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Abstract. Increasing amounts of data, together with more computing power and better machine learning algorithms to analyse 

the data are causing changes in almost every aspect of our lives. This trend is expected to continue as more data keeps becoming 

available, computing power keeps improving and machine learning algorithms keep improving as well. Flood risk and impact 

assessments are also being influenced by this trend, particularly in areas such as the development of mitigation measures, 20 

emergency response preparation, and flood recovery planning. Machine learning methods have the potential to improve 

accuracy as well as reduce calculating time and model development cost. It is expected that in the future more applications 

become feasible and many process models and traditional observation methods will be replaced by machine learning. 

Examples of this include the use of machine learning on remote sensing data to estimate exposure or on social media data to 

improve flood response. Some improvements may require new data collection efforts, such as for the modelling of flood 25 

damages or defence failures.  In other components, machine learning may not always be suitable or should be applied 

complementary to process models, for example in hydrodynamic applications. Overall, machine learning is likely to drastically 

improve future flood risk and impact assessments, but issues such as applicability, bias and ethics must be considered carefully 

to avoid misuse. This paper presents some of the current developments on the application of machine learning in this field and 

highlights some key needs and challenges. 30 

 

1.Introduction 

Exponentially increasing computing power and data, as well as rapidly improving machine learning algorithms to analyse this 

data have been changing many aspects of our lives (Manyika et al., 2011).  These trends are expected to continue and will 

undoubtedly keep affecting many scientific, commercial and social sectors (Manyika et al., 2011). Flood risk and impact 35 

assessments are no exception to this trend. Flooding yearly affects more people than any other natural hazard types      

(Jonkman, 2005) and the impact and frequency of flooding events is expected to increase in the future due to urban 
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development and climate change (Kundzewicz et al., 2014). It is therefore an opportunity for researchers and flood managers 

to tap into the potential of machine learning, taking advantage of their strengths while being cognisant of their limitations. It 

is also important to anticipate improvements in the capabilities of machine learning methods, so as to plan for forthcoming 40 

changes in flood modelling.  

 

When assessing the interaction between floods and society, three different components can be recognized: exposure, hazard, 

and impact (Kron, 2002). Exposure refers to the characteristics of the people and assets that can be affected by flooding. 

Hazards are the physical characteristics of a flood such as the extent, water depth, duration and flow velocity. Impacts are the 45 

effects the hazard has on the exposure. To assess these three components, we make the distinction between flood risk, as the 

probabilistic analysis of the potential (predictive) impacts of floods and flood impact assessment, as the post-event assessment 

of (descriptive) impact from an actual flood event.” Table 1 provides examples of predictive and descriptive assessments in 

relation to the hazard, exposure and impact components.  The scope of this paper is limited to the predictive and descriptive 

assessments shown in table 1 and doesn’t include potential uses of machine learning in risk awareness or communication 50 

strategies. 

 

Flood risk and impact assessments have many different applications. A useful paradigm to look at these different applications 

is the ‘disaster management cycle’ (Khan et al., 2008; National Research Council, 2006) (Fig 1). This cycle delineates the 

phases between events, i.e. the immediate response to an event, the long-term recovery, the mitigation to prevent future events 55 

and the preparation prior to a new forecasted event.       

 

In the response phase, the focus is typically on descriptive hazard, exposure and impact assessments (e.g. Klemas, 2015), 

sometimes complemented with predictive models if the event descriptive information isn’t available yet (e.g. a predictive 

model estimating the number of people affected can be fed by a descriptive hazard model of the flood extent). The challenge 60 

in this phase is mostly data reliability.      In the recovery phase, descriptive assessments are often used for payouts (e.g. 

indemnity insurance), and one of the main challenges is ensuring these payouts are timely and reliable. In the mitigation phase, 

probabilistic predictive models are used (e.g. Wagenaar et al., 2019), typically for the design of risk-reduction interventions 

ranging from protective infrastructure to insurance products. The challenge in this phase is model reliability and uncertainties 

about future developments (e.g. uncertainty in future exposure). In the preparation phase, predictive models are used for 65 

emergency planning (e.g. Coughlan de Perez et al., 2016), where the challenge is the reliability, availability and communication 

of data. Machine learning is capable of generating more reliable and faster models that can help solve some of the current 

challenges in the disaster management cycle but could also provide new opportunities (GFDRR, 2018).  

