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Abstract. Forecasting snow avalanches requires a reliable stream of field observations, which are often difficult and expensive

to collect. Despite the increasing capability of simulating snowpack conditions with physical models, models have seen limited

adoption by avalanche forecasters. Feedback from forecasters suggest model data is presented in ways that are difficult to

interpret and irrelevant to operational needs. We apply a visualization design framework to enhance the value of snowpack

models to avalanche forecasters. An established risk-based workflow for avalanche forecasting is used to define the ways5

forecasters solve problems with snowpack data. We address common forecasting tasks such as identifying snowpack features

related to avalanche problems, summarizing snowpack features within a forecast area, and locating problems in terrain.

Examples of visualizations that support these tasks are presented and follow established perceptual and cognitive principles

from the field of information visualization. Interactive designs play a critical role in understanding these complex datasets

and are well suited for forecasting workflows. Preliminary feedback suggests these design principles produce visualizations10

that are more relevant and interpretable for avalanche forecasters, but additional operational testing is needed to evaluate their

effectiveness. By addressing issues with interpretability and relevance, this work sets the stage for implementing snowpack

models into workstations where forecasters can test their operational value and learn their capabilities and deficiencies.

1 Introduction

Numerical environmental and weather prediction models have dramatically transformed the accuracy of weather forecasts and15

the role of weather forecasters since the 1980s (Benjamin et al., 2019). As model performance improved, forecasting tasks

shifted from predicting weather conditions to interpreting and communicating model guidance. A centerpiece in the adoption

of prediction models by weather forecasters was the development of workstations that allowed them to work directly with

gridded modelled data in combination with in-situ weather observations and remote sensing data (Benjamin et al., 2019). This

setup allowed forecasters to visualize model output along with observations and gradually learn the operational value of the20

models.

The work of avalanche forecasters is similar in nature and complexity to the work of weather forecasters. The objective

of avalanche forecasting is to develop an accurate mental model of the current and future nature of avalanche hazard by

integrating avalanche, snowpack, and weather information from a variety of sources (Canadian Avalanche Association, 2016b).

This assessment is then combined with terrain information to make risk management decisions regarding specific elements at25
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risk. The spatial scale of avalanche forecasting can range from individual slopes in backcountry guiding, to groups of avalanche

paths when protecting infrastructure, and entire mountain ranges in public avalanche warnings. To assist avalanche forecasters

at the higher end of the spatial scale spectrum, physical snowpack models such as Crocus (Brun et al., 1992) and SNOWPACK

(Lehning et al., 1999) were developed in the 1990s to provide supplementary data about snowpack conditions. Despite the fact

snowpack model developers created numerous operational tools to visualize model output for avalanche forecasters, snowpack5

models have so far only seen limited adoption into operational workflows when compared to weather prediction models (Morin

et al., in press).

Morin et al. (accepted) employed the information quality framework of Bovee et al. (2003) to describe issues with operational

snowpack model tools in terms of accessibility, interpretability, relevance, and integrity of the information. Accessibility to

snowpack models is limited by the time constraints in forecasting environments and workstations that are optimally designed10

for field data rather than model data. Existing tools are also difficult to interpret as model output is complex and in their

current form require expertise or substantial training to comprehend and utilize. The relevance of the information they provide

is also questioned, as similar information may be available from other sources. The integrity of model output is also difficult

to evaluate in an operational setting where there is limited validation data. For example, snowpack models can produce snow

stratigraphy profiles for multiple parameters (e.g. grain size, hardness, temperature) at different time intervals at potentially15

hundreds or thousands of locations. Furthermore, the output from snowpack models are so complex and voluminous that it

becomes extremely challenging for operational forecasters to make sense of in its raw form using conventional methods. This

has been described as “information overload” and characterizes “big data” environments (De Mauro et al., 2016). As avalanche

forecasting requires substantial cognitive effort to continuously maintain a mental model of conditions (Maguire and Percival,

2018), introducing additional complex data can disrupt this process and have adverse effects on performance. Based on their20

analysis, Morin et al. (in press) aptly conclude that while it was important for researchers to focus on improving the accuracy

of snowpack models, we are now at a point where addressing issues with the design of operational tools is critical for making

snowpack models truly valuable for avalanche forecasting.

