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Cover Letter and Reply to the Referees 
 

 

Dear Prof. Keiler, 

we would like to thank you and the two reviewers (Martina Kauzlaric and anonymous) for taking 

the time to critically read our manuscript and to provide valuable and constructive feedback. We 

have addressed the comments and suggestions of referees in this document. Among others, we 

provide an additional subchapter about the performance of the continuous modelling approach 

(WeGen), extended the discussion in various points following the suggestions of the reviewers 

and revised the figures with larger font sizes to improve the readability. We hope the revised 

manuscript has further improved by the comments and suggestions. 

Please, find below the reply to the reviewers and your additional questions (answers in italics). In 

addition, a separate track change manuscript file is attached to this document. 

As discussed, we decided to add Kristian Förster as a co-author to the manuscript. Although his 

contribution was important, in particular in the early stage of our research, we unfortunately did 

not include him as a co-author. This was my personal mistake as leading author. 

Kristian contributed to the development of the continuous modelling chain and the rainfall runoff 

modelling. He was responsible for the development and programming of the spatial interpolation 

scheme of the meteorological data. Finally, he took part in the revision process. To improve 

transparency, the contribution section of the manuscript was revised with more details of each 

individual role. 

 

Yours sincerely, 

Benjamin Winter 

Also on behalf of my co-authors Klaus Schneeberger, Kristian Förster, and Sergiy Vorogushyn. 

 

 

Revised Authors contribution: 

Based on the initial ideas of KS and SV, the study was designed in collaboration of all authors. 

BW prepared the initial data, implemented and applied the continuous modelling approach and 

analysed the results. KF programmed the spatial interpolation scheme for the meteorological data 

and supported the rainfall-runoff modelling. The risk model and the HT-application were mainly 

developed by KS. The manuscript was drafted by BW with support of SV. All authors contributed 

to the review and final version of the manuscript. 
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Reply to Margreth Keiler, Editor 

a) Damage has no plural and thus the term ‘damages’ has a different meaning. please check and adapt 
accordingly 

 

The manuscript was changed accordingly. 

 

b) The second sentences in your abstracts is not clear if you consider the risk definition your study is based on. 
 

Thank you for this comment. We reformulated the second sentence in the abstract to: “To estimate 

the risk, i.e. the probability of damage, flood damage needs to be either systematically recorded 

over long period or it needs to be modelled for a series of synthetically generated flood events” In 

addition, we extended the paragraph in the introduction. 

 

c) Please provide more information on section 3.3 and 3.4 because without reading Schneeberger et al. (2019) 
this part is not clear. Furthermore, why did you chose the approach of Borter (1999) which overestimates the risk, 
and did not consider models like FLEMOps or others? 
 

Some further information was added to section 3.3 and 3.4. The damage model of Borter (1999) 

was chosen as it originates from Switzerland which is a direct neighbor to the Austrian province 

Vorarlberg with a similar topographic situation and building structure. Nonetheless, other damage 

models such as FLEMO could have been used as well. The study rather focuses on the comparison 

of the results between the two different approaches for the generation of flood event series. 

Nonetheless, in the best case local functions could be derived, however, the data basis is not 

available. The notion about the choice of the damage model was also added to the manuscript. 

 

d) Please provide more information why you think a comparison on risk level allows more insights than on hazard 
level. In this context, I miss a discussion on the effect of the spatial distributions of elements at risk to your results. 
 

Thank you for this good comment. In the study area, the settlements are concentrated alongside 

the larger valley areas (especially the Rhine valley; c.f. map Figure 1). Thus, the damage 

corresponding to an event is largely influenced by the region affected. If the comparison is 

conducted on a hazard only, the impact of wide spread flood events may be overestimated, while 

the impact of spatially limited events in densely populated areas are underestimated. This 

discussion was added to the Manuscript (P.13 L5-9) 

 

e) For any currency values, both in text, tables, and figures, tell the reader what year these have been normalized 
to. 
 

Thank you for this comment. The building values are indexed to the year 2013 (Huttenlau et al. 

2015) based on the austrian construction price index (Statistik Austria 2019). This information was 

added to the section 3.3 and to the caption Figure 6 in the manuscript. 

 

f) Page 10, line 4: please adapt the equation format according to the guidelines 
 

The format of the equation was adapted according to the guidelines on “simple expressions in the 
body of the text” 
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Interactive comment, Dirk Diederen 

 

In your paper, the river discharge approach is referred to as the HT-model approachand the weather generator 
as the WeGen. As you are aware, we also used the HTmodel in our river discharge generator 
(https://www.natural-hazards-and-earth-system-sciences.net/19/1041/2019/). However, our recent weather 
(precipitation) generator(https://link.springer.com/article/10.1007/s00477-019-01724-9) also makes use of the 
(purely statistical) HT-model, so this referencing may cause some confusion in the future. It might be better to 
refer to the river discharge approach as the RDGen approachC1or something similar. 

 

We thank Dirk Diederen for his notion. We can in principle follow his argument as the HT model is 

a general statistical model to describe tail dependence. It can be applied to different variables 

besides discharge peaks. In your cited paper (Diederen et al., 2019), the HT model is however one 

of the pieces of a larger model to generate synthetic events, which includes e.g. spatial event 

identification, derivation of event characteristics and construction of new spatially consistent events. 

In their case, it would indeed be not suitable to name the entire model as HT model. In our case, 

HT model is used to describe dependence of peak discharges and construct synthetic scenarios 

and basically represents the hazard module. We indicate that the HT model is used as a hazard 

module within the PRAMO – probabilistic risk model. WeGen is an alternative hazard module based 

on a weather generator approach. We therefore would like to keep this notion of ‘HTm’ referring 

solely to the hazard module, also to be consistent with the previous works of Schneeberger et al. 

(2018, 2019), who described in details the setup of the HT model as a part of the more 

comprehensive PRAMo modelling framework using the very same notation. 
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Reply to Anonymous Referee #1 
 
 

General Comments 
Winter et al. presented in their paper (“Event generation for probabilistic flood risk modelling: multi-site peak flow 
dependence model vs weather generator based approach”) two approaches to simulate distributed flood risk 
throughout rural catchments. The manuscript is well written and structured. The methods are sounds and the 
models used are well established. The results are clearly presented and the conclusions are supported by the 
results and discussion. The novelty of the paper is not with the development of new methods, but the use of 
available methods (that are common in hydrological sciences) in the context of risk assessments. I believe that 
the application presented here will be of interest to the natural hazard community and fall within the scope of 
NHESS. Below please find some suggestions for the authors to consider. I recommend minor revisions. 
 

First of all, we want to thank the anonymous reviewer for taking the time to critically read our work 

and to provide additional suggestions for further improvement of the manuscript. We addressed 

the comments in the revised manuscript. 

 

Specific comments 
 

1. Introduction – You do compare the two distributed approaches to the "traditional" approach, but this is not 
clear from the introduction. I suggest adding a sentence mentioning this. 
 

Many thanks for this comment. We revised the sentence in the introduction section to clarify flood 

loss is also compared to a homogeneous flood scenario is named “traditional” approach.  

Please see P3. L.3-4: “Additionally, the flood risk corresponding to homogeneous flood scenarios 

of certain return periods ("traditional" approach) is derived and compared to the other two 

approaches.” 

 

2. Discussion – Many other models, besides the HT-model and the WeGen model, can be used to estimate 
distributed risk. For example, one can use a different WG model (say the AWE-GEN model) and a different 
hydrological model (say the HBV model) with a different outcome – e.g. that the WG-hydrological model 
approach will systematically underestimate the risk computed by the HT-model. I suggest adding another 
paragraph in the discussion section, discussing how general are the results of this study. 
 

We agree, that the same framework with different components (weather generator or RR-model) 

likely lead to alternative results. The outcome of higher systematic risk estimates for the WeGen 

approach might not be true for other model components. We addressed this important issue in an 

additional paragraph in the discussion section. 

 

3. The WeGen model simulates temperature, but do you use it as input into the hydrological model? It is not 
clear from the text. If not, I would remove all text mentioning the temperature simulation to avoid confusion. 
 

The conceptual RR-Model HQsim is forced by temperature and precipitation. The information was 

added to the “Hazard Module II: WeGen” section. 

 

4. Some justification is needed for the choice of the HQsim model. Is it able to capture well extreme runoff 
events? Please discuss the advantages and limitations of using a conceptual semi-distributed rainfall-runoff 
model to simulate floods. 
 

Thank you for the valuable suggestions. The model was used in different studies regarding extreme 

runoff in alpine study areas and is inter alia applied for the prognosis system of the Inn River (e.g. 

Senfter et al. 2009; Achleitner et al. 2012; Bellinger et al. 2012; Dobler and Pappenberger 2013; 
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Winter et al. 2019). An additional subchapter was added to summarizing information regarding the 

performance of the weather generator, the disaggregation procedure and the hydrological modelling 

(see also Referee#2). 

Fully distributed, physical based models (e.g. WaSim) will probably perform better in describing 

certain hydrological process such as for example the evapotranspiration or snowmelt process by 

using energy balance approaches. In contrast, a conceptual description of the hydrological 

processes (for example in HQsim) does not need all meteorological variables to solve a full energy 

balance (temperature, precipitation, radiation, humidity and wind speed). A further increase in model 

complexity will likely compromise the model parameter identifiability, increase calibration effort and 

computation burden. The computational efficiency is of major concern for the long-term continuous 

hourly discharge modelling. The advantages and limitations of choosing a conceptual model are 

now addressed in the discussion section. (see P.15) 

 

5. [page 7, line 25] Terminology: an ensemble of 100 realizations, each consists of 42 members (years). Also 
later in the text, replace “repetitions” with “realizations”. 
 

The term “realizations” was used as suggested. 

 

6. Figures 3 and 7. Please use a larger font size for the axes labels. 
 

All Figures have been revised with larger font sizes to increase readability. 

 

7. [13, 27-31]. I suggest adding in Figure 5 the known losses from the records (e.g. the August 2005 event) and 
discussing the models’ performance in comparison to the "known" risk. It will give another dimension (from an 
"expert" knowledge) of the abilities of the different models in assessing the risk. 
 

We agree that a “traditional” validation against known losses would be of great value. Unfortunately, 

we do not have reliable numbers of the loss event which are directly comparable to the model output. 

