
Note: This file includes: (1) response to the Editor; (2) point-by-point response to the reviewers’ comments; and (3) a marked-
up manuscript version showing the changes. All below-mentioned line numbers refer to the original manuscript which are
consistent with the line numbers mentioned in the reviewers’ comments.

Response to the Editor

Editor decision: Your manuscript has been revised and can be accepted with minor revisions for publication. Please submit a
new version of the article following the referee’s suggestion.

Response:

Dear Editor,

we greatly appreciate your time for the review process of our manuscript. Besides adjustments requested by the reviewers, we
also corrected the following typos after carefully checking our manuscript.

- Change "parametrized" to "parameterized" (in line 139, line 322, and caption of figure 4).

- Change "spaial" to "spatial" (in caption of figure 4).

In addition, during the final check we came to realize that one of our responses to reviewer #2 needed further clarification.
Essentially, we believe it is a minor issue, which does neither affect the results and conclusions of our study nor the essence of
our response letter. In order to be transparent about any later changes, we highlighted any deviation from our original response
letter. We sincerely apologize for this inconvenience.

Kind regards,

Hu Zhao, on behalf of the co-authors
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Point-by-point response to the comments of reviewer #1

Dear reviewer #1,
We greatly appreciate your professional comments on our manuscript, which helped to improve the quality and readability of
our manuscript. Our point-by-point response to each of your comments are as follows.

Comment: The authors attempt to estimate the DEM uncertainty through stochastic simulation and access the impacts of
topographic uncertainty on simulation-based landslide run-out analyses. The subject is likely to be able to attract a broad range
of the engineers and geoscientists. Overall, the article is well organized and scientifically sounds, in general. However, the 5m
and 2m DTM datasets used in this study may not be the best choice. More detailed, high-accurate DTMs are recommend, such
as free access Airborne LiDAR, even though the main findings by the authors may not been affected.

Response: Many thanks for the overall positive feedback. We totally agree with the reviewer that other high-accurate DTMs
like free access Airborne LiDAR should be used eventually. High-accurate airborne LiDAR datasets are at present mostly
available in developed countries, like Finland, US, Spain, etc. As stated in the introduction, "despite the broad variety of
existing DEM sources, however, we are still facing (and will face in the near future) a very limited availability of high-
accuracy DEMs for some regions that are particularly prone to landslide hazards, e.g. in Asia" (line 52-54). In this paper it was
our goal to assess the impact of DEM uncertainty through stochastic simulation using a benchmark case that is well-known to
the community. We hence decided for the 2008 Yu Tung Road landslide. To our knowledge, there was no free access Airborne
LiDAR covering the area of interest when we conducted the study. Considering that the main findings may not been affected,
as the reviewer points out, we still use the 5m and 2m DTM datasets for our current study that demonstrates the principal
feasibility of our approach. Meanwhile, we are in active discussion with collaborators to apply our developed workflow to
cases in which high accurate LiDAR datasets are available.

Comment: Minor issue 1. The influences/effects of elevation, slope, aspect..., should be clarified.

Response: We thank the reviewer for this comment. In the manuscript, terrain characteristics (e.g. elevation, slope, aspect, and
ruggedness/roughness) were used for two purposes:

- to determine the required number of DEM realizations for the stochastic simulation (in section 5.2.3), and

- to analyze how DEM uncertainty affects landslide run-out modeling results (in section 6).

For the latter, we did not find obvious trends or relationships between landslide run-out modeling results and terrain charac-
teristics at a specific location (on a cell level). One obvious reason is that a simulation result at one location is affected not
only by terrain characteristics at the specific location, but by the complete upstream and surrounding terrain. We rather in-
cluded a discussion of the effects of terrain by identifying several compound terrain characteristics and their impact on how
DEM uncertainty may affect landslide run-out modeling results. The compound terrain characteristics include: a) banks of the
channel, especially the north bank near area 1 and south bank near area 2 (line 473, line 479-480, figure 8); b) relatively high
elevation area at the end part of the channel that holds back flow material (line 473-474); c) topographic roughness (line 474);
d) relatively flat area 3 (line 482, figure 8).
Due to DEM uncertainty, above compound terrain characteristics represented in DEM realizations vary with respect to the
original DEM (line 471-472), which further affects landslide run-out modeling results. Specifically,

a) tend to be dampened out from DEM realizations (line 472-474). Deteriorated channel bank representation makes flow
material spread out along channel cross section direction, travel shorter distance (line 485-486), and leads to smaller
ensemble-based mean of flow dynamic properties at channel bottom locations (line 543-544).

b) also tends to be dampened out from DEM realizations (line 472-474), which makes flow material travel further (line
486-487).
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c) tends to increase (line 474), which leads to higher simulated momentum losses, shorter travel distance (line 487-488),
and smaller flow dynamic properties on average (line 550).

d) area 3 is relatively flat (namely, slopes in the area are relatively small). Thus, it is sensitive to DEM uncertainty (line
482-483). Furthermore, it locates near the deposition, around which the impact of upstream DEM uncertainty seems to
accumulate (line 496-497). Both explain the impact of DEM uncertainty in that area.

As a summary, we discussed the effects of terrain characteristics on simulation results in terms of compound terrain char-
acteristics (e.g. banks of the channel, relatively high elevation area at the end part of the channel, topographic roughness,
and relatively flat/small slope area 3) rather than the effects of terrain characteristics at the cell level (e.g. elevation, slope,
ruggedness/roughness at a specific location). As regards to aspect, we did not find a clear relationship between this terrain
characteristic and simulation results. Therefore, we did not discuss it in section 6.
We agree that our text can be improved to convey our ideas and improve the readability. We therefore modify our manuscript
as follows.

- To avoid confusion, we keep the terminology “roughness” consistent throughout the manuscript. Namely, we change all
the word “ruggedness” to “roughness” (in line 248, line 272, line 355, line 361, line 364, and legend of figure 5).

- We add the following paragraph before we start the discussion (after line 470) to explain why we discuss the effects of
terrain characteristics on simulation results in terms of above-mentioned compound terrain characteristics.

“As stated in section 4, analyzing terrain characteristics of the original DEM and DEM realizations may help us to
interpret simulation results. By a preliminary analysis, we did not find obvious relationships between landslide run-
out simulation results and terrain characteristics at a specific location (on the cell level). One obvious reason is that a
simulation result at one location is affected not only by terrain characteristics at the specific location, but by the complete
upstream and surrounding terrain. Instead of discussing the effects of terrain characteristics at the cell level, we therefore
focus on several compound terrain characteristics that help us to understand how DEM uncertainty may affect simulation
results. The compound terrain characteristics include: banks of the channel, especially the north bank near area 1 and
south bank near area 2; relatively high elevation area at the end part of the channel that holds back flow material as shown
in Fig. 7 (b); topographic roughness; relatively flat area 3 (namely area with relatively small slope).”

The following sentence and content are accordingly removed to keep the manuscript coherent and concise: “This can be
explained as follows.” (line 469-470) and “as shown in Fig. 7 (b)” (line 474).

Comment: Minor issue 2. Table 1 is not easily to read or understand, if the manuscript is not well followed.

Response: we thank the reviewer for pointing this out. To improve the readability, we modify Table 1 as follows.

Table 1. Scenarios for stochastic simulation

method to generate input to generate
DEM realizations DEM realizations

scenario A) USS RMSE=3.3; d=180
scenario B) CSS semivariogram; ε∗KK{K = 180}
scenarios for

USS RMSE=0.5, 1.5, 2.5; d=180
unrepresentative RMSE
scenarios for

USS RMSE=3.3; d=0, 90, 270
subject d

Note: in scenario A) and B), the inputs to generate DEM realizations are obtained
from higher accurate reference data at the 180 reference locations.
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Comment: Minor issue 3. Line 218, figure 4 appeared before all the other figures in manuscript.

Response: We thank the reviewer for noticing this. We originally referred to figure 4 in line 218 to give the readers who are
not familiar with semivariogram models a direct impression. To avoid confusion, we replace the notation “(see Fig. 4)” with
“(see section 5.2.1)” in line 218.

Comment: Minor issue 4. In fig 9, the figure caption is not proper. The main findings should be noted in manuscript.

Response: We thank the reviewer for this comment. To avoid redundancy, we remove the main findings in the caption of figure
9 according to the reviewer’s comment. We accordingly remove the main findings in the caption of figure 8 as well. Both have
already been noted in the manuscript (line 556-560 for figure 9 and line 507-510 for figure 8).
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Revised Point-by-point response to the comments of reviewer #2

Dear reviewer #2,
We thank you for taking the time to read and comment on our manuscript. We believe the comments help to improve the quality
of our manuscript and lead to a much clearer revised version of the paper. We also greatly appreciate your positive feedback
on our reply to your initial comments.
While assembling this final version of the manuscript, we carefully checked all associated files and information again, and
came to the conclusion that we have to complete and slightly correct our own response to your review:
In our response letter we wrote that the 2m-DEM was produced based on field mapping after the 2008 Yu Tung Road landslide
event (line 295-296). Reconsideration of the "note to participants" of the Second JTC1 Workshop (http://www.hkges.org/
JTC1_2nd/be.html) yielded that the 2m-DEM is in fact the result of merging a pre-event DEM with data from a detailed field
mapping in the release area after the 2008 landslide event (AECOM Asia Company Limited, 2012). In order to avoid any
misunderstanding, we hence modified and extended the manuscript to better reflect the merged character of the DEM.
While we believe that the necessary adjustments neither affect the results and conclusions of this study, nor the essence of our
reply to your review, we did have to change some of our concrete responses and highlighted them in red and blue.
We sincerely apologize for not expressing the information clearly in the first place, and any inconvenience this might have
caused.

General comment: The authors took laudable efforts to quantify reliability of final outputs of simulations (e.g. hazard maps).
The chief subject here is topographic ones lying within pre-existing 5m HK-DTM and 2m DEM created post-event. The time
difference is referred clearly (5. Line 301) and does not seem to affect the results in significant ways because of the introduction
and through use of unrepresentative RMSE and subjective d. The non-affectedness itself is crucial in that every hazard map is
drawn before mishaps.

Response: We thank the reviewer for the overall positive feedback on our work. Regarding the reviewers first comment on the
‘time difference’, it is our impression that there had been a misunderstanding possibly due to our narrative.
In our study, both the 5m HK-DTM and 2m DEM were created after the 2008 landslide event. Tthe 2m DEM was produced
based on field mapping after the 2008 Yu Tung Road landslide event (line 295-296). and a pre-event DEM. Specifically, the
2m-DEM reflects the rupture surface in the release zone area and reflects the pre-event slope surface in other areas. The 5m
HK-DTM was generated later from a series of digital orthophotos, which were derived from aerial photographs taken in 2014
and 2015 (line 291-292). Between 2008 and 2014, hence during the time interval of data acquisition of the two DEMs, some
infrastructures (debris-resisting barriers and a road, line 302) had been constructed. They are represented in the 5m HK-DTM
but not in the 2m DEM, which leads to large inconsistency between the two DEMs in that particular area (line 303-304). Since
we assumed the 2m DEM to be more accurate than the 5m HK-DTM and used the 2m DEM to evaluate the error of the 5m
HK-DTM, we excluded data in this inconsistent area from higher accurate reference data. Otherwise, the error estimate of the
5m HK-DTM may be unrealistically large (line 304-305).
We totally agree with the reviewer in that every hazard map should be drawn before mishaps, and believe that our study
conception does not contrast this point. Indeed, one main conclusion of our study is that topographic uncertainty is important
for simulation-based landslide hazard assessment. If a high accuracy of DEM source is not guaranteed, stochastic simulation
should be conducted to provide such hazard map before mishaps so as to assess the potential hazard, rather than simply
trusting results of a deterministic simulation (line 626-628). When there is available higher accuracy reference data, conditional
stochastic simulation is preferred to generate such hazard map before mishaps. Otherwise, unconditional stochastic simulation
can still be conducted to generate such hazard map for a hazard assessment to take topographic uncertainties into account.
To better convey our idea, we modify the sentence “It should be noted that the 2m-DEM and 5m resolution HK-DTM were
produced in different time periods. After the 2008 Yu Tung Road landslide, . . . ” (line 301-302) which we believe causes the
misunderstanding as follows. make adjustments as follows.