 

Machine learning algorithms can find patterns in data and use these patterns to make predictions about new data (Bishop, 70 

2006). For example, when providing a machine learning algorithm with aerial images of either urban or rural areas and 
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corresponding labels (urban or rural) it can build the capacity to classify new unlabelled aerial images as either urban or rural. 

Features in the above example would be different components of the aerial images (i.e. pixel tone and locations) and the target 

variable would be the label (i.e. urban or rural). When a precise value is required as opposed to a label, it is called a ‘regression 

task’(e.g. Bishop, 2006). An example of this is in flood damage modelling, where features such as water depth, flow velocity 75 

and building materials can be used to predict a target variable such as monetary economic damage based on historical records 

(e.g. Merz et al., 2013; Wagenaar et al., 2017). Due to the use of labelled training data (e.g. classified images or historic damage 

examples), regression and classification are called supervised learning tasks. Machine learning method categories also include 

unsupervised learning and reinforcement learning, (see GFDRR, 20108). However, such methods are not discussed in this 

paper because they are expected to have a smaller short-term impact on the field of flood risk and impact assessments. 80 

 

The simplest machine learning algorithms have been used for a long time and are often known as basic statistical techniques 

(e.g. linear regression: Legendre, 1805; Gauss, 1809). More sophisticated machine learning techniques that emerged in the 

1980s and 1990s (e.g. Decision Trees and Neural Networks) can find more complex non-linear patterns (Breimann et al., 1984; 

Rumelhart et al., 1986). Recent advances in machine learning (e.g. convolutional neural networks) make computer vision and 85 

other advanced applications possible (Krizhevsky et al., 2012). The more advanced techniques such as decision trees, neural 

networks and especially convolutional neural networks can find more complex patterns. This is because they allow for more 

complex non-linear functions to be fitted to the data. Such complex functions require a large number of model coefficients to 

be set during the training of the model. To set all these coefficients a lot of training examples are required. In some cases the 

number of training examples can be reduced with transfer learning techniques (Olivas et al., 2010). These techniques make it 90 

possible to re-use knowledge gained from other problems to train a model on a smaller training data set. 

 

From the beginning, machine learning has been used in predictive flood hazard modelling (Solomatine & Ostfield, 2008) 

mostly as a faster and simpler alternative to process models. A simple example of this is the prediction of river discharge based 

on upstream rainfall data (e.g. Dibike & Solomatine, 2001). This type of modelling has been practiced for a long time but 95 

hasn’t displaced the traditional process models. This is probably because the methods aren’t sufficiently better than traditional 

methods to offset some disadvantages as discussed in the predictive hazard section. In recent years, more data is becoming 

available through remote sensing, social media (e.g. Fohringer et al., 2015), citizen science (e.g. Annis & Nardi, 2019) and 

other sources. This impulse of new data combined with machine algorithms could lead to changes in flood risk and impact 

assessment. Some of these changes have already been highlighted by major international organizations such as the World Bank 100 

and others (GFDRR, 2018).   

 

This invited perspective paper starts with a perspective per risk assessment component as defined in table 1. These specific 

perspectives start with a description of the traditional approach for the assessments. Followed by a literature review on how 

machine learning techniques are currently being developed to improve the traditional approach and then proceed to speculate 105 

https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
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on potential future improvements. This is followed by a general perspectives chapter in which general trends that come back 

in the different components are identified and discussed. This includes common challenges (i.e. data limitations, transferability, 

ethics and bias) and ends with some speculation about the likelihood of future developments.  

 

2. Perspective per component 110 

2.1 Exposure assessment 

2.1.1 Descriptive exposure assessments 

Descriptive exposure assessments consist of detecting and characterizing (spatial) features such as current buildings and 

infrastructure, agriculture fields, roads and other infrastructure. Traditionally this has been done by population censuses, 

building counts and conventional mapping techniques that require ground surveys. Remote sensing is currently changing this. 115 

It has become common that aerial and satellite images are being The manualmanually digitized and labelled zatedion of to 

make building footprints or map roads using aerial or satellite images has become increasingly common. This digitization of 

building footprints, but also notably of other features such as roads, has been done manually by “crowds” of mappers in 

“mapathons”, for example using the OpenStreetMap platform. Machine learning is very likely going to drastically change this. 