We tried to validate the model based on an insurance portfolio. The portfolio is however only a 

subset of the overall elements at risk and due to rather low sublimits (maximum payouts) for most 

objects, the full losses remain unknown. Finally, without a larger set of loss events it is not possible 

to assign a meaningful return period to the 2005 event to “validate” the risk outcome in a traditional 
way. This consideration was added to the “Discussion” section (P.17 L8-12). 
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Reply to Martina Kauzlaric (Referee #2) 
 
 

General comments and recommendation 

The manuscript by Winter et al. presents an interesting comparison of two quite different approaches for 
estimating flood risk in a probabilistic framework, both valid and currently established in the research community. 
The application of these models in a complex environment such as the alpine area and coupling it to a risk 
assessment is indeed new to my knowledge, and I congratulate the authors for their work! The manuscript is well 
structured, the methods are described in a comprehensible way or supported by relevant sources, and the 
discussion provides good points; however, generally there are quite a lot of relevant numbers/numeric information 
as well as background information missing. While the authors neatly site sources, they force the reader to go to 
look for important and relevant information too often, what is laborious and time-consuming first, and an important 
drawback for both the evaluation and appraisal of the results, resulting in lacking some important considerations 
in both the results and the discussion parts. This is a pity, because with not too much effort, you might considerably 
improve the manuscript and better convey relevant take-home messages. The manuscript generally features 
high-quality and interesting figures, which however would be more easily readable by using larger fonts. In 
general, I found quite a few typing errors. I am reporting all those I found in the technical corrections, but I would 
generally suggest the authors to read the manuscript thoroughly again. Because of these considerations, I think 
the manuscript requires further work before it can be recommended for publication. Please find my specific and 
technical comments here following. Please, don’t get scared, some are only suggestions, and some questions 
are out of curiosity or eventual misunderstanding. 
 

First of all, we want to thank Martina Kauzlaric for her comprehensive review with many questions 
and valuable suggestions to further improve the manuscript. Many thanks also for your positive and 
motivating words. In this reply, we address all questions and revised the manuscript accordingly. 
The Figures have also been revised with larger font sizes to improve the readability. 

 
 

Specific comments 
 
Introduction: 

Please state more clearly the limits and the frames of your application (up to which return period and up to which 
spatial extent do you think these approaches are applicable and transferable -with this set up? In particular: what 
do you aim at?) 
 

Many thanks for this comment. In our opinion there are no definite limits in terms of return period for 

both approaches. As mentioned in the introduction, risk estimates for large study areas are beside 

public authorities especially relevant for the (re-)insurance industry. The so called EU Solvency II 

regulation defines the loss associated with a 0.5% occurrence probability over a one-year period 

(RP200) as requirement for internal risk management (European Union (EU) 2009). This specific 

information was added to the Introduction. 

The applicability, however, is strongly depending on available data, whereas in general complexity 

rises with spatial scale (see Discussion P12-L14/15) and uncertainty rises alongside the 

extrapolation of the data (this issue was added to the subchapter “Comparison of risk curves”). The 

weather generator approach is currently limited to about 500-600 climate stations and the spatial 

scale of 1000x1000 km. A high number of climate stations makes the approach computationally 

intractable. Moreover, the correlation of daily precipitation over distances beyond about 800-1000 

km in Central Europe tend to zero on average that results in random spatial precipitation patterns. 

However, for specific events, the spatial structure still may be retained over large distances. 

 

P2-L17/18: you might want to also cite more recent literature such as Brunner et al. 2019: Modeling the spatial 
dependence of floods using the Fisher copula, https://doi.org/10.5194/hess-23-107-2019  
 

We added the citation to the manuscript. 

https://doi.org/10.5194/hess-23-107-2019
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P2-L22 Here also there is some more recent literature, such as Evin et al 2018 (Stochastic generation of multi-
site daily precipitation focusing on extreme events, https://doi.org/10.5194/hess-22-655-2018) or appeared very 
recently Raynaud et al.2019 (Assessment of meteorological extremes using a synoptic weather generator and a 
downscaling model based on analogs, still under discussion, https://doi.org/10.5194/hess-2019-557)  
 

Many thanks for the good literature suggestions. The citations were added accordingly. 

 

Other two options for generating spatially distributed meteorological fields, more physically based–but also more 
computationally intensive-, would be to use the output of either global circulation models (e.g. Felder et al.2018, 
From global circulation to local flood loss: Coupling models across the scales, 
https://doi.org/10.1016/j.scitotenv.2018.04.170) or of hindcast archives (e.g. National Flood Resilience Review. 
Tech. rep. HM Government, September 2016. url: https://www.gov.uk/government /publications/nationalflood- 
resilience-review) and downscale these to the required spatial resolution. 
 

Many thanks for this comment. Of course, global and regional climate models represent another 

way to generate synthetic meteorological fields. However, due to their much longer computational 

times, only a few realizations of typically about 100 years lengths are feasible. Stochastic weather 

generators and the HT-model have an advantage to generate hundreds and thousands of possible 

realizations needed to robustly estimate flood risks. We think, the stochastic methods are still in 

advantage compared to the climatic models for the purpose of risk assessment. 

 
Study area: 

From the map in Figure 1 it seems you are also simulating the Rhine at Lustenau, is this true? If yes, I assume 
you are using observations at some gauging station upstream of the inflow of the Ill river into the Rhine? If this is 
the case (and in any case?), I think it would be quite important to note this later on, as the nodes/communities 
simulated downstream in the Rhine valley should be considered a bit’ differently. 
 

Thank you for this important question. Based on the available risk maps for Vorarlberg, there are 

no inundation areas designated for the river Rhine due to its high protection level (up to HQ300; see 

e.g. http://vogis.cnv.at/atlas/init.aspx?karte=wasserbuch&ks=gewaesser, Vorarlberg Map Service 

in German). The gauge Lustenau (Höchster Brücke) at the river Rhine is actually included in the 

HT-modelling procedure however is not connected to any community node points and also not 

included in the hydrological modelling framework of the WeGen approach. Even if they are not 

considered in this study, there is a risk of dam failures, which could have a devastating effect in 

Vorarlberg. We added an additional statement to the Discussion section of the manuscript (P.17 L3-

7). 

 
Methods and Data: 

Please introduce how many meteorological stations and gauging stations are available for this study, for how 
many years, instead of first mentioning it in the results part.  
 

In total 17 gauging stations (1971-2013) are applied for the HT-approach and data of 45 

meteorological stations with daily time series from 1971-2013 are included in the WeGen approach. 

Stations with shorter time series were not considered in the study. This information was added to 

the Methods and Data section accordingly. (P.4 L1-4) 

 

Hazard Module II: please give more details about how good is the modeling chain working (refer also to comments 
further below under Results). 
 

An additional subchapter was added summarizing the results of the Hazard Module II (WeGen). In 

the subchapter information regarding the performance of the weather generator, the disaggregation 

procedure and the hydrological modelling are included. More detailed information is given in Winter 

et al. (2019). 

https://doi.org/10.5194/hess-2019-557
https://www.gov.uk/government%20/publications/nationalflood-
http://vogis.cnv.at/atlas/init.aspx?karte=wasserbuch&ks=gewaesser
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P6-L21/22: What do you mean concretely by saying “whereas the underlying hydrological boundary conditions 
are based on the considerations of the Austrian flood risk zoning project HORA”?  
 

As stated, the model chain is not coupled (yet) with a hydraulic model to simulate inundation maps 

seamlessly. Instead the inundated areas and corresponding water depths for the loss calculation 

are taken from the “official” inundation maps provided by public authorities. The hydrological loads 
for the 1D and 2D hydrodynamic simulations are thereby based on the Austrian flood risk zoning 

project HORA (Merz et al. 2008). The paragraph was rephrased accordingly. 

 

Please add some information about the experimental set up: 100 x 42 years for the analysis of the spatial 
coherence and 30 x 1000 years for the rest (and also explain why 30 x 1000 years). 
 

For a fair comparison of quantile values between the simulation result and observed data, the time 

series need to be of identical length. With 42 years of data available at the gauging stations, the 

simulation was set up accordingly for the analysis of the spatial coherence (See P.9 L6-7). 

As the simulations are theoretically not limited in regard of overall length, all further analyses are 

based on a total length of 1000 years. The length was chosen to be far above the highest return 

period of available homogeneous inundation data (HQ300) and the number of 30 realizations were 

calculated due to the computational limitations of the continuous simulation on an hourly time step. 

This information was added to the corresponding result section (See P.11 L 7-11).  

Results: 

On the analysis of spatial dependence: Even though it is visible from the maps you show on the diagonal, it would 
be more fair to mention (and consider at all?) in the text that the four stations you are showing in Fig. 3 are not 
completely “independent”, in the sense that Kennelbach is the downstream station of Thal and in turn Gisingen 
is the downstream station of Schruns. If you intentionally chose this set up –and I could see good reasons for 
making this choice-, please state it, and explain why. 
 

Thank you for this comment. We choose the gauges Kennelbach and Gisingen as they are the 

gauges closest to the outlets of the two largest catchments in the study area. This two catchments 

comprising about 80% of the total study area. We intentionally choose Schruns and Thal which are 

subcatchments of Gisingen and Kennelbach, respectively. By choosing this examples we show two 

strongly related gauges in nested catchments (but never completely dependent) as well as two 

relatively independent gauging stations (e.g. Schruns and Thal). The explanation for the choice of 

the gauges has been added to the manuscript. (P.9 L8- P.10 L2) 

 
Furthermore, by reading Winter et al. 2019 it occurred to me that first, Thal and Gisingen are actually the two 
stations with the worst performance both, in the calibration and in the validation periods (if the hydrological model 
is not able to reproduce well the hydrological features of some subcatchments, depending on the reasons for the 
low performance, I wouldn’t place too much confidence in the results for any other application of this, and rather 
ask myself if I am ev. not propagating some structural problem in the modeling chain), and second, that apparently 
both Kennelbach and Gisingen are influenced by hydropower operations (you also state in Winter et al. 2019 
“...the influence of hydropower reservoirs cutting peak discharges, especially for the upper Ill catchment. This 
effect is not considered in the hydrological model set-up, but is contained in the discharge records.” => even 
though I would generally expect this kind of weather generator to overestimate spatial dependence in a complex 
mountainous environment, this information is relevant when judging the strength of the dependence shown by 
the WeGen approach). I think you should provide more “background” and or critical information, and accordingly 
discuss more critically the results. You might be actually attaching too much guilt to the weather generator and/or 
the WeGen approach. 
 