- modify “It should be noted that the 2m-DEM and 5m resolution HK-DTM were produced in different time periods.
After the 2008 Yu Tung Road landslide, . . . ” (line 301-302) to
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“It should be noted that due to different time of DEM data acquisition, there are infrastructural factors present in the
5m resolution HK-DTM but not in the 2m-DEM. After the time of data acquisition of the 2m-DEM, . . . ”

- modify "It is produced based on field mapping after the 2008 Yu Tung Road landslide event" (line 295-296) to

"It is produced based on the field mapping after the 2008 Yu Tung Road landslide event and a pre-event DEM. According
to the "note to participants" of the Second JTC1 Workshop (which can be found under the link: http://www.hkges.org/
JTC1_2nd/be.html), the 2m-DEM represents the rupture surface in the release zone area and the pre-event slope surface
in other areas. The rupture surface is obtained based on the field mapping (AECOM Asia Company Limited, 2012)."

Specific comment 1: The argument depends hugely upon results obtained and shared in the second JTC1 workshop (5. Line
394), which contributes to reduce three uncertain factors other than DEM to a negligible level. Zone area and fracture height
can be re-adjusted, given the very results of the authors, however. The necessity (or the negation thereof) of feed-back and of
iteration in the future should be commented either in 5 or in 7.

Response: We very much agree with the reviewer that not only DEM is subject to uncertainty, but release zone area, fracture
height, as well as friction parameters are all potentially subject to uncertainty. All the uncertainties should be systematically
quantified and the interaction between different factors should be studied eventually. In this study we decided to focus on the
DEM uncertainty since this specific factor is mostly overlooked in landslide modeling and is much more complicated compar-
ing to other uncertain factors that can be usually modeled as a probability distribution (e.g. fracture height, friction parameters,
etc.). We are currently studying the relative importance of different uncertainty factors and their interaction by variance-based
global sensitivity analysis. One challenge is that increasing dimension of uncertainty factors requires much larger number (tens
or hundreds of thousands) of simulation runs for stochastic simulation and computational resource consuming may become
prohibitively expensive. One promising solution to this challenge is to employ emulator techniques (e.g. Gaussian process
emulator).
According to the reviewer’s comment, the following paragraph is added after line 399 in section 5.3.1.

“It should be noted that release zone area, fracture height, as well as friction parameters may also be subject to uncertainty in
landslide modeling practice. In this study we keep them fix and focus only on the DEM uncertainty which is mostly overlooked
in landslide run-out modeling. Future work should therefore continue to focus on systematically quantifying all the uncertainty
factors and evaluating their relative importance and interaction. Researchers carrying out this work should notice that increas-
ing dimension of uncertainty factors instantly requires much larger number of simulation runs for stochastic simulation and
computational resource consuming may become prohibitively expensive. One promising solution to this challenge is to employ
emulator techniques.”

Specific comment 2: Another minor but non-negligible issue is conditions of the channel base treated in the case study (5).
The presence or absence of sizable standing trees with roots is to be mentioned 5 Line 289, given the fracture height of 1.2m.

Response: We thank the reviewer for noticing this. The 2m-DEM is produced based on field mapping after the 2008 Yu Tung
Road landslide event and reflects the bare earth at the channel base (as shown in figure 2). The 2m-DEM reflects the rupture
surface in the release zone area and reflects the pre-event slope surface in other areas. We do not have information about the
vegetation on its channel base. The 5m resolution HK-DTM is derived from aerial photographs taken in 2014 and 2015 and
includes vegetation at the channel base. Since we assume the 2m-DEM to be more accurate than the 5m resolution HK-DTM
and use the 2m-DEM to assess the error of the 5m resolution HK-DTM, the vegetation present in the channel base in the
5m resolution HK-DTM is not modeled independently but treated as part of the DEM error. The HK-DTM realizations in
the stochastic simulation are generated by adding the error realizations onto the 5m resolution HK-DTM. It indicates that the
channel base in the HK-DTM realizations should resemble the channel base of the 2m-DEM, which reflects the bare earth.
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In this study, any vegetation present in the channel base in the 5m resolution HK-DTM is not explicitly accounted for in the
sense of a modeled DTM correction. It is rather subsumed as part of the DEM error. The influence of vegetation/land cover is
a very interesting topic, but is out of the scope of this study. Work in this field should be carried out in the future.
According to the reviewer’s comment, the following sentences are added after line 300.

“At the channel base, the 2m-DEM reflects the bare earth information of vegetation in the 2m-DEM is not available. and
tThe 5m resolution HK-DTM includes vegetation. Since we assume the 2m-DEM to be more accurate than the 5m resolution
HK-DTM and use the 2m-DEM to assess the error of the 5m resolution HK-DTM, In this study, the any vegetation present in
the channel base in the 5m resolution HK-DTM is not modeled independently but treated as part of the DEM error. explicitly
accounted for in the sense of a modeled DTM correction. It is rather subsumed as part of the DEM error.”

Reference:
AECOM Asia Company Limited: Detailed study of the 7 June 2008 landslides on the hillshade above Yu Tung Road, Tung
Chung, Tech.rep., 2012
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models via stochastic simulations
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Abstract. Topography representing digital elevation models (DEMs) are essential inputs for computational models capable of

simulating the run-out of flow-like landslides. Yet, DEMs are often subject to error, a fact that is mostly overlooked in landslide

modeling. We address this research gap and investigate the impact of topographic uncertainty on landslide-run-out models. In

particular, we will describe two different approaches to account for DEM uncertainty, namely unconditional and conditional

stochastic simulation methods. We investigate and discuss their feasibility, as well as whether DEM uncertainty represented by5

stochastic simulations critically affects landslide run-out simulations. Based upon a historic flow-like landslide event in Hong

Kong, we present a series of computational scenarios to compare both methods using our modular Python-based workflow. Our

results show that DEM uncertainty can significantly affect simulation-based landslide run-out analyses, depending on how well

the underlying flow path is captured by the DEM, as well as further topographic characteristics and the DEM error’s variability.

We further find that in the absence of systematic bias in the DEM, a performant root mean square error based unconditional10

stochastic simulation yields similar results than a computationally intensive conditional stochastic simulation that takes actual

DEM error values at reference locations into account. In all other cases the unconditional stochastic simulation overestimates

the variability of the DEM error, which leads to an increase of the potential hazard area as well as extreme values of dynamic

flow properties.

Keywords: flow-like landslide, run-out modeling, topographic uncertainty, stochastic simulation, hazard analysis15

1 Introduction

Landslides are natural hazards that occur frequently all around the world causing casualties, economic devastation, and en-

vironmental destruction. Most often, they are naturally driven, e.g. by means of long-lasting and/or intensive precipitation

events, or induced by earthquakes. Yet, landslides might also be triggered or its susceptibility increased as a result of human

activities, e.g. deforestation and construction. According to the United Nations Office for Disaster Risk Reduction and the20

Center for Research on the Epidemiology of Disasters, 378 recorded landslides from 1998 to 2017 affected 4.8 million people

and caused 18414 deaths as well as several billion US dollars of economic losses (Wallemacq et al., 2018). Froude and Petley

(2018) reported that in total 55997 people were killed during 4862 fatal non-seismic landslide events from January 2004 to

December 2016. Still, it has to be assumed that the damage potential of landslides is underestimated as 1) events have been
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under-reported for decades, especially in developing countries, and 2) losses caused by co-seismic landslide events tend to be25

classified as secondary losses due to earthquakes.

Rapid flow-like landslides, such as rock avalanches and debris flows, show a particularly high hazard potential due to their

high mobility, long travel distance and fast propagation speed. In recent years, the geo-hazard community put a lot of effort

into developing computational run-out models in order to assess and predict risks associated with rapid landslides and to

develop mitigation strategies. Most of the models in practical use are based on a (computationally efficient) ’shallow flow30

type’ process description and depth-averaging techniques (e.g. Pitman et al., 2003; Hungr, 2009; Pastor et al., 2009; Christen

et al., 2010; Xia and Liang, 2018). In these, the flowing material is treated as an ’equivalent fluid’ and governed by idealized

internal and basal rheologies (Hungr, 2009). Alternative (computationally demanding) models aim at a direct description of

fully three-dimensional flow behavior. They hence offer a higher process complexity level (e.g. Mast et al., 2014; Teufelsbauer

et al., 2011), yet are typically not feasible for practical hazard mitigation purposes. Detailed reviews of computational run-out35

models for rapid, flow-like landslide models have been published by McDougall (2017) and Pastor et al. (2018).

An indispensable input to any of these computational landslide run-out models is data that represents the terrain in which

the slide is likely to occur. Pioneered by Miller and Laflamme (1958), digital elevation models (DEMs) have become the

most popular form of representing topographies in the scientific community. Methods for generating DEMs have evolved

rapidly over decades from conventional approaches like field surveying and topographic map digitizing, to passive and active40

remote sensing, such as stereoscopic photogrammetry, interferometric synthetic aperture radar (InSAR), and light detection and

ranging (LiDAR), see Wilson (2012) for a comprehensive review. Differences between these methods exist in their footprint,

cost, resolution and accuracy of the resulting DEM. Whatever method used, however, the resulting DEM will inevitably contain

errors that are introduced either during source data acquisition or during data processing. The so-called DEM error hence refers

to the difference between the true real world elevations and their DEM representation. Typically, there is a lack of information45

on the DEM error, which led to notion of ’DEM uncertainty’ that refers to what we do not know about the error, see Wechsler

(2007).

Nowadays, several global DEM databases, e.g. SRTM (Rodriguez et al., 2006), AW3D30 (Courty et al., 2019), and TanDEM-

X (Wessel et al., 2018), as well as some regional DEM databases (Pakoksung and Takagi, 2016) are publicly available. Also

commercial DEM databases exist that are associated with significant costs (Hawker et al., 2018). Online initiatives such as50

OpenTopography facilitate community access and aim at democratizing online availability of high-resolution topography data

acquired with LiDAR and other technologies (Krishnan et al., 2011). Despite the broad variety of existing DEM sources,

however, we are still facing (and will face in the near future) a very limited availability of high-accuracy DEMs for some

regions that are particularly prone to landslide hazards, e.g. in Asia (Froude and Petley, 2018). Whenever using DEM data for

simulation-based landslide hazard analysis, it is hence important to be aware of DEM error and uncertainty, and to consider its55

potential impact on computational run-out analyses and related computational risk assessments.