Research to automatically labelling remote sensing data has already been going on for some (e.g. Heermann & Khazenie, 120 

1992; Giacinto & Roli, 2001). It is currently already being used to label build-up areas based on nighttime lights (Goldblatt et 

al., 2018) or satellite images (Goldblatt et al., 2016).  Furthermore, algorithms are already being used to automatically label 

buildings (Sermanet  et al., 2013; Alshehhi et al., 2017; GFDRR, 2018) and map roads (Gao et al., 2019) using aerial / satellite 

imagery. This will reduce the need for manual detection and will probably provide global availability of such building 

footprints and road information in the near future.  125 

 

Part of an exposure assessment is the observation of asset features relevant for risk analysis. For example, building materials, 

building occupancy (e.g. residential or industrial), building height, ground floor elevation, poverty rates in the population, etc. 

This information is typically not available, but could be very valuable as input for impact models (e.g. Merz et al., 2014; 

Wagenaar et al., 2017; Schröter et al., 2014) or, for example, to account for poverty in cost-benefit analyses (e.g. Kind et al., 130 

2016). Similarly, ground floor elevation information could radically improve urban pluvial flood damage modelling as damage 

from small-scale floods is very sensitive to such variables. 

 

Some work has already been carried out on detecting poverty (Watmough et al., 2019) and building heights (Saadi & Bensaibi, 

2014) by satellite imagery. Another source of this building feature information could be 360-degree street view images 135 

combined with computer vision techniques. Such images are available in, for example, the open source streetview data platform 
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Mapillary (Neuhold et al., 2017). Such techniques are already starting to impact earthquake risk assessments, such as in 

Guatemala, where 360 degree imagery was fed into Mapillary algorithms in order to automatically detect “soft story” buildings; 

those most likely to collapse in an earthquake. This was done by having the machine learning algorithm detect features that 

were indicators of large openings on the ground floor of buildings (large doors, garage doors, shop windows, etc.) (GFDRR, 140 

2018).   Computer vision techniques from street level imagery are currently limited to detecting such relatively simple features. 

However, based on recent advances seen in other computer vision applications (e.g.  facial recognition), it is likely that in the 

future it will be possible to detect more complex building features also. For computer vision models to detect complex 

information like ground floor elevation or building materials, it would be necessary to provide labelled examples to the 

algorithms. Such labelled examples are sometimes already available for some areas, e.g. ground floor elevation (Bouwer et al., 145 

2017) or building materials (Schröter et al., 2018).  

 

2.1.2 Predictive exposure assessments 

Predictive exposure mapping consists of estimates of future exposure. This mostly includes modelling to predict urban growth 

and other changes in land-use. It is required for evaluating flood mitigation measures (e.g. Wagenaar et al., 2019) because such 150 

measures typically need to function for a long time and should therefore still perform as required after predicted land-use 

changes. Land-use changes affect the impact of a flood because more damage may occur for the same flood hazard and the 

flood hazard may become greater because of changes in impervious area and therefore rainfall-runoff (Triantakonstantis and 

Mountrakis, 2013; Mestav Sarica et al., 2019). Predictive exposure assessments for flood risk and impact assessments are 

currently often not carried out spatially, but rather GDP growth projections are applied to estimate future total exposure values 155 

(e.g. van der Most et al., 2014; Wagenaar et al., 2019). This is enough for some studies but if large land-use changes are 

expected a land-use change or urban growth model is required. 

 

Urban growth has been modelled with simple machine learning models in the past (e.g. logistic regression) (Samardzic-

Petrovic, 2017). The use of Cellular Automata (CA) models has become more common recently (Naghibi et al., 2016). These 160 

models assign cells as either urban or non-urban based on specific transition rules. Determining the optimum transition rules 

is a critical issue for CA modelling (Aarthi and Gnanappazham, 2019). This is sometimes difficult because of human bias, 

heterogeneity and nonlinear relations between driving factors and urban expansion (Naghibi et al., 2016; Xu et al., 2019). To 

overcome these limitations, machine learning algorithms such as artificial neural networks have been integrated with traditional 

CA to model urban growth (Aarthi and Gnanappazham, 2019; Naghibi et al., 2016). They then use historical land-use changes 165 

(e.g. Song et al., 2015) to learn the transition rules. Complex machine learning models have also been directly applied to urban 

growth modelling without the CA model structure (Pal and Ghosh, 2017). These improvements, together with more data about 

past land-use changes and additional computation power, are expected to provide better future land-use maps and make high-

resolution future land-use maps globally available.   
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2.2 Hazards assessment 

2.2.1 Descriptive hazard assessments 

Descriptive flood hazard assessment focuses primarily on the response phase, i.e. in estimating current inundation extents and 

depths to assist both emergency responders and those affected directly. This is traditionally achieved using optical remote 

sensing data, local sensors or manually collected data from observers on the ground. However, the rise of two major data 175 

sources, Synthetic Aperture Radar (SAR) and social media, provides a number of opportunities for machine learning to 

improve upon current flood detection methods. 