To address the challenges of big data and make it tractable for human analysis, the field of visual analytics blends automatic

analysis with human analysis via visual interfaces (Keim et al., 2008). Specifically, visualization in combination with interaction25

techniques support a process of iterative inquiry into data to support sense-making. This reduces the cognitive work needed

to perform analytic tasks by leveraging the pattern detecting abilities of the human visual system for processing complex

information that would normally exceed cognitive limits (Ware, 2012). Visual analytics has made complex problems and

model output tractable for non-scientists and non-model experts in a variety of domains including physics, business, intelligence

analysis, and disaster management (Keim et al., 2008). Effective visualization techniques are particularly valuable for environmental30

data, which is often complex due its spatiotemporal dimensions and uncertainties (Grainger et al., 2016). For example, studying

visualization design principles has improved the interpretability of complex data sets in the fields of meteorology (Rautenhaus

et al., 2018; Stauffer et al., 2015) and oceanography (Thyng et al., 2016).

Judging from the success of visual analytics applications in other disciplines of environmental science, we believe that

applying a visualization design perspective to snowpack models has the potential to substantially address some of the shortcomings35
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that have so far prevented their operational use. In this paper, we present design principles and visualization examples that

aim to increase the interpretability and relevance of snowpack models. These design principles are informed by information

visualization, operational avalanche forecasting practices, and the unique features of snowpack model data. First, we apply a

visualization design framework to the domain of avalanche forecasting to outline principles of how data should be visualized

to solve operational problems (Sect. 2). Then we provide examples of visualizations where these principles are applied with5

snowpack model data (Sect. 3). The validity of the design principles is discussed (Sect. 4) followed by conclusions and

recommendations for adoption by avalanche forecasters (Sect. 5).

2 Visualization design principles for avalanche forecasting

2.1 Nested levels of visualization design

The nested model for visualization design described by Munzner (2009) has established itself as a valuable framework for10

evaluating and designing visualization tools. This framework considers four nested levels where distinct design issues arise,

and where issues at one level can cascade to other levels. The issues with operational snowpack model tools identified by

Morin et al. (in press) relate to design issues at each level of the nested model. The considerations included in these four levels

provide designers with a tangible framework for understanding the users’ problems, showing the appropriate information, and

presenting it both effectively and efficiently:15

1. Domain situation level. The domain situation describes the target users, their field of interest, their questions, and their

data. A domain has unique vocabulary for describing its data and problems, and usually has an existing workflow for how

data is used to solve problems. Issues arise when designers misunderstand the users’ needs. For example, existing tools

that present snowpack model data may not address the major needs and questions of avalanche forecasters (relevance).

2. Task and data abstraction level. Task and data abstraction maps domain-specific problems into generic vocabulary that20

clearly describe what type of data is being visualized and why. Tasks are described with generic verbs (e.g. locate,

compare) and data is described with generic nouns and adjectives (e.g. table, network, ordered, categorical). Issues arise

when the functions and data types in a design do not solve the intended problem. For example, detailed snow stratigraphy

profiles provided by snowpack models may not be the type of information needed for forecasting tasks (relevance).

3. Visual encoding and interaction idiom level. This level creates visual representations of the data. A distinct visual25

representation is called an idiom. Data is encoded by arranging it along spatial dimensions and mapping attributes

to non-spatial visual features such as colour, size, and shape, while interaction idioms allow the user to change the view.

Issues arise when idioms are ineffective at visualizing information. Existing idioms for visualizing snowpack model data

are often complex, busy, and difficult for non-model experts to understand (interpretability).
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4. Algorithm level. This is the level where idioms are produced from raw data with a computer. Issues arise when algorithms

are too slow. At the algorithm level, most snowpack model visualizations are time consuming for forecasters because

they are poorly integrated into their workstations (accessibility).

Munzner (2014) also describes that visualization problems can be attacked from two possible directions within the nested

model: top-down approaches that first understand the domain and tasks and then design visual idioms accordingly, and bottom-5

up approaches that start with developing new algorithms and idioms. Most existing snowpack model visualizations were

developed with bottom-up approaches that began with model development followed by the creation of visualizations of the

model output. Bottom-up approaches allow novel visualizations that reveal nuances and anomalies in new types of data, but

also have the potential to not solve the intended problem (Munzner, 2014). While it is worth considering bottom-up designs

that take advantage of the unique capabilities of snowpack models, it is also important to carefully examine the domain and10

tasks of avalanche forecasting to establish top-down design principles that support forecasting needs.