DEM error has arisen researchers’ attention since long. Many efforts have for instance been put into quantifying the error

associated with specific DEM sources based on data of higher accuracy, e.g. acquired by satellite measurements (Berry et al.,

2007; Mouratidis and Ampatzidis, 2019), medium footprint LiDAR (Hofton et al., 2006), or GPS survey (Rodriguez et al.,
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2006; Bolkas et al., 2016; Patel et al., 2016; Wessel et al., 2018; Elkhrachy, 2018). Meanwhile, a variety of methods have been60

devised to classify DEM error into various categories (Oksanen, 2003; Hengl et al., 2004; Fisher and Tate, 2006). Due to the

complexity of potential influencing factors (sensor technology, retrieval algorithms, data processing, land cover and surface

morphology, terrain attributes (Wilson, 2012; Fisher and Tate, 2006; Gonga-Saholiariliva et al., 2011)), these methods can only

constrain the DEM error, and will not deterministically correct for it at all grid points. Hence, DEM uncertainty remains, and

has to be accounted for in any subsequent analysis that relies on the DEM data.65

In this circumstance, a stochastic simulation is an effective computational approach to deal with the situation (Holmes

et al., 2000). Instead of considering a single (assumed as accurate) DEM, the fundamental idea of a stochastic simulation in the

context of DEM uncertainty propagation is to separate the DEM into a known deterministic contribution and an unknown DEM

error. DEM uncertainty is then accounted for by treating the DEM error as a random field consisting of a collection of random

variables defined at selected grid points. An ensemble of equiprobable realizations of the random field is then generated based70

on certain assumptions and available information of DEM error. This could for instance be the so-called root mean square

error (RMSE), a minimalistic indicator for the overall error magnitude or a semivariogram that informs about the spatial

autocorrelation of the DEM error. Adding the DEM error realizations to the known deterministic DEM contribution results in

an ensemble of equiprobable DEM realizations, which can finally be used for a DEM uncertainty propagation analysis.

Stochastic simulation methods for DEM uncertainty propagation analyses have been developed since the 1990s and are by75

now widely applied in many fields, including terrain analysis (Holmes et al., 2000; Raaflaub and Collins, 2006; Moawad and

EI Aziz, 2018), flood modeling (Watson et al., 2015; Hawker et al., 2018; Kiczko and Miroslaw-Swiatek, 2018), soil erosion

modeling (Aziz et al., 2012), landslide susceptibility mapping (Qin et al., 2013), dry block and ash flow modeling (Stefanescu

et al., 2012), etc. With respect to rapid, flow-like landslide run-out modeling, very little work has been done to assess the

potential impact of DEM uncertainty, most likely due to the complexity, and hence level of sophistication of the associated80

process models. Meanwhile, however, advances in computing technology led to computationally feasible and well-developed

landslide run-out simulation tools. As one of the most important inputs for these tools, a DEM determines the landslide’s flow

path. A natural next step is hence to consider the impact of DEM uncertainty in these models, as overlooking DEM uncertainty

may lead to a bias of risk management decisions in a wrong direction. The major aim of this study is therefore to describe two

different approaches in order to incorporate DEM uncertainty into computational landslide run-out analyses, and to investigate85

and discuss their feasibility, as well as whether DEM uncertainty is critical to landslide run-out and affects its results.

This paper is organized as follows: In section 2, we briefly describe the landslide run-out model used in this study, which is

a continuum-mechanical shallow flow model based on the Voellmy-Salm rheology. In section 3, we recall on various methods

to account for DEM uncertainty with a major focus on two approaches, namely an unconditional and a conditional stochastic

simulation method. The rest of the paper is devoted to investigating DEM uncertainty propagation for rapid, flow-like landslides90

based on an integrated workflow that combines the aforementioned computational process model (section 2) with the stochastic

DEM simulations (section 3). Note, that while in our particular study we chose to use a continuum-mechanical shallow flow

process model based on the Voellmy-Salm rheology, the workflow itself is modular and non-intrusive. It would hence also

possible to couple the stochastic DEM simulation with any other (DEM based) computational landslide model. Section 4
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describes the modular Python-based workflow that we developed in order to set-up and manage the workflow and to interpret95

its simulation results. We present a series of computational scenarios based upon a historic landslide event in section 5. All

scenarios compare the unconditional and conditional stochastic DEM simulation. Finally, section 6 is devoted to a discussion

of our results. Important conclusions are drawn in section 7.

2 Landslide process model

As detailed in the introduction, a variety of process-based computational landslide run-out models have been developed in100

recent decades. Among these is a family of depth-integrated shallow flow type landslide models that we chose as the basis for

our work. Shallow flow type landslide models can be further classified based on their applied basal rheology, e.g. Voellmy,

Bingham, Quadratic resistance model, etc. (Naef et al., 2006; Hungr and McDougall, 2009). Our study uses the Voellmy-Salm

(VS) process model, which is a depth-averaged continuum mechanical model incorporating the Voellmy basal rheology. Note

that the stochastic workflow presented later is modular and does not depend on this choice. Hence, the Voellmy model can105

straight-forwardly be substituted by another computational process models.

2.1 Reference frame and relation to topographic error

Let {X,Y,Z} denote a fixed Cartesian coordinate system, in which X and Y are the horizontal axes and Z is the vertical axis.

The coordinates of a point in the Cartesian coordinate system are denoted by (X,Y,Z). A topography can then be expressed

as a surface mapping of horizontal X and Y coordinates and represents the elevation at each point, namely Z(X,Y ). The110

mapped topography induces a surface coordinate system {x,y,z}, in which x and y denote tangential directions and z points

in the direction of the surface normal. Any vector that is constant with respect to the fixed Cartesian coordinates system, e.g.

gravitational acceleration g = (gX ,gY ,gZ)
T = (0,0,−g)T , hence spatially varies, when interpreted in terms of the surface

mapped coordinated system g = (gx,gy,gz)
T . Error or uncertainty in the topography representation Z(X,Y ) hence directly

translates into error and uncertainty of that vector representation.115

2.2 Voellmy rheology computational process model

The Voellmy process model along with its computational implementation is described in Bartelt et al. (1999) and Christen

et al. (2010). It assesses the slide’s dynamics in terms of flow height H(x,y, t) and depth-averaged velocity U(x,y, t) :=

(Ux(x,y, t),Uy(x,y, t))
T , both of which depend on time t and spatial coordinates x and y. The governing system reads

∂tH + ∂x(HUx)+ ∂y(HUy) = Q̇(x,y, t)

∂t(HUx)+ ∂x

(
HU2

x + gz
H2

2

)
+ ∂y (HUxUy) = gxH −nx(µgzH + g‖U‖2/ξ)

∂t(HUy)+ ∂x(HUxUy)+ ∂y

(
HU2

y + gz
H2

2

)
= gyH −ny(µgzH + g‖U‖2/ξ)

(1)120
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Here, the first equation denotes the mass balance, in which H , Ux and Uy stand for height and surface tangential velocity

components, and Q̇(x,y, t) stands for a mass production source term that accounts for erosion of material along the way.

Second and third equations denote the x and y momentum balance, in which gx, gy, and gz are the three local components

of gravitational acceleration vector g. Furthermore, nx and ny are x and y components of the unit vector n that opposes

the local velocity, and µ and ξ are two friction parameters that stand for dry Coulomb and ’turbulent’ friction coefficients125

respectively. The friction parameters are determined by back-analysis based on historic events. Note that additional model

parameters introduced in the original publications, such as velocity shape factors and non-hydrostatic pressure corrections are

not taken into account as they are hard to constrain and have been shown to not critically affect the slide’s dynamics (e.g. Hungr

et al., 2005; Christen et al., 2010).

The topographic surface Z(X,Y ) enters the governing equations of the process model implicitly in terms of the spatially130

varying gravitational acceleration vector g = (gx,gy,gz)
T . Any error and uncertainty present in the topography representation

hence also enters the landslide run-out simulation results.

The VS model had been first proposed to model snow avalanche (Salm, 1993). Nowadays, it has been widely applied to other

types of gravity-driven rapid mass movements including flow-like landslides (Pastor et al., 2018; Frank et al., 2015; Hussin

et al., 2012; Kumar et al., 2019). In this study, the proprietary mass flow simulation platform RAMMS (Christen et al., 2010)135

which provides a GIS integrated implementation of the VS model is used for landslide run-out modeling. It is integrated as a

module of our workflow (see section 4) that is developed for the purpose of DEM uncertainty propagation analysis.

3 Methods to represent DEM uncertainty

Again, the topographic surface is expressed as a function Z(X,Y ) parametrized parameterized in horizontal coordinates X

and Y . In practice, the function Z(X,Y ) is often constructed from discrete gridded raster data. We hence assume that a domain140

of interest D is discretized into the horizontal X and Y direction, which results in a spatial grid defined as

Dmn = {Dij = (Xi,Yj) | (Xi,Yj) ∈D; i= 1,2, ...,m; j = 1,2, ...,n}. (2)

The elevation data associated with each grid point Dij is defined as

Zmn = {Zij = Z(Xi,Yj) | ∀ Dij ∈Dmn}. (3)

The elevation Zmn of a common DEM data product might be erroneous with respect to the true values as discussed in the145

introduction. If we denote the true elevation as

Z∗
mn = {Z∗

ij = Z∗(Xi,Yj) | ∀ Dij ∈Dmn}, (4)

the DEM error can be expressed as

εmn = {εij = Z∗
ij −Zij | ∀ Dij ∈Dmn}. (5)
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If we knew the error εmn, we would be able to recover the real world topographic surfaceZ∗
mn. The fact, however, that the error150

is unknown, or we only have limited information about the error implies an uncertainty to the input of our landslide process

simulation. Within this study, we will refer to the uncertainty associated to the unknown DEM error as DEM uncertainty. In

this circumstance, each εij is treated as a random variable and εmn is accordingly treated as a random field, which consists

of a collection of random variables εij . By generating multiple realizations of the random field εmn, DEM uncertainty can

be represented. This process is widely known as stochastic simulation. It requires a suitable model to describe the jointed155

uncertainty of all εij based on limited available information of DEM error. The task can be further divided into determining:

1) the probability distribution function (pdf) of each εij which quantifies local uncertainty at each grid point; 2) the correlation

between different εij which is usually termed as spatial autocorrelation of DEM error.

According to available information on the DEM error, existing approaches that could be used to solve the two issues can be

generally classified into two groups:160

A) unconditional stochastic simulation (USS);

B) conditional stochastic simulation (CSS).

More specifically, USS is only informed with properties of DEM error, e.g. the RMSE, and thus does not honour any actual

DEM error values. CSS is informed with certain number of actual DEM error values at reference locations within the DEM,

e.g. obtained from higher accurate reference data, and thus could directly honour the actual DEM error values at reference165

locations (Fisher and Tate, 2006).

3.1 Unconditional stochastic simulation (USS) based on the RMSE

Typically available information about the DEM error provided by DEM vendors is the root mean square error (RMSE). For a

set of K reference locations, it is defined as

RMSE =

√√√√ 1

K

K∑
k=1

(Z∗
kk −Zkk)2. (6)170

Here, Z∗
KK = {Z∗

kk = Z∗(Xk,Yk) | (Xk,Yk) ∈D; k = 1,2, ...,K} denotes higher accurate elevation values measured at the

reference locations and ZKK = {Zkk = Z(Xk,Yk) | (Xk,Yk) ∈D; k = 1,2, ...,K} denotes corresponding elevation values

based on the DEM.