 

During a flood event, affected populations frequently produce ‘user-generated content’ or ‘crowd-sourced’ data from social 

media posts or apps where citizens can report floods (Mazoleni et al., 2017; Assumpção et al., 2018; Annis & Nardi, 2019; 180 

UrbanRiskLab, 2019). This is especially the case in urban areas where internet and social media penetration are higher 

compared to rural areas. This data is often ‘tagged’ temporally and spatially and can be used by machine learning algorithms 

for applications such as nowcasting by searching for certain keywords like “flood” (e.g. see Tkachenko et al. 2017, Bischke et 

al. 2017, Lopez-Fuentes et al. 2017). The method is currently used to map real-time flood extents in several countries (Eilander 

et al., 2016). Potential future machine learning and computer vision techniques could be extended to estimate water depths and 185 

other flood characteristics from posted photos. 

 

Remotely-sensed optical data is often used to identify the extents of flooding, but optical sensors are not functional during 

periods of cloud-cover or at night. Furthermore, the temporal resolution often prevents the observation of flash floods. SAR 

data using the microwave wavelengths of the electro-magnetic spectrum can help overcome these problems by providing 190 

additional imagery during the night or during cloud cover. Adding night-time and cloud-cover images will provide a higher 

total temporal resolution. Flood extents are currently determined with statistical methods using thresholds to subsequently 

identify flood extents e.g. by using Bayesian method on SAR amplitude time-series data (Lin et al. 2019). Advanced machine 

learning classification methods are being developed to improve this process, but in order to train them it is necessary to have 

manually labelled images as training data. Collection of this labelled flood extent information is the main challenge for 195 

automatic detection moving forward. Manual methods could harness the power of the crowd, as people are connected through 

the internet or with mapathons. These approaches could have game-changing implications for the training of machine learning 

algorithms. Already mapathons are often ‘trainathons’, where mappers are not only manual digitizers, but also labellers and 

trainers for automated machine learning methods for the future.  

 200 
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2.2.2 Predictive hazards assessments 

Predictive flood hazard assessments consist of predicting future floods and their characteristics such as extents, inundation 

depths, durations, flow velocities, waves and water levels in rivers or seas. These assessments are applied for short-term 

forecasting in the preparation phase (preparing for imminent events) and long-term risk analyses for use in flood risk 

management (mitigation phase).  205 

 

In flood-forecasting, traditional methods of predicting hazard variables can involve a chain of hydrologic and hydraulic models 

that describe the physical processes. Although such models provide system understanding, they often have high computational 

and data requirements. Therefore, the use of process models may not always be feasible or necessary in the preparation stage 

of a disaster. At that moment, accurate and timely outputs become more important than system understanding, and the use of 210 

‘black-box’ machine learning models (e.g. Campolo et al., 2009) is becoming more widespread (Mosavi et al., 2018). The 

increased speed can create a trade-off with the robustness of forecast models, as changes to the hydraulic system (such as a 

new structure that could be easily implemented into a hydraulic model) cannot be directly introduced into a trained machine 

learning model. In addition, machine learning models might not perform well in predicting extremes far outside past 

observations, since it has not been trained against such extremes. 215 

 

A review of flood forecasting methods using machine learning by Mosavi et al. (2018) highlights trends such as component 

and ensemble models (collectively termed ‘hybrid models’, Corzo & Solomatine, 2014). Hybrid component models assign 

machine learning a specific task in the modelling process that is either highly complex or not well understood. Examples of 

this include using machine learning for error correctors (see, for example, studies by Abrahart et al. 2007 and Google Research 220 

- Nevo et al. 2019) or flows subject to human influence (Yaseen et al., 2019). Hybrid ensemble methods often use machine 

learning models to supplement process models, providing robust predictions and uncertainty ranges (Solomatine & Ostfeld, 

2007). Such methods benefit from the speed and ability to deal with non-linear multi-variable problems of machine learning 

modelling and the process understanding available in conventional modelling. The review by Mosavi et al. (2018) does not 

consider gridded / spatial forecasting techniques, but advanced machine learning techniques are starting to be developed for 225 

precipitation pattern nowcasting (Shi et al. 2015) and flood extents prediction (Chang et al. 2018). Another application of 

machine learning in the preparation phase is in the real-time control of flood defences and systems (e.g. Lobbrecht & 

Solomatine, 2002; Castelletti et al., 2010). For example, Lobbrecht & Solomatine (2002) used machine learning methods to 

optimise control decisions in the event of communication network breakdowns during extreme storm events. 