2.2 Domain of avalanche forecasting

Avalanche forecasting is a common task for all operations that manage short-term avalanche risk (e.g. ski areas, transportation

corridors, backcountry warnings, resource extraction). The forecasting process consists of iterative data analysis and is dominated

by human judgement and inductive logic (LaChapelle, 1980; McClung, 2002). Statham et al. (2018) surveyed existing operational15

practices within North American avalanche forecasting operations to develop a standard framework for this process. The

resulting conceptual model of avalanche hazard (CMAH) identifies the key components of avalanche hazard and provides

standard workflow and terminology to guide the forecasting process. The CMAH is a risk-based framework that is consistent

with other natural hazard disciplines and can be applied to any scale in space or time. A central part of the CMAH is the

concept of avalanche problems that represent individual, identifiable operational concerns that can be described in terms of20

their potential avalanche type, location, likelihood, and size (Statham et al., 2018). Under the CMAH, avalanche forecasting is

viewed as sequentially answering four questions:

1. What type of avalanche problems exist?

2. Where are these problems located in the terrain?

3. How likely is it that an avalanche will occur?25

4. How destructive will the avalanche be?

Over the past decade, the CMAH has been widely adopted by all industry sectors in North America (Statham et al., 2018),

which clearly indicates that it is a useful model to describe the domain situation of avalanche forecasting.

2.3 Task and data abstractions for snowpack analysis

Given the importance of avalanche problems in avalanche forecasting practices, any operational visualization of data should30

consider this abstraction to help forecasters identify and characterize avalanche problems. Assessing avalanche problems
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consists of integrating a complex array of data that includes observations of avalanches, snowpack, weather, and terrain

(Statham et al., 2018). There is no structured or standardized way this data is used to answer the CMAH questions, as the

analysis relies on subjective judgement and heuristics (LaChapelle, 1980), however there are common practices for interpreting

field observations. Snowpack models produce data that is analogous to manual snow stratigraphy profiles, which is a key type

of field data used by forecasters. Building off familiar visual representations is an effective way for people to understand new5

types of information (Blackwell, 2001), and thus examining existing practices for visualizing and analyzing snow profiles

provides insight into ways snowpack models could be visualized to support forecasting tasks.

Forecasters perform several analysis tasks with snow stratigraphy profiles to help them assess avalanche problems and

develop a comprehensive mental model of hazard conditions. Individual snow profiles are either recorded in tables of unstructured

text or illustrated as a hardness profiles (Canadian Avalanche Association, 2016a). Forecasters learn to identify relevant10

snowpack features in these profiles, and then compare multiple snow profiles along with other observations to summarize

the snowpack conditions within a forecast area. Forecasters summarize snowpack data by writing a concise overview of

snowpack conditions in their forecast area. The goal of a written snowpack summary is to organize and reduce data, focusing

on average conditions along with potential anomalies and outliers (Canadian Avalanche Association, 2016a). Some operations

also illustrate their snowpack summary with generalized stratigraphy profiles for their forecast area (Fig. 1).15

Tracking trends in snowpack conditions over time is another common forecasting task, which is most often done with tables

of text. Temporal trends in the likelihood and size of avalanches are particularly relevant. For example, the InfoEx forecasting

workflow allows forecasters to track weak layers in their forecast area with qualitative summaries of their status and depth each

day of the season (Haegeli et al., 2014). Simple observed snowpack data is plotted as time series (e.g. daily snowfall at fixed

observation sites), but complex data like snowpack structure is rarely visualized temporally.20

To help forecasters answering the four key questions about avalanche problems posed by the CMAH, visualizations of

snowpack model data should help forecasters identify, compare, and summarize snowpack features and highlight trends over

time.

2.4 Information visualization principles

The field of information visualization studies how to leverage the human visual system to off-load cognitive work and visualize25

information effectively. Information visualization principles should be considered when designing the visual appearance and

interactive components of tools for snowpack model data (i.e. the visual encoding and interaction idiom level of the nested

model). These principles consider effective ways of representing data visually and are explained in greater detail in textbooks

by Ware (2012) and Munzner (2014). The following list summarizes information visualization principles that are relevant when

visualizing snowpack model data:30

– When representing information visually, designers encode data to visual features such as: spatial position, size, color, or

shape among others. Color can be further divided into hue (the actual color), luminance (the brightness or darkness of a

5

https://doi.org/10.5194/nhess-2019-344
Preprint. Discussion started: 20 November 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 1. Snowpack conditions within a large forecast area are summarized with generalized snow profiles highlighting important snowpack

features at different elevation bands (Photo: Mike Wiegele Helicopter Skiing).

color), and saturation (the intensity of the color). Through years of perception studies, standard guidelines for mapping

these visual features to data types have been established (Cleveland and McGill, 1984).

