 

type 

Region of 

application 

Aim of the assessment Vulnerability 

dimension 

 

Implementa

tion in risk 

cycle 

Scale Index output Data source 

 

Papathoma et al. 

(2003) 

Tsunami  Gulf of Corinth, 

Greece 

Assessing the 

vulnerability of coastal 

areas to tsunami 

Physical, 

economic and 

social 

Preparedness Micro-scale 

(individual 

buildings) 

Building and 

human 

vulnerability index  

Field survey 

Dominey-Howes 

and Papathoma 

(2007) 

Tsunami  Maldives, India Checking the performance 

of PTVA 

Physical, 

economic, social 

and environmental 

Preparedness Micro-scale 

(individual 

buildings) 

Building and 

human 

vulnerability index 

Field survey 

Balica et al. 

(2009) 

River flood Timisoara, 

Romania; 

Mannheim, 

Germany; Phnom 

Penh, Cambodia 

Assessing the conditions 

influencing flood damage 

at various spatial scales 

Physical, 

economic, social 

and environmental 

Preparedness Meso-scale 

(regional) 

Flood vulnerability 

index 

 - 

Kienberger et al. 

(2009) 

River flood Salzach catchment, 

Austria 

Identification of hotspots Physical, 

economic and 

social 

Mitigation 

and 

preparedness 

Meso-scale 

(regional) 

Vulnerability index Government 

agency 

Dall’Osso et al. 

(2009) 

Tsunami  Sydney, Australia Assessing the 

vulnerability of buildings 

to tsunami and evaluating 

the use of the PTVA  

Physical Mitigation 

and 

preparedness 

Micro-scale 

(individual 

buildings) 

Relative 

vulnerability index 

Field survey 

Müller et al. 

(2011) 

(Urban) 

flood 

Peñalolèn and La 

Reina 

Municipalities, 

Santiago de Chile 

Empirical investigation of 

vulnerability towards 

flood 

Physical and 

social 

Mitigation Micro-scale 

(entire building 

blocks) 

Vulnerability index 

(adapted after Haki 

et al., 2004) 

Census data, field 

survey and satellite 

data 

Kappes et al. 

(2012)  

River flood, 

flash flood 

Faucon 

municipality, 

Assessing the hazard-

specific physical 

Physical, social 

and environmental 

Mitigation 

and 

preparedness 

Micro-scale 

(individual 

building) 

Relative 

vulnerability index 

Research agency 

and aerial-photo-

interpretation 
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(among 

others) 

Barcelonnette 

basin, France 

vulnerability of buildings 

towards multi-hazard 

 

Balica et al. 

(2012) 

Coastal 

flood 

Buenos Aires, 

Argentina; 

Calcutta, India; 

Casablanca, 

Morocco; Dhaka, 

Bangladesh; 

Manila, 

Philippines; 

Marseille, France; 

Osaka, Japan; 

Shanghai, China; 

Rotterdam, The 

Netherlands  

Developing a coastal city 

flood vulnerability index 

Physical, social, 

economic and 

administrative 

Preparedness Meso-scale 

(regional) 

Coastal city flood 

vulnerability index 

Government 

agencies and data 

available online 

Blanco-Vogt and 

Schanze (2014) 

River flood Magangué, 

Columbia 

Assessing physical flood 

susceptibility on a large 

scale 

Physical Recovery, 

mitigation, 

and 

preparedness 

Micro-scale 

(individual 

buildings) 

Function relating 

susceptible 

material volume 

and water depth 

Very high 

resolution spectral 

and elevation data 

and field survey 

Thouret et al. 

(2014) 

Flash flood Arequipa, Peru Assessing vulnerability Physical and 

environmental 

Mitigation Micro-scale 

(entire building 

blocks) 

Vulnerability index  Field survey 

Bagdanavičiute et 

al. (2015) 

Coastal 

flood 

Coast of Lithuania Assessing coastal 

vulnerability 

Physical Mitigation Meso-scale 

(regional) 

Coastal 

vulnerability index 

 Field survey 

Behanzin et al. 