It should be noted that while the RMSE is typically available, this is not true for the reference elevation valuesZ∗
KK itself. As

stated numerous times in the literature, it is critical that the RMSE only provides a global indication of DEM error magnitude175

without any information about its spatial autocorrelation. Still, it is by far the most widely used DEM error indicator for many

DEM databases and mostly the only available information coming along with DEM products. In this circumstance, USS could

be used to represent DEM uncertainty and study its propagation into landslide run-out analyses.

Modeling DEM uncertainty based on USS assumes that all local error values εij are independent and fulfill the same uni-

variate Gaussian distribution with a mean (µ) of zero and a standard deviation (σ) equivalent to the given RMSE. Under this180
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assumption, an ensemble of spatially uncorrelated realizations of the random field εmn can be generated by randomly assigning

error values to each εij according to its local Gaussian probability distribution.

In the next step, we have to account for the (unknown) spatial autocorrelation of εmn. Potential methods that could be

applied are simulated annealing, spatial autoregressive modeling, spatial moving averages, etc., see Wechsler (2007). Simulated

annealing is generally computationally intensive and spatial autoregressive modeling becomes impractical for simulation of185

large areas (Oksanen, 2006). In this study, we use the spatial moving averages method that increases the spatial autocorrelation

by filtering spatially uncorrelated realizations with a distance-weighted filter proposed by Wechsler and Kroll (2006). For εij

at one grid point of an uncorrelated realization, its value is replaced by the weighted average of εij at all grid points within the

filter kernel. The weight decreases with increasing of the distance to the grid point, which is similar to semivariogram trends

(Wechsler and Kroll, 2006). The size of the filter denoted as d depends on the maximum autocorrelation length of εmn which190

again is unknown if the RMSE is the only available information. In practice, d is often determined based on the maximum

autocorrelation length of the original DEM (Wechsler, 2007; Aziz et al., 2012).

Though it relies on some assumptions, such as an appropriate choice of correlation length d, the sketched approach is

generally applicable if RMSE is the only available information. It may become critical if a DEM contains a systematic bias

which means that the mean of Z∗
kk −Zkk deviates largely from zero. More specifically, if we follow Fisher and Tate (2006)195

and Wessel et al. (2018) in defining mean µ and standard deviation σ as

µ=
1

K

K∑
k=1

(Z∗
kk −Zkk) and σ =

√√√√ 1

K − 1

K∑
k=1

((Z∗
kk −Zkk)−µ)2, (7)

we can express the RMSE in terms of µ and σ as

RMSE =

√
µ2 +

K − 1

K
σ2. (8)

If the number of reference pointsK is relatively large,
√
(K − 1)/K is close to one. Equation (8) then indicates that the RMSE200

is larger than the standard deviation σ if the mean µ deviates from zero. The difference between the RMSE and σ increases with

increasing µ. For example, the µ, σ, and RMSE of the global TanDEM-X DEM based on about three million reference points

are 0.17m, 1.28m, and 1.29m (Wessel et al., 2018). That of the EU-DEM of Central Macedonia based on 12943 reference

points are 1.8m, 3.6m, and 4.0m while that of the ASTER GDEM of the same area based on the same reference points are

6.8m, 7.6m, and 10.2m (Mouratidis and Ampatzidis, 2019). This means that assuming the standard deviation of the DEM205

error to be given as the RMSE consequently overestimates the variability of the DEM error if the mean deviates largely from

zero.

The implications of both issues, namely the fact that the filter size d is unknown and has to be subjectively chosen, and that

the RMSE provides an insufficient representation of the DEM error, are investigated in the following study. For convenience,

the two issues are referred to as:210

• unrepresentative RMSE,

• subjective d.
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3.2 Conditional stochastic simulation (CSS) based on higher accurate reference data

This approach requires the availability of higher accurate reference data at certain reference locations, e.g. from higher accurate

DEM products, or GPS surveys. Note, that although these data might be subject to error themselves, it is fair to assume this215

error to be much smaller. This justifies to use the higher accurate reference data as true elevation valuesZ∗
KK . Based onZ∗

KK ,

we could determine the statistics of the DEM error, e.g. the RMSE, the µ and the σ as discussed in section 3.1. Likewise, we

can assess the spatial autocorrelation of the DEM error, e.g. in the form of a semivariogram model (see Fig. 4) (see section

5.2.1) . In addition, we know the DEM error at the reference locations exactly, denoted as ε∗KK = { ε∗kk | k = 1,2, ...,K}. Yet,

we still lack knowledge about the DEM error away from the K reference locations, hence the complete random field εmn.220

In that situation, conditional stochastic simulation (CSS) can be used to simulate, i.e. generate realizations of the random

field εmn. Many geostatistical methods of conditional simulation could be applied, including sequential simulation algorithms,

p-field approach, simulated annealing, etc. (Goovaerts, 1997). In this study, we apply a sequential Gaussian simulation. It is

the most attractive technique for stochastic spatial simulation according to Temme et al. (2009) and has been widely utilized in

DEM uncertainty propagation analysis (Holmes et al., 2000; Aziz et al., 2012).225

The sequential Gaussian simulation sequentially samples each local error εij along a random path that consists of all grid

points Dij under the multi-Gaussian assumption. This means that assuming the random field εmn to satisfy a multivariate

Gaussian distribution, hence each εij fulfills a univariate Gaussian distribution denoted as N(µij ,σij). The essential idea

now is that the mean µij and standard deviation σij are determined sequentially by means of simple kriging based on: the

semivariogram model of DEM error that provides covariances in simple kriging equations, and the conditioning information230

including ε∗KK and previously sampled εij . By making each univariate Gaussian distribution conditional not only to ε∗KK but

also to all previously sampled εij , the semivariogram model of DEM error is reproduced in realizations of εmn (Goovaerts,

1997). The process to generate one realization of εmn is as follows:

1) determine a semivariogram model to represent the spatial autocorrelation of DEM error based on normal score trans-

formed ε∗KK ;235

2) define a random path visiting each Dij once;

3) at each Dij , determine N(µij ,σij) using simple kriging based on the semivariogram model and normal score trans-

formed ε∗KK ;

4) sample a value from N(µij ,σij), assign it to εij , and add εij into normal score transformed ε∗KK ;

5) repeat steps 3) and 4) until all Dij along the path are visited;240

6) back-transform all sampled εij to the original distribution of ε∗KK .

Multiple realizations can be generated by defining different random paths.
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4 Implementation

Studying the impact of DEM uncertainty on landslide run-out modeling is computationally intensive and technically demand-

ing. It includes representing DEM uncertainty in terms of a large number of DEM realizations, conducting numerous landslide245

run-out modeling based on the DEM realizations, and postprocessing extensive output data. In addition, understanding how

DEM uncertainty affects terrain attributes may facilitate us to interpret its impact on landslide run-out modeling. This requires

the ability to calculate terrain attributes, e.g. slope, ruggedness roughness , etc. of the original DEM as well as the generated

DEM realizations.

Figure 1. Computational workflow of DEM uncertainty propagation in landslide run-out simulation. It is part of our PSI-slide package

in development that is designed for the purpose of systematically investigating the impact of various sources of uncertainty on simulat-

ing gravity-driven mass movements (Kowalski et al., 2018; Zhao and Kowalski, 2018). The workflow consists of four modules: 1) DEM

uncertainty representation; 2) landslide run-out modeling; 3) statistical analysis and visualization; 4) terrain analysis.
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In this study, we propose a workflow that integrates our own Python implementation of selected aspects of the workflow250

and existing software as well as toolboxes to solve above mentioned tasks. It is part of our PSI-slide (Predictive Simulation

of Slides) package in development that is designed for the purpose of systematically investigating the impact of the various

sources of uncertainty on simulating gravity-driven mass movements (Kowalski et al., 2018; Zhao and Kowalski, 2018). Herein,

we focus on DEM uncertainty. Figure 1 illustrates the workflow. It consists of four modules:

1) DEM uncertainty representation. In this module, we generate an ensemble of N equally probable DEM realizations255

to represent DEM uncertainty based on available information about DEM error. USS as introduced in section 3.1 is

implemented without third party software (USS.py) for cases in which only the RMSE is available. For cases in which

higher accurate reference data is provided, CSS as introduced in section 3.2 is implemented by integrating the sequential

Gaussian simulation algorithm of the Stanford Geostatistical Modeling Software (SGeMS) (Remy et al., 2009) into our

workflow (SGeMS.py).260

2) Landslide run-out modeling. This module is used to conduct N landslide run-out simulations based on the N DEM

realizations generated in module 1). In this study we employ the proprietary mass flow simulation platform RAMMS

(Christen et al., 2010) which provides a GIS integrated implementation of the VS model. First, a Python script named

SetInput.py is called to set up required inputs for each simulation run. Then a Python script named RAMMS.py starts

parallel runs of RAMMS using the Python Scoop module. In the end, a Python script named ExtractOutput.py is called265

to extract user-specified outputs.

3) Statistical analysis and visualization. This module is used to conduct statistical analysis on the user-specified outputs

from module 2) and visualize results. It is mainly based on the Python Numpy and Matplotlib modules. For example,

probabilistic hazard map can be produced to indicate potential hazard area.

4) Terrain analysis. This module is used to analyze terrain characteristics of the original DEM and DEM realizations from270

module 1), which may help us to interpret outputs from module 3). This is achieved by integrating several terrain

analysis tools from WhiteboxTools (Lindsay, 2018) like calculating slope, aspect, ruggedness roughness index, etc. into

our workflow (WhiteboxTools.py).

5 Case study

This study is based upon a historic landslide and two DEM sources. For the purpose of DEM uncertainty propagation analysis,275

we assume one DEM source to be more accurate than the other and then obtain higher accurate reference data from the more

accurate DEM source to assess elevation error of the less accurate DEM source. We design a series of computational scenarios

based on the higher accurate reference data to study the impact of DEM uncertainty on landslide process simulation for both the

case when only the RMSE is available and the case when higher accurate reference data is available. Additional computational

scenarios are designed to study the unrepresentative RMSE and subjective d issues as detailed in section 3.1 in the form of a280

sensitivity analysis.
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Figure 2. The 2008 Yu Tung Road landslide. Left: google map of Hong Kong (map data©2019); right: aerial photograph of Yu Tung Road

site after the 2008 landslide. It corresponds to the No. L25 landslide in the GEO report (AECOM Asia Company Limited, 2012).