It is correct that the models at Thal and Gisingen do not perform well. Both the spatial dependence 

and the hydrological model deficiency play a role in poor performance at the Thal and Gisingen. 

However, the tendency to overestimate the spatial dependence in comparison to the observed data 
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is present for many station pairs as for example the gauges “Hoher Steg” (NSE 0.85/0.80) and 
“Kennelbach” (NSE 0.73/0.69) shown in Figure 1. 

 
We agree that further information regarding the performance of the modelling chain will improve the 

manuscript. An additional subchapter was added to the “results” containing information about the 
performance of the weather generator, disaggregation procedure and the rainfall runoff model based 

on the Winter et al. (2019). 

 

 

Figure 1 Spatial dependence measure observed vs. WeGen approach; conditioning site Kennelbach, dependent site Hoher Steg. 

 
 
Please do correct me if I am wrong. Another information I am missing here is to what correspond the exceedance 
probabilities 0.99 and 0.997 (what is the return period we are talking about here? I am not sure I fully understood 
how you derived the quantiles, sorry if this might be a stupid question). 
 

This is actually a very good question. The thresholds are based on the quantile values of the time 

series. So, in the example shown in figure 3, the 0.99 to 0.997 quantile values are based on 42 

years of input data. As the data analysis is based on 3-day block maxima values to guarantee the 

independence of events (Schneeberger and Steinberger 2018). Accordingly, based on the empirical 

cdf, a p-value of 0.99 refers to a return period of approximately 1 year and a p-value of 0.997 refers 

to a return period of roughly 3 years. The text was revised accordingly, for a better understanding 

of the quantile values. (P.10) 

 
A follow-up consideration: To my knowledge, flood protection measures in Austria are designed whenever 
possible against a 100 years flood event. For example, Felder et al.2017 (The effect of coupling hydrological and 
hydrodynamic models on maximum flood estimation, http://dx.doi.org/10.1016/j.jhydrol.2017.04.052) have shown 
that there might be considerable potential in re-shaping the hydrograph by coupling a simple 1D hydrodynamic 
model, in particular in terms of the timing of the peak. While I assume that the effect of retention in the floodplains 
in your study area is negligible, I would assume that this might become more important downstream for floods 
with return periods larger than 100 years, let’s say for example in the main Rhine valley. As you also look at return 
periods up to 300 years in the vulnerability module, and you actually make use of inundation maps generated by 
hydrodynamic models, when and where do you think the coupling to a hydrodynamic model becomes relevant 
and what are in this sense the limits of the applicability of the WeGen approach? 
 

Yes, we do agree with this comment that the so-called hydrodynamic interactions in the river network 

may affect the risk estimates, i.e. dike overtopping and failure upstream with associated inundation 

and water storage would reduce the risk downstream. The higher the return period of evet is, the 
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stronger the effect of hydrodynamic interactions is expected to be. Similarly, the larger the potential 

storage area in the hinterland is, which is the case for the lowland parts of the river network, the 

stronger the effect is. By including a 1D-2D hydrodynamic modelling, the hydrodynamic interactions 

can be explicitly considered in the WeGen approach. This could be a potential future extension of 

the modelling approach, particularly for the lowland parts of the network. On the contrary, the HT-

approach is not suitable for coupling with the unsteady continuous hydrodynamic models, since it is 

not mass-conservative and delivers only dependent discharge peaks and not the full continuous 

flood hydrographs as boundary conditions. This discussion is now provided in the revised 

manuscript (Discussion section, P.15 L9-12). 

 

Please comment on the larger spread produced by the WeGen approach. 
 

The weather generator tends to overestimate the spatial correlation of extreme precipitation. It is 

parameterized by using an isotropic correlation function by mixing low intensity large scale and high 

intensity local rainfalls. Hence, the generated fields of extreme precipitation tend to have larger 

spatial extent than observed. Please see the corresponding paragraph in the manuscript (P.12 L6 - 

17) 

 
Discussion: 

Weather generators in general: any weather generator makes a quite strong assumption about the tail behaviour, 
so that the higher the return period resp. the extremeness of the simulated precipitation, the larger should be the 
structural model uncertainty, which in turn is expected to quite influence the corresponding estimated hydrological 
load. While a 100 years event might be just at the boundary of what we might be able to extrapolate from about 
40 years observations – with still some degree of confidence- anything beyond will very likely be strongly related 
to the tail models. Could you please elaborate on this, and state what do you think might be the impact of the use 
of another weather generator on your results?  
 

We agree that the extrapolation of weather generators make strong assumptions about the tail 

distribution and such the uncertainty raises alongside the exceedance probability which is directly 

propagated to the hydrological loads. The extrapolation beyond RPs of 100 years based on typically 

available data series of a few decades is associated with large uncertainties. Nonetheless, 

information about higher return periods are often required in practice (e.g. In Austria HQ300 is 

applied to define “residual risk areas” or the RP of 200 years is defined in the Solvency II definition 
in the European (re)insurance context (European Union (EU) 2009)). To our knowledge, there are 

no studies comparing risk assessments driven by different weather generators. Hence, it is difficult 

to make a reliable statement how decisive the tail dependence is with regards to the final risk 

estimates. On the one side, the effect of tail dependence is expected to increase with the return 

period. On the other side, the events with high return periods have low probability and might have 

little impact on the average risk (expected annual damage) (area under the risk curve). So, this is a 

question whether we look at the loss estimate of a e.g. 1000-year flood or we are interested in the 

annual expected damage. For the first, the tail dependence might be more important, for the second 

rather less important. We believe, more studies are needed to compare different weather generators 

and their impact on risk assessments. 

The same framework with different components (e.g. weather generator or RR-model) likely lead to 

alternative results. The outcome of higher systematic risk estimates for the WeGen approach might 

not be true for other model components and thus should not be generalized. We added an additional 

paragraph in the Discussion section regarding this issue. (P14 L17-22) 

 

P13-L26: Actually in Figure 5 you are showing the “overall” uncertainties of the two modelling chains, what do 
you mean with and why do you write single uncertainty sources here? 
 

As stated on P.13-L20-21, the uncertainty presented in Figure 5 only shows the uncertainty which 

corresponds to the multiple realizations and does not account for other sources of uncertainties (e.g. 
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parameter uncertainties). Also, no comprehensive uncertainty assessment by propagating the 

uncertainties of all sub-models throughout the model chain is included in the current work, it is still 

possible to have a look at each individual modelling step. We reformulated the statement and the 

sentence about ‘single uncertainty sources’ was deled. 

 

This is just a consideration /suggestion: Of course volumes cannot be considered by applying the HT model, 
however besides flood peaks, flood volumes can play an important role in flood risk analysis. You correctly 
mention that one of the advantages of applying WeGen is the ability to produce continuous hydrographs (and 
accordingly event volumes), however you might want to mention it explicitly? Flood volumes play an important 
role for hydraulic infrastructure such as reservoirs/lakes/etc. (and thus in hydraulic design engineering), and also 
in the case of presence of floodplains with retention potential. On the other side, volumes might be another 
validation measure for the WeGen approach, as –depending also on how good is working the hydrological model- 
indirectly indicate how well or bad is the weather generator doing by reproducing persistence at longer time scales 
(a week and beyond), as I would generally expect this kind of weather generator to be underestimating 
persistence. This is something you might want to check in the future? 
 

Many thanks for this interesting suggestion. We agree that flood volumes are an important 

characteristic of flood events and especially relevant for risk assessment (e.g. Dung et al. 2015; 

Lamb et al. 2016). We will elaborate more on this in the discussion. Future research can focus on 

the ability of the model chain WeGen-RR to reproduce flood volumes. This is however not 

straightforward. This can be approached by the assessment of the areal precipitation volume for 

different durations and spatial aggregations (from small sub-catchments to the entire basin) and 

secondly, by comparing the observed and simulated flood event volume statistics similarly to the 

flood peak statistics. We added a notion about the relevance of flood volumes beside peak estimates 

to describe the severity of a flood event in the discussion section. 

 
Technical corrections 

Figure 2: it is full of typing errors (refer to Obseravtions, topographie, Geometrie) 
 

The Figure was revised accordingly. 

 

Please use the word realizations instead of repetitions 
 

The term “realizations” is now used throughout the manuscript. 

 

Please use more consistently the word severity (e.g. in the of Figure 4 use return period instead of level of 
severity => what might be confusing, as you define and quantify severity by the UoFH later on) 
 

As suggested the caption was changed to return period to avoid confusion. 

 

P2-L3/4: what do you mean with floods hazard characteristics?  
 

For example, inundation depth or flow velocity. This information was added for clarification. 

 

P6-L24: “...a linear interpolated interpolation...” please reformulate better  
 

The term “interpolated” was deleted. 

 

P7-L8: ...can be statistically.  
 

corrected 
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P10: please reformulate the last sentence (90% of exceeding sites sounds weird) 

 
The sentence will be revised to: “The most widespread event (UoFH=77) corresponds to about 

90% of the sites exceeding the threshold.” 

 

P11-L11: just a suggestion=> capability instead of feature?  
 

Thank you for the suggestion. We will use the term “capability” instead of feature. 

 

P11-L15/16: might effect ...?=> please reformulate  
 

‘effect’ was replaced by ‘affect’ 

 

P12-L5: …estimate of (=> better with? Or by?)) WeGen approach  
 

The manuscript was changed to “...estimate by ” 

 

P12-L14: just a suggestion: instead of On the contrary => At the same time? On the other hand? 
 

Thank you for the suggestion. The phrase “At the same time” was used instead. 

 

P7-L21: dependence matrices instead of dependence metrices  
 
P7-L26: Each simulation instead of Each simulations  
 
P8-L1: the data are “too” few instead of the data are “to” few  
 
P10-L6/7: either remove a , in “a significat lower damages..”or change damages to singular  
 
P11-L1: …simulate (remove a) complex spatially heterogeneous patterns. 
 
P11-L5: On the contrary. . .only indirectly …  
 
P11-L13/14: One possible reason could ...be? 
 