– Visual encodings should present data in ways that match the capabilities of our visual system. Hence, categorical and

ordered data should be encoded with visual features that match human visual aptitudes. For example, when using colours,

hues should be used for categorical attributes such as avalanche problem types and luminance (lightness or brightness)5

should be used for ordered attributes such as avalanche likelihood.

– Designs should prioritize the importance of information and encode data to visual features that are perceived more

quickly, accurately, and draw our attention to make this information more salient (i.e. noticeable) and discriminable

(Cleveland and McGill, 1984). Spatial position is perceived the fastest and most accurately, and thus the most important

attributes should be encoded by their position in a visualization. After spatial position, designs should consider the10

hierarchy of salience for non-spatial visual features. For example, size features such as length and area are more salient

than colour features such as hue, luminance, and saturation. For a comprehensive breakdown of this hierarchy see

Munzner (2014).

– Choose designs that are accessible and effective for common types of colour blindness. For example, red-green colour

blindness (deuteranopes) affects roughly 8 % of males of European descent (Birch, 2012).15

– Interaction reduces cognitive load and helps users understand data by asking questions and performing queries. A

practical guideline for designing interaction idioms is the visual information seeking mantra of Shneiderman (1996):

“overview first, zoom and filter, then details on demand”. The initial visualization should provide an overview of the
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entire dataset, and then the interactions should allow the users to change the view to see subsets of the data, and then

visualize details about features of interest. This design approach offers users a flexible way to explore data, while being

able to maintain a sense of context and orientation.

– Comparison tasks are often more effective when seeing multiple frames in a single side-by-side view rather than changing

views over time. The human perceptual system is effective at reading spatial information in parallel, whereas changing5

views with animations or multiple tabs relies on human memory and results in substantial cognitive load (Ware, 2012).

– Visualization idioms should present data with the smallest number of spatial dimensions, avoiding three-dimensional

visualizations and using one-dimensional lists where possible. Displaying three-dimensional data on planar surfaces has

numerous issues with depth-perception and over plotting (Ware, 2012).

3 Applications of visualization design principles10

This section presents applications of the visualization design principles using simulated snowpack data for 8 January 2018

in Glacier National Park, Canada. On this day the avalanche danger rating was considerable at all elevation bands with two

avalanche problems (Parks Canada, 2018): a storm slab problem at all elevations (size 1 to 2 avalanches were possible to

likely) and a persistent slab problem at treeline and below treeline elevations (size 1 to 3 avalanche were possible to likely).

Simulated profiles were produced by forcing the physical snowpack model SNOWPACK (Lehning et al., 1999) with gridded15

meteorological data from the Canadian HRDPS numerical weather prediction model (Milbrandt et al., 2016). Meteorological

data was extracted at 236 grid points in the park and at each grid point a single flat field profile and four virtual slope profiles

were simulated (38 ◦ slopes in four cardinal directions). A total of 1180 profiles covering an area of 1354 km2 provide a sample

data set to present visualizations of regional snowpack conditions.

3.1 Identify snowpack structure patterns with colour20

Snowpack features related to avalanche problems should be easy to identify in visualizations of snowpack structure. The

standard colour palette for snow grains (i.e. Fierz et al., 2009) creates undesired emphasis on certain types of snow. Important

features such as thin weak layers have relatively low perceptual salience while less important features such as melt forms

and ice formations have relatively high salience. The colours also make it difficult for individuals with colour blindness to

distinguish important features.25

We propose a perception-informed colour palette for snow grain types that emphasize features related to avalanche problems

(Table 1). Similar perception-informed colour palettes have been proposed to improve the interpretation of visualizations in

meteorology and oceanography (Stauffer et al., 2015; Thyng et al., 2016). The proposed colour palette groups grain types into

four categories based on their role in avalanche problems: persistent weak layers (surface hoar and depth hoar), new snow layers

(precipitation particles and decomposing and fragmented particles), bulk layers (rounded grains and faceted crystals), and melt30

and ice form layers. These groups were visually related using analogous color schemes (e.g. the hues are perceptually close
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to each other) that remained visually discriminable. The visual salience of these groups was adjusted using properties of color

such as how dark they appear (i.e. luminance) and how vivid the colors are (i.e. saturation). In this way a visual hierarchy of

importance was created. Weak layers that tend to take up the smallest area were made the most salient by using strong contrast

against other grain types, next new snow was made salient. Finally, the other layers formed the lowest level of perceptual

salience and serve as a neutral background. All colors were made to be perceptually distinct. Accessibility for common types5

of colour blindness was also considered (see Table 1). Unique colours were also assigned to melt-freeze crust and rounding

faceted particles, as distinguishing these sub-classes was deemed meaningful for avalanche forecasters. A simplified colour

palette was also designed using only the four main categories of grain types non-model experts (Table 2). The simplified

palette uses analogous colours to the full palette and maintains a similar visual hierarchy.