 230 

Another major application for machine learning in long-term risk analysis is ‘surrogate’ modelling (Ong et al. 2008), in which 

the outputs from process models are used to train computationally less-intensive machine learning models. This can be applied 

to speed up different types of process models applied in predictive hazard modelling. For example, in flood defence analysis 
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and design, classical reliability techniques such as First Order Reliability Methods (FORM) and Monte-Carlo simulations 

(Steenbergen et al. 2004), or large-scale risk analyses that utilise them (Curran et al. 2019), can be replicated using a relatively 235 

small amount of evaluations as samples (Chojaczyk et al. 2015, Kingston et al. 2011). However, surrogate models may be 

particularly susceptible to extrapolation problems, where input data outside the range of the training data is introduced 

(Ghalkhani et al., 2013).  

 

In the mitigation phase a chain of hydrologic and hydraulic models that describe the physical processes is typically applied 240 

(e.g. Wagenaar et al., 2019). In general, system understanding is required to assess proposed or potential future changes. In 

such cases, data-driven approaches are typically not applicable as there is no data about how the system behaves after the 

changes occur and hence simulation models are required that describe the physical system.  

 

2.3 Flood impact assessment 245 

2.3.1 Descriptive impact assessments 

Descriptive impact assessments consist of making estimates of the flood impact after or during an event. This is traditionally 

done with manually collected data from observers on the ground. However, such manual ground inspections are slow and 

require people to enter the disaster area. Remote sensing can be used to get a very quick first impression of the damage to help 

with disaster response. Such techniques have already been applied, for earthquake and wind damage (e.g. Menderes et al., 250 

2016). For flooding, this is often more difficult because damage inside buildings is difficult to obtain either from aerial-based 

or space-based sensors. Only when buildings completely collapse or are removed by strong flows does remote sensing become 

feasible. This is, for example, the case with flash floods, tsunamis or some storm surges. 360-degree streetview images 

collected after a flood could potentially be used for damage assessment. Machine learning techniques could then eventually 

be used to give a quick first estimate of the damage. 255 

 

The use of machine learning techniques for automatic detection of damages from remote sensing information (aerial or 

streetview) requires labelled training data from manually collected data from observers on the ground. This data is currently 

rare. An approach could be to start using remote sensing data to manually label the impact. A way to get around this limitation 

is to detect changes in pre- and post-flood using high-resolution satellite images for urban areas where many buildings are 260 

damaged. Pixels with changed information will denote the damage that happened due to the floods. Eventually this data can 

then be used as training data for cases where only the post-flood images are available within a short time interval after the 

flood event. This method would however only be relevant for catastrophic floods because it doesn’t address the fact that most 

damage remains not observable from top-view. On top of that this approach introduces significant new error: (1) error in the 

change detection signal, (2) error in relating the change to damage, (3) error in training a new model based on those damage 265 
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labels. Imagery from different angles (e.g. from streetview or drones) might be more useful for change detection, however this 

data would also be more difficult to acquire.  

2.3.2 Predictive impact assessments 

Predictive flood impact assessments include models that translate hazard and exposure information into socio-economic 

impacts of the flood. This can include information such as      monetary flood damage, casualties, buildings damaged, crop 270 

damage, disease outbreak, building materials needed, recovery time, health monitoring of key structures or indirect damage 

(damages that occur in a different spatial and/or temporal setting than the originating event).  