P12-L2: instead of overall estimation => overestimation? 
 

Thank you for the grammar and language corrections. The manuscript was revised accordingly. 
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Abstract. Flood risk assessment is an important prerequisite for risk management decisions. To estimate the risk, flood damages

need
✿✿✿

i.e.
✿✿✿

the
✿✿✿✿✿✿✿✿✿

probability
✿✿✿

of
✿✿✿✿✿✿✿

damage,
✿✿✿✿✿

flood
✿✿✿✿✿✿✿

damage
✿✿✿✿✿

needs
✿

to be either systematically recorded over long period or they need

✿

it
✿✿✿✿✿

needs
✿

to be modelled for a series of synthetically generated flood events. Since damage records are typically rare, time

series of plausible, spatially coherent event precipitation or peak discharges need to be generated to drive the chain of process

models. In the present study, synthetic flood events are generated by two different approaches to model flood risk in a meso-5

scale alpine study area (Vorarlberg, Austria). The first approach is based on the semi-conditional multi-variate dependence

model applied to discharge series. The second approach is based
✿✿✿✿✿

relies on the continuous hydrological modelling of synthetic

meteorological fields generated by a multi-site weather generator and using an hourly disaggregation scheme. The results of

the two approaches are compared in terms of simulated spatial patterns
✿

of
✿✿✿✿✿

peak
✿✿✿✿✿✿✿✿✿

discharges and overall flood risk estimates. It

could be demonstrated that both methods are valid approaches for risk assessment with specific advantages and disadvantages.10

Both methods are superior to the traditional assumption of a uniform return period, where risk is computed by assuming a

homogeneous return period (e.g. 100-year flood) across the entire study area.

1 Introduction

In recent decades several large flood events occured across Europe resulting in direct damage exceeding one billion Euro

(Kundzewicz et al., 2013). Growing flood damage due to socio-economic and land-use changes as well as a possible increase15

of flood hazards in a warmer climate (IPCC, 2018) calls for robust flood risk assessment. A reliable estimation of flood damages

✿✿✿✿✿✿

damage
✿

is an essential prerequisite for profound decision making (de Moel et al., 2015). The most straightforward estimation

of possible flood risk would be a statistical evaluation of documented flood damages
✿✿✿✿✿✿

damage
✿

across the area of interest. In

practice, systematic damage records are rare and mostly not available for longer periods (Downton and Pilke, 2005), whereas

the major interest e.g. in the re-insurance industry is on losses due to extreme events (European Union, 2009) that are rare by20

definition. Since risk assessment is currently not feasible based on empirical data, modelling approaches based on synthetic

1



flood scenarios are often deployed (Lamb, et al., 2010, Falter et al. 2015).
✿✿✿✿

such
✿✿

as
✿✿✿✿

the
✿✿✿

200
✿✿✿✿✿

years
✿✿✿✿✿✿

return
✿✿✿✿✿

period
✿✿✿

to
✿✿✿✿✿

fulfill
✿✿✿

the

✿✿✿✿✿✿✿

Solvency
✿✿

II
✿✿✿✿✿✿✿✿✿✿

regulations.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(European Union, 2009)
✿

.

Following the European flood directive flood risk is defined as "the combination of the probability of a flood event and

of the potential adverse consequences [
✿

...]" (European Union, 2007).
✿✿

In
✿✿✿✿✿

other
✿✿✿✿✿✿

words,
✿✿✿✿✿

flood
✿✿✿

risk
✿✿

is
✿✿✿✿✿✿✿

defined
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

probability

✿✿

of
✿✿✿✿✿✿✿

damage.
✿

Hence, for risk estimation, a flood event including its probability of occurrence (hazard) on the one hand and5

the vulnerability of exposed values on the other hand need to be considered (Klijn et al., 2015).
✿✿✿✿

Since
✿✿✿✿

risk
✿✿✿✿✿✿✿✿✿✿

assessment
✿✿

is

✿✿✿✿✿✿✿

currently
✿✿✿

not
✿✿✿✿✿✿✿

feasible
✿✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿

empirical
✿✿✿✿✿

data,
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿✿

synthetic
✿✿✿✿✿

flood
✿✿✿✿✿✿✿✿

scenarios
✿✿✿

are
✿✿✿✿✿

often
✿✿✿✿✿✿✿✿

deployed

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Lamb et al., 2010; Falter et al., 2015; Schneeberger et al., 2019)
✿

.

In a traditional approach, the hydrological load is estimated by means of extreme value statistics using river gauge data and

transformed into corresponding inundated areas by hydrodynamic models (Teng et al., 2017). The monetary damage can then10

be assessed in combination with susceptibility functions which describe the relationship between one or more flood hazard

characteristics
✿✿✿✿

(e.g.
✿✿✿✿✿✿✿✿✿

inundation
✿✿✿✿✿

depth,
✿✿✿✿✿

flow
✿✿✿✿✿✿✿

velocity)
✿

and damage for the elements at risk (Merz et al., 2010). This approach

implies two strong assumptions. First, the return period of flood discharge is assumed to be equal to the return period of

the resulting damage. Second, a uniform return period across the entire study area is considered and resulting damage esti-

mates are accumulated. The first assumption can be relaxed by modelling a continuous series of synthetic flood events. As15

a result, a long series of damage values can be generated and used for analysing damage frequency distribution (Achleit-

ner et al., 2016). The second assumption of homogeneous flood return periods may be valid for small areas (de Moel et al.,

2015). With increasing scale, the assumption of a homogeneous return period becomes unlikely, as precipitation and flood foot-

prints are inhomogeneous in space. This assumption can lead to an overestimation of risk
✿✿

for
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿

return
✿✿✿✿✿✿

periods
✿

in large

river basins (Thieken et al., 2015; Vorogushyn et al., 2018)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Thieken et al., 2015; Vorogushyn et al., 2018; Metin et al., 2020).20

To overcome the second limitation, realistic spatially heterogeneous events need to be generated across the area of interest

which fully represent the spatial variability of flooding (Schneeberger et al., 2019).

Generation of spatially heterogeneous flood events in terms of precipitation fields or discharges is of current scientific interest

(Keef et al., 2013; Falter et al., 2015; Falter, 2016; de Moel et al., 2015; Speight et al., 2017; Diederen et al., 2019; Schneeberger et al., 2019)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Keef et al., 2013; Falter et al., 2015; Falter, 2016; de Moel et al., 2015; Speight et al., 2017; Diederen et al., 2019; Diederen and Liu, 2019;25

. There are different approaches to generate large event series of heterogeneous flood events. One possibility is the application of

multivariate statistical methods to discharge series, such as copula models (Jongman et al., 2014; Serinaldi and Kilsby, 2017)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Jongman et al., 2014; Serinaldi and Kilsby, 2017; Brunner et al., 2019) or the semi-parametric conditional model proposed by

Heffernan and Tawn (2004) (hereinafter referred to as ’HT-model’). These models consider the pairwise dependence of peak

discharges at multiple locations and generate synthetic series of multiple dependent flow peaks. The second possibility is based30

on the generation of spatially distributed meteorological fields by a weather generator, either station-based with subsequent in-

terpolation (Falter et al., 2016; Falter, 2016; Breinl et al., 2017)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Falter et al., 2016; Falter, 2016; Breinl et al., 2017; Evin et al., 2018; Raynaud

or raster-based (Buishand and Brandsma, 2001; Peleg et al., 2017). Synthetic meteorological fields are subsequently used to

drive hydrological simulations to generate streamflow values across the study area.
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The two presented approaches estimate the hydrological load in the river network at multiple locations, but are different in

their nature. This leads to the key question of the present study: Does it matter which approach is chosen in the context of

flood risk modelling, and what are advantages and disadvantages of the two? We answer this question by comparing the set of

heterogeneous flood events from the HT-model with the one resulting from a weather generator and subsequent rainfall-runoff

modelling. Both methods are embedded in a probabilistic flood risk model used to estimate the effect of chosen methods on5

flood losses. To the authors’ best knowledge, there is no study to date in which the two approaches are directly compared.

Additionally, the flood risk corresponding to homogeneous flood scenarios of certain return periods
✿✿✿✿✿✿✿✿✿✿

("traditional"
✿✿✿✿✿✿✿✿✿

approach) is

derived and compared to the other two approaches.

This paper is organised as follows: First, the study area is shortly described. In the second section the flood risk model is

introduced and the two different approaches for heterogeneous event generation are described
✿✿✿✿✿✿✿

presented
✿

in details. Section10

three presents the results of the comparison, which are discussed in the following section. Finally, conclusions summarise the

major findings.

2 Study Area

The flood risk model is applied in the westernmost province of Austria, Vorarlberg. The region is characterised by a strong

altitudinal gradient between the Rhine Valley (≈ 400 m a.s.l.) and the high mountain ranges of the Alps (> 3000 m a.s.l.). As15

a result of the high relief energy, the rivers are characterised by a fast hydrological response with short concentration times.

The mountainous landscape of in total 2600 km2 is dominated by forest, meadows and pastures with only small percentage

of settlement area (Sauter et al., 2019). Due to steep topography, asset values are concentrated in the lowlands of larger valley

floors, especially alongside the Rhine and Ill rivers. Vorarlberg is characterised by one of the highest precipitation amounts in

Austria conditioned by predominantly westerly flows and strong orographic effects (BMLFUW, 2007). During the last decades,20

the province was affected by several severe flood events in 1999, 2002, 2005 and 2013. The most devastating recent flood event

in August 2005 caused about C180 million direct tangible losses for the private and public sector, including infrastructures

(Habersack and Krapesch, 2006).
✿✿✿✿✿

Figure
✿✿

1
✿✿✿✿✿✿✿

provides
✿✿

an
✿✿✿✿✿✿✿✿

overview
✿✿

of
✿✿✿

the
✿✿✿✿✿

study
✿✿✿✿

area,
✿✿✿✿✿✿✿✿

including
✿✿✿

the
✿✿✿✿

river
✿✿✿✿✿✿✿✿

network,
✿✿✿✿✿✿✿✿

settlement
✿✿✿✿✿

areas

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

locations
✿✿

of
✿✿✿✿

river
✿✿✿✿✿✿✿

gauging
✿✿✿✿✿✿

stations
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿

stations.
✿

3 Methods and Data25

The probabilistic flood risk model (PRAMo) used in the presented work consists of three different modules: The Hazard mod-

ule comprising the generation of long time series of flood events, the Vulnerability module used to evaluate possible adverse

consequences of flood events with a certain exceedance probability, and the Risk Assessment module which combines the re-

sults of the Hazard and Vulnerability modules to estimate the loss per event and resulting risk (Schneeberger et al., 2019). The

output of the flood risk model are expected annual damages
✿✿✿✿✿✿✿

damage and exceedance probability curves of damages
✿✿✿✿✿✿

damage.30

PRAMo was previously driven by the synthetic flood event series of coherent peak discharges generated by the HT-model
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Figure 1. Study area and the location of meteorological and river gauging stations.(Map sources: Produced using Copernicus data and

information funded by the European Union - EU-DEM layers and ©EuroGeographics for the administrative boundaries.)