(2015) 

River flood Niger River 

Valley, Bénin 

Assess vulnerability and 

risk 

Physical, 

economic, social 

and environmental 

Mitigation 

and 

preparedness 

 

Meso-scale 

(community) 

Vulnerability and 

risk index 

Field survey,  

other agencies 

Godfrey et al. 

(2015) 

River and 

flash flood, 

slow-

moving 

landslide, 

debris flow 

Nehoiu City, 

Buzău County, 

Romania 

Assessing the physical 

vulnerability of buildings 

to hydro-meteorological 

hazards in data-scarce 

regions 

Physical Mitigation 

and 

preparedness 

Micro-scale 

(individual 

buildings) 

Vulnerability index 

 

Field survey and 

orthophoto 

interpretation 

Akukwe and 

Ogbodo (2015) 

River and 

coastal 

flood  

Port Harcourt, 

Nigeria 

Showing spatial variations 

in vulnerability 

Physical, 

economic and 

social 

Mitigation 

and 

preparedness 

Meso-scale 

(regional) 

 

Vulnerability Index  

(adapted after 

Deressa et al., 

2008) 

Field survey, 

survey and map 

measurements 
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Fernandez et al. 

(2016) 

 

River flood Vila Nova de Gaia, 

Northern  

Portugal  

Providing an automated 

framework for classifying 

vulnerability of 

neighborhoods 

Physical, 

economic, social 

and environmental 

Preparedness Micro-scale 

(neighborhood) 

Flood Vulnerability 

Index and  

Government 

agency 

Ntajal et al. 

(2016) 

River flood Mono River Basin, 

Togo 

Assessing and mapping 

vulnerable communities 

Physical, 

economic, social 

and environmental 

Mitigation 

and 

preparedness 

Meso-scale 

(community) 

Index for exposure, 

susceptibility, 

capacity, and 

vulnerability 

Field survey, 

other agencies 

Krellenberg and 

Welz (2017) 

Flood 

(urban) 

 

Metropolitan area 

of Santiago de 

Chile 

Assessing urban 

vulnerability 

Physical, 

economic, social 

and environmental 

Mitigation Micro-scale 

(building block) 

Vulnerability Index Field survey, 

government 

agency, and 

satellite imagery 

Sadeghi-Pouya et 

al. (2017) 

River flood Mazandaran, Iran Assessing vulnerability Physical, 

economic, social 

and environmental 

Mitigation 

and 

preparedness 

Micro-scale 

(building block) 

Relative 

vulnerability index 

Field survey and 

government agency 

Carlier et al. 

(2018) 

River flood Upper Guil 

catchment, 

southern French 

Alps 

Assessing the physical 

and socio-economic 

consequence of hazards 

on elements at risk 

Physical and 

social 

Mitigation Micro-scale 

(individual 

buildings) 

Potential damage 

index, potential 

consequence index 

Government 

agency, field 

survey, and aerial 

imagery 

Yankson et al, 

(2017) 

Coastal 

flood 

Accra, Ghana Understanding flood risk 

in coastal communities 

Physical and 

social 

Mitigation Meso-scale 

(community) 

Impact index 

vulnerability index 

Field survey 

Percival et al. 

(2018) 

Coastal 

flood 

Portsmouth, United 

Kingdom 

Assessing risk from 

diurnal floods 

Physical, 

environmental, 

social, economic 

Mitigation Micro-scale 

(neighborhood) 

Coastal flood 

vulnerability Index, 

Coastal flood 

hazard Index, 

Coastal flood risk 

index 

Census data 

Papathoma-

Köhle et al. 

(2019) 

Tsunami Apulia, Italy Assessing vulnerability 

from tsunami hazards to 

the built environment 

Physical 

vulnerability 

Mitigation 

and 

preparedness 

Micro-scale 

(neighborhood) 

Building 

vulnerability index 

Field survey 

 


