
AUTHOR RESPONSE

We thank Karsten Müller, Jan-Thomas Fischer, and Michael Warscher for their construc-
tive reviews. We have revised our manuscript to address their concerns. We first respond
to some of their common comments below, then address their remaining comments indi-
vidually.

A common theme in the comments was requests for additional features in the
visualizations. While we appreciate the suggestions, the intent of our paper was not to
design the ultimate visualization tool for avalanche forecasting, but rather to argue that
snowpack models can be more useful by applying avalanche forecasting principles and
design principles to develop user-focused tools. To address this potential miscommunica-
tion, we tried to strengthen the main messages in our revised manuscript and emphasize
the reasons for the included visualization examples more clearly.

Another common theme was concerns over our limited user survey. We have
removed the survey and instead simply discuss the validity of our designs. The design
principles included in our paper are grounded in a large body of literature in visualization
research and do not need to be explicitly validated. However, our revised manuscript
clearly emphasizes the need for extensive user testing for the successful implementation
of operational visualizations.

We also agree with the reviewers that incorporating validation data would add
great value to these visualizations. We added more discussion about this being another
critical next step, but choose not to include this in our visualization examples, as this is
would be rather complex and could dilute the main message of our paper.

Finally, there were several comments about applying the visualizations to diffe-
rent forecasting contexts and snowpack conditions. We’ve added more discussion about
different forecasting contexts and added an Appendix figure with the dashboard images
for different snowpack conditions over the course of a season in our study area.

RESPONSE TO RC1 (Karsten Müller)

The manuscript applies the visualization design framework proposed by Munzner (2009)
to an established workflow for avalanche hazard assessment (CMAH). The goal is to
enhance the interpretability and increase the relevance of numerical snowpack models for
the avalanche forecaster. Snowpack models in avalanche forecasting are the equivalent
to numerical weather prediction models (NWP) in weather forecasting. While weather
forecasting nowadays heavily relies on NWPs, snowpack models are only sparsely used in
operational avalanche forecasting. Accessibility, interpretability, relevance and integrity
of snowpack models are not yet good enough for operational purposes a recent study by
Morin et al claims. While issues of accessibility and integrity are not addressed in this
manuscript, the main reason for poor interpretability is accorded to poor visualization of
snowpack model output, which also reduces their relevance to the avalanche forecaster.
Existing visualization tools are designed by the model developers with evaluation of model
performance in mind, but not the operational forecaster (end-user). This manuscript
presents a top-down approach for visualizing snowpack models with the forecaster/user
in mind. The authors suggest that the visualization of snowpack model output should
help the forecaster to answer the key questions from the conceptual model of avalanche
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hazard (CMAH). They demonstrate their design by applying it to a regional avalanche
forecasting scenario. The study concludes that the presented top-down design approach
is superior in an operational setting based on a small user survey.

GENERAL COMMENTS

This work is a relevant technical contribution. It describes a thorough process
on how to improve snowpack visualization in operational avalanche forecasting. The
avalanche community in North America, but also internationally, will benefit from these
results. I found it well written and structured. Figures are of high quality. I recommend
to publish the manuscript. I only have minor suggestions on how to improve the paper.

It seems like the target audience for the suggested visualizations are regional ava-
lanche forecasters that operate with forecasting areas of several hundreds to thousands
sq.km. The language used and the given example address this audience. I miss a dis-
cussion on other operational settings and more extreme cases, i.e. very large forecasting
areas and high resolution model (large amount of data) and small forecasting regions
and poor model resolution (too little data). Could you discuss what needs to be done to
transfer the presented plots to a smaller scale? Can these visualizations be beneficial for
managing avalanche safety in a ski resort? Is there a minimum number of simulated snow
profiles to apply your designs? On the other hand, an avalanche forecaster can normally
not wait for several minutes for a plot to be displayed. Could you discuss performance on
a standard workstation/PC? How long does it take to load and update the dashboard in
your example on common hardware?

Our focus on regional scale forecasting was in response to regional scale fore-
casters having the greatest interest in snowpack models so far. We have added more
discussion about how the design principles could apply to other contexts by: at the
start of Sect. 3 explaining the purpose of our examples are to show applications of
design principles, acknowledging how different contexts have different spatial scales
and descriptions of terrain that could benefit from maps or other geospatial views
(other than elevation-aspect classes), recognizing the model needs to be configured
to capture the variability of snowpack conditions for the type of forecast area (which
requires model expertise). We also try to generalize more of our discussion about
how the design principles could be applied to any forecasting application by empha-
sizing the need to focus on user needs and their specific tasks and questions. As far
as technical specifications, we added a summary of the practical speed and data set
size limitations of visualizations in Sect. 4.2.

In my opinion an important part of showing model output is to provide a measure/
display of uncertainty or an indication of when the model is off. In my experience, fo-
recasters rejected model output because it is often hard and time consuming to evaluate
if the model is providing reasonable results. Thus, be able to plot model output against
field data or other sources will help to improve integrity. You mention this at the end
of your conclusion. Could you, in addition, discuss briefly why this is not part of your
study? I suggest to add a short section that summarizes the main issues with assimilating
snowpack observations in snowpack models.

We agree including field data to validate the models is a critical step towards
forecasters trusting models. We have expanded our discussion of this step in a new section
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(4.2 Steps towards operational implementation), and although field data could be added
to some of our example visualizations, this is non-trivial and we think beyond the scope
of the main message of our paper. We also discuss the how visualization could play a
helpful roll in assimilating field data into models by allowing forecasters and researchers
to explore relationships between the two data in rich ways.

A drawback of this study is the small and rather arbitrary user survey on the
effectiveness of the proposed visualization design.

We agree the user survey was small. We are currently in the early stages of the
feedback process with forecasters and do not have a full user analysis to report, so we re-
moved reference to the survey efforts and instead described the importance of an iterative
design process where qualitative user feedback plays a very important role in informing
and improving designs. Instead of discussing the validity of our specific designs, Sect.
4.1 now focuses on recommendations for designs in various forecasting contexts at each
level of the nested model of visualization design.

SPECIFIC COMMENTS

• p2 l8: should be ”Morin et al. (in press)”as in prev sentence
Updated to fully published reference (Morin et al., 2020).

• p2 l10: What is meant by ”workstations”? To me this is hardware - a PC! They
are normally not specifically designed for showing field data. I assume you ad-
dress the lack of proper software that can make model output accessible to the
forecasters. A hardware issue might be lack of CPU/GPU power to effectively
handle large amounts of data/images.
Workstation was the term used in the Benjamin et al (2019) meteorology pa-
per, but to be more specific we replaced that term with either “visualization
tool” or “workflow” throughout the manuscript as appropriate.

• p2 l13: Snowpack models ”relevance”comes from their ability to produce infor-
mation over a large spatial scale, something field observations can not. So I think
their relevance is less of a problem than their integrity, i.e. difficult to compare to
field observations due to scale issues in the forcing data.
We agree that snowpack models inherently should have ‘relevant’ informa-
tion, but despite that, when Morin et al. (20209) discuss the information qua-
lity of snowpack models, under the ‘relevance’ section they suggest the added
value of model information is unknown . The integrity is a serious issue, but
the focus of our paper was relevance and interpretability. We have expan-
ded our discussion on the importance of improving model integrity through
visualization techniques.

• p2 l17: Could you provide an example of a ”conventional method- individual
snow profiles?
As suggested, we added “manual snow profiles” as an example.

• p3 l19: You could provide ”assess the spatial distribution of weak layers”as an
example for ”major needs”.
Done.

• Figure 1: The figure caption could be more detailed and explain the main features
and abbreviations of the shown chart. This would ease the understanding for
readers outside the avalanche community.

3



We have added a more detailed explanation of the information in this photo
(and replaced with a high quality image).

• p7 l18-19: The given example is typical for a regional avalanche forecast and the
presented visualizations work well in this given case. Could you discuss (later
in the text) the extremes, very large forecasting areas and high resolution model
(large amount of data) and small forecasting regions and poor model resolution
(too little data).
These cases are now discussed in Sect. 4.1 under design considerations at the
algorithm level.

• Table 2: Layers of large facets can be an avalanche problem, too. However, facets
(FC) are treated as bulk layers here. What is the criteria (in SNOWPACK) that
separates DH from FC - size only - if yes, what is the threshold?
This grouping is now explained and justified in more detail. In short, SNOW-
PACK has a size threshold where FC larger than 1.5 mm are called DH. Thus
most FC layers in the model appear in bulk layers while most problematic FC
layers appear as DH. We also cite Schweizer and Jamieson (2007) for com-
mon rules about identifying weak layers (i.e. the combined importance of
grain type and size).

• p9 l5: remove ”and”
Done.

• p9 l11: ”...each day OF the season.”
Done.

• Figure 4: Can you explain why the percentage exceeds 100% on some days? E.g.
Oct 21 or Noc 22 and 25. Does the plot only evaluate if a layer is present (Boolean
- regardless of layer thickness) in a simulated profile or is the percentage each
layer takes up of the total snow depth within each simulation regarded and used
as a form of weight?
We corrected the algorithm to avoid percentages over 100%. These were
caused by cases when a single profile had multiple layers on the same date
with different grain types, but to simplify the data we now choose a single
layer per date (with priority for weak layers over new snow over bulk layers
over melt forms). And yes, the plot only counts whether a layer is present and
does not account for layer thickness. We have expanded our description of
this method in the text to make it clearer.

• Figure 5: Have you considered a ”polar/radar plot”for each elevation band? I
can imagine that it will show the presence of layers with regard to aspect more
clearly. However, the information on snow depth will be difficult to integrate.
Yes, we’ve experimented with circular plots as these are a familiar idiom
for weather and avalanche forecasting. Based on visualization literature we
found circular plots are effective and intuitive for overview tasks for simple
types of data, but precise comparisons are difficult due to the skewed and
unaligned scales. So we added a sentence explaining this rationale and sug-
gest circular plots for simple data (category, ordinal), but argue complex data
is better suited to rectilinear plots, especially when the intent of the visualiza-
tion is precise comparison tasks.

• p16 l 2: ”...the principles outlineD in...”
Sentence removed.
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• p16 l 16: Could you provide examples for ”other operational tasks”? And discuss
briefly benefits and challenges (see General Comments).
This section has been rewritten and now focuses more broadly on how snow-
pack model data could be visualized for a broad selection of contexts and
tasks.

• p16 l26-27: What do you mean by ”...prototypes were accessed externally from
existing workstation...”? Were the plots provided by a server? Why is it critical
to integrate visualizations into forecasting workstations? Do you mean integrate
into software used by the forecasters?
We meant there was an accessibility barrier because the models were acces-
sed on a separate webpages for the forecasters familiar workflows (software,
bookmarks, etc.). However, we no longer discuss the specific user feedback.

• p17 l3: Consider to add ”...two of the four major perceived issues (BESIDES
ACCESSIBILITY AND INTEGRITY) with ...”
Done.

• p17 l11-12: The sentence ”As highlighted by...”should be removed or rephrased
since it is not clear how it fits into your conclusions. Please be more specific on
your findings.
Sentence removed.

RESPONSE TO RC2 (Jan-Thomas Fischer)
In this manuscript the authors present a new methodological approach to enhance the
operational information value of snowpack models. One of the main developments (that
could get even more attention) is the (easy to use) CMAH dashboard tool, providing an
online, interactive approach to reproduce the main outcomes/figures of the paper. The
authors successfully demonstrate how their approach enhances the information value of
snowpack modelling, with particular emphasis of layer prevalence and their spatial dis-
tribution. The paper also shows that future research and work is necessary to implement
an appropriate measure and visualization for stability. The authors succeed in highligh-
ting the spatially distributed character of the results (which could deserve an additional
spatial description, see comment below). Besides this spatial character it would be worth
to elaborate (or at least mention) how this method can be applied with respect to tem-
poral variability. This could e.g. be achieved by (1) evaluating/providing an additional
CMAH dashboard for a different date (in mid December?) as supplementary material (if
the corresponding workload allows to?) or by (2) briefly discussing how the content and
information value changes/develops throughout a season (cf. seasonal variation in Fig
2).

We agree that temporal trends are important for forecasting, and although
now a specific question in the CMAH, the fact the forecasting process is iterative
(and usually repeated daily) tracking temporal changes becomes important. The
temporal continuity of snowpack models are well suited to understanding temporal
trends, and we have added some discussion in Sect. 4.1 about how this is a specific
task requires its own designs for this purpose (such as stratigraphy timelines). We
added examples of the CMAH dashboard for several dates over the course of the
season for Glacier National Park in the Appendix. This both shows potential to track
temporal variability, and shows the effectiveness of the visualizations for different
snowpack conditions.
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All in all the paper is well written (although the authors could review/explain
which and why so many terms are italicized). The paper has a good mixture of technical
terms and corresponding descriptions. It is of high quality, enjoyable to read and fits to
the scope of NHESS.

We removed most of the italics.
• p1 l 8, ...in terrain.: Please specify on which scale(s).

We generalized the sentence and added “at relevant spatial scales.”
• p2 l 1, ...can range from individual slopes in backcountry guiding.: I do not see

how individual slopes are relevant in the context of this work. Is it possible to
distinguish?
This list is meant to show the diversity of avalanche forecasting contexts, we
address how our visualizations and design principles transfer to other spatial
scales in later sections.

• p3 l1, ...so far prevented...: ... so far limited..
Done.

• p5 l5, ...is analogous to manual snow stratigraphy...: This is very important and
could be further highlighted throughout the paper by providing (a) manual pro-
file(s) representative for the date / location(s) of the main analysis (e.g. 8 January
2018). Further the value of Figure 1 could be enhanced by connecting the snow-
pack information of the generalized profiles to the study area/time.
Yes, many of the ideas behind our designs are inspired from existing methods
with manual profiles. We have added some more discussion of this, for exam-
ple explaining how some of methods for grouping weak layers, characterizing
sensitivity to triggers, etc. draw from established methods for interpreting
manual profiles.
We appreciate the value of having manual or whiteboard profiles for the same
study area and period, however this could direct the reader towards a model
validation exercise, which is not the focus of the paper. We think whiteboard
profile summaries are an excellent example of how forecasters assimilate and
summarize information into an abstract representation, which is more along
the theme and inspiration of our study. Unfortunately, we do not have a photo
of visual snowpack summary for our study area or study periods, so instead
use one from somewhere else.

• p7 l17-19: Could you comment on the specs of the profile locations and how
they are chosen/defined to be representative for the study region? Is the number
of study plots important? What number is expected to provide a representative
analysis for the region (or spatial density)? Since spatial distribution is an im-
portant point of your analysis it could be worth to provide a corresponding map
overview of the study region and profile locations (in particular for readers that
are not familiar with the region).
We have added a map of the study area (Fig. 2) and a discussion about the
importance and challenges of configuring models to obtain a representative
sample. We further describe our method and acknowledge that obtaining a
representative sample of profiles is a difficult question that will vary between
context. We also discuss some of the visualization challenges of small or large
datasets in the Discussion. In certain forecasting contexts it could be help-
ful and easy to implement a map in the dashboard where groups of profiles
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are selected by location, but this is not necessary in the context of regional
forecasting where the area is pre-defined.