(Schneeberger and Steinberger, 2018). A second event generation approach based on a multi-site, multi-variate weather gen-

erator and continuous rainfall-runoff modelling was recently introduced by Winter et al. (2019) and is used for comparison

with the HT-model based approach and the assumption of homogeneous return periods. Figure 2 provides an overview of the

modules and the simulation steps, which are described in more details in the following.

✿✿

In
✿✿✿

this
✿✿✿✿✿✿

study,
✿✿✿

data
✿✿✿

of
✿✿

17
✿✿✿✿✿✿✿

gauging
✿✿✿✿✿✿✿

stations
✿✿✿✿✿✿✿✿✿✿✿

(1971-2013)
✿✿✿

are
✿✿✿✿✿✿

applied
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

HT-approach.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿

of
✿✿✿

the5

✿✿✿✿✿✿

WeGen
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿

daily
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

1971-2013
✿✿✿

for
✿✿✿

45
✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿

stations
✿✿✿✿

(c.f.
✿✿✿✿✿

Figure
✿✿✿

1).
✿✿✿

At
✿✿✿✿✿✿

hourly
✿✿✿✿

time

✿✿✿✿

steps
✿✿✿✿

data
✿✿

for
✿✿✿✿

only
✿✿✿

23
✿✿✿✿

sites
✿✿✿✿✿✿

starting
✿✿✿✿✿

from
✿✿✿✿

2001
✿✿✿

are
✿✿✿✿✿✿✿✿

available.
✿✿✿✿✿✿✿

Stations
✿✿✿✿✿✿

without
✿✿✿✿✿✿

hourly
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿✿

interpolated
✿✿

by
✿✿✿

an
✿✿✿✿✿✿

inverse

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

distance-weighting
✿✿✿✿✿✿✿

scheme
✿✿✿

(for
✿✿✿✿✿✿

details
✿✿✿

see
✿✿✿✿✿✿

Winter
✿✿

et
✿✿

al.
✿✿✿✿✿

2019
✿

).
✿

3.1 Hazard Module I: HT-model

The Hazard module generates time series of spatially distributed synthetic flood events. In the first approach, we apply the10

conditional extreme value model (HT-model) proposed by Heffernan and Tawn (2004) to peak flows. In this approach, flood

events are understood as a set of spatially consistent peak discharges at multiple locations of stream gauges. Spatial consistency

is ensured by considering the correlation structure of peak flows from the past observation period. Discharge time series at 17

4



Figure 2. Flowchart of the
✿✿✿✿✿✿

PRAMo flood risk model including two different approaches for flood event generation.

gauges across the study area are used to parameterise the HT-model. In the first step, the observed data are standardised by

a marginal model to a Laplace distribution. In the second step, the dependency between the stations is modelled for the case

that peak flow at one station is above a certain threshold. According to Lamb et al. (2010), the HT-model can be interpreted as

a multi-site peak-over-threshold approach. Due to strong seasonality of streamflow in Vorarlberg, the HT-model is separately

parameterised for winter and summer periods (Schneeberger and Steinberger, 2018).5

For the set of synthetic flood peaks at each of the 17 gauge locations we estimate the return period based on the Generalized

Extreme Value (GEV). A flood event is characterised by exceedance of a certain streamflow at a single or multiple location

with a defined time period. As threshold for defining a widespread flood event, a return period of 30 years was selected in the

present study. The output of the HT-model in terms of synthetic flood peaks is available at the locations of gauging stations.

Hence, for the river segments without observations, the flows and their respective return periods need to be estimated. We apply10

the top-kriging approach (Skøien et al., 2006) for the spatial interpolation of model results to the entire river network. This

method takes into account the nested structure of river catchments which makes the results more robust compared to traditional

regional regression based approaches (Laaha et al., 2014; Archfield et al., 2013). A more detailed description of the HT-model

is provided in Schneeberger and Steinberger (2018) and Schneeberger et al. (2019).
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3.2 Hazard Module II: WeGen

The second approach is based on a stochastic weather generator used to drive a hydrological model. Long-term daily precipita-

tion and temperature series are generated, with a multi-site, multi-variate weather generator based on the auto-regressive model

(Hundecha et al., 2009). Daily precipitation amounts are generated from mixed gamma and generalised Pareto distributions

fitted to individual weather stations. The mixed distribution is shown to better capture extreme precipitation by
✿✿✿✿✿

while robustly5

modelling the bulk of precipitation amounts (Vrac and Naveau, 2007). In respect to seasonal patterns, the fitting is applied on

a monthly base. Occurrence and amount of precipitation are modelled considering the autocorrelation and inter-site correlation

structure. The mean temperature is then modelled conditioned to the simulated precipitation (Hundecha and Merz, 2012).

As the study area is characterised by mostly alpine topography with short catchment response times, the hydrological model

needs to be driven by meteorological input at sub-daily resolution to estimate realistic peak flows (e.g. Dastorani et al., 2013).10

A non-parametric k-nearest neighbour algorithm based on the method of fragments is applied to disaggregate the generated

daily values to hourly time steps (Winter et al., 2019). For a day to disaggregate, the generated daily values of temperature

and precipitation from the weather generator are compared against observed daily data at all stations. Subsequently, k-nearest

neighbours in terms of lowest euclidean distances between generated and observed daily values are selected. Next, one match-

ing day is randomly sampled from the selected neighbours and the corresponding relative temporal patterns from the match day15

are transferred to the input day (method of fragments). In contrast to the previous study (Winter et al., 2019), a centred moving

window of 30 days is applied instead of the identical months in order to restrict the search of possible matching days. The

modification increases the variability between the disaggregated days and reduces the maximum search distance on a temporal

scale, especially for days at the beginning and end of a month.

Following the generation of meteorological data at the locations of the weather stations, a spatial interpolation to continuous20

meteorological fields is necessary for the application of the rainfall-runoff model. Complex methods for spatial interpolation

can be applied (e.g. Goovaerts, 2000; Plouffe et al., 2015), however, for the long term simulation a computationally efficient

approach is needed. The interpolation was carried out by a inverse distance-weighting scheme including a step wise lapse rate

to account for the complex topography (Bavay and Egger, 2014).

Finally, the semi-distributed conceptual rainfall-runoff model HQsim is applied to simulate streamflow across all catchments25

of the study area (Kleindienst, 1996; Senfter et al., 2009; Achleitner et al., 2012).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kleindienst, 1996).
✿✿✿✿✿✿✿

HQsim
✿✿

is
✿✿✿✿✿✿

forced
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

data
✿✿✿

and
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿

previously
✿✿✿✿

used
✿✿

in
✿✿✿✿✿✿

various
✿✿✿✿✿✿

studies
✿✿

in
✿✿✿✿✿

alpine
✿✿✿✿✿✿✿✿

catchment
✿✿✿✿✿

areas
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Senfter et al., 2009; Achleitner

✿

. A simulated annealing algorithm is used for the model calibration against observed discharge data at the gauging stations (An-

drieu et al., 2003). From a long synthetic discharge series, relevant flood events are identified and extracted. For this, a flood

frequency analysis at all point
✿✿✿✿

points
✿

of interest based on fitting the GEV-distribution using the L-moments is carried out.30

Analogously to the HT-model approach, a threshold of ≥ 30
✿✿

30
✿

year return period, at least at one site across the study area

is applied to define relevant flood events. A more detailed description of the modelling chain, including the disaggregation

procedure, is given in Winter et al. (2019).
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3.3 Vulnerability Module

While the Hazard module computes the hydrological load, the Vulnerability module assesses the possible negative conse-

quences in terms of exposed objects and monetary damage. The module is based on the widely used approach of combining

the exposure and susceptibility of elements at risk in the inundated areas (Koivumäki et al., 2010; Merz et al., 2010; Huttenlau

and Stötter, 2011; Meyer et al., 2013; Cammerer et al., 2013; de Moel et al., 2015; Falter, 2016; Wagenaar et al., 2016). The5

module calculates losses for each community in the study area for a number of predefined return periods (or probabilities) (i.e.

RP = 30, 50, 100, 200 and 300 years).
✿✿✿

The
✿✿✿✿✿✿

results
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

Vulnerability
✿✿✿✿✿✿

module
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿✿

loss-probability
✿✿✿✿✿✿✿

relations
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿

community,

✿✿✿✿✿✿✿✿

describing
✿✿✿

the
✿✿✿✿✿✿✿✿

expected
✿✿✿✿✿✿✿

damage
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿

return
✿✿✿✿✿✿✿

periods.
✿✿

To
✿✿✿✿✿✿

derive
✿

a
✿✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿✿

relation,
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿✿

interpolation

✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

available
✿✿✿✿

data
✿✿✿✿✿✿

points
✿✿✿✿✿✿✿✿✿✿✿

(RP-damage)
✿✿

is
✿✿✿✿✿✿

applied.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿

loss-probability
✿✿✿✿✿✿✿✿

relations
✿✿✿

are
✿✿✿✿

used
✿✿

as
✿✿✿✿✿

input
✿✿

in
✿✿✿

the
✿✿✿✿

Risk
✿✿✿✿✿✿✿✿✿✿

Assessment

✿✿✿✿✿✿

Module
✿✿✿✿

and
✿✿✿✿✿✿✿✿

combined
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

return
✿✿✿✿✿✿

periods
✿✿✿✿✿✿✿

(Hazard
✿✿✿✿✿✿✿

Module)
✿✿

at
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿

community
✿✿

to
✿✿✿✿✿

derive
✿✿✿✿

risk
✿✿✿✿✿✿

curves.
✿

10

At the scale of a community (in average 28 km2), a homogeneous return period of hydrological load is assumed and

associated with the total community loss. For the loss calculation we use "official" inundation maps.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

inundation
✿✿✿✿✿

maps
✿✿✿

are

based on 1D hydrodynamic modelling in rural areas and 2D modelling in urban areas (IAWG, 2010), whereas the underlying

hydrological boundary conditions are based on the considerations of the
✿

.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

hydrodynamic

✿✿✿✿✿✿✿✿

simulation
✿✿✿✿

are
✿✿✿✿✿

taken
✿✿✿✿

from
✿✿✿

the
✿

Austrian flood risk zoning project HORA (Merz et al., 2008). To continuously describe the15

loss-probability relation for each community, a linear interpolated interpolation between available data points (damages) is

applied.