Table 1. A perception-informed colour palette for snow grain types that emphasizes features related to avalanche problems10

and is effective in grayscale and for common types of colour blindness.

Table 2. Simplified colour palette for groups of grain types related to avalanche problems.

The colour palettes were tested with common visualization idioms such as hardness and timeseries profiles (Fig. 2). Comparing15

the standard and redesigned colour palettes shows how the new palettes simplify the interpretation of the profiles by drawing

attention to the most important snowpack features on 8 January 2018. The increased salience of the thin depth hoar layers

highlights a potential persistent slab avalanche problem and the new snow highlights a potential storm slab avalanche problem.

3.2 Identify avalanche problem types from multiple profiles

Visualizing information from an ensemble of snow profiles is an effective way to identify snowpack patterns in a forecast20

area. Identification and summarization tasks can be done fast and effectively by deriving visual summary statistics from

distributed visual information. For example, humans can visually calculate correlation coefficients, clusters, and averages

with their visual perception systems (Szafir et al., 2016). The volume and continuity of data produced by snowpack models

offers new opportunities for summarizing snowpack structure that are not possible with human observed snow profiles. When
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Figure 2. Comparison of timeline and stratigraphy profiles with standard colours for grain types, perception-informed colours for grain types

(Table 1), and perception-informed colours for grain type groups (Table 2).

used in combination with a colour palette that emphasizes snowpack features related to avalanche problems, profile ensemble

visualizations can help forecasters identify prominent avalanche problem types.

A simple and powerful summary is obtained by plotting multiple grain type profiles side-by-side (Fig. 3). In this example,

1180 profiles are sorted from thinnest to thickest and over 46 000 individual snow layers are shown in a single view. Despite the

large volume of data, and a few prominent snowpack features pop-out and attention is drawn to the main snowpack patterns in5

the forecast area. Since this visualization is specifically designed for the task of identifying potential avalanche problem types,

other idioms are required for visualizing geospatial patterns in a meaningful way (see Sect. 3.3).

Another summary visualization that draws attention to potential avalanche problem types is produced by aggregating layers

by their age or deposition date (Fig. 4). Simulated profiles can be aligned and aggregated by the deposition date of each layer

to summarize the main features amongst a set of profiles. The prevalence of different grain types is determined by counting the10

percentage of profiles containing grain types for each day the season. Grain types associated with persistent weak layers are

emphasized with a diverging horizontal scale to distinguish them from other grain types. The persistent weak layers are also

easier to notice in this visualization because they occupy a greater area than in Fig. 2 and 3 where their size is proportional to

layer thickness. While it is also possible to produce an aggregated stratigraphy profile from aligned layers (e.g. Hagenmuller

and Pilloix, 2016; Herla et al., in preparation), this requires complex data transformations and assumptions about averaging15

layer properties. The layer prevalence visualization in Fig. 4 is simple to implement and supports the task of identifying

potential avalanche problem types.

The visualizations in Fig. 3 and 4 use colour and position to draw attention to snowpack features that relate to the storm

slab and persistent slab avalanche problems on 8 January 2018. The storm slab problem is apparent from the yellow new snow
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Figure 3. Snowpack layers from 1180 simulated profiles are summarized by plotting grain type stratigraphies side-by-side and sorting the

profiles from thinnest to thickest. Grain types are coloured using the perception-informed palette from Table 1.
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Figure 4. Prevalence of snowpack layers from 1180 simulated profiles by aggregating layers by their age. A diverging scale distinguishes

the percentage of profiles with layers containing persistent grain types (i.e. surface hoar and depth hoar) on the right from the percentage of

profiles with layers containing other grain types on the left. Grain types are coloured using the perception-informed palette from Table 1.
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Figure 5. Snowpack layers from 1180 simulated profiles partitioned into terrain class bins for elevation band and aspect. Elevation bins

include alpine (ALP), treeline (TL), and below treeline (BTL) and aspect bins include four cardinal directions (north, east, south, west).