• p7 l20-25: Why is the emphasis undesired? Could you elaborate a bit with respect
to what some features have high or low importance?
We’ve added some examples including the fact that thin surface hoar layers
are important but often have minimal contrast with surrounding layers in the
standard palette.

• p8 l7-9, Table 2: Could you please add some references and comments on the
simplified groups of grain types, with particular emphasis on why it would or
why it would not be appropriate to summarize RG and FC as bulk layers (with
respect to different types of metamorphism / underlying physical process). In your
example (see e.g. Fig 2) it could appear also appropriate to add MF as bulk layer?
This grouping is now explained and justified in more detail. In short, SNOW-
PACK has a size threshold where FC larger than 1.5 mm are called DH. Thus
most FC layers in the model appear in bulk layers while most problematic FC
layers appear as DH. We also cite Schweizer and Jamieson (2007) for com-
mon rules about identifying weak layers (i.e. the combined importance of
grain type and size).
Yes our example has some thick layers of melt forms, however the colour
palette places bulk layers and melt layers as equals on the visual hierarchy of
importance. It could be argued to use a single hue for bulk and melt layers,
however melt layers can be unique in terms of avalanche release since they are
often much harder and can either bridge a weak layer or for a bed surface.
Using distinct groups can help identify some of these stratigraphy patterns.

• p9 l11-12: Please Specify (see also comment on Figure 4). Are you displaying the
percentage for a specific date (8 January 2018)?
We corrected our aggregation algorithm to avoid percentages greater than
100% and extended our figure caption and text description to explain it is the
percentage profiles in the study area with a given layer date and grain type
combination.

• p11 l14: Could you provide a (technical) reference for the ”jitter”plot?
We now cite Ellis and Dix (2007) who discuss techniques for clutter reduction,
including jitter.

• p12 l10-14: I think it would be worth to (1) mention the availability of the me-
dian values in the interactive dashboard (which are way more instructive than the
figure) and (2) to comment on the spatial variability of throughout your profiles,
e.g. by mentioning the standard deviation and median values for the expected
depth main avalanche problems.
We now mention the relevance of browsing the distribution of layer depths
and the fact interactive tools can help by showing summary statistics for se-
lected features.

• p13 l6: Is prevalence really connected to spatial distribution (including all sample
pits) or is a total measure of occurrence?
The CMAH defines spatial distribution of a problem as “the spatial density
and distribution of an avalanche problem and the ease of finding evidence to
support or refute its presence”. We argue the total measure of occurrence is
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related to the spatial density (assuming the data is a representative sample of
snowpack variability).

• p13 l9-10: I think it would be worth to shortly discuss why the storm slab (that
previously appeared as one of the main problems) is not highlighted in the sensi-
tivity to triggers?
We make it clearer that the SSI is best suited for problems related to deep
weak layers (since it neglects layers within ski penetration). This also leads to
our expanded discussion about using different attributes to characterize the
likelihood of different avalanche problem types.

• p14 sec. 3.5: I find this section highly instructive to understand figures and conclu-
sions in this paper and would like to see interactive CMAH dashboard mentioned
earlier in the paper, since it e.g. provides more instructive/clear visualization than
the printed terrain class visualization (Fig 5).
We agree with this suggestion because the interactive CMAH dashboard tool
is our best example of applying visualization principles, so we now highlight
the tool earlier in the paper and frame each individual visualization as a com-
ponent of the tool. The dashboard now receives acknowledgment throughout
Sect. 3.
The figures generally appear clear but would benefit from a (more) self-sufficient
description (by e.g. referring to the interactive dashboard where applicable and
indicating the specific date in all plots/captions (where applicable, e.g. of Fig 2
(right) and Fig 3,4, 5, 6, 7, 8 )):
We provide a more complete description of the data included in each figure
caption.

• Figure 1: Could you enhance this Figure / increase readability and describe which
information is given in the generalized snow profile or alternatively provide a
manual profile of the study region/time as reference (additionally a map view of
modelled study plots could be beneficiary here, see comment below)?
We have replaced the image with a clearer image from a different date and
provide a more detailed description of how to interpret the information. We
have also added a map of the study area (Fig. 2).

• Figure 2: Please indicate/describe somewhere (text and caption) what the diffe-
rence between the left (timeline of stratigraphy) and right (hardness vs depth for
a specific date (which?)) plot are?
The timeline and stratigraphy profiles are now explained in greater detail in
the caption.

• Figure 3: It would be helpful somehow give an overview of the study area and
where the profiles are simulated.
The new study area figure (Fig. 2) will help readers unfamiliar with our study
area. Maps can easily be added to interactive tools to select profile locations,
which could be useful in some contexts, but is not critical to for this example
to answer the questions of the CMAH.

• Figure 4, Figure 7: How can 100% be exceeded (e.g. Nov 24/23 and Oct 22)?
Please double check your scale or explain (see comment above concerning preva-
lence). In the caption - persistent grain types or grain types associated to poten-
tial/persistent weak layers (e.g. these are mentioned as weak layer in the dashbo-
ard, please double check for the sake of consistency)?
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We have corrected the algorithm and checked for consistent terminology
between the text and caption.

• Figure 7: ...shows spatial distribution... Is it really the spatial distribution in
this case (like e.g. Fig 5), or rather a total measure of occurrence (see comment
above). Would it be beneficial/feasible to also use the size scaling of Fig 6 allowing
for a visual comparison/connection btw. the Figures?
We argue the total measure of occurrence is related to the spatial den-
sity, and serves as an approximate indication if a problem is wides-
pread/specific/isolated in the terrain. We have added the size scaling to make
a connection between the figures.

• Figure 8: Why are IF not specified/displayed in the dashboard?
The legend hid IF because they were not present in any of the profiles, so we
manually added IF to the legend for this figure.

RESPONSE TO RC3 (Michael Warscher)
In their manuscript “Enhancing the operational value of snowpack models with visua-
lization design principles”, the authors present the application of different visualization
design principles in the domain of avalanche forecasting using data from the widely used
model SNOWPACK.

GENERAL COMMENTS

The manuscript is technically very well written, as well as easily readable and
understandable. I list some general comments and specific remarks in the following.

• I fully understand and appreciate the usefulness of the presented visualizations
and their simplification and aggregation character, however, I still would like to
additionally see some conventional map plots at the top-level of the dashboard.
This would be very helpful to get an overview of the domain and the spatial dis-
tribution of specific snow characteristics and avalanche problems. Examples of
such visualizations are presented in e.g. Morin et al. 2020. Your aggregated plots
would be a perfect summarizing and aggregating approach in a second visualiza-
tion step.
We agree maps are a very valuable visualization tool. Following the CMAH
workflow, the first step is establishing operational objectives and spatiotem-
poral context. Our context is a regional forecast, hence the study area is
pre-defined at this stage. We added a map of the study area to help readers
establish this context (Fig. 2). However, once the context is established there
is no need for maps to answer the CMAH questions. We agree that integra-
ting maps into the dashboard could be useful for other contexts, but don’t
think it is essential to illustrate our main message of applying visualization
design principles.

• In my opinion, the most important missing approach in the presented framework
is the implementation of validation data. You state in different parts of the manus-
cript that practitioners lack trust in the integrity of model data. They won’t gain
any if they do not see the model performance at some validation points at a glance
in the operational setup or at least in some hindcast simulations. I think some
of the presented visualizations are perfectly suited to include observed validation
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data. You could simply include an interface to integrate measured snow profi-
les and plot them right into your visualizations as single highlighted data points
or in the best case, somehow link them to their respective model grid point (this
way, they could be included in all your visualizations, even the “sorted-by-depth”
ones). I understand that it could be complicated to do this in a visually attractive
way, but I think it would be well worth the effort.
We agree this would be a very valuable addition, but one that deserves spe-
cial attention that goes beyond the scope of our focus on emphasizing the
potential value of user-focused designs. However, we added a dedicated sec-
tion called “Sect. 4.2 steps towards operational implementation” where we
emphasize the importance and potential approaches for designing visualiza-
tions that support validation and understanding uncertainty.

• While I very much like the presentation of your new color profiles, I am kind of torn
as they are very much tailored to previous existing expert knowledge (potential
weak layer = surface/depth hoar = highly visible) and is not very generic. Of
course, this is very useful to detect the targeted wind slab avalanche problems,
but what about other common avalanche problems (e.g. wet-snow avalanches).
Are they also clearly visible in your visualizations? Regarding this remark, - if
feasible - it would be very beneficial for the manuscript to include an additional
example for a very different avalanche situation in the same domain.
Additional figures in the Appendix now show the visualizations for different
snowpack conditions. The colour palettes are heavily tuned to identifying
persistent slab problems largely due to operational feedback from forecas-
ters who see this as the potential greatest added value from snowpack models.
We’ve added some discussion acknowledging similar design principles could
be applied to identify attributes associated with other problem types (such
as visualizing weather data to identify wind slab problems or snow tempe-
rature to identify wet problems). The colour palettes we propose are simply
examples of how perceptual considerations should be leveraged to direct our
attention towards features of interest. We added an Appendix figure with
examples of the visualizations for different snowpack conditions throughout
the season.

• I don’t see the point of having so many words printed in italic letters even if they
refer to specific technical terms. I think this is not necessary here and they could
all just be changed to normal fonts.
We removed the italicized terms.

• As the manuscript provides a technical report of the application of a visualization
concept, it would be very beneficial to add information about the minimum requi-
rements for a snowpack model in terms of resolution, simulation variables and
output that is needed to feed the visualization software and dashboard. It is obvi-
ous that the software was developed for the use with SNOWPACK as a well-known
and established snow (layer) model, but it would be interesting to read some more
technical details about input requirements and portability.
We address this in two ways. One, we add more description to emphasize the
importance of configuring a snowpack model to capture variability within a
region, which depends on context and requires model expertise. Second, our
discussion of the algorithm design level in Sect. 4.1 now includes issues that
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arise with large or small datasets.
• It would also be useful to include some more variables displayed in your visuali-

zations, e.g. depth profiles of snow temperatures or snow density which might also
be useful for avalanche practitioners and should be provided by the SNOWPACK
model.
As explained above, we did not intend to propose an optimized forecasting
tool. However, we have added more acknowledgement that additional attri-
butes are likely needed to identify and characterize different avalanche pro-
blem types.

• The user survey presented in section 4 is very little explained and far from being
representative, so you should consider removing the section and just move the last
sentence of the section to your conclusions.
We removed the survey and clearly emphasized the need for more user testing
in Sect. 4.2.

• I have two other comments, which might well be beyond the scope of this paper,
but could be a useful addition for the future development of the presented appro-
ach: In addition to the above-mentioned validation data, it would be very useful
to provide a framework for ensemble simulations including uncertainty measures.
The implementation of visualizations for multi-model results and corresponding
model spreads and uncertainties (ensemble model outputs from e.g. different ini-
tial conditions, different meteorological forcing data, and different snow pack mo-
dels) would be a logical and highly valuable (or even necessary) next step for the
application of snowpack models in real-world operational avalanche forecasting
settings (similar to NWP). You should add this somewhere in your conclusions.
Another helpful addition for avalanche forecasters and practitioners would be
the visualization of the meteorological input in your visualization framework, e.g.
wind speed and gusts, (min./max./mean.) air temperature, liquid/solid precipita-
tion, SW/LW radiation, all separated for elevation and aspect bands and sectors
(of course depending on resolution and origin of the gridded meteorological for-
cing, domain size, etc.).
Thank you for sharing these ideas. We agree there is great potential for ap-
plying visualization principles to combine various types of weather, snow-
pack, and avalanche data. We added a specific section (Sect. 4.2) to address
some of these potential next steps and hope this paper serves as a foundation
for how visualization approaches can help advance both the research and
operational use of snowpack models.

SPECIFIC COMMENTS

• P. 1, L. 8/9: Rephrase the sentence “Examples of visualizations that support these
tasks are presented and follow established perceptual and cognitive principles
from the field of information visualization.“, to e.g. ”Examples of visualizations
that support these tasks and follow established perceptual and cognitive principles
from the field of information visualization are presented.“
Done.

• P.1, L. 18 and others: Regarding the term “workstations”. Maybe Benjamin et
al. 2019 labelled the development of software, more powerful computers and
more available model and observation data as kind of mythical “workstations”, I
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would prefer just to call it what it is, namely more powerful computers, more data,
and better visualization tools that gradually developed in NWP and of course in
all other fields.
Workstation was the term used in Benjamin et al (2019) meteorology paper,
but to be more specific we replaced that term with either “visualization tool”
or “workflow” throughout the manuscript as appropriate.

• P. 2, L. 7 and others: update citation Morin et al., is published now.
Done.

• P.5, L. 10: “as hardness profiles” instead of “as a hardness profiles”
Done.

• P. 6. Fig. 1: Do you have a version with better image quality available? The
figure is very hard to read. However, I would suggest to remove Fig. 1 anyways
as it does not contain important information in the context of the manuscript. If
you decide to keep it, you should add some more information to the manuscript
explaining what the reader is supposed to see in the figure.
We replaced with a higher quality figure. We think the whiteboard profile
summary is an excellent example of how forecasters assimilate and summa-
rize information into an abstract representation, and was a major inspiration
for some of our designs. We add more description of these profiles and ex-
plain more in the text why it was included in the paper.

• P. 9, Fig. 2, x-axes right panel-plots: Please add explanation for the hardness
abbreviations and a “hardness” x-axis label. It becomes clear from the text, but
should be included in the figure or at least in the figure caption. That also holds
for the hardness test abbreviations (F, 4F, 1F, P, K) which are clear for an ava-
lanche practitioner (fist, 4 fingers, 1 finger, pencil, knife), but the article might be
interesting for a broader (snow) scientific audience. Please add explanations.
Done.

• P. 9, L. 15: “Herla et al., in preparation“ should be removed if not already pu-
blished by now.
Removed citation as this work is not published yet.

• P. 10, Fig. 3: Even if it is clear when reading the manuscript and figure caption, I
would prefer to have an arrow-type label on the x-axis (e.g. “Thinnest snowpack
¡-¿ Thickest snowpack”)
Done.

• P. 11, L. 7: “way to visualize” instead of “way visualize”
Done.

• P. 11, L. 7: “way to visualize” instead of “way visualize”
Done.

• P. 11, L. 10: I suggest to rephrase the sentence: “Instead, using eyes to: : :”, e.g.
“Instead, simultaneously comparing 1D/2D visualizations: : :”
Done.