 

Most predictive flood damage modelling relies on depth-damage functions that describe a relationship between the water depth 

and monetary flood damage (Merz et al., 2010). They are either based on historical flood damage records (e.g. Thieken et al., 275 

2008; Kreibich et al., 2010) or on expert estimates (e.g. Penning-Rowsell et al., 2005). In practice, many more variables than 

water depth have an influence on the flood damage (Cammerer et al., 2013, Wagenaar et al., 2016). Therefore, in the scientific 

literature there has been a move towards multi-variable flood damage models that use many variables (e.g. flood duration, 

velocity, building materials, socio-economic status of inhabitants etc.) instead of just water depth (e.g. Merz et al., 2013; 

Spekkers et al., 2014 Chinh, 2015; Kreibich et al., 2017; Wagenaar et al., 2017; Carisi et al., 2018; Amadio et al., 2019). These 280 

models are based on data and machine learning. The problem lies with insufficient data availability to train machine learning 

models and that using the models requires a lot of feature data about flood and building characteristics plus socio-economic 

data about inhabitants (Wagenaar et al., 2017). In the future we expect more data about features to become available from 

computer vision applied to street view, satellite or drone images (see descriptive exposure section). This would improve the 

quality of such models, could make it easier to apply them and make the development possible for more areas. 285 

 

Machine learning could also be applied to predict disease outbreak after floods by combining remote sensing, meteorological, 

and socio-economic data (e.g. Mayfield et al., 2018; Carvajal et al., 2018; Modu et al., 2017; Yomwan et al., 2015; Tiwari et 

al., 2013; Shively et al., 2015). In a flood event, there is an increased risk of infectious diseases among survivors and displaced 

persons such as measles, diarrhea, acute respiratory infections and malaria can be responsible for many deaths (Lignon, 2006). 290 

Predictive modelling of such diseases is rarely carried out, and current approaches mostly focus on simple regression models 

or process models that simulate the spread of pollutants in the water. One major challenge is that the degree to which such 

epidemics occur, is associated with the regional endemicity of specific diseases, the nature and scope of the disaster, the level 

of public health infrastructure in place both before and after the event, and the level and efficacy of disaster response (Ivers & 

Ryan, 2006). Machine learning models could take such complex processes better into account. 295 

 

Machine learning can be used for structural health monitoring, this has applications in the preparation phase (Pyayt et al. 2014, 

Jonkman et al. 2018) and in the long-term reliability analysis required in the mitigation phase (Prendergast et al. 2018, Klerk 
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et al. 2019). Structural health monitoring is in the preparation phase is often done by manual inspections of the infrastructure 

on the ground, for example in the Netherlands there is a large network of volunteers that can be activated in case of high river 300 

levels to inspect the dikes. In the mitigation phase this is done by geotechnical process models fed by observations from the 

ground (e.g. De Waal, 2016), this is for example applied to decide on dike strengthening. Machine learning algorithms can 

help detect damage patterns from sensor data and are currently being used for the monitoring of flood defence structures such 

as dikes (Pyayt et al. 2011). Similar methods have also been applied to bridges (Neves et al. 2017). The use of both machine 

learning algorithms and traditional techniques for damage detection during floods is still very scarce (Prendergast et al., 2018, 305 

Pyayt et al., 2011); however, integration of structural health monitoring with flood early warning systems is a very promising 

field of development for machine learning techniques but would also requiring training data. 

 

Indirect damages and business interruption are often taken into account simply through a scaling factor of the direct damage 

(e.g. Wagenaar et al., 2019). More complex models to quantify such damages include input-output models and general 310 

equilibrium models (e.g. Koks et al., 2016). To quantify indirect damages, such as business interruption losses, estimating the 

time it will take for different assets to be back in full or partial functionality is required. These post-disaster restoration models 

have started to be formalized in the last few years, primarily focused on earthquake disasters (Kang et al., 2018; Burton et al., 

2018). Due to a lack of gathered empirical data on post-disaster recovery, the use of data-intensive machine learning techniques 

has not yet made an impact on this discipline. However, the need of probabilistically quantifying recovery will require the use 315 

of statistical models for calibration or assessments of recovery times, and that might be possible in the near future with the use 

of new remote sensing and crowd-sourcing technologies to obtain the empirical feature data needed. 

3. General Perspectives 

3.1 Data limitations 

Many machine learning applications in flood risk and impact modelling appear to be limited by a lack of data, especially 320 

training data needed to build effective machine learning models. This is especially true since the field of flood risk analysis is 

concerned primarily with extreme events, which are rare, and data-collection during such events is often logistically difficult. 

The increase in the amount of data around the world does not necessarily imply that this problem will be resolved in the future. 