5.1 Scenario background and DEM sources

The historic landslide happened on June 7 2008 on the hillside above Yu Tung Road in Hong Kong due to an intense rainfall

event, see Fig. 2. It was the largest flow-like landslide out of 19 landslides during that event. Around 3400m3 material were

mobilized and traveled about 600m until deposit. The landslide event had a severe infrastructural impact, as it led to closure285

of westbound lanes of Yu Tung Road for more than two months (AECOM Asia Company Limited, 2012). The Yu Tung Road

landslide also served as a benchmark case for predictive landslide run-out analysis at the second Joint Technical Committee on

Natural Slopes and Landslides (JTC1) Workshop on Triggering and Propagation of Rapid Flow-like Landslides in Hong Kong

2018 (Pastor et al., 2018). Two types of DEM data of the Yu Tung Road area had been the basis for this study:

• A public 5m resolution digital terrain model covering the whole area of Hong Kong (HK-DTM). It is downloaded290

from the website of the Survey and Mapping Office of Hong Kong. The HK-DTM is generated from a series of digital

orthophotos, which are derived from aerial photographs taken in 2014 and 2015. The reported accuracy is ±5m at 90%

confidence level. (DATA.GOV.HK, 2019)

• A 2m resolution DEM (2m-DEM) covering the main area of the Yu Tung Road landslide event. Its boundary is shown

in Fig. 3 (a). It had been provided for the benchmark exercise during the second JTC1 workshop. It is produced based295

on field mapping after the 2008 Yu Tung Road landslide event. It is produced based on the field mapping after the

2008 Yu Tung Road landslide event and a pre-event DEM. According to the "note to participants" of the Second JTC1

Workshop (which can be found under the link: http://www.hkges.org/JTC1_2nd/be.html), the 2m-DEM represents the

rupture surface in the release zone area and the pre-event slope surface in other areas. The rupture surface is obtained

based on the field mapping (AECOM Asia Company Limited, 2012).300

In this study, we assume the 2m-DEM to be more accurate than the 5m resolution HK-DTM. Similar to our consideration

at the beginning of section 3.2, the 2m-DEM and 5m resolution HK-DTM correspond to Z∗ and Z as defined in section 3.

A set of higher accurate reference data Z∗
KK can hence be determined to provide information to represent uncertainty of the
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5m resolution HK-DTM. At the channel base, information of vegetation in the 2m-DEM is not available. The 5m resolution

HK-DTM includes vegetation. In this study, any vegetation present in the channel base in the 5m resolution HK-DTM is not305

explicitly accounted for in the sense of a modeled DTM correction. It is rather subsumed as part of the DEM error.

It should be noted that the 2m-DEM and 5m resolution HK-DTM were produced in different time periods. After the 2008

Yu Tung Road landslide, It should be noted that due to different time of DEM data acquisition, there are infrastructural factors

present in the 5m resolution HK-DTM but not in the 2m-DEM. After the time of data acquisition of the 2m-DEM, debris-

resisting barriers and a road had been built in the area within the red circle and blue rectangle in Fig. 3 (a) respectively. They310

are reflected in the HK-DTM but not in the 2m-DEM, which leads to large inconsistency between the two DEMs in that area.

Therefore, to avoid unrealistically large error of the HK-DTM, data from the 2m-DEM in that area is excluded from higher

accurate reference data Z∗
KK .

5.2 DEM realizations

5.2.1 Information of DEM error315

As shown in Fig. 3 (a), we evenly pick 180 reference locations from the HK-DTM grid points within the boundary of the 2m-

DEM. Higher accurate reference data at these locations is obtained from the 2-m DEM using bilinear interpolation, denoted as

Z∗
KK{K = 180}. Subtracting the corresponding elevation values of the HK-DTM ZKK{K = 180} from Z∗

KK{K = 180},
we obtain elevation error values of the HK-DTM at the 180 reference locations, denoted as ε∗KK{K = 180}.

Figure 3 (b) shows the histogram of ε∗KK{K = 180}. 90% of the elevation error values are within -5.84m and −1.04m,320

which is close to the reported accuracy (see section 5.1). The µ, σ, and RMSE according to Eq. (7) and Eq. (6) are -3.0m,

1.5m, and 3.3m respectively. Here, it should be noted that the RMSE is larger than the σ since the µ is not zero which indicates

a systematic bias. As discussed in section 3.1, this also indicates that assuming the standard deviation of the HK-DTM error

being equivalent to the RMSE in USS would overestimate the variability of the HK-DTM error.

Based on ε∗KK{K = 180}, we can determine an isotropic semivariogram model which describes the spatial autocorrelation325

of the HK-DTM error. It results in

γ(h) = 0.1×Sph( h

180
)+0.9×Exp( h

50
). (9)

Here, Sph(·) and Exp(·) denote the basic spherical and exponential semivariogram models (Goovaerts, 1997) and h denotes

the horizontal distance between any two locations. A comparison between the experimental semivariance values based on

ε∗KK{K = 180} and the parametrized parameterized semivariogram model given by Eq. (9) can be seen in Fig. 4. Semivariance330

is a measure of spatial dependence between DEM error values at two different locations. The continuous semivariogram model

is fitted to the experimental semivariance values so as to deduce semivariance values for any possible distance h required by

simple kriging (Goovaerts, 1997). The range of the semivariogram model is 180m. It indicates the maximum autocorrelation

length of the HK-DTM error, on which the size of the spatial moving filter d depends (see section 3.1).
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Figure 3. (a) Elevation error ε∗KK{K = 180} of the HK-DTM at 180 reference locations. The background is the hillshade plot of the HK-

DTM. Debris-resisting barriers and a road in the circle and rectangle area constructed after the 2008 landslide event are represented in the

HK-DTM but not in the 2m-DEM. It causes inconsistency between the two DEMs in that area. To avoid unrealistically large error of the

HK-DTM, data from the 2m-DEM in that area is excluded from higher accurate reference data. (b) Histogram of ε∗KK{K = 180}. The

RMSE is larger than the standard deviation (σ) since the mean (µ) is not zero. As discussed in section 3.1, this indicates that assuming the

standard deviation of the HK-DTM error being equivalent to the RMSE in USS would overestimate the variability of the HK-DTM error.

Figure 4. Experimental semivariances based on ε∗KK{K = 180} and fitted parametrized parameterized semivariogram model given by

Eq. (9). The range of the semivariogram model is 180m. It indicates the maximum autocorrelation length of DEM error, on which the size

of the spaial spatial moving filter d depends (see section 3.1).

5.2.2 DEM uncertainty scenarios335

As mentioned in section 3, DEM users are often restricted to DEM error information in the form of a single RMSE value

per data product. Rarely, they have higher accurate reference data. In order to account for both situations, two corresponding

’information levels’ are considered in the following study.
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A) Rudimentary error information: the RMSE only. In this situation, the RMSE is assumed to be the only available error

information of the 5m resolution HK-DTM. In order to compare results to B), we employ the RMSE 3.3m as generated340

based on Z∗
KK{K = 180}, as well as the size of the spatial moving filter d 180m to match the range of the fitted

semivariogram model in Fig. 4. USS introduced in section 3.1 is used to generate N realizations of the HK-DTM,

denoted as USSN{RMSE=3.3, d=180}.

B) Highly informed: higher accurate reference data. In this situation, Z∗
KK{K = 180} is assumed to be available. That

means we know the error ε∗KK{K = 180} at the reference locations exactly and the fitted semivariogram model based345

on ε∗KK{K = 180}. CSS introduced in section 3.2 is used to generate N realizations of the HK-DTM, denoted as CSSN.

Table 1. Scenarios for stochastic simulation

Method Input (m) Source/Purpose

USS

RMSE=3.3, d=180 Z∗
KK{K = 180}

RMSE=0.5, 1.5, 2.5, d=180 unrepresentative RMSE

RMSE=3.3, d=0, 90, 270 subjective d

CSS semivariogram, ε∗KK{K = 180} Z∗
KK{K = 180}

Table 1. Scenarios for stochastic simulation

method to generate input to generate

DEM realizations DEM realizations

scenario A) USS RMSE=3.3; d=180

scenario B) CSS semivariogram; ε∗KK{K = 180}

scenarios for
USS RMSE=0.5, 1.5, 2.5; d=180

unrepresentative RMSE

scenarios for
USS RMSE=3.3; d=0, 90, 270

subject d

Note: in scenario A) and B), the inputs to generate DEM realizations are obtained

from higher accurate reference data at the 180 reference locations.

Following the two nominal scenarios A) and B) that are based on specific error ε∗KK{K = 180} at reference locations

determined from the available data sources, we also want to analyze the impact of unrepresentative RMSE and subjective d

issues of USS as introduced in section 3.1 in the form of a sensitivity analysis. Hence, to what extent can we trust the results350

of USS if only a single RMSE value per data product is available. Additional three values of the RMSE that are 0.5m, 1.5m,

and 2.5m with a fixed d 180m are used as inputs for USS to study the unrepresentative RMSE issue. It should be noted that

the RMSE 1.5m corresponds to the ’true’ standard deviation σ based on ε∗KK{K = 180}, see Fig. 3 (b). Another additional

three values of d that are 0m, 90m, and 270m with a fixed RMSE 3.3m are used to consider the subjective d issue. The
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corresponding realizations of the HK-DTM are denoted as USSN{RMSE=0.5, 1.5, 2.5, d=180} and USSN{RMSE=3.3, d=0,355

90, 270}. To sum up, all the scenarios for stochastic simulation are listed in table 1.

5.2.3 Number of DEM realizations

The integrity of a stochastic simulation requires a large number of DEM realizations, while more realizations naturally take

many computational resources. Thus one has to find a reasonable compromise. Typically, this can be found through a represen-

tative convergence study. Since in our study we address the impact of topographic uncertainty on landslide run-out simulation,360

we analyze the relative change of topographic attributes with an increasing number of HK-DTM realizations in a preliminary

study. Herein, 1000 HK-DTM realizations are generated for the two ’information levels’ A) and B) as introduced in sec-

tion 5.2.2 respectively, namely USSN=1000{RMSE=3.3, d=180} and CSSN=1000. Topographic attributes including slope, aspect,

and ruggedness roughness at all HK-DTM grid points are calculated for each realization.

We define an indicator of the relative change similarly as in Raaflaub and Collins (2006) to investigate the converging365

behaviour. Taking slope as an example, for a given number n of HK-DTM realizations, we first calculate the standard deviation

of slope at each HK-DTM gird point over the n realizations. The calculated standard deviation values at all grid points constitute

a grid of standard deviation values. Then we calculate the standard deviation of the grid of standard deviation values, which

leads to a single standard deviation value for the given number n. For each n from 1 to 1000, we can correspondingly calculate

a standard deviation value. The same procedure is applied to aspect, ruggedness roughness , and elevation.370

Figure 5. The relative change of topographic attributes with respect to the number of HK-DTM realizations. The realizations are gener-

ated with (a) USSN{RMSE=3.3, d=180}; (b) CSSN. Beyond N=500, adding more realizations has little impact on topographic attributes.

Therefore, we set N=500 for all computational scenarios in Table 1.

Figure 5 shows plots of normalized standard deviation of the grid of standard deviation values with respect to the number of

HK-DTM realizations for the two situations A) and B). It can be seen that for situation A), aspect levels out first, followed by

slope, ruggedness roughness , and elevation. Beyond 500 realizations, there is little change of normalized standard deviations.

This indicates adding more realizations has little impact on topographic attributes. For situation B), aspect also levels out
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first while the rest three show less difference. Compared to A), B) converges faster which indicates CSS requires less DEM375

realizations than USS. Nevertheless, we set N=500 for the remainder of this study both for USS and CSS. Namely, we generate

500 HK-DTM realizations for each scenario input set as listed in Table 1.

5.2.4 Statistics of DEM error realizations

In order to conduct a further quality check of our implementation of both USS and CSS, we investigate the corresponding DEM

error realizations of the USSN=500{RMSE=3.3, d=180} and CSSN=500 scenarios, denoted as USSError
N=500 {RMSE=3.3, d=180} and380

CSSError
N=500 respectively. Ideally, the local mean µij and standard deviation σij of DEM error realizations at each grid point Dij

should match the underlying assumptions as introduced in section 3 if the number of DEM error realizations is sufficiently

large.