• P. 13, Fig. 6, caption: “slab” instead of “slabs”
Done.

• P. 14, Fig. 7: Labels “Sep 30” and “Sep 23” overlap, please solve this issue.
Removed overlapping labels.

• P.14, L. 2: Please use italic here (“Tableau”) as this seems to be the name of
a commercial software developing company. Just a comment: it would be very
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beneficial if you would develop the dashboard in R or a similar open source pro-
gramming language, as you have already done with the visualizations. This would
foster the use of your very useful software by different target groups.
Tableau is a fast and easy visualization prototyping software, while R is very
limited in terms of interactive visualization. While similar designs can be
done with open source visualization libraries (e.g. D3), they tend to be more
rigid and are better suited for later stages in the design process. We intend to
make more of our tools openly available when they get to that stage.

• P. 15, Fig. 8: Could you provide a screenshot with better quality? The very useful
dashboard is kind of hard to acknowledge here.
We increased the resolution of the figure.
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Abstract. Forecasting snow avalanches requires a reliable stream of field observations, which are often difficult and expensive

to collect. Despite the increasing capability of simulating snowpack conditions with physical models, models have seen limited

adoption by avalanche forecasters. Feedback from forecasters suggest model data is presented in ways that are difficult to

interpret and irrelevant to operational needs. We apply a visualization design framework to enhance the value of snowpack

models to avalanche forecasters. An established risk-based workflow for avalanche forecasting
::::::::
avalanche

::::::::::
forecasting

::::::::
workflow5

is used to define the ways forecasters solve problems with snowpack data. We address
::::::
suggest

:::::
model

::::
data

::::::
should

::
be

:::::::::
visualized

::
in

::::
ways

::::
that

:::::::
directly

::::::
support

:
common forecasting tasks such as identifying snowpack features related to avalanche problems

, summarizing snowpack features within a forecast area, and locating
:::
and

:::::::
locating

:::::::::
avalanche problems in terrain

::
at

:::::::
relevant

:::::
spatial

:::::
scales. Examples of visualizations that support these tasks are presented and follow established perceptual and cognitive

principles from the field of information visualization
::
are

:::::::::
presented. Interactive designs play a critical role in understanding10

these complex datasets and are well suited for forecasting workflows. Preliminary feedback suggests these design principles

produce visualizations that are
::::::::
Although

::::::::
extensive

::::
user

::::::
testing

::
is

::::
still

::::::
needed

::
to

:::::::
evaluate

::::
the

:::::::::::
effectiveness

::
of

:::::
these

:::::::
designs,

::::::::::
visualization

::::::
design

::::::::
principles

:::::
open

:::
the

::::
door

::
to more relevant and interpretable

:::::::::
applications

:::
of

::::::::
snowpack

::::::
model for avalanche

forecasters, but additional operational testing is needed to evaluate their effectiveness. By addressing issues with interpretability

and relevance, this .
::::
This

:
work sets the stage for implementing snowpack models into workstations

::::::::::
visualization

::::
tools

:
where15

forecasters can test their operational value and learn their capabilities and deficiencies.

1 Introduction

Numerical environmental and weather prediction models have dramatically transformed the accuracy of weather forecasts and

the role of weather forecasters since the 1980s (Benjamin et al., 2019). As model performance improved, forecasting tasks

shifted from predicting weather conditions to interpreting and communicating model guidance. A centerpiece in the adoption20

of prediction models by weather forecasters was the development of workstations
::::::::::
visualization

:::::
tools that allowed them to work

directly with gridded modelled data in combination with in-situ weather observations and remote sensing data (Benjamin et al.,

2019). This setup allowed forecasters to visualize model output along with observations and gradually learn the operational

value of the models.
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The work of avalanche forecasters is similar in nature and complexity to the work of weather forecasters. The objective of

avalanche forecasting is to develop an accurate mental model of the current and future nature of avalanche hazard by integrating

avalanche, snowpack, and weather information from a variety of sources (Canadian Avalanche Association, 2016b). This

assessment is then combined with terrain information to make risk management decisions regarding specific elements at risk.

The spatial scale of avalanche forecasting can range from individual slopes in backcountry guiding, to groups of avalanche paths5

when protecting infrastructure, and
:
to

:
entire mountain ranges in public avalanche warnings. To assist avalanche forecasters at

the higher end of the spatial scale spectrum, physical snowpack models such as Crocus (Brun et al., 1992) and SNOWPACK

(Lehning et al., 1999) were developed in the 1990s to provide supplementary data about snowpack conditions. Despite the fact

snowpack model developers
:::::
model

:::::::::
developers

::::
have

:
created numerous operational tools to visualize model outputfor avalanche

forecasters, snowpack models have so far only seen limited adoption into operational workflows when compared to weather10

prediction models (?)
::::::::::::::::
(Morin et al., 2020).

Morin et al. (accepted)
::::::::::::::::
Morin et al. (2020) employed the information quality framework of Bovee et al. (2003) to describe

issues with operational snowpack model tools in terms of accessibility, interpretability, relevance, and integrity
::
the

:::::::::::
accessibility,

::::::::::::
interpretability,

:::::::::
relevance,

:::
and

::::::::
integrity of the information. Accessibility

:::::::::::
Accessibility to snowpack models is limited by the

time constraints in forecasting environments and workstations that are optimally
:::::::::
workflows

::::
that

:::
are designed for field data15

rather than model data. Existing tools are also difficult to interpret
:::::::
interpret as model output is complex and in their current form

require expertise or substantial training to comprehend and utilize. The relevance
:::::
apply.

::::
The

::::::::
relevance of the information they

provide is also questioned, as similar information may be available from other sources. The integrity
::::::
integrity

:
of model output

is also difficult to evaluate in an operational setting where there is limited validation data. For example, snowpack
:::::::::
Snowpack

models can produce snow stratigraphy profiles for multiple parameters (e.g. grain size, hardness, temperature) at different time20

intervals at potentially hundreds or thousands of locations. Furthermore, the output from snowpack models are
:::
This

::::
data

::::
can

::
be so complex and voluminous that it becomes extremely challenging for operational forecasters to make sense of in its raw

form using conventional methods
::::
such

::
as

:::::::
viewing

::::::
manual

:::::
snow

::::::::::
stratigraphy

:::::::
profiles. This has been described as “information

overload” and characterizes “big data” environments (De Mauro et al., 2016). As avalanche forecasting requires substantial

cognitive effort to continuously maintain a mental model of conditions (Maguire and Percival, 2018), introducing additional25

complex data can disrupt this process and have adverse effects on performance. Based on their analysis, ?
::::::::::::::::
Morin et al. (2020)

aptly conclude that while it was important for researchers to focus on improving the accuracy of snowpack models, we are now

at a point where addressing issues with the design of operational tools is critical for making snowpack models truly valuable

for avalanche forecasting.

To address the challenges of big data and make it tractable for human analysis, the field of visual analytics blends automatic30

analysis with human analysis via visual interfaces (Keim et al., 2008). Specifically, visualization in combination with interaction

techniques support a process of iterative inquiry into data to support sense-making. This reduces the cognitive work needed

to perform analytic tasks by leveraging the pattern detecting abilities of the human visual system for processing complex

information that would normally exceed cognitive limits (Ware, 2012). Visual analytics has made complex problems and

model output tractable for non-scientists and non-model experts in a variety of domains including physics, business, intelligence35
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analysis, and disaster management (Keim et al., 2008). Effective visualization techniques are particularly valuable for environmental

data, which is often complex due its spatiotemporal dimensions and uncertainties (Grainger et al., 2016). For example, studying

visualization design principles has improved the interpretability of complex data sets in the fields of meteorology (Rautenhaus

et al., 2018; Stauffer et al., 2015) and oceanography (Thyng et al., 2016).

Judging from the success of visual analytics applications in other disciplines of environmental science, we believe that5

applying a visualization design perspective to snowpack models has the potential to substantially address some of the shortcomings

that have so far prevented
::::::
limited their operational use. In this paper, we present design principles and visualization examples

that aim to
::
for

:::::::::::
visualization

::::
tools

::::
that increase the interpretability and relevance of snowpack models

::
for

:::::::::
operational

:::::::::
avalanche

:::::::::
forecasters. These design principles are informed by information visualization, operational avalanche forecasting practices,

and the unique features of snowpack model data. First, we apply a visualization design framework to the domain of avalanche10

forecasting to outline principles of how data should be visualized to solve operational problems (Sect. 2). Then we provide

examples of visualizations where these principles are applied with snowpack model data (Sect. 3). The validity of the design

principles is discussed
:
,
:::::::
followed

::
by

::::::::::
suggestions

:::
for

::::
next

::::
steps

:::::::
towards

:::::::::
operational

::::::::::
applications (Sect. 4) followed by conclusions

and recommendations for adoption by avalanche forecasters
::
and

::::::::::
conclusions

:
(Sect. 5).

2 Visualization design principles for avalanche forecasting15

2.1 Nested levels of visualization design

The nested model for visualization design described by Munzner (2009) has established itself as a valuable framework for

evaluating and designing
::::::::
designing

::::
and

:::::::::
evaluating visualization tools. This framework considers four nested levels where

distinct design issues arise, and where issues at one level can cascade to other levels. The issues with operational snowpack

model tools identified by ?
:::::::::::::::
Morin et al. (2020) relate to design issues at each level of the nested model. The considerations20

included in these
:::::
These four levels provide designers with a tangible framework for understanding the users’ problems, showing

the appropriate information, and presenting it both effectively and efficiently:

1. Domain situation level. The domain situation describes the target users, their field of interest, their questions, and their

data. A domain has unique vocabulary for describing its data and problems, and usually has an existing workflow for how

data is used to solve problems. Issues arise when designers misunderstand the users’ needs. For example, existing tools25

that present snowpack model data may not address the major needs and questions of avalanche forecasters(relevance
:
,

::::
such

::
as

::::::::
assessing

:::
the

:::::
spatial

::::::::::
distribution

::
of

:::
an

::::::::
avalanche

:::::::
problem

:::::::::
(relevance).

2. Task and data abstraction level. Task and data abstraction maps domain-specific problems into generic vocabulary that

clearly describe what type of data is being visualized and why. Tasks are described with generic verbs (e.g. locate,

compare) and data is described with generic nouns and adjectives (e.g. table, network, ordered, categorical). Issues30

arise when the functions and data types in a design do not solve the intended problem. For example, detailed snow
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stratigraphy profiles provided by snowpack models may not be the type of information needed for
::::::
specific

:
forecasting

tasks (relevance
:::::::
relevance).

3. Visual encoding and interaction idiom level. This level creates visual representations of the data. A distinct visual

representation is called an idiom. Data is encoded by arranging it along spatial dimensions and mapping attributes

to non-spatial visual features such as colour, size, and shape, while interaction idioms allow the user to change the view.5

Issues arise when idioms are ineffective at visualizing information. Existing idioms for visualizing snowpack model data

are often complex, busy, and difficult for non-model experts to understand (interpretability
::::::::::::
interpretability).

4. Algorithm level. This is the level where idioms are produced from raw data with a computer. Issues arise when algorithms

are too slow. At the algorithm level, most snowpack model visualizations are
:::
too time consuming for forecasters because

they are poorly integrated into their workstations (accessibility
::::::::
workflows

::::::::::::
(accessibility).10

Munzner (2014) also describes that visualization problems can be attacked from two possible directions within the nested

model: top-down approaches that first understand the domain and tasks and then design visual idioms accordingly, and bottom-

up approaches that start with developing new algorithms and idioms. Most existing snowpack model visualizations were

developed with bottom-up approaches that began with model development followed by the creation of visualizations of the

model output. Bottom-up approaches allow novel visualizations that reveal nuances and anomalies in new types of data, but15

also have the potential to not solve the intended problem (Munzner, 2014). While it is worth considering bottom-up designs

that take advantage of the unique capabilities of snowpack models, it is also important to carefully examine the domain and

tasks of avalanche forecasting to establish top-down design principles that support forecasting needs.

2.2 Domain of avalanche forecasting

Avalanche forecasting is a common task for all operations that manage short-term avalanche risk (e.g. ski areas, transportation20

corridors, backcountry warnings, resource extraction). The forecasting process consists of iterative data analysis and is dominated

by human judgement and inductive logic (LaChapelle, 1980; McClung, 2002). Statham et al. (2018) surveyed existing operational

practices within North American avalanche forecasting operations to develop a standard framework for this process. The

resulting conceptual model of avalanche hazard
::::::::
conceptual

::::::
model

::
of

::::::::
avalanche

::::::
hazard (CMAH) identifies the key components

of avalanche hazard and provides standard workflow and terminology to guide the forecasting process. The CMAH is a risk-25

based framework that is consistent with other natural hazard disciplines and can be applied to any scale in space or time. A

central part of the CMAH is the concept of avalanche problems that represent individual, identifiable operational concerns that

can be described in terms of their potential avalanche type, location, likelihood, and size (Statham et al., 2018). Under the

CMAH, avalanche forecasting is viewed as sequentially answering four questions:

1. What type of avalanche problems exist?30

2. Where are these problems located in the terrain?

4



Figure 1.
::::::

Example
::
of

:
a
::::::::

snowpack
:::::::
summary

:::
for

:
a
:::::

large
::::::
forecast

:::
area

:::::
drawn

:::
on

:
a
:::::::::
whiteboard

::
to

::::::::
summarize

::::::
relevant

::::::::
snowpack

:::::::::
conditions.

:::
This

:::::::
example

:::
was

:::::
drawn

::
on

:::
23

::::::::
December

::::
2017

::
by

::
an

::::::::
avalanche

:::::::
forecaster

::
at
::::
Mike

:::::::
Wiegele

::::::::
Helicopter

:::::
Skiing

::
in

::::::
Canada.

:::::
Each

:::
row

:::::
shows

::::::::
conditions

::
for

:
a
:::::::

different
:::::::
elevation

::::
band

::::::
(alpine,

::::::
treeline,

::::
and

::::
below

:::::::
treeline).

::::
The

:::::
profile

::::::
column

:::
has

:::::::::
stratigraphy

::::::
profiles

::::::
showing

::::::
typical

::::
layer

:::::
depths

:::
and

:::::::
hardness

:::::::::
(widespread

:::::
layers

:::
are

:::::
shown

::::
with

::::
solid

::::
lines

:::
and

:::::::
localized

:::::
layers

::::
with

::::::
dashed

:::::
lines).

:::
The

::::::::
remaining

:::::::
columns

::::::
identify

:::::::
important

:::::
layers

::::
and

::::::
provide

:::::
details

:::
on

::::
their

::::
burial

::::
date,

:::::
grain

::::
type,

:::::
depth

::
(in

::::
cm),

::::
and

::::::::::
representative

::::::
shovel

::::
shear

:::
test

::::::
results

:::::
(Photo:

:::::
Mike

::::::
Wiegele

::::::::
Helicopter

::::::
Skiing).