Each layer is given a random horizontal position within the bin to allow visual summary statistics. Grain types are coloured using the

perception-informed palette from Table 1.

grains on the surface and a potential persistent slab avalanche problem is apparent from the salient surface hoar and depth hoar

layers that are buried 30 to 50 cm below the surface (Fig. 3) and formed in early December 2017 (Fig. 4).

3.3 Locate avalanche problems in terrain

When locating avalanche problems in terrain, the description of the terrain depends on the context and scale of the forecast

(Statham et al., 2018). For example, regional forecasters describe terrain by elevation bands and aspects while highway5

forecasters reference named avalanche paths. Partitioning snowpack data into distinct terrain classes and comparing side-

by-side views of the data for each terrain class is an effective way visualize complex geospatial patterns. High-dimension

(3D) visualizations are tempting to characterize mountainous terrain, particularly with high density model datasets, but there

is large potential for misinterpretation on two-dimensional displays due to depth perception issues and over-plotting (Ware,

2012). Instead, using eyes to simultaneously compare visualizations for different types of terrain has low cognitive load and10

less potential for misinterpretation.

To provide insight into the spatial distribution of avalanche problem characteristics, the simulated profiles from Glacier

National Park were partitioned into bins for elevation band and aspect classes to support regional-scale forecasting (Fig. 5). A

randomized horizontal position (i.e. jitter) was applied to each layer to reduce over-plotting and randomize the order within a
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bin. The jitter plot allows the user to derive visual summary statistics about the snowpack structure in each terrain class and

make comparisons between different terrain bins such as:

– snow depth generally increases with elevation, except for south and west facing slopes in the alpine,

– there is more new snow on north and east aspects,

– buried surface hoar layers are more prevalent on north and east aspects, and5

– the early December 2017 weak layer is more prevalent at treeline and below treeline elevations.

These types of visual patterns could help forecasters localize avalanche problems in their terrain. Different types of terrain

bins could be applied for other forecasting contexts to highlight differences between relevant types of terrain. Examples include

sub-regions, avalanche paths, or classes of ski terrain (e.g. Sterchi et al., 2019).

3.4 Compare distributions of avalanche size and likelihood10

Avalanche size is easily visualized by aligning layers by depth rather than height. Layer depth is more relevant to forecasting

avalanches than layer height, as weak layer depths correlate to the destructive potential of slab avalanches (McClung, 2009).

From an information visualization perspective, comparisons are more effective on aligned scales, and thus aligning layers by

depth allows users to browse the distribution of depths for specific weak layers. From the distribution of layer depths in Fig. 3

and Fig. 5, forecasters could estimate the potential sizes of storm slab and persistent slab avalanches.15

The CMAH defines the likelihood of avalanches as a combination of sensitivity to triggers and spatial distribution (Statham

et al., 2018), making it a relatively difficult attribute to visualize. Options for visualizing avalanche likelihood include encoding

related attributes with visual features such as shape, size, or motion in any of the previous idioms or by designing new idioms

that focus specifically on likelihood. Information about the spatial distribution of a problem can be derived by counting relevant

features amongst a set of profiles (e.g. Fig. 4). Sensitivity to triggers is an assessment of snowpack instability, which snowpack20

models estimate using stability indexes based on the mechanical and structural properties of the layers (Schweizer et al., 2006).

We derive a relative measure of sensitivity to triggers (S) from SNOWPACK’s structural stability index (SSI). The SSI

combines a stress-strength ratio with differences in hardness and grain size to calculate a value between 0 and 6, where lower

values correspond to less stable layers. To visually emphasize unstable layers, SSI was transformed into a relative measure of

sensitivity to triggers:25

S ∝ exp−SSI (1)

where the SSI for each layer is scaled inverse exponentially to produce an ordered variable that correlates with the sensitivity

categories from the CMAH (i.e. unreactive, stubborn, reactive, touchy). This transformation produces values between 0 and

1 and exaggerates differences for weak layers with low SSI . The numeric value of the sensitivity measure does not have an

interpretable meaning but illustrates relative patterns when applied in visualizations.30
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Figure 6. Providing information about the likelihood of persistent slabs avalanches by scaling the size of each layer’s dot with its sensitivity to

triggers (derived from the structural stability index). Snowpack layers from 1180 simulated profiles are partitioned into terrain class bins for

elevation band and aspect. Elevation bins include alpine (ALP), treeline (TL), and below treeline (BTL) and aspect bins include four cardinal

directions (north, east, south, west). Each layer is given a random horizontal position within the bin to allow visual summary statistics. Grain

types are coloured using the perception-informed palette from Table 1.