Figure 6 (a) and (c) show the mean and standard deviation grid of the USSError
N=500{RMSE=3.3, d=180}. It can be seen that

the mean values at all grid points are centered around 0m. The standard deviation values are centered around 3.3m. This385

corresponds to the assumption underlying USS that all εij fulfill a same univariate Gaussian distribution with a mean (µ) of

zero and a standard deviation (σ) given by the RMSE (see section 3.1).

Figure 6. Statistics of HK-DTM error realizations. (a) mean and (c) standard deviation grid of USSError
N=500{RMSE=3.3, d=180}. The mean and

standard deviation values are centered around 0m and 3.3m; (b) mean and (d) standard deviation grid of CSSError
N=500. The mean values at grid

points away from the reference locations are centered around the mean (µ) −3.0m of ε∗KK{K = 180} and are equal to ε∗KK{K = 180}

at the reference locations. The standard deviation values at grid points away from the reference locations are centered around the standard

deviation (σ) 1.5m of ε∗KK{K = 180} and vanish at the reference locations. This matches the assumptions underlying USS and CSS as

introduced in section 3.
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Figure 6 (b) and (d) show the mean and standard deviation grid of the CSSError
N=500. The mean values at grid points away from

the reference locations are centered around the mean (µ) −3.0m based on ε∗KK{K = 180}. They become close to ε∗KK{K =

180} with the decrease of distance between grid points and the reference locations, and are equal to ε∗KK{K = 180} at the390

reference locations. Similarly, the standard deviation values at grid points away from the reference locations are centered around

the standard deviation (σ) 1.5m based on ε∗KK{K = 180}. They vanish at the reference locations. This also corresponds to

the assumption underlying CSS that each εij fulfill a univariate Gaussian distribution with a mean µij and standard deviation

σij given by the simple kriging estimate and simple kriging standard deviation at Dij (see section 3.2).

5.3 Landslide process simulation setup395

With the DEM realizations generated in section 5.2, we can study the impact of DEM uncertainty on landslide process simula-

tion. Here, we introduce the key inputs and our setup for the process simulation.

5.3.1 Model input

Release zone area and fracture height, friction parameters, and a DEM are three key inputs for performing a deterministic

landslide process simulation based on the VS model and utilizing the mass movement simulation platform RAMMS (Christen400

et al., 2010). For all scenarios, we consistently use the release zone area as provided for the benchmark exercise during the

second JTC1 workshop, which match that of the 2008 Yu Tung Road landslide (Pastor et al., 2018) as shown in Fig. 7 (b).

The fracture height is assumed to be 1.2m leading to a release volume of around 2900m3 based on the 5m resolution HK-

DTM. The friction parameters µ and ξ used in this study are 0.105 and 300m/s2 respectively. They are suggested in the GEO

report issued by Civil Engineering and Development Department of Hong Kong, which are obtained using back-analysis with405

information from a video capturing the lower portion of the landslide and detailed field mapping after the landslide (AECOM

Asia Company Limited, 2012). The HK-DTM and all HK-DTM realizations generated in section 5.2 are used as DEM inputs.

Entrainment is not considered in this study.

It should be noted that release zone area, fracture height, as well as friction parameters may also be subject to uncertainty in

landslide modeling practice. In this study we keep them fix and focus only on the DEM uncertainty which is mostly overlooked410

in landslide run-out modeling. Future work should therefore continue to focus on systematically quantifying all the uncertainty

factors and evaluating their relative importance and interaction. Researchers carrying out this work should notice that increas-

ing dimension of uncertainty factors instantly requires much larger number of simulation runs for stochastic simulation and

computational resource consuming may become prohibitively expensive. One promising solution to this challenge is to employ

emulator techniques.415

5.3.2 Simulation ensembles

We denote a deterministic landslide process simulation based on a DEM as a simulation run and N deterministic landslide

process simulations based on N DEM realizations as a simulation ensemble. The following deterministic simulation and simu-
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lation ensembles are conducted based on the original HK-DTM and the aforementioned computational scenarios, see Table 1.

They are named after the corresponding DEM and DEM realizations.420

1) Deterministic simulation HK-DTM: one landslide process simulation run is conducted based on the original HK-DTM.

This one time simulation corresponds to, what is traditionally done in a simulation based hazard assessment study. The

results serve as the basis to assess the impact of DEM uncertainty.

2) USSN=500{RMSE=3.3, d=180} ensemble: 500 landslide process simulations are conducted based on the USSN=500{RMSE

=3.3, d=180} DEM realizations as introduced in section 5.2. Each of them is referred to as USSn
N=500{RMSE=3.3,425

d=180}, with n=1, 2, ..., 500. This ensemble allows us to access the impact of DEM uncertainty if only the RMSE is

available.

3) CSSN=500 ensemble: 500 landslide process simulations are conducted based on the CSSN=500 DEM realizations. Similar

to 2), each of them is referred to as CSSn
N=500 with n=1, 2, ..., 500. This ensemble allows us to assess the impact of DEM

uncertainty if higher accurate reference data is available.430

4) USSN=500{RMSE=0.5, 1.5, 2.5, d=180} ensembles: 500 landslide process simulations are conducted for three different

RMSE values respectively while keeping the maximum autocorrelation length d constant. They lead to 1500 process

simulations. The results allow us to discuss the unrepresentative RMSE issue as detailed in section 3.1. They can be also

used to discuss the relationship between the degree of DEM uncertainty and its impact.

5) USSN=500{RMSE=3.3, d=0, 90, 270} ensembles: 500 landslide process simulations are conducted for three different435

maximum autocorrelation length values respectively while keeping the RMSE constant. They lead to 1500 process

simulations. The results allow us to discuss the subject d issue as detailed in section 3.1.

All in all this adds up to one deterministic simulation run HK-DTM, as well as to simulation ensembles 500 process simulations

each, the USSN=500 {RMSE=3.3, d=180} ensemble and CSSN=500 ensemble, that are constructed from higher accurate reference

data based on the 2m-DEM, as well as 3000 additional process simulations to result in six ensembles USSN=500{RMSE=0.5,440

1.5, 2.5, d=180} and USSN=500{RMSE=3.3, d=0, 90, 270} to test sensitivities. Each process simulation takes around one minute

on a laptop with Intel Core i7-9750H CPU, adding up to around 67 hours simulation time.

6 Results and discussions

This section is organized according to the simulation ensembles introduced in section 5.3.2. Section 6.1 presents the results of

the deterministic simulation HK-DTM which serves as the basis for all following discussions. Section 6.2 is devoted to analyze445

the impact of DEM uncertainty on landslide process simulation in the case of RMSE only (USSN=500{RMSE=3.3, d=180}

ensemble) and available higher accurate reference data (CSSN=500 ensemble). In section 6.3, the unrepresentative RMSE and

subjective d issues are discussed based on the ensembles described in section 5.3.2 4) and 5).
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6.1 Deterministic simulation HK-DTM

In a continuum mechanical landslide process model such as used for this study and introduced in section 2, the landslide450

flow behaviour is characterised by its spatially varying height and velocity distribution over time, denoted as H(x,y, t) and

U(x,y, t). For the purpose of landslide hazard assessment and mitigation measure development, hence maximum height and

velocity data through the duration of the landslide are most informative. Thus, we focus on the maximum values of H(x,y, t)

and U(x,y, t) over all time, denoted as Hmax(x,y) and ‖Umax(x,y)‖.
Figure 7 (a) and (b) showHmax(x,y) and ‖Umax(x,y)‖ as given by the deterministic simulation HK-DTM. It should be noted455

that there is a relatively high elevation area at the end part of the channel in the HK-DTM as denoted within the red circle in

Fig. 7 (b). It corresponds to the construction of debris-resisting barriers after the 2008 Yu Tung Road landslide as introduced

in section 5.1. The flow material is decelerated and held back here. We will come back to this point latter in section 6.2.1.

Figure 7. Results of the deterministic simulation HK-DTM. (a) Hmax(x,y) above a cut-off threshold of 0.1m. The black outline is the 0.1m

contour of Hmax(x,y). The area within this outline is regarded as hazard area. Area 1-3 are denoted for latter discussions. (b) ‖Umax(x,y)‖

above a cut-off threshold of 0.01m/s. The relatively high elevation area within the red circle decelerates and holds back the flow material.

The channel bottom and cross section are denoted for latter discussions.

Landslide run-out distance is often characterised in terms of its apparent friction angle. The tangent of the apparent friction

angle is equal to the ratio of the landslide fall height and the run-out distance (DeBlasio and Elverhoi, 2008). The apparent460
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friction angle evaluated from the deterministic simulation is 16.80◦. These results are used as reference to assess the impact of

DEM uncertainty in the following discussions.

6.2 USSN=500{RMSE=3.3, d=180} ensemble and CSSN=500 ensemble

While it is straightforward to present results of a deterministic simulation run as shown in section 6.1, a stochastic simulation

based ensembles of N simulation run call for tailored statistic to manage and interpret the extensive output data. First, we define465

the hazard probability P(xl,yl) at one location (xl,yl) as the frequency of Hmax(xl,yl) exceeding a certain pre-defined height

threshold value, hence

P(xl,yl) =

∑N
n=1P

n
(xl,yl)

N
, Pn

(xl,yl)
=

1, if Hn
max(xl,yl)≥ threshold

0, otherwise
(10)

where Hn
max(xl,yl) denotes the maximum flow height at location (xl,yl) for the n-th simulation run of the corresponding

ensemble. Pn
(xl,yl)

hence informs whether location (xl,yl) is within the hazard area of the n-th simulation run for a given470

threshold, and P(xl,yl) about the resulting hazard probability at location (xl,yl) considering the complete ensemble. Here, the

threshold is set as 0.1m which matches the cut-off threshold of the deterministic simulation HK-DTM in Fig. 7 (a). Evaluation

of hazard probabilities at all locations then gives rise to a probabilistic hazard map (Stefanescu et al., 2012), which provides an

overall view of the DEM uncertainty impact.

Besides assessing the overall impact of DEM uncertainty in terms of the probabilistic hazard map, we will also discuss the475

local impact of DEM uncertainty on dynamic flow properties, focusing on Hmax(x,y) and ‖Umax(x,y)‖ at locations along the

channel bottom and the channel cross section denoted in Fig. 7 (b).

6.2.1 Probabilistic hazard maps

Figure 8 (a) and (c) show the probabilistic hazard map for both USSN=500 {RMSE=3.3, d=180} ensemble and CSSN=500 en-

semble. It can be seen that the potential hazard area is much larger than the deterministic hazard area for both ensembles. The480

difference between the deterministic and the ensemble-based hazard area is most pronounced in area 1-3 for USSN=500 {RMSE=

3.3, d=180} ensemble and in area 3 for CSSN=500 ensemble. Fig. 8 (b) and (d) show boxplots of the apparent friction angle dis-

tribution for both ensembles. It is evident that the apparent friction angle of both ensembles varies largely with respect to

the apparent friction angle of the deterministic simulation (16.80◦). CSSN=500 ensemble-based apparent friction angle (mean

15.39◦) is smaller than USSN=500 {RMSE=3.3, d=180} ensemble-based apparent friction angle (mean 16.76◦). This can be485

explained as follows.