Some data is simply not collected or there are measurement definition or quality issues. To fulfil the potential of machine 

learning, new data collection efforts will be required, along with data standardization protocols. This will take collaboration 325 

between different organisations and stakeholders, setting of data standards and a willingness to share. This problem is common 

to impact data collected (see 2.3.1 and 2.3.2), labelled flood extent data (see 2.2.1), social media hazard data (see 2.2.1) and 

first floor elevation data (see 2.1.1).  
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3.2 Transferability of data 

A critical assumption behind machine learning techniques is that the data being used to train a model is representative of the 330 

situation the model needs to be applied in. For example, a dataset on damage to concrete buildings is not fully applicable to 

modelling the damage to thatched huts. It is therefore important to collect heterogenous datasets that cover a large spectrum 

of potential situations (Wagenaar et al., 2018). Data that isn’t fully applicable can still have some value, for example through 

domain adaptation or transfer learning (GFDRR, 2018) but applicable data is always required as well. Wagenaar et al. (2020) 

showed that sample selection bias correction, a form of domain adaptation, helps to improve machine learning impact models 335 

in a transfer setting.  Furthermore, it is important to work on efficient ways to communicate the applicability of data-driven 

models.  

3.3 Ethics and Bias 

Significant attention is currently being given to questions of the ethics and bias of machine-learning systems across a variety 

of domains, including facial recognition (Keyes, 2018), automated weaponry (Suchman et al., 2016), criminal justice (Eubanks, 340 

2018) and search engines (Noble 2018). A number of technology companies and research institutions have developed 

guidelines for evaluating machine-learning systems, but this work is still evolving. Despite similar potential for negative 

impacts of these tools in flood risk management (Soden et al., 2019), the community has not given these issues as much 

attention. Such concerns include the potential for reinforcing existing social inequalities and the reduced role of human 

judgement in modelling processes. These are risks that need to be weighed seriously against the potential benefits of machine 345 

learning and explored in greater detail  

 

Biases in machine learning can occur because of datasets that, for a number of reasons, do not fully represent the phenomena 

which they are meant to describe (e.g. people are accidentally excluded). For example, we often measure what we have data 

for, rather than measure what matters most, or use training datasets that reinforce past problems. For example, if certain 350 

settlements aren’t detected in exposure maps, because they use different construction practices than the settlements used in 

training datasets, they may not receive emergency aid in the event of a flood. These problems can be mitigated by ensuring 

modelers understand the context of what they are attempting to model. Other ethical issues raised by machine learning in the 

flood management context  include data ownership, transparency, consent, and privacy. For example, some people may object 

to having their home labelled “vulnerable” on a vulnerability map used by first responders. Privacy concerns may be aggravated 355 

by machine learning and other big data techniques. Ethics problems should be addressed by carefully weighing the benefits of 

collecting certain data against the related privacy costs, in collaboration with people who may be affected by the outcomes of 

decisions based on machine-learning tools.  
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An additional ethical concern regarding machine learning in flood risk assessment is misuse of models. In some sectors great 360 

advances have been made with machine learning (e.g. facial recognition, self-driving cars). This success for some tasks, can 

lead to an awe-inspiring general attitude towards the techniques (Ames, 2018; Narayanan, 2019). This hype sometimes leads 

to unwarranted trust in the techniques for tasks machine learning is not (yet) suitable for (Narayanan, 2019). For example, 

many companies are currently using machine learning for hiring decisions despite well-documented failings of these tools. 

(Narayanan, 2019; Raghavan et al., 2019). In order to avoid such misuse in flood risk assessment, it is important that machine 365 

learning implementations are transparent and supervised by independent machine learning and flood risk assessment experts. 

 

Importantly, flood risk assessments are highly data reliant, and the increased attention to questions of ethics and bias in machine 

learning systems might serve as an opportunity to drive conversations in our field about the limits of disaster data more broadly. 

Many of the sources of bias or ethical concerns in machine-learning systems originate in, or share common roots with, other 370 

kinds of data used to understand disaster risks . This includes issues such as 1) property values driving what areas gets 

protected, 2) privacy concerns (which may be aggravated by ML and other big data techniques), 3) how the lack of 

gender/age/ethnicity disaggregated data on disaster risk masks differential vulnerabilities, and 4) the importance of public 

participation and the voice of residents of areas portrayed by models as "at risk". Detailed analyses of specific cases (e.g. Soden 

& Kauffman, 2019) are urgently needed to make further progress in understanding the consequences of the assessment methods 375 

we use to understand disasters. 