3. How likely is it that an avalanche will occur?

4. How destructive will the avalanche be?

Over the past decade, the CMAH has been widely adopted by all industry sectors in North America (Statham et al., 2018),

which clearly indicates that it is a useful model to describe the domain situation of avalanche forecasting.

2.3 Task and data abstractions for snowpack analysis5

Given the importance of avalanche problems in avalanche forecastingpractices, any operational visualization of data should

consider this abstraction ,
::::::::::

operational
:::::::::::
visualization

:::::
tools

::::::
should

:::
be

::::::::
designed to help forecasters identify and characterize

avalanche problems. Assessing avalanche problems consists of integrating a complex array of data that includes observations

of avalanches, snowpack, weather, and terrain (Statham et al., 2018). There is no structured or standardized way this data is

used to answer the CMAH questions, as the analysis relies on subjective judgement and heuristics (LaChapelle, 1980), however10

there are common practices for interpreting field observations.

Snowpack models produce data that is analogous to manual snow stratigraphy profiles, which is a key type of field data used

by forecasters
:
to
::::::::::
understand

::::::::
snowpack

:::::::::
conditions. Building off familiar visual representations is an effective way for people
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to understand new types of information (Blackwell, 2001), and thus examining existing practices for visualizing and analyzing

::::::
manual snow profiles provides insight into ways snowpack models could be visualized to support forecasting tasks.

Forecasters perform several analysis tasks with snow stratigraphy profiles to help them assess avalanche problems and

::::::
manual

:::::
snow

::::::
profiles

:::
to develop a comprehensive mental model of hazard conditions. Individual

::::::
Manual

:
snow profiles are

either recorded in tables of unstructured text or illustrated as a hardness
:::::::
hardness

::::::::::
stratigraphy

:
profiles (Canadian Avalanche5

Association, 2016a). Forecasters learn to identify relevant snowpack features
:::::::
identify

:::::::
relevant

::::::::
snowpack

:::::::
features

:
in these

profiles, and then compare
:::::::
compare

:
multiple snow profiles along with other observations to summarize

:::::::::
summarize the snowpack

conditions within a forecast area. Forecasters summarize snowpack data by writing a
::
in

:
a
::::::
written

:::::::::
snowpack

::::::::
summary

:::
that

:::::
gives

:
a concise overview of snowpack conditions in their forecast area. The goal of a written snowpack summary is to organize and

reduce data, focusing on average conditions along with potential anomalies and outliers (Canadian Avalanche Association,10

2016a). Some operations also illustrate
:::::::::
forecasters

:::::::
visualize

:
their snowpack summary with generalized stratigraphy profiles

:
a

:::::::::::
representative

::::::
profile for their forecast area,

:::::
which

:::::
helps

:::::
them

:::::::
organize

:::
and

::::::::::::
communicate

::::::
relevant

::::::::::
information

:
(Fig. 1).

:::::
These

:::::
visual

::::::::
snowpack

:::::::::
summaries

:::
are

:::
an

:::::::
example

::
of

::::::
where

:::::::::
forecasters

:::::::
already

:::
use

:::::::::::
visualization

::
to

::::
help

:::::::::
summarize

:::
and

::::::::::
understand

:::::::
complex

::::::::::
information.

:

Tracking trends
:::::
trends

:
in snowpack conditions over time is another common forecasting task, which is most often done15

with tables of text. Temporal trends in the likelihood and size of avalanches are particularly relevant. For example, the InfoEx

forecasting workflow allows forecasters to track weak layers in their forecast area with qualitative summaries of their status and

depth each day of the season (Haegeli et al., 2014). Simple observed snowpack data is
:::::
Basic

::::::::
snowpack

:::::::::::
observations

:::
are plotted

as time series (e.g. daily snowfall at fixed observation sites), but complex data like snowpack structure is rarely visualized

temporally.20

To help forecasters answering
::::::
answer

:
the four key questions about avalanche problems posed by the CMAH, visualizations

of snowpack model data should help forecasters identify, compare, and summarize snowpack features and highlight trends

:::::::
identify,

:::::::
compare,

::::
and

:::::::::
summarize

:::::::::
snowpack

::::::
features

::
in
:::::
their

::::::
forecast

::::
area

::::
and

:::::::
highlight

::::::
trends over time.

:::::
These

::::::
specific

:::::
tasks

:::::
should

:::
be

:::::::::
considered

:::::
when

::::::::
designing

::::
tools

::
to
::::::::
visualize

:::::
either

::::
field

::::
data

::
or

:::::::::
snowpack

:::::
model

::::
data.

:

Snowpack conditions within a large forecast area are summarized with generalized snow profiles highlighting important25

snowpack features at different elevation bands (Photo: Mike Wiegele Helicopter Skiing).

2.4 Information visualization principles

The field of information visualization studies how to leverage the human visual system to off-load cognitive work and visualize

information effectively. Information visualization principles should be considered when designing the visual appearance and

interactive components of tools for snowpack model data (i.e. the visual encoding and interaction idiom level of the nested30

model). These principles consider effective ways of representing data visually and are explained in greater detail in textbooks

by Ware (2012) and Munzner (2014). The following list summarizes information visualization principles that are relevant when

visualizing snowpack model data:
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– When representing information visually, designers encode data to visual features such as: spatial position, size, color, or

shape among others. Color can be further divided into hue (the actual color), luminance (the brightness or darkness of a

color), and saturation (the intensity of the color). Through years of perception studies, standard guidelines for mapping

these visual features to data types have been established (Cleveland and McGill, 1984).

– Visual encodings should present data in ways that match the capabilities of our visual system. Hence, categorical and5

ordered data should be encoded with visual features that match human visual aptitudes. For example, when using colours,

hues should be used for categorical attributes such as avalanche problem types and luminance (lightness or brightness)

should be used for ordered attributes such as avalanche likelihood.

– Designs should prioritize the importance of information and encode data to visual features that are perceived more

quickly, accurately, and draw our attention to make this information more salient (i.e. noticeable) and discriminable10

(Cleveland and McGill, 1984). Spatial position is perceived the fastest and most accurately, and thus the most important

attributes should be encoded by their position in a visualization. After spatial position, designs should consider the

hierarchy of salience for non-spatial visual features. For example, size features such as length and area are more salient

than colour features such as hue, luminance, and saturation. For a comprehensive breakdown of this hierarchy see

Munzner (2014).15

– Choose designs that are accessible and effective for common types of colour blindness. For example, red-green colour

blindness (deuteranopes) affects roughly 8% of males of European descent (Birch, 2012).

– Interaction reduces cognitive load and helps users understand data by asking questions and performing queries. A

practical guideline for designing interaction idioms is the visual information seeking mantra of Shneiderman (1996):

“overview first, zoom and filter, then details on demand”. The initial visualization should provide an overview of the20

entire dataset, and then the interactions should allow the users to change the view to see subsets of the data, and then

visualize details about features of interest. This design approach offers users a flexible way to explore data, while being

able to maintain a sense of context and orientation.

– Comparison tasks are
::::
most

::::::::
effective

::
on

:::::::
aligned

::::::
scales.

:::::::::::
Furthermore,

:::::::::::
comparisons

::
of

:::::
large

:::::::
amounts

:::
of

::::
data

:::
are

:
often

more effective when seeing multiple frames in a single side-by-side view rather than changing views over time. The25

human perceptual system is effective at reading spatial information in parallel, whereas changing views with animations

or multiple tabs relies on human memory and results in substantial cognitive load (Ware, 2012).

– Visualization idioms should present data with the smallest number of spatial dimensions, avoiding three-dimensional

visualizations and using one-dimensional lists where possible. Displaying three-dimensional data on planar surfaces has

numerous issues with depth-perception and over plotting (Ware, 2012).30
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Figure 2.
::::::
Location

::
of

::::::
Glacier

:::::::
National

::::
Park

::
in

::::::
western

::::::
Canada,

::::
and

:::::::
locations

::
of

:::
grid

:::::
points

:::::
where

::::::::::::
meteorological

:::
data

::::
was

:::::::
extracted

::
to

::::::
produce

:::::::
simulated

::::
snow

::::::
profiles

::::::::
(coloured

:::::::
according

::
to

:::::::
elevation

:::::
band).

3 Applications of visualization design principles

This section presents applications of the
:::::::
examples

::
of

::::
how

:
visualization design principles using simulated snowpack data for 8

January 2018 in
:::
can

:::
be

::::::
applied

::
to

:::::::
enhance

:::
the

::::::::
relevance

::::
and

::::::::::::
interpretability

:::
of

::::::::
snowpack

::::::
model

::::
data.

::::::
Rather

::::
than

:::::::::
presenting

::
the

:::::::
optimal

:::::::::
avalanche

:::::::::
forecasting

::::
tool,

:::::
these

::::::::
examples

:::::
show

::::
how

::
to

:::::
apply

:
a
::::::::
top-down

::::::::
approach

::
to

::::::
design.

:::::
Each

:::::::::::
visualization

::::::::
addresses

:
a
:::::::
specific

:::::::
question

:::::
posed

:::
by

:::
the

:::::::
CMAH,

:::::
which

:::
can

:::
be

::::::::
combined

::::
into

:
a
:::::
single

:::::::::
interactive

::::
tool

:::
that

::::::
allows

:::::::::
sequential5

:::::::
question

::::::
asking.

::::
This

::::::
section

:::::
starts

::
by

::::::::::
introducing

::::
each

:::::::::
individual

::::::::::
visualization

::::
then

:::::::
finishes

::::
with

::
an

:::::::
example

:::
of

::
an

:::::::::
interactive

:::::::::
forecasting

:::
tool

::::
that

::::::::
combines

:::::
them.

:

:::
The

::::::::
following

:::::::::
examples

:::
are

:::
for Glacier National Park, Canada. On this day the avalanche danger rating was considerable

:
,
:
a
:::::::
forecast

::::::
region

::::::::
covering 1354 km2

::
of

:::::::::::
mountainous

::::::
terrain

::::
(Fig.

:::
2).

::::
The

::::::::
examples

:::::
focus

:::
on

:::
the

:::::
needs

:::
of

:::::::
regional

:::::
scale

::::::::
avalanche

:::::::::
forecasters

:::::::::::::
(considerations

:::
for

:::::
other

::::::::::
forecasting

:::::::
contexts

:::
are

:::::::::
discussed

::
in

:::::
Sect.

:::
4).

::::
The

::::::::
examples

:::
use

:::::::::
simulated10

::::::::
snowpack

::::
data

:::
for

:
8
:::::::
January

:::::
2018,

::
as

::::
this

:::
day

::::
had

:::::::::
interesting

::::::::
snowpack

:::::::::
conditions

::::
with

:::::::::::
considerable

::::::::
avalanche

::::::
danger

:
at all

elevation bands with two
:::
and

:::
two

::::::::
common avalanche problems (Parks Canada, 2018): a storm slab problem at all elevations

(size 1 to 2 avalanches were possible to likely) and a persistent slab problem at treeline and below treeline elevations (size 1

to 3 avalanche were possible to likely). Simulated
:::
The

::::::::
appendix

::::::::
provides

::::::::
additional

::::::::
examples

::
of

:::
the

::::::::::::
visualizations

:::
for

::::::
several

::::
other

::::
days

::::::::::
throughout

::
the

::::::::
2017-18

::::::
season.15

::::::::
Simulated

:::::
snow

:
profiles were produced by forcing the physical snowpack model SNOWPACK (Lehning et al., 1999)

with gridded meteorological data from the Canadian HRDPS numerical weather prediction model (Milbrandt et al., 2016).

Meteorological data was extracted at
:::::::::
Numerous

::::::::::::
configurations

::
of

:::::::
weather

:::::
inputs

::::
and

:::::::::
geometries

:::
are

:::::::
possible

::::
with

:::::::::
snowpack

::::::
models

::::::::::::::::
(Morin et al., 2020).

::::
The

::::
ideal

::::::::::::
configuration

::
for

:::::::::
avalanche

:::::::::
forecasting

::::::
should

:::::::
produce

:
a
::::::::::::
representative

::::::
sample

::
of

:::::
snow

8



::::::
profiles

::::
that

::::::
capture

::::
the

::::::
spatial

:::::::::
variability

:::::
across

::::
the

:::::::
forecast

::::::
region.

::::::::
Choosing

:::
an

:::::::
optimal

:::::::::::
configuration

:::::::
remains

:::
an

:::::
open

:::::::
research

:::::::
question

::::
that

:::::::
requires

::::::
model

::::::::
expertise

:::
and

::::
field

:::::::::
validation.

:::
To

:::::::
produce

::
a
::::::
sample

:::
of

::::::
profiles

::::
that

:::::
cover

:::
the

::::
type

:::
of

:::::::
locations

::::::::::
considered

::
by

:::::::
regional

::::::::::
forecasters,

::
a
:::::::
gridded

::::::::
approach

:::
was

:::::
used

::
to

::::::
extract

:::::::::::::
meteorological

::::
data

::::
from

:::
all

:
236 grid

points in the park and at each grid point a
:::::::
forecast

::::::
region.

::
A
:

single flat field profile and four virtual slope profiles were

simulated
::
at

::::
each

::::
grid

::::
point

:
(38 ◦ slopes in four cardinal directions) . A

:::::::
resulting

::
in
::
a total of 1180 profiles covering an area of5

provide a sample data set to present visualizations of regional snowpack conditions
:
a
:::::
range

::
of
::::::
aspect

:::
and

::::::::
elevation

:::::
bands.

3.1 Identify snowpack structure patterns with colour

Snowpack features related to avalanche problems should be easy to identify in visualizations of snowpack structure. The
:::
For

:::::::
example,

::::
thin

:::::
weak

::::::
layers

:::
are

::::::::
important

:::
for

::::
slab

:::::::::
avalanche

:::::::::
problems,

:::
and

:::
so

:::::
these

:::::
layers

::::::
should

:::::
have

::::
high

:::::::
contrast

:::::
from

::::::::::
surrounding

:::::
layers.

:::::
From

::
a
:::::::::
perceptual

::::::::::
perspective,

:::
the standard colour palette for snow grains (i.e. Fierz et al., 2009) creates10

:::
may

::::::
cause undesired emphasis on certain types of snow . Important features such as thin weak layers have relatively low

perceptual salience while less important features such as
::
due

::
to
:::
the

:::::::
relative

:::::::
contrast

:::::::
between

:::::::
colours.

:::
For

::::::::
example,

::
the

:::::::
fuchsia

:::::
colour

::::
used

:::
for

::::::
surface

::::
hoar

:::
has

::::
little

:::::::
contrast

::::
with

::::::::::
surrounding

:::::
layers

:::::
while

:
melt forms and ice formations have relatively high

salience
:::
are

::::::
highly

:::::::::
emphasized

:::::::
(despite

:::::
being

::::
less

::::::::
important

:::
for

:::::::::
identifying

:::::
most

::::::::
avalanche

:::::::::
problems). The colours also make

it difficult for individuals with colour blindness to distinguish important features .
::::
(e.g.