As stated in section 4, analyzing terrain characteristics of the original DEM and DEM realizations may help us to interpret

simulation results. By a preliminary analysis, we did not find obvious relationships between landslide run-out simulation

results and terrain characteristics at a specific location (on the cell level). One obvious reason is that a simulation result at one

location is affected not only by terrain characteristics at the specific location, but by the complete upstream and surrounding490

terrain. Instead of discussing the effects of terrain characteristics at the cell level, we therefore focus on several compound
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terrain characteristics that help us to understand how DEM uncertainty may affect simulation results. The compound terrain

characteristics include: banks of the channel, especially the north bank near area 1 and south bank near area 2; relatively high

elevation area at the end part of the channel that holds back flow material as shown in Fig. 7 (b); topographic roughness;

relatively flat area 3 (namely area with relatively small slope).495

Due to DEM uncertainty, topographic characteristics represented in DEM realizations vary from that represented in the

original DEM. Specifically: 1) topographic details of the deterministic channel tend to be dampened out from DEM realizations.

The topographic details include banks of the channel, as well as relatively high elevation area at the end part of the channel

that holds back flow material as shown in Fig. 7 (b) ; 2) topographic roughness tends to increase.

Whether, where, and to what extent the topographic characteristics in DEM realizations would differ from the original DEM500

depend on: 1) variability of DEM error. Intuitively, the larger the variability, the more likely that topographic details of the

deterministic channel would be dampened out, and the larger the topographic roughness in DEM realizations; 2) topographic

details of the original DEM. If subject to the same DEM error, less ’well defined’ topographic characteristics in the original

DEM are more likely to be changed in DEM realizations. For example, along the channel of the HK-DTM, the north bank of

the channel near area 1 and the south bank of the channel near area 2 are less ’well defined’ compared to other parts of channel505

banks. Flow material could be more easily diverted to area 1 and area 2 where elevations are relatively low and some local

’small channels’ exist. Area 3 could also be regarded as less ’well defined’ since it is relatively flat and thus is sensitive to DEM

uncertainty (Temme et al., 2009).

The change of each topographic characteristic has corresponding impact on landslide run-out behaviour. Specifically: 1) if

banks of the deterministic channel were dampened out in DEM realizations, flow material tends to spread out along channel510

cross section direction and travel distance would be shorter; 2) if the relatively high elevation area that holds back flow ma-

terial was dampened out, flow material tends to travel further; 3) increasing topographic roughness leads to higher simulated

momentum losses and shorter travel distance as pointed out by McDougall (2017).

For USSN=500 {RMSE=3.3, d=180} ensemble, the variability of DEM error is relatively large, e.g. around 3.3m governed by

the not-bias-corrected RMSE based on ε∗KK{K = 180} (see Fig. 6 (c)). In this situation, both the north bank near area 1 and515

south bank near area 2 as well as the relatively high elevation area at the end part of the channel are possible to be dampened out

in HK-DTM realizations. For CSSN=500 ensemble, the variability of DEM error is relatively small, e.g. around 1.5m governed

by the standard deviation (σ) based on ε∗KK{K = 180} (see Fig. 6 (d)). In this situation, the banks tend to remain ’well defined’

while the relatively high elevation area is possible to be dampened out in HK-DTM realizations. Thus, area 1 and area 2 are

possibly subject to hazard in USSN=500 {RMSE=3.3, d=180} ensemble but less likely in CSSN=500 ensemble. As mentioned520

above, area 3 is a flat area which is sensitive to DEM uncertainty. Furthermore, it locates near the deposition, around which the

impact of upstream DEM uncertainty seems to accumulate. Thus, it is highly affected in both ensembles.

The apparent friction angle distribution is determined by a combined effect of change of channel banks, change of the

relatively high elevation area at the end part of the channel, and increasing topographic roughness. For USSN=500 {RMSE=3.3,

d=180} ensemble, deteriorated channel bank representation and increasing topographic roughness make flow material travel525

shorter distance, e.g. larger apparent friction angle, while deteriorated relatively high elevation area representation allows flow
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Figure 8. (a) Probabilistic hazard map and (b) corresponding apparent friction angle distribution of USSN=500 {RMSE=3.3, d=180} ensemble;

(c) probabilistic hazard map and (d) corresponding apparent friction angle distribution of CSSN=500 ensemble. The black outline plotted on

the hazard maps represents the deterministic hazard area (see Fig. 7 (a)). In the boxplots, the blue star denotes the apparent friction angle

of the deterministic simulation HK-DTM (see section 6.1). The difference between the deterministic and the ensemble based hazard area

is most pronounced in area 1-3 for USSN=500 {RMSE=3.3, d=180} ensemble and in area 3 for CSSN=500 ensemble. Our main findings are:

1) accounting for DEM uncertainty may significantly increase the potential hazard area; 2) the potential hazard area is highly related to the

variability of DEM error and topographic details of the original DEM; 3) USS based on the RMSE only may overestimate the spread of

potential hazard area and underestimate the travel distance due to an unrepresentative RMSE (e.g. not bias-corrected) that overestimates the

variability of DEM error.

material to travel further, e.g. smaller apparent friction angle. For CSSN=500 ensemble, channel banks are likely to remain ’well

defined’ and the degree of topographic roughness increase is lower due to its relatively small variability of DEM error compared

to USSN=500 {RMSE=3.3, d=180} ensemble. Thus, flow material in CSSN=500 ensemble tends to travel longer distance, e.g.

smaller apparent friction angle, compared to USSN=500 {RMSE=3.3, d=180} ensemble.530

In summary, we can conclude from the probabilistic hazard maps and boxplots of apparent friction angle distribution that:

1) accounting for DEM uncertainty may significantly increase the potential hazard area; 2) the potential hazard area is highly

related to the variability of DEM error and topographic characteristics of the original DEM; 3) USS based on the RMSE only

may overestimate the spread of potential hazard area and underestimate travel distance due to a not-bias-corrected RMSE that

overestimates the variability of DEM error.535
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It should be noted that the probabilistic hazard map here is constructed based on maximum height and a pre-defined thresh-

old. In simulation-based hazard assessment practice, one may indicate potential hazard using other indicators, e.g. maximum

momentum that reflects the impact pressure, etc. and correspondingly modify the threshold value. In this case, our workflow is

easily extendible to account for other indicators.

6.2.2 Dynamic flow properties540

The left column in Fig. 9 shows elevation, maximum height and maximum velocity at locations along the channel bottom based

on USSN=500 {RMSE=3.3, d=180} ensemble. It is evident that both maximum height and maximum velocity at these locations

largely vary from that of the deterministic simulation. Specifically, the mean of maximum height (maximum velocity) values

at all the locations based on the deterministic simulation is 1.28m (7.17m/s). The mean of ensemble-based 90% confidence

interval of maximum height (maximum velocity) is [0.18m,2.17m] ([0.99m/s,7.89m/s]) (e.g. the range between the mean of545

ensemble-based 5% percentile and the mean of ensemble-based 95% percentile). Another observation is that ensemble-based

mean of flow dynamic properties is generally smaller than the mean of flow dynamic properties of the deterministic simulation

(e.g. the red dashed line is generally under the black line in both Fig. 9 (c) and (e)). The mean of ensemble-based mean of

maximum height (maximum velocity) is 0.85m (4.57m/s), around 66% (64%) of the mean of the deterministic simulation

1.28m (7.17m/s) (see Fig. 9 (c) and (e)).550

The right column in Fig. 9 shows corresponding results based on CSSN=500 ensemble. Similar trends as in USSN=500

{RMSE=3.3, d=180} ensemble can also be observed. Namely, both maximum height and maximum velocity at these locations

largely vary from that of the deterministic simulation, and ensemble-based mean of flow dynamic properties is generally smaller

than deterministic results. Main differences are that the variation range of CSSN=500 ensemble-based flow dynamic properties is

smaller, and CSSN=500 ensemble-based mean of flow dynamic properties is larger compared to USSN=500 {RMSE=3.3, d=180}555

ensemble. More specifically, the mean of CSSN=500 ensemble-based 90% confidence interval of maximum height (maximum

velocity) is [0.5m,2.03m] ([3.56m/s,7.99m/s]). The mean of CSSN=500 ensemble-based mean of maximum height (maxi-

mum velocity) is 1.1m (6.01m/s), around 86% (84%) of the mean of the deterministic simulation 1.28m (7.17 m/s) (see

Fig. 9 (d) and (f)).

The above observations result from similar factors as discussed in section 6.2.1. Due to DEM uncertainty,560

• ensemble-based flow dynamic properties are likely to vary from that of the deterministic simulation. Larger variability

of DEM error is likely to result in more extreme results. As discussed in section 6.2.1, the variability of DEM error for

USSN=500 {RMSE=3.3, d=180} ensemble is larger than that for CSSN=500 ensemble due to unrepresentative RMSE issue.

Thus the variation range of USSN=500 {RMSE=3.3, d=180} ensemble-based flow dynamic properties is generally larger

than that of CSSN=500 ensemble-based flow dynamic properties, e.g. larger mean of ensemble-based 90% confidence565

interval (the trend would be more clear if we also consider outliers outside 90% confidence interval).

• banks of the deterministic channel may be dampened out in DEM realizations. Deteriorated channel bank representation

makes flow material more spread out along channel cross section direction. This could lead to smaller ensemble-based
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Figure 9. Elevation, maximum height, and maximum velocity at locations along the channel bottom (see Fig. 7 (b)). Left and right columns

correspond to USSN=500 {RMSE=3.3, d=180} ensemble and CSSN=500 ensemble respectively. In each subfigure, blue dashed dotted lines

represent ensemble-based 5% and 95% percentiles of the quantity. The red dashed line represents ensemble-based mean of the quantity. The

black line denotes corresponding results of the deterministic simulation. Annotated mean values are average of all the locations. Ensemble-

based flow dynamic properties largely vary from deterministic simulation results. The variation range of USSN=500 {RMSE=3.3, d=180}

ensemble is larger while its ensemble-based mean is smaller, compared to counterparts of CSSN=500 ensemble. Our main findings are: 1)

accounting for DEM uncertainty may significantly affect dynamic flow properties hence any hazard assessment that is based on landslide

dynamics; 2) USS based on the RMSE only may overestimate the range of dynamic flow properties and underestimate ensemble-based mean

of dynamic flow properties due to an unrepresentative RMSE that overestimates the variability of DEM error.
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Figure 10. Elevation, maximum height, and maximum velocity at locations along the channel cross section (see Fig. 7 (b)). Left and right

columns correspond to USSN=500 {RMSE=3.3, d=180} ensemble and CSSN=500 ensemble respectively. In each subfigure, blue dashed dotted

lines represent ensemble-based 5% and 95% percentiles of the quantity. The red dashed line represents ensemble-based mean of the quantity.