We present two examples of visualizing likelihood information with this relative measure for sensitivity to triggers. The

terrain class visualization in Fig. 5 was modified to scale the dot size of each layer to its sensitivity to triggers (Fig. 6). This

creates greater emphasis on sensitive weak layers, where the number and size of weak layer dots in a terrain bin relate to the

likelihood of persistent slab avalanches in that type of terrain. Another visualization specifically designed for likelihood is given

in Fig. 7, where the left panel provides information about the spatial distribution of each layer and the right panel provides5

information about their sensitivity to triggers. Spatial distribution is shown by the prevalence of each layer by age (i.e. Fig.

4), while sensitivity to triggers is shown with the distribution of the relative sensitivity of each layer by age. The side-by-side

comparison of spatial distribution and sensitivity to triggers provides information about the potential likelihood of persistent

slab avalanche problems. For example, the weak layers that formed in early December 2017 are more widely distributed and

sensitive to triggers than the weak layers that formed in late October (i.e. avalanches are more likely).10

It is important to note that we are presenting these likelihood visualizations more to illustrate the concept than as a practical

decision aid. It is known that the modelled stability index does not provide meaningful information about layers near the

surface where storm slab avalanches occur (Schweizer et al., 2006), and Monti et al. (2014) has highlighted issues between the

modelled stability indices and field observations of snowpack instability.
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Figure 7. Combining visualizations of spatial distribution and sensitivity to triggers to provide information about the likelihood of avalanches.

Both visualizations aggregate the layers by age and colour them by grain type. The left panel shows spatial distribution by counting the

number of profiles with different grain types (see Fig. 4) and the right panel shows the distribution of sensitivity to triggers for these same

layers as derived from the structural stability index. Grain types are coloured using the perception-informed palette from Table 1.

3.5 Interactive dashboard

Visualizations presented in this section were combined into an interactive dashboard using Tableau data visualization software

(Fig. 8 and available online in Code and data availability). The dashboard facilitates the sequential questions of the CMAH by

following the “overview first, zoom and filter, details on demand” mantra (Shneiderman, 1996) via interactions that allow the

user to change the view by selecting visual features and filters from the legend. The initial view (Fig. 8a) consists of the layer5

prevalence visualization (Fig. 4), the profile summary visualization (Fig. 3), and the location in terrain visualization (Fig. 5).

The combination of these visualizations provides a visual overview of the snowpack structure to support the first question in

the CMAH – identifying potential avalanche problem types (Fig. 8a). After identifying potential avalanche problem types from

the overview visualizations, users select layers of concern from the layer prevalence panel to update the visualizations. Once a

layer of concern is selected, the layer is highlighted in the other panels to provide details about the location in terrain and the10

distribution of avalanche sizes (Fig. 8b). Horizontal bars show the median depth of the selected layer in each terrain class for

comparison of potential avalanche sizes. A tooltip allows the user to hover over any visual feature and see details such as the

grain type, deposition date, and depth in a pop-up window. In Fig. 8b, the user has selected all the layers that formed between

2 and 15 December 2017 to investigate the persistent slab avalanche problem. The profile summary shows the position of this
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Figure 8. Screenshots of an interactive dashboard that provides visualizations of layer prevalence, profile summary, and location in terrain.

The initial view (a) provides and overview of the entire dataset for the user to assess potential avalanche problems and then (b) the updated

view after the user has selected layers that formed between 2 and 15 December 2017 to explore details about the distribution and depth of

the persistent slab avalanche problem.

layer in the snowpack and the location in terrain visualization shows the layer is more prevalent at treeline and below treeline,

with median depths of 40 cm at treeline and 35 cm below treeline.

15

https://doi.org/10.5194/nhess-2019-344
Preprint. Discussion started: 20 November 2019
c© Author(s) 2019. CC BY 4.0 License.



4 Validating visualization designs

While the principles outline in Sect. 2 are a good foundation for designing meaningful visualizations, user testing is critical

to ensure the visualizations have the desired effects. We presented the visualizations from the previous section to avalanche

forecasters at ten workshop-style presentations, tested real-time prototypes with three helicopter skiing operations over two

winters, and ran an exercise where five users performed basic tasks with the interactive dashboard. Following the nested model5

for visualization design framework of Munzner (2009) again, we present the feedback that we received at each design level

separately.