The estimation of monetary damage for the elements at risk is based on the relative damage functions combined with the

total asset values. A damage function describes the relative loss of value as a function of water depth (Merz et al., 2010). If

available, additional damage influencing parameters, such as flow velocity or contamination can be considered for damage20

assessment (Merz et al., 2013). In the present study, the
✿✿✿✿✿✿✿✿✿

accordance
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Schneeberger et al. (2019),
✿✿✿

the
✿✿✿✿

one parametric damage

model according to
✿✿

of
✿

Borter (1999) is applied
✿

in
✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿

study. The damage
✿✿✿✿✿

model
✿✿✿✿

was
✿✿✿✿✿✿✿

derived
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

Switzerland,
✿✿✿✿✿✿

which

✿

is
✿✿

a
✿✿✿✿✿

direct
✿✿✿✿✿✿✿✿✿

neighbour
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

Austrian
✿✿✿✿✿✿✿✿

province
✿✿✿✿✿✿✿✿✿

Vorarlberg
✿✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿✿

topography
✿✿✿✿

and
✿✿✿✿✿✿✿

building
✿✿✿✿✿✿✿✿✿

structure.
✿✿✿✿✿

More
✿✿✿✿✿✿✿

precise,

✿✿✿✿✿✿✿✿✿✿

site-specific
✿✿✿✿✿✿

damage
✿✿✿✿✿✿✿✿

functions
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿

the
✿✿✿✿

study
✿✿✿✿✿✿✿

region.

✿✿✿

The
✿✿✿✿✿✿✿

damage
✿

estimation is conducted on a single object basis for residential buildings only.
✿✿

To
✿✿✿✿✿✿

derive
✿✿✿

the
✿✿✿✿✿

flood
✿✿✿✿✿✿

losses,
✿✿✿

the25

✿✿✿✿✿✿✿

available
✿✿✿✿✿✿✿✿✿

inundation
✿✿✿✿✿

maps
✿✿✿✿

are
✿✿✿✿✿✿✿✿

combined
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿

asset
✿✿✿✿✿✿✿

datasets
✿✿✿✿

and
✿✿✿✿✿✿✿

damage
✿✿✿✿✿✿✿✿

function.
✿✿✿✿✿✿✿✿✿✿✿✿

Subsequently,
✿✿✿

the
✿✿✿✿✿✿

object
✿✿✿✿✿

based
✿✿✿✿

loss

✿✿✿

data
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

aggregated
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿

community.
✿

The absolute building values
✿✿✿✿✿✿✿

indexed
✿✿

to
✿✿✿✿✿

2013
✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

construction
✿✿✿✿✿

price

✿✿✿✿

index
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Statistik Austria, 2019) are derived by calculating mean cubature values from local insurance data
✿

, and transferred to

the entire building stock of the study area (Huttenlau et al., 2015). Since derived values are based on insurance data, they are

consequently defined as replacement values.30

3.4 Risk Assessment Module

The risk assessment module brings together the results of the hazard and vulnerability modules to generate a time series of

losses and calculates the resulting risk curve for the area of interest (Schneeberger et al., 2019). In order to combine the
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results, each spatial unit (community) is represented by a defined model node point at the river network. For each generated

heterogeneous flood scenario, the recurrence intervals are derived for all model node points (hazard module) and combined

with the respective loss-probability relation to compute losses (vulnerability module). By integrating the losses at all model

node points,
✿✿✿

i.e.
✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

community,
✿✿✿

the
✿✿✿✿

total
✿✿✿✿

loss
✿✿✿

for every generated event can be evaluated and
✿✿✿✿✿✿✿✿

calculated.
✿✿✿

By
✿✿✿✿✿✿✿✿✿

evaluating
✿✿✿

the

✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿

modelled
✿✿✿✿

time
✿✿✿✿✿

series
✿✿

of
✿✿✿✿✿✿

events a continuous time series of losses
✿✿✿✿✿✿

damage
✿

is generated. Finally, the time series of damage5

can be statistical
✿✿✿✿✿✿✿✿✿

statistically analysed to derive the expected annual damage (EAD) and to construct risk curves (Schneeberger

et al., 2019).
✿✿✿✿✿

More
✿✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

Vulnerability
✿✿✿✿

and
✿✿✿✿

Risk
✿✿✿✿✿✿✿✿✿✿

Assessment
✿✿✿✿✿✿✿

Module,
✿✿✿✿✿✿✿✿

including
✿

a
✿✿✿✿✿✿✿✿✿

schematic
✿✿✿✿✿✿✿✿

overview

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

module
✿✿✿✿✿✿✿✿✿

interaction
✿✿

is
✿✿✿✿✿✿✿✿

provided
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Schneeberger et al. (2019)
✿

.

3.5 Assessment of spatial coherence of generated events

A core element of the probabilistic flood risk model is the generation of plausible, spatially heterogeneous flood events. To10

investigate the spatial coherence of synthetic events generated by two different approaches, two spatial dependence measures

proposed by Keef et al. (2009) are applied. The first measure Pi,j(p) describes the probability that a dependent site i exceeds

a certain thresholdgiven,
✿

,
✿✿✿✿✿

given that a conditional site j is exceeding a threshold qp(Qj) as well:

Pi,j(p) = Pr(Qi > qp(Qi)|Qj > qp(Qj)), (1)

where (p) is the level of extremeness (quantile) and Qi and Qj are the dependent and conditioned runoff series, respectively.15

The calculation of the thresholds are based on a three day block maxima, which was found to be appropriate in this region

(Schneeberger and Steinberger, 2018). The second spatial dependence measure Nj(p), is an overall summary metric and

describes the average probability of all dependent sites i to be high, given that the conditional site j is high, defined as:

Nj(p) =

∑
i 6=j Pr(Qi > qp(Qi)|Qj > qp(Qj))

n− 1
(2)

In case of the WeGen approach the dependence metrices
✿✿✿✿✿✿✿

matrices were computed for the peak discharges at the gauging20

station locations resulting from the combined simulations of the weather generator and rainfall-runoff model.

4 Results

4.1
✿✿✿✿✿✿✿✿✿

Simulation
✿✿✿✿✿✿✿

Results
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Continuous
✿✿✿✿✿✿✿✿✿

Modelling
✿✿✿✿✿✿✿✿✿

Approach
✿✿✿✿✿✿✿✿✿

(WeGen)

✿✿

To
✿✿✿✿✿✿

assess
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿✿

extreme
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

of
✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿

data
✿✿✿

are
✿✿✿✿✿✿✿✿

compared
✿✿✿

to

✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

station
✿✿✿✿

data
✿✿✿✿✿✿

(daily:
✿✿✿✿✿✿✿✿✿✿✿

1971–2013;
✿✿✿✿✿✿

hourly
✿✿✿✿✿✿✿✿✿✿

2001–2013)
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

weather
✿✿✿✿✿✿✿✿✿

generator
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

disaggregation
✿✿✿✿✿✿✿✿✿

procedure.
✿✿✿✿

The25

✿✿✿✿✿✿

median
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿

range
✿✿✿✿✿✿✿✿✿✿

represented
✿✿✿

by
✿✿✿

the
✿✿✿

5%
✿✿✿✿

and
✿✿✿✿

95%
✿✿✿✿✿✿✿✿

quantiles
✿✿

of
✿✿✿✿

100
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

realizations
✿✿✿

are
✿✿✿✿✿✿✿✿

compared
✿✿✿

to
✿✿✿

the

✿✿✿✿✿✿✿

observed
✿✿✿✿✿

data.
✿✿✿✿✿✿

Figure
✿✿

3a
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿

for
✿✿✿✿

99%
✿✿✿✿✿✿✿✿

quantile
✿✿

of
✿✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

(wet
✿✿✿✿✿

days)
✿✿✿

for
✿✿✿

all
✿✿

45
✿✿✿✿✿✿

station
✿✿✿✿

and
✿✿✿✿✿✿

spring

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(MAR-APR-MAY),
✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(JUN-JUL-AUG)
✿✿✿

and
✿✿✿✿✿✿✿

autumn
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(SEP-OCT-NOV).
✿✿

In
✿✿✿✿✿✿✿

general,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

observed

8



✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

is
✿✿✿✿

well
✿✿✿✿✿✿✿✿✿✿

reproduced
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

weather
✿✿✿✿✿✿✿✿

generator.
✿✿✿

A
✿✿✿

few
✿✿✿✿✿✿✿✿

stations,
✿✿✿✿✿✿✿✿

however,
✿✿✿✿✿

show
✿✿

a
✿✿✿✿✿

slight
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimation

✿✿

in
✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿✿

(mainly
✿✿✿✿

June
✿✿✿✿

and
✿✿✿✿✿✿✿

August).
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿

results
✿✿✿

for
✿✿✿

all
✿✿✿✿✿✿✿

months
✿✿✿✿✿✿✿✿

separately
✿✿✿✿✿✿✿✿✿

including
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿

and
✿✿✿✿✿✿✿✿✿

minimum

✿✿✿✿✿✿✿✿

simulated
✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿

are
✿✿✿✿✿✿✿

provided
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Winter et al. (2019).
✿✿✿