3.4 Future predictions 

In the following section we draw some general conclusions about how machine learning will change flood risk and impact 

assessments. Table 2 provides an overview of these predictions. 

3.4.1 Very likely changes 380 

A few of the trends seem inevitable, primarily in cases where recent technological advances or data that recently became 

available make next steps obvious. A good example of this is the automatic detection of building footprints and roads from 

high resolution remote sensing imagery (see 2.1.1). This is already possible and will, especially in data-poor areas, drastically 

improve the quality of the first response and risk calculation. Further advances in the use of machine learning in descriptive 

hazard assessment through social media are also inevitable (see 2.2.1), given the amount of data available to social media 385 

companies. 

 

3.4.2 Likely and potential changes 

This is the category that can be shaped the most by individual innovators and the majority of the advances discussed in this 

paper fall under this category. In this case, the innovation still experiences some kind of obstacle that prevents widespread 390 
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application. It is typically difficult to predict whether such obstacles can be truly removed in the future and how long that will 

take. Because flood risk and impact assessments are a relatively small field, the obstacles are often economic feasibility that 

is difficult to assess combined with conservative users. An example of this is the large-scale collection of impact data which 

is required for both descriptive and predictive impact modelling (see 2.3.1 and 2.3.3) or the training data required for 

descriptive hazard assessments (see 2.2.1). Sometimes the obstacle is also technical feasibility, for example whether it will 395 

really be possible to extract first floor elevation levels from streetview (see 2.1.2). Innovations are also interdependent, for 

example, when building feature information can be automatically extracted from streetview, impact models will become easier 

to train and easier to run and it will make more sense to start collecting the required impact data.  

3.4.3 Unlikely changes 

For some processes, machine learning may not be the best solution from a theoretical perspective. For example, the processes 400 

of how water flows are very well known and can be well approximated with existing equations. It, therefore, does not always 

make sense to pick a machine learning approach. Another situation when machine learning is not applicable is when a system 

is being modelled on which predictions need to be made that cannot have been seen in the data or when we know from an 

exploratory data analysis that we have no data for it (GFDRR, 2018). For example, how a system may behave under never 

seen discharges or after new infrastructure has been built (e.g. new dam in the river). In these cases, machine learning may 405 

play a role in some components of the model, but process models will very likely remain crucial in simulating the never before 

seen conditions. Especially for predictive hazard models (see 2.2.2), there are many elements that are unlikely to change with 

the advance of machine learning. 

3.4.4 New practices in flood risk and impact assessments 

Most change to flood risk and impact assessments discussed in this manuscript relate to better models. Such cheaper, faster 410 

and more accurate models could possibly yield new practices in flood risk and impact assessments. Cheaper models would 

make flood risk and impact assessments feasible to carry out for a larger group of users and are therefore likely to make 

emergency aid and investments in mitigation measures more efficient. Faster methods may speed up emergency response and 

recovery, especially when manually collected data from observers on the ground are replaced by remote earth observation. 

More accurate models may lead to more early actions being feasible (Coughlan de Perez et al. 2014) and hence early actions 415 

can be carried out that couldn’t be carried out before. For example, more targeted measures during the preparation and response 

phase of a flood. Such new measures include providing emergency payouts even before the event to the most vulnerable people 

(e.g. Reuters, 2019), prioritization of emergency measures in buildings, targeted disease outbreak prevention (Coughlan de 

Perez et al. 2014), early shipping of the right emergency goods (Coughlan de Perez et al. 2014)  and prioritization of early 

harvesting of crops.  420 
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Figure 1: Disaster management cycle, a common paradigm tool. 
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Table 1: Overview of different types of flood risk and impact assessments 

  Predictive Descriptive 

Exposure Urban growth modelling Identification of current built-up area 

Hazard Flood modelling Mapping current and past floods 

Impact Forecasting impact (e.g. 

damage) 

Assessing flood impacts (e.g. damage) 

after they have occurred  
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Table 2: Future predictions 

  Predictive Descriptive 

Exposure Likely incremental changes, e.g 

improved Cellular Automata 

transition rules 

Very likely significant changes e.g. 

automatic exposure detection including 

building features 

Hazard Diverse field, changes are more likely 

to be complementary or to specific 

components of modelling 

Likely changes in detection due to remote 

sensing and social media algorithms. 

Impact Potential for significant changes (i.e. 

multi-variable data-driven methods) 

Significant changes likely for some 

elements others will probably remain the 

same 
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