At the domain situation level, creating links between snowpack models and the CMAH addresses operational challenges

faced by avalanche forecasters (Statham et al., 2018). Reflecting the broad adoption of the CMAH, the proposition of using

snowpack models to characterize avalanche problems has gained more interest from the Canadian forecasting community than10

snowpack model tools produced over the past decade. The CMAH may not characterize the domain situation for all possible

snowpack model users, as problems such as terrain selection or civil protection likely require distinct design considerations.

At the task and data abstraction level, the visualization of snowpack summaries has received consistent positive feedback

from forecasters. The side-by-side profile summary (Fig. 3) visualizes snowpack patterns in a way that is not possible with

traditional snow profile data and can help forecasters build a mental model of the snowpack structure in their forecast area.15

Other operational tasks could benefit from bottom-up designs that leverage the spatial and temporal coverage of snowpack

models, such as using stratigraphy timelines to visualize temporal trends.

At the visualization and interaction idiom level, some forecasters suggested reducing the number of colours in snow profile

visualizations to make them easier to interpret. The perception-informed colour palettes (Table 1 and 2) achieve this while

following established perceptual and cognitive principles to draw attention to the most important features. The user testing20

exercise evaluated the users’ ability to interpret the visualizations by performing simple tasks with the interactive dashboard.

Four out of five participants correctly performed task such as comparing snow height over different elevations, identifying the

depth of prominent weak layers, and summarizing new snow amounts. The remaining participant made mistakes with filtering

and selection, highlighting the importance of designing interactions that are simple and intuitive.

At the algorithm level, the operational prototypes provided daily updated visualizations in a timely manner with fast response25

time for interactions. The main concern at the algorithm level was the prototypes were accessed externally from existing

workstations, which created a major barrier to access. Integrating snowpack model visualizations into forecasting workstations

is a critical next step. Testing in an operational setting would allow further validation at the domain and abstraction levels by

measuring user adoption and observing how designs are used to perform operational tasks. Although the designs presented

in this paper follow established visualization principles, testing in real forecasting scenarios is needed to validate their actual30

operational value.
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5 Conclusions

We present visualization design principles that increase the interpretability and relevance of snowpack model outputs. These are

two of the four major perceived issues with operational snowpack model tools identified by Morin et al. (in press). The nested

model for visualization design (Munzner, 2009) provides a framework for defining the domain of avalanche forecasting and the

necessary tasks that are needed to analyze data. Tasks required to assess avalanche hazard are described by applying the widely5

adopted conceptual model of avalanche hazard (Statham et al., 2018). From these tasks, we apply information visualization

principles to design visual representations of snowpack model data in ways that leverage the human visual system to understand

the complex nature of the data. Preliminary feedback from avalanche forecasters suggests these designs are easier to interpret

and provide more relevant information than previous visualizations of snowpack model data.

A key idea in these designs is shifting from bottom-up scientific visualizations towards information visualizations that10

address user needs. As highlighted by Grainger et al. (2016), other types of environmental models would likely see improved

adoption by shifting towards information visualization. When using numeric models as a tool for assessing natural hazards,

visualizations will be more effective when the designers make links to established risk frameworks and carefully consider the

tasks performed by operational decision makers.

A critical next step is implementing these designs into operational forecasting workflows. By addressing issues with the15

interpretability and relevance of snowpack model data, these designs will allow forecasters to learn the capabilities and

deficiencies of snowpack models in a meaningful way. The same design principles should be considered when visualizing

other types of avalanche and snowpack data, as the same domain situation and task abstractions apply when analyzing field

observations. Interaction idioms should play an important role in understanding of complex model data, as they allow users to

perform custom queries, test and validate hypotheses, and discover inconsistencies and anomalies. Interactions that compare20

model data with observation data would be particularly powerful in building trust in the models and addressing issues with

their integrity. This process was critical in the adoption and trust in numeric weather predictions models by meteorologists

(Benjamin et al., 2019), and just like meteorologists, avalanche forecasters could become active participants in model validation

and improvement.

. The code and data used to produce the visualizations are published as a data file containing the simulated profiles and an R script that25

produces each of the visualizations. The interactive dashboard is available at https://avalancheresearch.ca/pubs/2019_horton_snowpackvis.

. All authors worked on the conceptualization of this paper. SH prepared the data and software, SN contributed to visualization ideas and

designs, and PH provided supervision. SH prepared the manuscript with review and editing from the other authors.

. The authors declare no competing interests.
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