To
✿✿✿✿✿✿✿

validate
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

disaggregation
✿✿✿✿✿✿✿✿✿

procedure,
✿✿

the
✿✿✿✿✿✿

hourly
✿✿✿✿

data
✿✿✿

are

✿✿✿

first
✿✿✿✿✿✿✿✿✿

aggregated
✿✿✿

to
✿✿✿✿

daily
✿✿✿✿

data
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

subsequently
✿✿✿✿✿✿✿✿✿✿✿✿

disaggregated
✿✿✿✿

back
✿✿✿

to
✿✿✿✿✿

hourly
✿✿✿✿✿

time
✿✿✿✿✿

steps.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

disaggregated

✿✿✿✿✿✿✿✿✿✿✿

precipitation,
✿✿✿✿✿

99%,
✿✿✿✿✿✿

99.9%
✿✿✿

and
✿✿✿✿✿✿✿

99.95%
✿✿✿✿✿✿✿✿

quantiles
✿✿✿

are
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

values.
✿✿✿✿

The
✿✿✿✿✿✿

results
✿✿✿

for
✿✿✿✿

the5

✿✿✿✿✿

99.9%
✿✿✿✿✿✿✿

quantile
✿✿✿✿✿

show
✿

a
✿✿✿✿✿

good
✿✿✿✿✿✿✿✿

agreement
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

observed
✿✿✿

and
✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿✿

intensities
✿✿✿

for
✿✿✿

the
✿✿✿✿

three
✿✿✿✿✿✿✿✿

analysed
✿✿✿✿✿✿

rainfall

✿✿✿✿✿✿✿

durations
✿✿

1,
✿✿

3
✿✿✿

and
✿✿

6
✿✿✿✿✿

hours
✿✿✿✿✿✿

(Figure
✿✿✿✿

3b).
✿✿✿✿✿✿

Results
✿✿✿

for
✿✿✿

the
✿✿✿✿

99%
✿✿✿✿

and
✿✿✿✿✿✿

99.95%
✿✿✿✿✿✿✿

quantile
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Winter et al. (2019)
✿

.

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

rainfall-runoff
✿✿✿✿✿

model
✿✿

is
✿✿✿✿✿✿✿✿

calibrated
✿✿✿✿✿✿✿✿✿✿✿

(2001-2007)
✿✿✿

and
✿✿✿✿✿✿✿✿

validated
✿✿✿✿✿✿✿✿✿✿

(2008-2013)
✿✿

in
✿✿✿✿✿✿✿

classical
✿✿✿✿✿✿✿✿✿✿

split-sample
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿✿✿✿✿✿✿✿

(Klemeš, 1986)

✿✿

for
✿✿✿

all
✿✿✿✿✿✿✿✿✿

catchments
✿✿

of
✿✿✿

the
✿✿✿✿✿

study
✿✿✿

area
✿✿✿✿✿✿

against
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

river
✿✿✿✿✿✿✿

gauging
✿✿✿✿

data.
✿✿✿

On
✿✿✿✿✿✿✿

average,
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

Nash-Sutcliffe
✿✿✿✿✿✿✿✿

efficiency
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(NSE; Nash and Sutcliffe, 1970)

✿✿

of
✿✿✿✿

0.68
✿✿✿

and
✿✿✿✿

0.67
✿✿✿✿

and
✿

a
✿✿✿✿✿✿✿✿✿✿✿

Kling-Gupta
✿✿✿✿✿✿✿✿

efficiency
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(KGE; Kling et al., 2012)
✿

of
✿✿✿✿

0.75
✿✿✿✿

and
✿✿✿✿

0.74
✿✿✿

are
✿✿✿✿✿✿✿

achieved
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿

and10

✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿✿

periods,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿✿✿✿

Detailed
✿✿✿✿✿✿

results
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿✿✿✿

catchments,
✿✿✿✿✿✿✿✿

including
✿

a
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

of
✿✿✿✿✿

design
✿✿✿✿✿

flood
✿✿✿✿✿✿✿✿

estimates

✿✿✿✿

with
✿

a
✿✿✿✿✿

flood
✿✿✿✿✿✿✿✿

frequency
✿✿✿✿✿✿✿

analysis
✿✿✿

and
✿✿

a
✿✿✿✿✿

design
✿✿✿✿✿✿

storm
✿✿✿✿✿✿✿

approach
✿✿✿

are
✿✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Winter et al. (2019)
✿

.

4.2 Spatial Patterns of Generated Flood Events

For the analysis of spatial coherence, 100 simulations using each of the two event generation approaches (HT-model and

WeGen) were carried out. Each simulations
✿✿✿✿✿✿✿✿

simulation
✿

comprised 42 years of data corresponding to the length of the ob-15

served discharge series. Figure 4 illustrates exemplary results for four gauging stations and both methods. Each plot shows

the dependence measure between the two stations depicted on the maps in the principal diagonal. The
✿✿✿✿✿

gauge
✿✿✿✿✿✿✿✿✿✿

Kennelbach
✿✿✿✿

and

✿✿✿✿✿✿✿

Gisingen
✿✿✿

are
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿✿✿

catchments
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

study
✿✿✿✿

area
✿✿✿✿✿

(about
✿✿✿✿✿

80%
✿✿

of
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿

area).
✿✿✿✿

The
✿✿✿✿✿✿✿✿

examples
✿✿✿✿✿✿✿

Schruns
✿✿✿

and
✿✿✿✿✿

Thal
✿✿✿

are

✿✿✿✿✿✿✿✿✿✿✿✿

subcatchments
✿✿

of
✿✿✿✿✿✿✿✿

Gisingen
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

Kennelbach,
✿✿✿✿✿✿✿✿✿✿

respectively
✿✿✿

and
✿✿✿✿

thus
✿✿✿✿✿✿✿✿

represent
✿✿✿✿

two
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿

related
✿✿✿✿✿

gauge
✿✿✿✿✿

pairs.
✿✿✿✿

The measure is

calculated for discharge values with exceedance probability between p= 0.99 and p= 0.997, above which the data are to
✿✿✿

too20

few (n < 15) to calculate a meaningful Pi,j value.
✿✿✿✿✿

Based
✿✿

on
✿✿✿✿

the
✿✿✿✿✿✿✿✿

empirical
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

3-day
✿✿✿✿✿

block
✿✿✿✿✿✿✿

maxima

✿✿✿✿✿

series,
✿✿

a
✿✿✿✿✿✿

p-value
✿✿

of
✿✿✿✿✿

0.99
✿✿✿✿✿

refers
✿✿

to
✿

a
✿✿✿✿✿✿

return
✿✿✿✿✿

period
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿

1
✿✿✿✿

year
✿✿✿

and
✿✿

a
✿✿✿✿✿✿

p-value
✿✿

of
✿✿✿✿✿✿

0.997
✿✿✿✿✿

refers
✿✿

to
✿

a
✿✿✿✿✿✿

return
✿✿✿✿✿

period
✿✿✿

of

✿✿✿✿✿✿

roughly
✿✿

3
✿✿✿✿✿

years.

In general, the spatial dependence declines with the level of extremeness. For more extreme runoff situations, the dependence

structure is less stable and represented by
✿✿✿✿✿

prone
✿✿

to a large variability. The HT-model results in the lower triangle , reproduce25

the observed spatial patterns between the stations well. The observed measure is in ≈ 90% of the cases inside the simulated

data range (2.5− 97.5
✿✿✿✿✿✿✿✿✿✿

2.5− 97.5%
✿

quantile). The results of the WeGen approach follows
✿✿✿✿✿

follow the general observed patterns

of lower dependence (e.g. Pi,j(p)≈ 0.2 for Thal (2) vs. Schruns (4)) and higher dependence (e.g. Pi,j(p)≈ 0.5 Kennelbach

(1) vs. Thal (2)), however,
✿

.
✿✿✿✿✿✿✿✿

However,
✿

the results are biased towards a higher dependence, such that only half of the results

correspond well to the observed data.30

To analyse the dependence structure of high flows across the study area, the summary measure Nj(p) was
✿

is
✿

calculated for

all node points corresponding to different communities. The measure was
✿

is calculated for p values corresponding to the 1-year,

10-year and 100-year return period. The
✿✿

As
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simulation
✿✿

of
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿

approaches
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿

limited
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

length
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

observed

✿✿✿✿

data,
✿✿✿

the
✿

results are based on the median of 30 repetitions
✿✿✿✿✿✿✿✿✿✿

realizations of 1000 years of HT-model and WeGen simulations
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Figure 3.
✿✿✿✿✿✿✿✿

Validation
✿✿✿✿✿

results
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

weather
✿✿✿✿✿✿✿

generator
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

revised
✿✿✿✿✿✿✿✿✿✿✿

disaggregation
✿✿✿✿✿✿✿✿

procedure
✿✿

for
✿✿

all
✿✿✿✿✿✿

stations
✿✿✿✿✿✿✿✿

(n= 45).
✿✿✿

The
✿✿✿✿

bars
✿✿✿✿✿✿✿

represent

✿✿

the
✿✿✿✿✿✿

median
✿✿✿

and
✿✿✿

the
✿✿

5
✿

to
✿✿✿✿

95%
✿✿✿✿✿✿✿

quantile
✿✿✿✿

range
✿✿

of
✿✿✿✿

100
✿✿✿✿✿✿✿✿✿

realizations
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

weather
✿✿✿✿✿✿✿✿

generator
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

disaggregation.
✿✿

a)
✿✿✿✿✿✿✿

Weather
✿✿✿✿✿✿✿✿

generator:
✿✿✿✿

99%

✿✿✿✿✿✿

quantile
✿✿

of
✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

for
✿✿✿✿✿✿✿✿

generated
✿✿✿

data
✿✿✿✿✿✿✿✿

compared
✿✿✿✿

with
✿✿✿✿✿✿✿

observed
✿✿✿

data
✿✿✿

for
✿✿✿✿✿✿

spring,
✿✿✿✿✿✿

summer
✿✿✿

and
✿✿✿✿✿✿

autumn.
✿✿✿

b)
✿✿✿✿✿✿✿✿✿✿✿✿

Disaggregation:
✿✿✿✿✿

99.9%

✿✿✿✿✿✿

quantile
✿✿

of
✿✿

13
✿✿✿✿

years
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

disaggregated
✿✿✿

data
✿✿

is
✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿✿✿

observed
✿✿✿✿

data,
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

sum
✿✿

of
✿✿

1,
✿

3
✿✿✿

and
✿✿

6
✿

h
✿✿✿✿✿✿✿

duration.