:::::::::::
precipitation

:::::::
particles

:::
and

:::::
melt

:::::
forms15

::
are

:::::::
difficult

::
to

:::::::
discern

::
for

::::::::::
individuals

::::
with

::::::::
red-green

::::::
colour

:::::::::
blindness).

:::::
Table

::
1.

::
A

:::::::::::::::::
perception-informed

:::::
colour

::::::
palette

:::
for

:::::
snow

::::
grain

:::::
types

::::
that

:::::::::
emphasizes

:::::::
features

::::::
related

::
to

:::::::::
avalanche

::::::::
problems

:::
and

::
is

:::::::
effective

::
in

::::::::
grayscale

::::
and

::
for

::::::::
common

:::::
types

::
of

:::::
colour

:::::::::
blindness.

:::::
Table

::
2.

:::::::::
Simplified

:::::
colour

::::::
palette

:::
for

::::::
groups

::
of

:::::
grain

::::
types

::::::
related

::
to

:::::::::
avalanche

::::::::
problems.

:
20

We propose a perception-informed colour palette for snow grain types that emphasize
:::::::::
emphasizes

:
features related to

avalanche problems (Table 1). Similar perception-informed colour palettes have been proposed to improve the interpretation

of visualizations in meteorology and oceanography (Stauffer et al., 2015; Thyng et al., 2016). The proposed colour palette

9
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Figure 3.
::::::
Applying

:::::::
different

:::::
colour

:::::::
palettes

::
to

::::::
common

::::::::
snowpack

:::::
model

:::::::::::
visualizations.

::::
The

::::
same

::::::
timeline

::::
and

:::::::::
stratigraphy

::::::
profiles

:::
are

:::::
shown

::::
with

::
the

:::::::
standard

::::::
colours

:::
for

::::
grain

:::::
types

:::
(top

:::::
row),

:::::::::::::::
perception-informed

::::::
colours

:::
for

::::
grain

::::
types

:::::
from

::::
Table

::
1
::::::
(middle

::::
row),

::::
and

:::::::::::::::
perception-informed

::::::
colours

::
for

:::::
grain

:::
type

::::::
groups

::::
from

::::
Table

::
2

::::::
(bottom

::::
row).

:::::::
Timeline

::::::
profiles

::::
(left)

:::::
show

::
the

::::::::
evolution

::
of

::::
layer

::::::
heights

:::
and

::::
grain

:::
type

::::
from

::
1
::::::
October

::::
2017

::
to
::
8
::::::
January

::::
2018.

::::::::::
Stratigraphy

::::::
profiles

:::::
(right)

::::
show

::::
layer

::::::
height,

::::
grain

::::
type,

:::
and

::::
hand

:::::::
hardness

::
(F

::
=

:::
fist,

::
4F

:
=
::::

four
:::::
finger,

::
1F

::
=

:::
one

:::::
finger,

:
P
::
=

:::::
pencil,

::
K

:
=
:::::
knife)

::
on

::
8

::::::
January

::::
2018.
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groups grain types into four categories based on their role in avalanche problems: persistent weak layers (surface hoar and

depth hoar), new snow layers (precipitation particles and decomposing and fragmented particles), bulk layers (rounded grains

and faceted crystals), and melt and ice form layers.
::::
While

:::::::
faceted

::::::
crystals

:::
are

::::::::
typically

:::::::::
considered

::::::::
persistent

:::::
weak

::::::
layers,

:::
the

:::::::::::
SNOWPACK

:::::
model

::::::::
classifies

::::
any

::::::
faceted

::::::
crystal

::::
with

:
a
:::::
grain

::::
sizes

::::::
greater

::::
than

:::
1.5

::::
mm

::
as

:::::
depth

:::::
hoar.

::::
This

::::
rule

:::::
causes

:::::
most

:::::::
modelled

::::::
layers

::::::::
composed

:::
of

::::
large

::::::
faceted

:::::::
crystals

::::
(i.e.

::::
those

:::::::::
associated

::::
with

::::::::
persistent

:::::
weak

::::::
layers)

::
to

:::
be

::::::::
classified

::
as

:::::
depth5

::::
hoar,

:::::
while

:::::
layers

::::
with

:::::::
smaller

::::::
faceted

:::::::
crystals

::::
tend

::
to

::
be

::::::
thicker

:::
and

:::::::::
associated

::::
with

:::::
slabs.

::::::
While

::::
these

:::::
grain

::::
type

::::::
groups

:::
are

::::::
defined

::
by

::::::
model

:::::::::
behaviour,

::::
they

:::
are

::::::::
consistent

::::
with

::::::::
common

::::
snow

::::::
profile

:::::::
analysis

:::::::::
techniques

:::
that

::::::::
consider

:
a
:::::::::::
combination

::
of

::::
grain

::::
type

:::
and

:::::
grain

::::
size

::::::::
(amongst

::::
other

:::::::::
properties)

::
to
:::::::
identify

:::::
weak

:::::
layers

:::::::::::::::::::::::::::
(Schweizer and Jamieson, 2007).

:

These groups were visually related using analogous color schemes (e.g. the hues are perceptually close to each other) that

remained visually discriminable. The visual salience of these groups was adjusted using properties of color such as how dark10

they appear (i.e. luminance) and how vivid the colors are (i.e. saturation). In this way a visual hierarchy of importance was

created. Weak layers that tend to take up the smallest area were made the most salient by using strong contrast against other

grain types, next new snow was made salient. Finally, the other layers formed the lowest level of perceptual salience and serve

as a neutral background. All colors were made to be perceptually distinct . Accessibility
:::
and

:::::::::
accessible

:
for common types

of colour blindness was also considered (see Table 1). Unique colours were also assigned to melt-freeze crust and rounding15

faceted particles, as distinguishing these sub-classes was deemed meaningful for avalanche forecasters. A simplified colour

palette was also designed using only the four main categories of grain types
::
for

:
non-model experts (Table 2). The simplified

palette uses analogous colours
:::::
colors

::::
that

:::
are

:::::::::
analogous

:
to the full palette and maintains a similar

:::::::
maintain

:::
the

::::::::::
established

visual hierarchy.

Table 1. A perception-informed colour palette for snow grain types that emphasizes features related to avalanche problems20

and is effective in grayscale and for common types of colour blindness.

Table 2. Simplified colour palette for groups of grain types related to avalanche problems.

Comparison of timeline and stratigraphy profiles with standard colours for grain types, perception-informed colours for grain

types (Table 1), and perception-informed colours for grain type groups (Table 2).

The colour palettes were tested with common visualization idioms such as hardness and timeseries profiles (Fig. 2
:
3).25

Comparing the standard and redesigned colour palettes
:
at
::
a
:::::
single

::::::
treeline

:::::::
location

::
in

:::::::
Glacier

:::::::
National

::::
Park shows how the new

palettes simplify the interpretation of the profiles by drawing attention to the most important snowpack featureson 8 January

2018.
:
. The increased salience of the thin depth hoar layers

::::
layer

:
highlights a potential persistent slab avalanche problem and

the new snow highlights a potential storm slab avalanche problem.

3.2 Identify avalanche problem types from multiple profiles30

Visualizing information from an ensemble of snow profiles is an effective way to identify snowpack patterns in a forecast

area. Identification and summarization tasks can be done fast and effectively by deriving visual summary statistics from

distributed visual information. For example, humans can visually calculate correlation coefficients, clusters, and averages with

their visual perception systems (Szafir et al., 2016). The volume and continuity of data produced by snowpack models offers

11
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Figure 4.
::
A

:::::::::
visualization

::
to

::::::
identify

::::::::
avalanche

::::::
problem

::::
types

::::
from

::::
1180

::::::::
simulated

::::::
profiles

::
on

:
8
::::::
January

:::::
2018.

:::
The

::::::
profiles

::
are

::::::::::
summarized

::
by

::::::
plotting

:::::
grain

:::
type

:::::::::::
stratigraphies

:::::::::
side-by-side

::::
and

:::::
sorting

:::
the

::::::
profiles

:::::
from

::::::
thinnest

::
to

:::::::
thickest.

:::::
Grain

::::
types

:::
are

:::::::
coloured

:::::
using

:::
the

:::::::::::::::
perception-informed

:::::
palette

::::
from

::::
Table

::
1.

:::
The

:::::
storm

:::
slab

::::::::
avalanche

::::::
problem

::
is

::::::::
emphasized

::::
with

:::::
yellow

::::::
surface

:::::
layers

:::
and

::
the

:::::::
persistent

::::
slab

:::::::
avalanche

:::::::
problem

:
is
:::::::::
emphasized

::
by

:::
the

::::
band

::
of

::::
blue

::::
depth

::::
hoar

::::
layers

:::
30

:
to
:::

50
::
cm

:::::
below

:::
the

::::::
surface.

new opportunities for summarizing snowpack structure that are not possible with human observed
::::::
manual snow profiles. When

used in combination with a colour palette that emphasizes snowpack features related to avalanche problems, profile ensemble

visualizations can help forecasters identify prominent avalanche problem types.

A simple and powerful summary is obtained by plotting multiple grain type profiles side-by-side (Fig. 3
:
4). In this example,

1180 profiles are sorted from thinnest to thickest and over 46
:
,000 individual snow layers are shown in a single view. Despite5

the large volume of data, and a few prominent snowpack features pop-out and attention is drawn to the main snowpack patterns

in the forecast area. Since this visualization is specifically designed for the task of identifying potential avalanche problem

types, other idioms are required for visualizing geospatial patterns in a meaningful way (see Sect. 3.3).

Snowpack layers from 1180 simulated profiles are summarized by plotting grain type stratigraphies side-by-side and sorting

the profiles from thinnest to thickest. Grain types are coloured using the perception-informed palette from Table 1.10

Prevalence of snowpack layers from 1180 simulated profiles by aggregating layers by their age. A diverging scale distinguishes

the percentage of profiles with layers containing persistent grain types (i.e. surface hoar and depth hoar) on the right from the

percentage of profiles with layers containing other grain types on the left. Grain types are coloured using the perception-informed

palette from Table 1.
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Figure 5.
:
A
::::::::::

visualization
::
to
:::::::

identify
:::::::
avalanche

:::::::
problem

:::::
types

::::
from

::::
1180

::::::::
simulated

::::::
profiles

:::
on

:
8
:::::::

January
:::::
2018.

::::::::
Snowpack

:::::
layers

:::
are

::::::::
aggregated

::
by

::::
their

:::
age

:
to
:::::
show

:::
their

::::::::
prevalence

:::::::::
throughout

::
the

:::::
region

:::::
(with

::::::::
widespread

:::::
layers

:::::::
appearing

::
in

:
a
::::::
greater

::::::::
percentage

::
of

:::::::
profiles).

:
A
::::::::
diverging

::::
scale

::::::::::
distinguishes

::
the

:::::
layers

::::
with

::::
grain

:::::
types

::::::::
associated

:::
with

::::::::
persistent

::::
weak

:::::
layers

:::
(i.e.

::::::
surface

::::
hoar

:::
and

::::
depth

:::::
hoar)

::
on

:::
the

:::
right

::::
from

:::
the

:::::
layers

::::::::
containing

::::
other

::::
grain

::::
types

:::
on

::
the

::::
left.

::::
Grain

::::
types

:::
are

:::::::
coloured

::::
using

:::
the

:::::::::::::::
perception-informed

:::::
palette

::::
from

:::::
Table

:
1.
:

Another summary visualization that draws attention to potential avalanche problem types is produced by aggregating layers

by their age or deposition date (Fig. 4). Simulated profiles can be aligned and aggregated by the deposition date of each

layer to summarize the main features amongst a
::
5).

::::
The

::::::::
simulated

:::::::
profiles

:::
for

::
8

:::::::
January

::::
2018

:::::
have

:::::
layers

::::::
dating

::::
back

:::
to

::
the

:::::
start

::
of

:::
the

::::::
winter.

::::::::
Common

:::::::
features

::::::::
amongst

:::
the set of profiles . The prevalence of different grain types is determined

by counting the percentage of profiles containing grain types for each day the season. Grain
::::
such

::
as

::::
new

:::::
snow

::::
near

::::
the5

::::::
surface

:::
and

::::::::::
widespread

::::
weak

::::::
layers

::::
share

::::::
similar

:::::::::
deposition

:::::
dates,

::::
thus

::::::::
counting

:::
the

::::::
number

::
of

:::::::
profiles

::::
with

:::::::
different

:::
age

::::
and

::::
grain

::::
type

::::::::::::
combinations

::::::
results

::
in

::
a
::::::::
summary

::
of

::::
the

::::::::
snowpack

:::::::::
structure.

::
In

::::
Fig.

::
5,

:::::
grain

:
types associated with persistent

weak layers are emphasized with a diverging horizontal scale to distinguish them from other grain types. The persistent

weak layers are also easier to notice in this visualization
:::
than

::
in

::::
Fig.

::
3
::::
and

::
4, because they occupy a greater area than in

Fig. 2 and 3 where their size
::::::
spatial

::::
area

::
in

:::
the

:::::::::::
visualization

::::
than

:::::::::::
visualizations

::::::
where

:::
the

::::::
spatial

::::
area

::::::::
occupied

:::
by

:
a
:::::
layer10

is proportional to layer thickness. While it
::
its

:::::::::
thickness.

::
It

:
is also possible to produce an aggregated stratigraphy profile

from aligned layers (e.g. Hagenmuller and Pilloix, 2016; ?),
::
by

:::::::
aligning

::::::
layers

:::::
based

:::
on

:::::
other

::::::::
properties

:::::
such

::
as

::::::::
hardness

::::::::::::::::::::::::::::::
(e.g. Hagenmuller and Pilloix, 2016),

::::::::
however this requires complex data transformations and assumptions about averaging

layer properties. The layer prevalence visualization in Fig. 4 is simple to implement and
:
5
:

supports the task of identifying

potential avalanche problem types
:
in

::
a
::::
way

:::
that

::
is

::
is

:::
fast

:::
and

::::::
simple

::
to
:::::::::
implement.15
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Figure 6.
:
A

::::::::::
visualization

::
to

:::::
locate

:::::::
avalanche

::::::::
problems

::
in

::::::
terrain.

::::::::
Snowpack

:::::
layers

::::
from

::::
1180

::::::::
simulated

::::::
profiles

::
on

:
8
:::::::

January
::::
2018

:::
are

::::::::
partitioned

:::
into

:::::
terrain

::::
class

::::
bins

::
for

:::::::
elevation

::::
band

:::
and

:::::
aspect.