The black line denotes corresponding results of the deterministic simulation. Annotated mean values are average of all the locations. Due

to DEM uncertainty, flow material of both ensembles tends to spread out along the channel cross section direction. The ensemble-based

mean of flow dynamic properties at the channel bottom location is smaller than flow dynamic properties at the channel bottom location of

the deterministic simulation (compare peak value of red dashed line with peak value of black line). The more the flow material spreads out,

the smaller the ensemble-based mean of flow dynamic properties at the channel bottom location (compare results of USSN=500 {RMSE=3.3,

d=180} ensemble with that of CSSN=500 ensemble).
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mean of flow dynamic properties at channel bottom locations, compared to flow dynamic properties of the deterministic

simulation. It can be directly seen in Fig. 10, which displays results of one channel cross section. Also, due to larger570

variability of DEM error, flow material in USSN=500 {RMSE=3.3, d=180} ensemble is more spread along channel cross

section direction, resulting in smaller ensemble-based mean of flow dynamic properties at channel bottom locations

compared to CSSN=500 ensemble. This can also be seen in Fig. 10.

• topographic roughness in DEM realizations tends to increase. As pointed out in section 6.2.1, increasing topographic

roughness results in higher simulated momentum losses and thus smaller flow dynamic properties on average. The575

higher the degree of topographic roughness increase, the higher the simulated momentum losses and the smaller the

flow dynamic properties. This also contributes to smaller ensemble-based mean of flow dynamic properties at channel

bottom locations, compared to flow dynamic properties of the deterministic simulation, as well as to smaller USSN=500

{RMSE=3.3, d=180} ensemble-based mean of flow dynamic properties at channel bottom locations, compared to CSSN=500

ensemble.580

Based on the ensembles’ dynamic flow properties we can conclude that: 1) accounting for DEM uncertainty may significantly

affect dynamic flow properties, e.g. maximum height and maximum velocity, hence any hazard assessment that is based on

landslide dynamics; 2) USS based on the RMSE only may overestimate the range of dynamic flow properties and underestimate

ensemble-based mean of dynamic flow properties due to an unrepresentative RMSE that overestimates the variability of DEM

error.585

6.3 Additional ensembles to investigate USS sensitivities in RMSE and d

Here, we discuss the unrepresentative RMSE and subjective d issues as introduced in section 3.1 based on additional six ensem-

bles USSN=500 {RMSE=0.5, 1.5, 2.5, d=180} and {RMSE=3.3, d=0, 90, 270} (refer to section 5.3.2) as well as the USSN=500

{RMSE=3.3, d=180} ensemble. Results of the CSSN=500 ensemble are used as a reference since CSSN=500 incorporated more

information on the DEM error. It is thus reasonable to assume that its results reflect the reality better.590

Figure 11 shows the consolidated results of the ensembles. The left, middle, and right column correspond to set of USSN=500

{RMSE=0.5, 1.5, 2.5, 3.3, d=180} ensembles, set of USSN=500 {RMSE=3.3, d=0, 90, 180, 270} ensembles, and CSSN=500

ensemble respectively. The first row shows stacked bar plots of the potential hazard area’s magnitude based on the probabilistic

hazard map for each ensemble (see Fig. 8 (a) and (c)). The second row shows apparent friction angle distribution. The last

two rows show statistics of maximum height and maximum velocity at channel bottom locations (see Fig. 9 (c)-(f)). Also,595

deterministic simulation results are included.

Focusing on the left column, it can be seen that with increasing RMSE: 1) low-probability (0-0.2) hazard area significantly

increases and high-probability (0.8-1) hazard area gradually decreases leading to increase of overall potential hazard area if

we keep the same threshold value; 2) except for the RMSE=0.5m ensemble, the apparent friction angle steadily increases; 3)

the range of extreme values of maximum height (maximum velocity) at channel bottom locations increases while average of600

maximum height (maximum velocity) at channel bottom locations decreases.
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Figure 11. Consolidated results of all ensembles. The left, middle, and right columns correspond to set of USSN=500 {RMSE=0.5, 1.5, 2.5,

3.3, d=180} ensembles, set of USSN=500 {RMSE=3.3, d=0, 90, 180, 270} ensembles, and CSSN=500 ensemble respectively. The first row

shows stacked bar plots of the potential hazard area’s magnitude based on the probabilistic hazard map for each ensemble (see Fig. 8 (a) and

(c)). The second row shows apparent friction angle distribution. The last two rows show statistics of maximum height and maximum velocity

at channel bottom locations (see Fig. 9 (c)-(f)).

27



For purely RMSE-based USS, the standard deviation of DEM error is assumed to be determined by the RMSE. Hence larger

RMSE indicates larger variability of DEM error in DEM realizations. The larger the variability of DEM error, the more likely

topographic details of the deterministic channel would be dampened out, and the larger the topographic roughness in DEM

realizations. As discussed in section 6.2.1, this would make flow material more spread out along channel cross section direction605

(namely larger potential hazard area) and travel shorter distance (namely larger apparent friction angle). As discussed in section

6.2.2, larger variability of DEM error is likely to result in more extreme values of flow dynamic properties (namely larger range

of extreme values) while spreading of flow material along channel cross section direction and larger topographic roughness

lead to smaller ensemble-based mean of flow dynamic properties at channel bottom locations.

As discussed in section 6.2.1, the apparent friction angle distribution is determined by a combined effect of change of channel610

banks, change of the relatively high elevation area at the end part of the channel, and increasing topographic roughness. It

naturally follows that for a small variability of DEM error (here RMSE=0.5m), all the changes are less significant in DEM

realizations and thus the apparent friction angle of USSN=500{RMSE=0.5, d=180} ensemble closely matches the deterministic

simulation result. For an intermediate variability of DEM error (here RMSE=1.5m), the relatively high elevation area at the

end part of the channel is subject to change while channel banks tend to remain ’well defined’ in DEM realizations. This leads615

to longer travel distance of USSN=500{RMSE=1.5, d=180} ensemble (namely smaller apparent friction angle) in comparison

to the deterministic simulation result.

From the middle column of Fig. 11, we find that consistently the results for a USS ensemble of vanishing spatial auto-

correlation USSN=500 {RMSE=3.3, d=0} differ significantly from USS ensembles that include spatial autocorrelation, hence

USSN=500{RMSE=3.3, d=90, 180, 270} ensembles. This indicates that whether spatial autocorrelation is considered or not620

may make a difference but the extent of spatial autocorrelation has less influence on simulation results. As we know spatial

autocorrelation to be present in topographic data but often lack information on its exact autocorrelation length, this is actually

good news for practical hazard assessment studies.

Comparing the left column of Fig. 11 with the right column, it can furthermore be seen that the results of the USSN=500

{RMSE=1.5, d=180} ensemble are quite close to the results of the CSSN=500 ensemble. The USSN=500 {RMSE=1.5, d=180}625

ensemble is informed with the bias-corrected RMSE (namely the true standard deviation, in our case 1.5m, see Fig. 3 (b)). It

indicates that if a bias-corrected RMSE is given, USS is possible to provide reasonable results considering the extent of spatial

autocorrelation has less influence on simulation results.

All in all, we find that: 1) the results of USS are in general more sensitive to values of the RMSE and less sensitive to values

of d; 2) an unrepresentative RMSE that overestimates the variability of DEM error may overestimate the potential hazard area630

and extreme values of dynamic flow properties; 3) whether or not spatial autocorrelation of DEM error is considered can make

a difference of ensemble-based simulation results; 4) if a bias-corrected RMSE is given, it is possible to obtain reasonable

ensemble-based simulation results using USS.
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7 Conclusions

In this paper, we investigated different approaches to study the impact of topographic uncertainty on simulation-based flow-635

like landslide run-out analyses. Based upon a historic landslide event for which two DEM data sets of different accuracy

had been available, we presented a series of computational scenarios. Unconditional and conditional stochastic simulation are

conducted to generate DEM realizations, both for the case in which only the RMSE is available, and for the case in which

reference data of higher accuracy is available. The computational workflow including the stochastic simulation to generate the

DEM realizations and the landslide run-out simulation is implemented as a modular Python-based package. How topographic640

uncertainty propagates into results of landslide run-out analysis is discussed in detail. In addition, we addressed the two major

issues of purely RMSE-based unconditional stochastic simulation, e.g. the fact that not-bias-corrected RMSE overestimates

the variability of DEM error (referred to as unrepresentative RMSE in our study) and the fact that determining the size of the

spatially moving filter in the absence of further information on the spatial DEM error structure is often subjective (referred to

as subjective d in our study). Our main conclusions are:645

• DEM uncertainty significantly affects simulation-based landslide run-out modeling depending on how well the underly-

ing flow path is represented, which is determined by topographic characteristics of the original DEM and the variability

of DEM error. For the same degree of variability of DEM error, the less ’well defined’ parts of the flow path in the orig-

inal DEM are more likely to be affected and thus leads to change of flow behaviour at these parts. Also, an increasing

variability of DEM error leads to an increased impact. More specifically, with increasing variability of the DEM error, the650

potential hazard area and extreme values of dynamic flow properties are likely to increase. This shows the importance of

considering topography induced uncertainty for simulation-based landslide hazard assessment rather than simply trust-

ing results of a deterministic simulation if a high accuracy of DEM source is not guaranteed. Also, a preliminary terrain

analysis may give some hints on areas that will potentially be affected by a topographic uncertainty study.

• Both unconditional and conditional stochastic simulation methods can be applied to study DEM uncertainty propagation655

in landslide run-out modeling. Their main difference is that the computationally performant unconditional stochastic

simulation can be conducted based on RMSE information only, while the computationally costly conditional stochastic

simulation requires the availability of higher accurate reference data and is thus more accurate. The higher accurate

reference data provides additional information on the DEM error structure, e.g. its spatial autocorrelation. If the DEM

does not contain systematic bias or alternatively a bias-corrected RMSE is provided, the unconditional stochastic simu-660

lation yields reasonable results. Otherwise, the assumptions underlying the unconditional stochastic simulation lead to

an overestimation of the DEM error variability, which leads to an increased potential impact of DEM uncertainty on the

potential hazard area and extreme values of dynamic flow properties. In particular, our study shows that if no higher

accurate reference data is available or if computational costs of a conditional stochastic simulation would be too large,

the results of a RMSE-based unconditional stochastic simulation can still be used to provide an upper bound of the665

potential hazard area as well as extreme values of flow dynamic properties for a hazard assessment to take topographic

uncertainties into account.
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• Results of an unconditional stochastic simulation are in general sensitive to the RMSE value as well as sensitive to the

fact whether or not the DEM error’s spatial autocorrelation is considered. If the latter is taken into account, results are

less sensitive to actual value of the DEM error’s maximum autocorrelation length. This indicates that determining a670

representative RMSE may be more important than finding a correct maximum autocorrelation length, while the DEM

error’s spatial autocorrelation should not be ignored for simulation-based landslide hazard assessment.

Data availability. The 5m resolution HK-DTM used in this study is available as a free download on the website of the Survey and Mapping

Office of Hong Kong under the following link: https://www.landsd.gov.hk/mapping/en/download/psi/opendata.htm. The 2m resolution DEM

had been provided by the organizers of the Second JTC1 Workshop on Triggering and Propagation of Rapid Flow-like Landslides held in675

Hong Kong in 2018 to conduct a benchmark exercise. Readers can approach the Civil Engineering and Development Department of Hong

Kong to obtain this DEM data for research purposes.
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