::::::::
Elevation

:::
bins

::::::
include

::::
alpine

::::::
(ALP),

::::::
treeline

::::
(TL),

:::
and

:::::
below

::::::
treeline

:::::
(BTL)

:::
and

:::::
aspect

:::
bins

::::::
include

:::
four

:::::::
cardinal

:::::::
directions

:::::
(north,

::::
east,

:::::
south,

:::::
west).

::::
Each

::::
layer

::
is

::::
given

:
a
::::::
random

::::::::
horizontal

::::::
position

:::::
within

:::
the

:::
bin

::
to

::::
allow

:::::
visual

:::::::
summary

:::::::
statistics.

:::::
Grain

::::
types

::
are

:::::::
coloured

:::::
using

::
the

:::::::::::::::
perception-informed

::::::
palette

::::
from

::::
Table

::
1.

The visualizations in Fig. 3 and 4
:::
and

::
5 use colour and position to draw attention to snowpack features that relate to the

storm slab and persistent slab avalanche problems on 8 January 2018. The storm slab problem is apparent from the yellow new

snow grains on the surface and a potential persistent slab avalanche problem is apparent from the salient surface hoar and depth

hoar layers that are buried 30 to 50 cm below the surface (Fig. 3
:
4) and formed in early December 2017 (Fig. 4

:
5).

3.3 Locate avalanche problems in terrain5

When locating avalanche problems in terrain, the description of the terrain depends on the context and scale of the forecast

(Statham et al., 2018). For example, regional forecasters describe terrain by elevation bands and aspects while highway

forecasters reference named avalanche paths. Partitioning snowpack data into distinct terrain classes and comparing side-

by-side views of the data for each terrain class is an effective way
::
to visualize complex geospatial patterns. High-dimension

(3D) visualizations are tempting to characterize mountainous terrain, particularly with high density model datasets, but there10

is large potential for misinterpretation on two-dimensional displays due to depth perception issues and over-plotting (Ware,
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2012). Instead, using eyes to simultaneously compare
::::::::::::
simultaneously

::::::::::
comparing

::::
one-

::
or

::::::::::::::
two-dimensional

:
visualizations for

different types of terrain has low cognitive load and less potential for misinterpretation.

Snowpack layers from 1180 simulated profiles partitioned into terrain class bins for elevation band and aspect. Elevation

bins include alpine (ALP), treeline (TL), and below treeline (BTL) and aspect bins include four cardinal directions (north, east,

south, west). Each layer is given a random horizontal position within the bin to allow visual summary statistics. Grain types5

are coloured using the perception-informed palette from Table 1.

To provide insight into the spatial distribution of avalanche problem characteristics
:::::::
location

::
of

:::::::::
avalanche

::::::::
problems, the

simulated profiles from Glacier National Park were partitioned into bins for elevation band and aspect classes to support

regional-scale forecasting (Fig. 5).
::
6).

:::::::::
Avalanche

:::::::::
forecasters

:::::
often

::::
use

:::::
radial

::::
plots

:::
to

:::::::
visualize

:::::::
simple

:::::
aspect

::::
and

::::::::
elevation

::::::
patterns

:::::
such

::
as

::::::
danger

:::::::
ratings

::
or

:::
the

::::::::
presence

::
of

:::
an

:::::::::
avalanche

::::::::
problem.

:::::
While

::::::
radial

::::
plots

:::
are

:::::::
familiar

::::
and

::::::
widely

:::::
used10

::::::
because

::
of

:::::
their

::::::::
metaphor

::
for

:::::::
cardinal

:::::::::
directions,

:::
the

::::::
skewed

::::
and

::::::::
unaligned

:::::::::
coordinate

:::::
plane

:::::
makes

::::::
precise

:::::::::::
comparisons

:::::
much

::::
more

::::::::
difficult.

:::::
Given

:::
the

::::::::::
complexity

::
of

:::::::::
snowpack

::::::
model

::::
data,

::::
Fig.

::
6
::::
uses

:::::::::
rectilinear

:::::
plots

::::
with

::
an

:::::::
aligned

:::::
scale

:::
for

:::::
more

:::::::
accurate

::::::::::
comparisons

:::::::::::::::::::::::::
(Cleveland and McGill, 1984).

:
A randomized horizontal position (i.e. jitter) was applied to each layer to

reduce over-plotting and randomize the order within a bin
:::::::::::::::::
(Ellis and Dix, 2007). The jitter plot allows the user to derive visual

summary statistics about the snowpack structure in each terrain class and make comparisons between different terrain bins15

such as:

– snow depth generally increases with elevation, except for south and west facing slopes in the alpine,

– there is more new snow on north and east aspects,

– buried surface hoar layers are more prevalent on north and east aspects, and

– the early December 2017 weak layer is more prevalent at treeline and below treeline elevations.20

These types of visual patterns could help forecasters localize avalanche problems in their terrain. Different types of terrain

bins could be applied for other forecasting contexts to highlight differences between relevant types of terrain . Examples include

::::
such

::
as sub-regions, avalanche paths, or classes of ski terrain (e.g. Sterchi et al., 2019).

3.4 Compare distributions of avalanche size and likelihood

Avalanche size is easily visualized by aligning layers by depth rather than height. Layer depth is more relevant to forecasting25

avalanches than layer height, as weak layer depths correlate to the destructive potential of slab avalanches (McClung, 2009).

From an information visualization perspective, comparisons are more effective on aligned scales, and thus aligning layers by

depth allows users to browse the distribution of depths for specific weak layers. From the distribution of layer depths in Fig.

3
:
4 and Fig. 5

:
6, forecasters could estimate the potential sizes of storm slab and persistent slab avalanches.

:::
The

::::::::::
distribution

::
of

::::
layer

::::::
depths

::
in

::::
these

::::::::::::
visualizations

:::::
relates

::
to
::::::
spatial

:::::::::
variability

:::::::
amongst

:::
the

:::::
profile

:::::::::
locations.

:::::::::
Overlaying

::::::::
summary

:::::::
statistics

:::
on30

::
the

::::::::::::
visualizations,

:::::
such

::
as

:::
the

::::::
median

:::::
depth

::
of

:
a
:::::::
specific

:::::
layer,

:::::
could

::::::
further

::::
help

:::::::::
estimating

::
the

::::
size

::
of

:::::::::
avalanches

::
in
::::::::
different

::::
types

::
of

::::::
terrain

:::
(as

::::
done

::
in
:::
the

:::::::::
interactive

:::::::::
dashboard

::
in

::::
Sect.

:::::
3.5).
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Figure 7.
:::::::::

Visualization
:::::::
designed

::
to

::::
show

:::
the

::::::::
likelihood

::
of

:::::::
persistent

::::
slab

::::::::
avalanches

:::
by

::::::::
combining

:::::
spatial

:::::::::
distribution

:::
and

:::
the

::::::::
sensitivity

:
to
::::::

triggers
::

of
::::::::

snowpack
:::::
layers.

::::::::
Snowpack

:::::
layers

::::
from

::::
1180

::::::::
simulated

::::::
profiles

::
on

::
8

::::::
January

::::
2018

:::
are

::::::::
partitioned

:::
into

::::::
terrain

::::
class

:::
bins

:::
for

:::::::
elevation

:::
band

:::
and

::::::
aspect.

:::::::
Elevation

:::
bins

::::::
include

:::::
alpine

:::::
(ALP),

::::::
treeline

::::
(TL),

:::
and

:::::
below

::::::
treeline

:::::
(BTL)

:::
and

:::::
aspect

:::
bins

::::::
include

::::
four

::::::
cardinal

:::::::
directions

:::::
(north,

::::
east,

:::::
south,

::::
west).

::::
The

::::::
number

:
of
::::
dots

:::
with

::::::::
persistent

::::
grain

::::
types

::
in

:
a
:::::
terrain

:::
bin

:::::
relates

::
to

::
the

:::::
spatial

::::::
density

::
of

::
the

:::::::
problem

:::
and

::
the

::::
size

::
of

:::
each

::::::
layer’s

::
dot

:::::
relates

::
to
:::
its

:::::::
sensitivity

::
to
::::::
triggers

:::::::
(derived

::::
from

::
the

::::::::
structural

::::::
stability

:::::
index).

::::
Each

::::
layer

::
is
::::
given

::
a
::::::
random

:::::::
horizontal

:::::::
position

:::::
within

:::
the

::
bin

::
to
:::::

allow
:::::
visual

:::::::
summary

:::::::
statistics.

:::::
Grain

::::
types

:::
are

:::::::
coloured

::::
using

:::
the

:::::::::::::::
perception-informed

::::::
palette

::::
from

::::
Table

::
1.

The CMAH defines the likelihood of avalanches as a combination of sensitivity to triggers and spatial distribution
::::::::
sensitivity

::
to

::::::
triggers

::::
and

::::::
spatial

::::::::::
distribution

:
(Statham et al., 2018), making it a relatively difficult attribute to visualize. Options for

visualizing avalanche likelihood
::::
could

:
include encoding related attributes with visual features such as shape, size, or motion

in any of the previous idioms or by designing new idioms that focus specifically on likelihood. Information about the spatial

distribution
::
We

:::::::
present

::::::::
examples

::
of

::::
both

::::::::::
approaches

::::
using

:::::
some

::::::
simple

::::::::
attributes

::::::
related

::
to

:::::::::
sensitivity

::
to

:::::::
triggers

:::
and

::::::
spatial5

::::::::::
distribution.

:::::
When

:::::::
working

::::
with

:::::
snow

:::::::
profiles,

::::
one

:::::::
potential

:::::::
method

:::
for

::::::::
assessing

:::
the

::::::
spatial

:::::::::
distribution

:
of a problem can be derived

by counting relevant features
::
is

:::::::
counting

::::::::
relevant

:::::
layers

:
amongst a set of profiles (e.g. Fig. 4). Sensitivity to triggers is an

assessment of snowpack instability, which snowpack models estimate using
:
as

:::
an

::::::::
indication

:::
of

::::::
spatial

:::::::
density.

::::::::::
Meanwhile,

::::::::
sensitivity

::
to
:::::::

triggers
::::

can
:::::::::
potentially

:::
be

:::::::
assessed

::::
with

:::::::::
snowpack

:::::
tests,

:::::::
stability

:::::::
indices,

::
or

:::::::::
structural

::::::
criteria

::::
such

:::
as

:::::
grain10
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Figure 8.
::::::::
Combining

:::::::::::
visualizations

:
of
::::::
spatial

::::::::
distribution

:::
and

::::::::
sensitivity

::
to

::::::
triggers

:
to
::::::
provide

:::::::::
information

::::
about

:::
the

::::::::
likelihood

::
of

::::::::
avalanches

:::
from

::::
1180

::::::::
simulated

::::::
profiles

::
on

:
8
::::::
January

:::::
2018.

:::
Both

:::::::::::
visualizations

:::::::
aggregate

:::
the

::::
layers

::
by

:::
age

:::
and

:::::
colour

::::
them

::
by

:::::
grain

:::
type.

::::
The

::
left

:::::
panel

::::
shows

::::::
spatial

::::::::
distribution

:::
by

::::::
counting

:::
the

::::::
number

::
of

::::::
profiles

:::
with

:::::::
different

::::
grain

::::
types

:::
(see

::::
Fig.

::
5)

:::
and

::
the

::::
right

:::::
panel

::::
shows

:::
the

:::::::::
distribution

:
of
:::::::::

sensitivity
::
to

::::::
triggers

:::
for

::::
these

::::
same

:::::
layers

::
as
::::::

derived
:::::

from
::
the

::::::::
structural

::::::
stability

:::::
index

:::::
(with

:::
dot

:::
size

::::::::::
proportional

::
to

::::::::
sensitivity

::
to

:::::::
triggers).

::::
Grain

::::
types

:::
are

:::::::
coloured

::::
using

:::
the

:::::::::::::::
perception-informed

:::::
palette

::::
from

:::::
Table

:
1.

:::
size

::::
and

:::::::
hardness

:::::::::::::::::::::::::::
(Schweizer and Jamieson, 2007).

:::::::::
Snowpack

::::::
models

:::::
offer

::::::
several stability indexes based on the mechanical

and structural properties of the layers (Schweizer et al., 2006). We derive a relative measure of sensitivity to triggers (S)

from SNOWPACK’s structural stability index (SSI). The SSI combines a stress-strength ratio with differences in hardness

and grain size to calculate a value between 0 and 6, where lower values correspond to less stable layers.
:::
The

::::
SSI

::
is
:::::
most

:::::::
effective

:::
for

::::::::
avalanche

::::::::
problems

:::::::::
associated

::::
with

:::::
deep

::::
weak

::::::
layers

::::
(e.g.

::::::::
persistent

::::
slab

:::::::::
problems),

:::::::
because

::
it

::::::
ignores

:::::::
surface5

:::::
layers

:::::
within

:::::
skier

:::::::::
penetration

::::::
depth.

:
To visually emphasize unstable layers, SSI was transformed into a relative measure of

sensitivity to triggers:

S ∝ exp−SSI (1)

where the SSI for each layer is scaled inverse exponentially to produce an ordered variable that correlates with the sensitivity

categories from the CMAH (i.e. unreactive, stubborn, reactive, touchy). This transformation produces values between 0 and10

1 and exaggerates differences for
:::::::
unstable

:
weak layers with low SSI . The numeric value of the sensitivity measure does not

have an interpretable meaning but illustrates
:::
can

:::::::
illustrate

:
relative patterns when applied in visualizations.
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Providing information about the likelihood of persistent slabs avalanches by scaling the size of each layer’s dot with its

sensitivity to triggers (derived from the structural stability index). Snowpack layers from 1180 simulated profiles are partitioned

into terrain class bins for elevation band and aspect. Elevation bins include alpine (ALP), treeline (TL), and below treeline

(BTL) and aspect bins include four cardinal directions (north, east, south, west). Each layer is given a random horizontal

position within the bin to allow visual summary statistics. Grain types are coloured using the perception-informed palette from5

Table 1.

Combining visualizations of spatial distribution and sensitivity to triggers to provide information about the likelihood of

avalanches. Both visualizations aggregate the layers by age and colour them by grain type. The left panel shows spatial

distribution by counting the number of profiles with different grain types (see Fig. 4) and the right panel shows the distribution

of sensitivity to triggers for these same layers as derived from the structural stability index. Grain types are coloured using the10

perception-informed palette from Table 1.

We present two examples of visualizing likelihood information with this relative measure for sensitivity to triggers. The

terrain class visualization in Fig. 5
:
6 was modified to scale the dot size of each layer to its sensitivity to triggers (Fig. 6

:
7). This

creates greater emphasis on sensitive weak layers, where the
::
so

:::
the

:::::::::::
combination

::
of

:::
the

:
number and size of weak layer dots

in a terrain bin relate to the likelihood of persistent slab avalanches in that type of terrain. Another visualization specifically15

designed for likelihood is given in Fig. 7
:
8, where the left panel provides information about the spatial distribution of each layer

and the right panel provides information about their sensitivity to triggers. Spatial
::::::::::
Information

::::
about

:::
the

::::::
spatial

:
distribution is

shown by the
::::
with

:::
the

::::
same

:::::::::::
visualization

::
as

::::
Fig.

::
5,

:::::
where

:::
the

:
prevalence of each layer by age (i. e. Fig. 4), while sensitivity

::
is

:::::
related

:::
to

:::
the

:::::
spatial

:::::::
density

::
of

:::
the

::::::::
problem.

:::::::::
Sensitivity to triggers is shown with the distribution of the relative sensitivity of

each layer by age. The side-by-side comparison of spatial distribution and sensitivity to triggers provides information about the20

potential likelihood of persistent slab avalanche problems. For example, the weak layers that formed in early December 2017

are more widely distributed and sensitive to triggers than the weak layers that formed in late October (i.e. avalanches are more

likely).

It is important to note that we are presenting these likelihood visualizations more to illustrate the concept than as a practical

decision aid. It is known that the modelled stability index does not provide meaningful information about layers near the25

surface where storm slab avalanches occur (Schweizer et al., 2006), and Monti et al. (2014) has highlighted issues between the

modelled stability indices and field observations of snowpack instability
::
of

:::::::
visually

::::::::
encoding

:::::::
stability

::::::::::
information

:::::
rather

::::
than

::::::
suggest

:::::
these

:::::::::
derivations

:::
for

:::
an

:::::::::
operational

::::
tool.

::::::
These

:::::::::
derivations

:::
are

:::::
most

:::::::
effective

:::
for

:::::::::
persistent

:::
and

:::::
deep

::::::::
persistent

::::
slab

::::::::
avalanche

::::::::
problems,

:::::
while

:::
the

:::::::::
likelihood

::
of

:::::
other

::::::::
avalanche

:::::::
problem

:::::
types

::::
may

:::
be

:::::
better

:::::::::
represented

:::
by

:::::
other

::::::::
attributes

::::
such

::
as

:::::::
weather

:::::::
variables

::
or
:::::

snow
:::::::::::
temperatures

::::::::::::::::::
(Haegeli et al., 2010).

::::::::
Deriving

:::::::
stability

::::::::::
information

::::
from

::::::::
simulated

:::::
snow

:::::::
profiles30

:
is
:::
an

:::::
active

:::::::
research

:::::
topic

::::::::::::::::
(Monti et al., 2014)

:
,
:::
and

::::
new

:::::::
stability

::::::
indices

::::
will

:::::
likely

:::::::
provide

::::
more

::::::::
accurate

::::::::::
information

:::::
about

::
the

:::::::::
likelihood

::
of

:::::::::
avalanches.

3.5 Interactive dashboard

Visualizations
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Figure 9.
:::::::::
Screenshots

::
of

::
an

::::::::
interactive

::::::::
dashboard

:::
that

:::::::
provides

:::::::::::
visualizations

::
of

::::
layer

::::::::
prevalence,

::::::
profile

:::::::
summary,

:::
and

:::::::
location

::
in

:::::
terrain

:::
from

::::
1180

::::::::
simulated

::::::
profiles

::
on

:
8
::::::
January

::::
2018.

::::
The

::::
initial

::::
view

::
(a)

:::::::
provides

:::
and

:::::::
overview

::
of

::
the

:::::
entire

:::::
dataset

:::
for

::
the

::::
user

:
to
:::::
assess

:::::::
potential

:::::::
avalanche

:::::::
problems

:::
and

::::
then

::
(b)

:::
the

::::::
updated

::::
view

::::
after

::
the

::::
user

:::
has

::::::
selected

::::
layers

::::
that

:::::
formed

:::::::
between

:
2
:::
and

::
15

::::::::
December

::::
2017

::
to

::::::
explore

:::::
details

::::
about

:::
the

:::::::::
distribution

:::
and

::::
depth

::
of

:::
the

:::::::
persistent

:::
slab

::::::::
avalanche

:::::::
problem.
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:::
The

::::::::::::
visualizations

:
presented in this section were combined into an interactive dashboard using Tableau

:::::::
Tableau data

visualization software (Fig. 8 and available online in Code and data availability
:
9). The dashboard facilitates the sequential

questions of the CMAH by following the “overview first, zoom and filter, details on demand” mantra (Shneiderman, 1996)via

interactions .
::::::::::

Interactions
:

that allow the user to change the view by selecting visual features and filters from the legend. The

initial view (Fig. 8a
::
9a) consists of the layer prevalence visualization (Fig. 4)

::::
from

::::
Fig.

:
5, the profile summary visualization (Fig.5

3)
::::
from

:::
Fig.

::
4, and the location in terrain visualization (Fig. 5).

::::
from

::::
Fig.

::
6. The combination of these visualizations provides a

visual overview of the snowpack structure to support the first question in the CMAH – identifying potential avalanche problem

types(Fig. 8a).
:
. After identifying potential avalanche problem types from the overview visualizations, users select layers of

concern from the layer prevalence panel to update the visualizations. Once a layer of concern is selected, the layer is highlighted

in the other panels to provide details about the location in terrain and the distribution of avalanche sizes (Fig. 8b
::
9b). Horizontal10

bars show the median depth of the selected layer in each terrain class for comparison of potential avalanche sizes. A tooltip

allows the user to hover over any visual feature and see details such as the grain type, deposition date, and depth in a pop-up

window. In Fig. 8b
::
9b, the user has selected all the layers that formed between 2 and 15 December 2017 to investigate the

persistent slab avalanche problem. The profile summary shows the position of this layer in the snowpack and the location in

terrain visualization shows the layer is more prevalent at treeline and below treeline, with median depths of 40 cm at treeline15

and 35 cm below treeline.
:::
The

::::::::
appendix

:::::::
provides

::::::::
examples

:::
of

:::
this

:::::::::
dashboard

:::
for

::::::
several

::::
days

:::::::::
throughout

:::
the

:::::::
2017-18

::::::
winter.

:

Screenshots of an interactive dashboard that provides visualizations of layer prevalence, profile summary, and location in

terrain. The initial view (a) provides and overview of the entire dataset for the user to assess potential avalanche problems and

then (b) the updated view after the user has selected layers that formed between 2 and 15 December 2017 to explore details

about the distribution and depth of the persistent slab avalanche problem.20

4
::::::::::::::
Implementation

5 Validating visualization designs

4.1
:::::

Design
:::::::::::::
considerations

While the principles outline
:::
The

::::::::::::
visualizations

::::::::
presented in Sect. 2 are a good foundation for designing meaningful visualizations,

:
3
:::
are

::
a
:::::::
starting

:::::
point

::
of

::::
how

:::::::::::
information

::::
from

:::::::::
snowpack

:::::::
models

:::
can

:::
be

::::::::
designed

::
to
:::::::

address
:::::::

specific
::::::::::
forecasting

::::::
needs,25

:::
but

::::::::
additional

:
user testing is critical to ensure the visualizations have the desired effects. We presented the visualizations

from the previous section to avalanche forecasters at ten workshop-style presentations, tested real-time prototypes with three

helicopter skiing operations over two winters, and ran an exercise where five users performed basic tasks with the interactive

dashboard. Following the
::::::::
necessary

:::
for

:::::
them

::
to

::::::
evolve

::::
into

:
a
::::::::
valuable

:::::::::
forecasting

:::::
tool.

:::
The

:
nested model for visualization

design framework of Munzner (2009) again, we present the feedback that we received at each design level separately.
::
of30

::::::::::::::
Munzner (2009)

::::::
provides

::
a
::::::::
structured

::::::::
approach

::
to
:::::::::

evaluating
:::
the

::::::
design

::
of

::::
such

:::::
tools,

::::::
where

:::::
issues

::::
can

::
be

::::::::
addressed

::
at
:::::

each

::::::
specific

::::::
design

::::
level

::::
(i.e.

::::::
domain

::::::::
situation,

::::
task

:::
and

::::
data

::::::::::
abstraction,

:::::::::::
visualization

:::
and

:::::::::
interaction

::::::
idiom,

:::::::::
algorithm).

:
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At the domain situation level, creating links between snowpack models and the CMAH addresses
::::::::
avalanche

::::::::::
forecasting

::::::::
workflows

::::
like

:::
the

::::::
CMAH

::::
will

::::::
address

:
operational challenges faced by avalanche forecasters(Statham et al., 2018)

::::::::
forecasters.

Reflecting the broad adoption of the CMAH
:::::::::::::::::
(Statham et al., 2018), the proposition of using snowpack models to characterize

avalanche problems
:::::
across

:::::::
forecast

:::::::
regions has gained more interest from the Canadian forecasting community than

:::::::
previous

snowpack model tools produced over the past decade. The
:::
that

:::::::
focused

::
on

:::::::::
individual

::::::::::
stratigraphy

::::::
profiles.

::::::::
However,

:::
the

:
CMAH5

may not characterize the domain situation for all possible snowpack model users, as problems
::
all

:::::::
possible

::::::
domain

:::::::::
situations

::
for

:::::::::
snowpack

::::::
models,

:::
as

::::
tasks such as terrain selection or civil protection likely require distinct design

::::::
possibly

::::::
require

:::::::
distinct

::::::
domain

:::::
level

:
considerations.

At the task and data abstraction level, the visualization of snowpack summaries has received consistent positive feedback

from forecasters
::::::
designs

::::::
should

::::
focus

:::
on

::::::
specific

::::::::
questions

::::
and

:::::::::
forecasting

:::::
tasks.

::::
This

:::::::
requires

:
a
::::
shift

::::
from

:::::::::
bottom-up

::::::::
scientific10

:::::::::::
visualizations

:::::::
towards

::::::::
top-down

::::::::::
information

::::::::::::
visualizations.

::::
The

::::::::::::
visualizations

::
in

::::
Sect.

::
3
:::
are

::::::::::
specifically

:::::::
designed

::
to
:::::::

answer

::
the

:::::
four

::::::::
questions

:::::
posed

:::
by

:::
the

:::::::
CMAH

:::
by

:::::::
focusing

:::
on

:::
the

:::::
type

::
of

::::
task

::::
(e.g.

::::::::
identify,

::::::
locate,

::::::::
compare).

::::::::::
Forecasters

:::::
have

::::::
existing

::::::::
methods

::
for

::::::::::
performing

::::
these

:::::
tasks

::::
with

::::
field

::::
data,

:::
but

::::::::::
aggregating

::::
and

:::::::::::
summarizing

:::
that

::::
data

:::
can

:::
be

:::::::::
challenging

::::
and

::::::::
uncertain.

::::
The

:::::::::
continuous

::::::
spatial

::::::::
coverage

::
of

::::::::
snowpack

:::::::
models

:::::
offers

::::::
unique

:::::::::::
opportunities

::
to

:::::::
support

::::
these

:::::
tasks. The side-

by-side profile summary
::::::
profiles (Fig. 3) visualizes

::
4)

:::
and

::::::
terrain

::::
class

:::::
plots

::::
(Fig.

::
6)

::::::::
visualize snowpack patterns in a way that15

is
::::
ways

::::
that

:::
are not possible with traditional snow profile data and can help forecasters build a

::::
more

::::::::
complete

:
mental model

of the snowpack structure in their forecast area. Other operational tasks could benefit from bottom-up designs that leverage the

spatial and temporal coverage of snowpack models, such as using stratigraphy timelines to visualize temporal trends .

:::::
While

:::
the

::::::::
examples

::
in

::::
Sect.

:
3
:::
are

::::::::::
particularly

:::::
suited

::
to

:::::
storm

:::
and

::::::::
persistent

::::
slab

::::::::
avalanche

:::::::
problem

:::::
types,

:::
the

::::
same

:::::::::
principles

::::
could

:::
be

::::::
applied

::
to

:::::::::
emphasize

::::::::
attributes

::::::::
important

::
to

:::::
other

:::::::
problem

::::
types

:::::
(such

::
as

:::::::
weather

::::
data

::
to

::::::
identify

:::::
wind

:::
slab

:::::::::
avalanche20

:::::::
problems

::::
and

:::::
snow

::::::::::
temperature

::::
data

::
to

:::::::
identify

::::
wet

::::::::
avalanche

::::::::
problem

::::::
types).

:::
The

::::
task

:::
of

:::::::
locating

::::::::
avalanche

::::::::
problems

:::
in

:::::
terrain

::::::
differs

:::
for

:::::::
different

:::::::::
forecasting

::::::::
contexts.

::
In

:::::
many

::::
cases

:::::
maps

::
or

::::
other

:::::::::
geospatial

:::::::::::
visualizations

:::::
could

:::
be

:::::::
valuable

::
for

::::
this

::::
task.

:::::
While

:::
not

:::::::
directly

:
a
:::::::
question

::
in

:::
the

:::::::
CMAH,

:::
the

::::
task

::
of

:::::::
tracking

::::::::
temporal

:::::
trends

::
is

:::
also

:::::::
critical,

::
as

:::
the

:::::::::
forecasting

:::::::
process

:
is
:::::::
iterative

::::::::::
throughout

:::
the

::::::
winter.

::::
The

:::::::::
continuous

::::::::
temporal

::::
data

:::::::
provided

:::
by

::::::::
snowpack

:::::::
models

:::::
offers

::::::
unique

::::::::::
capabilities

:::
for

:::::::
tracking

::::::::
snowpack

::::::::
evolution.

:::::::::::
Stratigraphy

:::::::
timeline

:::::::::::
visualizations

::::
(e.g.

::::
Fig.

::
3)

:::
are

::::
well

:::::
suited

:::
for

:::::::
tracking

:::::::::
snowpack

::::::::
evolution25

:
at
:::::::::
individual

::::::::
locations,

:::::::
however

::::::
adding

::
a

:::::::
temporal

:::::::::
dimension

::
to

::::::
spatial

::::::::::
information

::::::
creates

::::::::
additional

:::::::::
complexity

::::
and

:::::::
requires

::::::
specific

::::::
design

::::::::::::
considerations.

::
A
:::::::::::
visualization

:::::::
showing

:::
the

::::::::
temporal

::::::::
evolution

::
of

::
a

::::::::
snowpack

::::::::
summary

::::::
would

::
be

::::::::::
particularly

:::::::::
interesting.

:::::::::
Examples

::
of

::::::::
temporal

::::::
change

:::
are

::::::::
showing

::
in

:::
the

:::::::::
Appendix

::::
with

::::::::
examples

:::
of

:::
the

:::::::::
interactive

:::::::::
dashboard

:::
for

:::
six

:::::::
different

::::::
periods

::::
over

:::
the

:::::::
2017-18

::::::
winter.

:

At the visualization and interaction idiom level, some forecasters suggested reducing the number of colours in snow30

profile visualizations to make them easier to interpret
::::::::
following

:::::::::
established

:::::::::
perceptual

::::
and

:::::::
cognitive

:::::::::
principles

::::::
ensures

:::::::
designs

::
are

::::::::
effective

::
at

:::::
their

:::::::
intended

:::::
tasks. The perception-informed colour palettes (Table 1 and 2) achieve this while following

established perceptual and cognitive
:::
are

::::::::
examples

::
of

:::::::
applying

:::::
these principles to draw attention to the most important features.

The user testing exercise evaluated the users’ ability to interpret the visualizations by performing simple tasks with the

interactive dashboard. Four out of five participants correctly performed task such as comparing snow height over different35
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elevations, identifying the depth of prominent weak layers , and summarizing new snow amounts. The remaining participant

made mistakes with filtering and selection, highlighting the importance of designing interactions that are simple and intuitive.

::::::
features

::
in
:::::

snow
:::::::
profiles

:::
that

:::
are

:::::::
deemed

:::::
most

:::::::::
important.

:::
The

::::::::
standard

::::
grain

::::::
colour

::::::
palette

::::
may

:::::::::
emphasize

:::::::
features

:::::::
without

::::::::
intending

::
to

:::
do

::
so

::::
and

::
is

:::::
likely

:::::::::
ineffective

:::
for

::::::::::
individuals

::::
with

::::::
colour

:::::::::
blindness.

::::
The

:::::::::
simplified

:::::
colour

:::::::
palette

::
in

:::::
Table

::
2

::::
could

::::::::::
potentially

::
be

:::::
more

:::::::
relevant

::
for

::::::::::
forecasters

::
as

::
it

::::
shifts

:::
the

:::::::
purpose

::
of
::::::

colour
:::::
from

:::::::
showing

::::::::
snowpack

::::::::
structure

:::::::
towards5

:::::::::
identifying

::::::::
avalanche

:::::::::
problems.

::::::::::
Considering

::::::::::
information

:::::::::::
visualization

:::::::::
principles

:::::
listed

::
in

::::
Sect.

::::
2.4

:::::
could

::::::
prevent

::::
data

:::::
from

::::
being

:::::::::::::
misinterpreted.

At the algorithm level, the operational prototypes provided daily updated visualizations in a timely manner with fast response

time for interactions. The main concern at the algorithm level was the prototypes were accessed externally from existing

workstations, which created a major barrier to access. Integrating snowpack model visualizations into forecasting workstations10

is a critical next step. Testing in an operational setting would allow further validation at the domain and abstraction levels by

measuring user adoption and observing how designs are used to perform operational tasks. Although the designs presented

in this paper follow established visualizationprinciples, testing in real forecasting scenarios is needed to validate their actual

operational value.
::
At

:::
the

::::::::
algorithm

:::::
level,

:::::::::
interactive

::::
tools

:::::
need

::
to

::
be

:::::::
efficient

::
in
:::::
terms

:::
of

::::
time

:::
and

:::::::
memory

::::::::::::
performance.

:::
We

:::::
tested

::::::
several

:::::::
versions

::
of

:::::::::
interactive

::::::::::
dashboards

::::
with

:::::::::
operational

::::::::::
forecasters.

::::::
While

::::
these

::::::::::
dashboards

::::
were

:::
not

:::::::::
optimized

:::
for15

:::
web

::::::::::::
performance,

::::
they

::::::
worked

:::
at

:::::::::
reasonable

::::::
speeds

::::
with

:::::::::
maximum

::::
wait

:::::
times

:::
of

:::
2-3

:::::::
seconds

:::
for

:::::::
filtering

::::::
layers

::
in

:::::
large

::::::
regions

::::
with

::::
over

:::::
5000

:::::::
profiles.

:::::::::::
Over-plotting

::::::::
becomes

::
an

:::::
issue

::
for

:::::
large

::::
data

:::
sets

::::::
where

:::
the

::::
total

:::::::
number

::
of

:::::
layers

::::::::
becomes

:::::
larger

::::
than

::
the

:::::::
number

::
of

:::::
pixels

:::
on

:::
the

::::::
screen,

:::
but

:::
can

:::
be

::::::::
addressed

::
by

::::::::
stratified

::::::::
sampling

::
or

:::::::::::
implementing

::::::::
subpixel

::::::::
rendering

:::::::::
techniques

::
to

:::::::
increase

:::
the

:::::::
apparent

:::::::::
resolution

::
of

:::
the

::::::
screen.

::::
The

:::::::::::
visualizations

::::
may

::::
also

::
be

::::
less

:::::::
effective

::::
with

:::::
small

::::
data

::::
sets

:::::
where

::::
there

::::
are

:::
not

::::::
enough

:::::
layers

:::
for

:::::::
patterns

::
to
:::::::

emerge.
:::::

This
:::::
could

::
be

:::::::::
addressed

::
by

:::::::::::
downscaling

:::
the

:::::
model

:::
to

:::::::
increase

:::
the20

::::::
number

::
of

:::::::::
modelled

:::::::
profiles.

:::
An

::::::::
important

::::::::::::
consideration

::
in

::::
data

:::
set

::::
size

::
is

:::::::
ensuring

:::
the

::::::
model

::
is

:::::::::
configured

:::
to

::::::
capture

:::
an

:::::::::
appropriate

:::::::
amount

::
of

:::::
spatial

:::::::::
variability

::::::
across

:::
the

::::::
forecast

:::::::
region.

4.2
::::

Steps
:::::::
towards

:::::::::::
operational

::::::::::::::
implementation

:::::
While

::::
these

:::::::
designs

::
in

::::
Sect.

::
3

::
are

::::::::
informed

::::
with

::::
well

:::::::::
established

:::::::::::
visualization

:::::::::
principles,

::::
user

:::::
testing

::
is

::::::
critical

::
to

:::::::
validate

::::
their

:::::
actual

:::::::::
operational

::::::
value.

::::::
Various

:::::::
versions

::
of

:::
the

:::::::::
interactive

:::::::::
dashboard

::::::::
presented

::
in

:::::
Sect.

:::
3.5

::::
have

::::
been

:::::
tested

::::
with

::::::::::
operational25

:::::::::
forecasters

::
in

:::::::
Canada,

:::::::
resulting

::
in

::
an

:::::
agile

::::::::::
development

:::::::
process

:::::
where

:::::::::
qualitative

::::::::
feedback

:::
has

:::::::
provided

::::
new

::::::::::
perspectives

::::
and

::::::::
identified

:::::
issues

::::
with

:::
the

:::::::
designs.

:::
An

::::::::
iterative

::::::
process

::
of
::::::::

feedback
::::
and

:::::::
redesign

::
is
::::::
critical

:::
for

:::::::::
successful

:::::::::::::
implementation

:::
of

:::
new

:::::::::::
visualization

:::::
tools

:::
into

::::::::::
operational

::::::::
workflow

:::
and

::
is
:::::
much

::::
less

:::::::::
risk-prone

::::
than

:::::::::
developing

:::::::::::
visualization

:::::
tools

::
in

:::::::
entirety.

:::
For

:::::::
example,

:::
the

:::
US

::::::::
National

:::::::
Weather

::::::
Service

::::
used

:::
an

::::
agile

:::::::::::
development

::::::
process

::
to

::::::
deploy

::::
their

:::::::
modern

:::::::::
forecasting

::::
tool

::::
over

::::::
several

::::
years

::
in
:::
the

:::::
early

:::::
2000s

:::::::::::::::::::
(LeFebvre et al., 2003).

:
30

:::
The

:::::::::::
visualization

::::::
design

::::::::
principles

::::::::
presented

:::
for

:::::::::
snowpack

:::::
model

::::
data

:::
are

:::::::
equally

:::::::
relevant

::
for

::::::::::
visualizing

:::::::::
traditional

::::
field

::::
data.

:::
An

::::
ideal

:::::::::::::
implementation

::
of

:::::::::
snowpack

::::::
models

::::
into

:::::::::
forecasting

:::::::::
workflows

::::::
would

::
be

:::::::::
combining

::::
field

::::
data

:::
and

::::::
model

::::
data

:::
into

::
a

:::::
single

:::::::::
interactive

::::
tool.

::
A
::::::

major
:::::::::
motivation

:::
for

::::::
adding

::::::
model

::::
data

:::
into

::::::::::
forecasting

:::::::::
workflows

::
is

::
to

::::::
reduce

::::::::::
uncertainty

::::
about

:::::::::
snowpack

::::::::::
conditions.

::
A

:::::::::::
visualization

:::
tool

:::::
with

:::::
mixed

::::
data

:::::::
sources

::::::
would

:::::
allow

:::::::::
forecasters

::
to

::::::
assess

:::
the

:::::::
integrity

:::
of
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::
the

::::::
model

::::::
output

::
as

::::
well

::
as

:::::
place

:::
the

::::
field

::::::::::
observations

::::
into

:
a
:::::::
broader

::::::
context

::::
with

:::
the

:::::::::
continuous

::::::
spatial

::::::::
coverage

::
of

:::::::
models.

:::::
Many

::
of

:::
the

:::::::::::
visualizations

::::::::
presented

::
in

::::
Sect.

::
3
:::::
could

::
be

::::::::
modified

::
for

::::
such

::::::::::
comparison

:::::
tasks.

::::::::
Similarly,

:::::::::
visualizing

:::
an

::::::::
ensemble

::
of

:::::
model

::::
data

::::
sets

::::
(e.g.

:::::
with

:::::::
different

:::::::::::::
meteorological

:::::
inputs

:::
or

::::::::
geometric

:::::::::::::
configurations)

::::::
would

:::::::
provide

::::::
insights

::::::
about

:::
the

:::::::::
confidence

::
in

::::::::
modelled

::::
data.

::
In

:::::::
addition

::
to
:::::::::

improved
:::::::::::
visualization,

::::::
model

:::::::::::
development

::::
and

:::::::::
validation

:::::::
remains

::::::
critical

::
to
:::::::::

improving
::::

the
:::::::
integrity

:::
of5

:::::
model

::::::
output.

::::
This

::::::
should

:::::::
continue

::
in
:::::::
parallel

::
to

::::
user

::::::
testing

::
so

:::::::::
forecasters

:::
can

:::::
offer

:::::::::
operational

::::::::
feedback

::
on

::::::
model

::::::::
accuracy.

::::::::::
Assimilating

:::::
field

::::
data

::::
into

::::::::
snowpack

:::::::
models

:::::
could

::::::
greatly

::::::::
improve

::::
their

::::::::
integrity

::::::::::::::::::
(Winstral et al., 2018),

::::::::
however

::::::
model

:::::::::
developers

:::
are

:::::
faced

::::
with

::::::::::
assimilation

:::::::::
challenges

::::
such

:::
as

::::::::::
mismatched

::::::
spatial

:::::
scales

:::::::
between

:::::::
gridded

::::::
models

::::
and

:::::
point

::::
field

:::::::::::
observations.

:::::::::
Interactive

:::::::::::
visualizations

:::
of

:::::::::::
heterogenous

::::
field

::::
and

:::::
model

::::
data

:::
has

::::::::
potential

:::
for

::::::::::
researchers

:::
and

::::::::::
forecasters

::
to

:::
gain

::
a
::::::
deeper

::::::::::::
understanding

::
of

::::
how

::::
they

::::::
relate,

:::
and

:::
the

:::::::::
knowledge

::::::
gained

:::::::
through

:::::
such

:
a
:::::::
process

:::
can

:::::::
translate

:::
to

::::::::
improved10

:::::::::::
computational

:::::::::::
assimilation

:::::::
methods.

:

5 Conclusions

We present visualization design principles that increase the interpretability and relevance
::::::::::::
interpretability

::::
and

::::::::
relevance

:
of

snowpack model outputs. These are two of the four major perceived issues with operational snowpack model tools identified by

?
::::::::::::::::
Morin et al. (2020)

::::::
(besides

:::::::::::
accessibility

:::
and

::::::::
integrity). The nested model for visualization design (Munzner, 2009) provides15

a framework for defining the domain of avalanche forecasting and the necessary tasks that are needed to analyze data. Tasks

required to assess avalanche hazard are described by applying the widely adopted conceptual model of avalanche hazard

(Statham et al., 2018). From these tasks, we apply
::::
show

::::
how

:
information visualization principles

::
can

:::
be

:::::::
applied to design

visual representations of snowpack model data in ways that leverage the human visual system to understand the complex

nature of the data. Preliminary feedback from avalanche forecasters suggests these designs are easier to interpret and provide20

more relevant information than previous visualizations of snowpack model data.

A key idea in these designs is shifting from bottom-up scientific visualizations towards information visualizations that

address user needs. As highlighted by Grainger et al. (2016), other types of environmental models would likely see improved

adoption by shifting towards information visualization. When using numeric models as a tool for assessing natural hazards,

visualizations will be more effective when the designers make links to established risk frameworks and carefully consider the25

tasks performed by operational decision makers.

A critical next step is implementing these designs into
:::
and

::::::
testing

::::
these

:::::::
designs

::
in

:
operational forecasting workflows. By

addressing issues with the interpretability and relevance of snowpack model data, these designs will allow forecasters to learn

the capabilities and deficiencies of snowpack models in a meaningful way. The same design principles should be considered

when visualizing other types of avalanche and snowpack data, as the same domain situation and task abstractions apply when30

analyzing
:::::::::
forecasters

::::::
analyze

:
field observations. Interaction idioms should play an important role in understanding of complex

model data, as they allow users to perform custom queries, test and validate hypotheses, and discover inconsistencies and

anomalies. Interactions that compare model data with observation data would be particularly powerful in building trust in
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Figure 10.
::::::::
Comparison

:::
of

::
the

:::::::::
interactive

::::::::
dashboard

:::
for

::::::
different

::::
days

::::
over

:::
the

:::::
course

:::
of

::
the

:::::::
2017-18

::::::
winter.

::::
Each

::::::::
dashboard

:::::::
includes

::::::::::
visualizations

::
of

::::
layer

:::::::::
prevalence,

:
a
:::::
profile

:::::::
summary,

:::
and

:::::::
location

::
in

:::::
terrain

::
for

:::
the

::::
same

::::
1180

::::::::
simulated

:::::
profiles

::
in
::::::
Glacier

:::::::
National

::::
Park.

the models and addressing issues with their integrity. This process was critical in the adoption and trust in numeric weather

predictions models by meteorologists (Benjamin et al., 2019), and just like meteorologists, avalanche forecasters could become

active participants in model validation and improvement.
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::::::::
Appendix

. The code and data used to produce the visualizations are publicly available at https://osf.io/8wz2v (Horton, 2020). The interactive dashboard

is available at https://avalancheresearch.ca/pubs/2019_horton_snowpackvis.

. All authors worked on the conceptualization of this paper. SH prepared the data and software, SN contributed to visualization ideas and

designs, and PH provided supervision. SH prepared the manuscript with review and editing from the other authors.5

. The authors declare no competing interests.
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