(Figure 5). The decline of spatial dependence towards higher return periods is shown for both
✿✿✿✿✿

length
✿✿

is
✿✿✿✿✿✿

chosen
✿✿

to
✿✿✿

be
✿✿

far
✿✿✿✿✿✿

above

✿✿

the
✿✿✿✿✿✿✿

highest
✿✿✿✿✿

return
✿✿✿✿✿✿

period
✿✿

of
✿✿✿✿✿✿✿✿

available
✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿✿✿✿✿✿

inundation
✿✿✿✿

data
✿✿✿✿✿✿✿✿

(RP300)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿

30
✿✿✿✿✿✿✿✿✿

realizations
✿✿

is
✿✿✿✿✿✿✿

dictated
✿✿✿

by

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿✿✿✿

limitations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿✿✿✿

simulation
✿✿

on
✿✿✿

an
✿✿✿✿✿✿

hourly
✿✿✿✿

time
✿✿✿✿

step.
✿✿✿✿

Both
✿

approaches (see Figure 5 a-c)
✿✿✿✿

show
✿✿

a

✿✿✿✿✿✿

decline
✿✿

of
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

dependence
✿✿✿✿✿✿

towards
✿✿✿✿✿✿

higher
✿✿✿✿✿

return
✿✿✿✿✿✿✿

periods. The general patterns of lower spatial dependence in the southern

part of the study area and of the individual northern catchments is visible. The node points downstream are characterised by5

a higher dependence. For high return period of 100 years (Figure 5 c)
✿

, the simulated spatial dependence is higher for the HT-

model than
✿✿

for
✿✿✿

the WeGen results in contrast to the findings for
✿✿

the
✿

lower return periods. The results are regionally different.

Whereas the dependence measure is higher for the HT-model in the western part of the study area, the north-eastern catchments

show higher degree of dependence for the WeGen approach.
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Figure 4. Comparison of observed (42 years) and simulated conditioned exceedance probability Pi,j(p). The range of the simulated results

is based on 42 years of simulation with 100 repetitions
✿✿✿✿✿✿✿✿

realizations. The plots in the lower triangle correspond to the HT model, whereas

those in the upper triangle show the WeGen results.

4.3 Comparison of risk curves

To compare the effect of the two approaches of synthetic event generation on the overall estimated loss, flood risk curves are

calculated. Confidence intervals are derived based on 30 repetitions
✿✿✿✿✿✿✿✿✿

realizations of 1000-year simulations. Furthermore, the risk

curve based on the assumption of homogeneous return period floods across all catchments is derived based on 5 inundation

maps corresponding to the return periods between 30 and 300 years. The two synthetic event generators result in a comparable5

range of overall estimated flood risk (see Figure 6). The WeGen approach systematically overestimates the risk computed by

11



Figure 5. Spatial dependence measure Nj(p) for the community node points at the river network and three different levels of severity
✿✿✿✿✿

return

✿✿✿✿✿

periods. The results show the median for the HT-model and WeGen approach based on 30 repetitions
✿✿✿✿✿✿✿✿

realizations
✿

of 1000 years simula-

tion.(Map sources: Produced using Copernicus data and information funded by the European Union - EU-DEM layers.)

the HT-model. The relative difference between the estimated median values (WeGen−HT−model
WeGen ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(WeGen−HTm)/WeGen)

is approximately 17.5%. The uncertainty increases with increasing return period of damage
✿✿✿✿✿✿✿✿

alongside
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

extrapolation
✿✿

of
✿✿✿

the

✿✿✿✿

input
✿✿✿✿

time
✿✿✿✿✿

series. On average 172 damage events are generated per 1000 years of simulation in the WeGen approach compared

to about 167 for the HT-model. Both approaches show a significant lower damages
✿✿✿✿✿✿

damage
✿

in comparison to the assumption of

the homogeneous return
✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿✿✿✿✿

scenarios
✿✿✿

for
✿✿✿✿✿✿✿

specific
✿✿✿✿✿

return
✿✿✿✿✿✿

periods. The estimated damage of a homogeneous 100-year5

flood scenario is ≈50% above the HT-model results and still 40% above the WeGen approach.

The sets of generated heterogeneous flood events reflect a large variability of plausible spatial patterns. Hence the estimated

flood risk is the result of a combination of these patterns. Figure 7 shows multiple examples of generated flood events corre-

sponding to an estimated damage of 100±1 million Euro for both model approaches. The general severity in terms of flood

hazard (without consideration of flood risk) is given by the Unit of Flood Hazard (UoFH). The measure UoFH is a simple10

proxy of hazard severity defined as the total number of sites at which the threshold of 30 years return period is exceeded

(Schneeberger et al., 2019). Even though, the selected severity of displayed flood event is rather high, some of the generated

events are still spatially limited. The event with the lowest UoFH of 46 corresponds to ≈ 50% of all sites exceeding the
✿✿✿✿✿✿

30-year

threshold. The most widespread event corresponds to ≈ 90% of exceeding sites (UoFH
✿✿✿✿✿✿

(UoFH=77).
✿✿

77)
✿✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿✿✿✿✿

about

✿✿✿✿

90%
✿✿

of
✿✿✿

the
✿✿✿✿

sites
✿✿✿✿✿✿✿✿✿

exceeding
✿✿✿

the
✿✿✿✿✿✿✿✿✿

threshold.
✿✿✿✿

This
✿✿✿✿✿✿

result
✿✿✿✿✿✿

reflects
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿✿

distributions
✿✿

of
✿✿✿✿✿✿✿✿

elements
✿✿

at
✿✿✿✿

risk
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿✿✿

settlement15

✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿✿

alongside
✿✿✿

the
✿✿✿✿✿

larger
✿✿✿✿✿

valley
✿✿✿✿✿

areas
✿✿

in
✿✿✿

the
✿✿✿✿✿

study
✿✿✿✿

area
✿✿✿✿

(c.f.
✿✿✿✿✿

Figure
✿✿✿

1).
✿✿✿✿✿

Thus,
✿✿✿

the
✿✿✿✿✿✿✿

damage
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿

to
✿✿

an
✿✿✿✿✿

event
✿✿

is
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Figure 6. Risk curves for WeGen and HT-model approach in comparison to the results of a homogeneous scenario. The median and quantile

confidence intervals are based on 30 repetitions
✿✿✿✿✿✿✿✿

realizations of 1000 years of simulation.
✿✿✿✿✿✿✿

Monetary
✿✿✿✿✿

values
✿✿✿

are
✿✿✿✿✿✿✿✿

normalized
✿✿

to
✿✿✿

the
✿✿✿

year
✿✿✿✿✿

2013.

✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿✿

influenced
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

region
✿✿✿✿✿✿✿✿

affected.
✿

If
✿✿✿

the
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

is
✿✿✿✿✿✿✿✿

conducted
✿✿✿

on
✿✿✿✿✿✿

hazard
✿✿✿✿

level
✿✿✿✿

only,
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿✿✿✿

widespread

✿✿✿✿

flood
✿✿✿✿✿✿

events
✿✿✿✿

may
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿✿

overestimated,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿

limited
✿✿✿✿✿✿

events
✿✿

in
✿✿✿✿✿✿

densely
✿✿✿✿✿✿✿✿✿

populated
✿✿✿✿

areas
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimated.
✿

5 Discussion

Both approaches, the HT-model and the WeGen approach, simulate a complex spatially heterogeneous patterns of synthetic

flood events. In the present study, the HT-model outperforms the WeGen approach in terms of reproducing the observed5

dependence patterns of peak flows at the gauging stations. The HT-model makes use of the observed river gauging data and

models their dependence structure directly. On
✿✿✿

the contrary, the WeGen approach models the dependence structure only indirect

✿✿✿✿✿✿✿✿

indirectly based on the meteorological input data.

The overall river network and especially small tributaries with no explicitly river gauging stations
✿✿✿✿✿✿✿

ungauged
✿✿✿✿✿✿✿✿✿

tributaries
✿

do

however rely on the top-kriging interpolation in case of the HT-model approach and are not able to react independently to the10

larger river system. This explains the higher dependence structure on the community node points, while at the river gauges the

results do correspond well to the observed values. Nevertheless, in both cases the feature
✿✿✿✿✿✿✿✿

capability to capture spatial effects of

a certain spatial scale is in the end depending
✿✿✿✿✿✿

depends
✿

on the density of the measuring network and its data quality.

13



Figure 7. Examples of flood events with an estimated flood damage of 100±1 million Euro flood damage for HT-model and WeGen approach.

The general severity of flood events is characterised by the Unit of Flood Hazard (UoFH).

The WeGen approach seems to overestimate the overall spatial dependence in the study area in comparison to the observed

values. This was also found in a previous study, comparing a different set of gauging stations (Winter et al., 2019). One possible

reason could
✿✿

be, the spatial interpolation of the meteorological data by the rather simple IDW-approach, without consideration

of shading effects etc. and the rather short length of hourly input data for the disaggregation procedure might effect
✿✿✿✿✿

affect the

spatial patterns towards a stronger dependence. More importantly, the WeGen model itself seems to overestimate the depen-5

dence between stations particularly for higher return period thresholds. This is in line with the results of the recent evaluation

of the weather generator (Ullrich et al., 2019), which suggest an overestimation of correlation of extreme precipitation between

individual stations leading to an overall estimation
✿✿✿✿✿✿✿✿✿✿✿✿

overestimation of areal rainfall. The correlation structure of the weather

generator is fitted on a monthly base, independently of the rainfall intensities and thus does mix low intensity large scale rain-

falls and rather regional
✿✿✿✿

small
✿

scale convective events. The simulated stronger spatial dependence in certain parts
✿✿✿✿✿

areas with10

high damage potential also contributes to the higher flood risk estimate of
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

WeGen
✿✿✿✿✿✿✿✿

approach.
✿

✿✿✿✿

Only
✿✿✿✿

one
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿✿✿✿

combination
✿✿✿

of
✿✿✿✿✿✿✿

weather
✿✿✿✿✿✿✿✿

generator,
✿✿✿✿✿✿✿✿✿✿✿✿✿

disaggregation
✿✿✿✿✿✿✿✿

procedure
✿✿✿✿

and
✿✿✿✿✿✿

rainfall
✿✿✿✿✿✿

runoff
✿✿✿✿✿

model
✿✿✿✿

was
✿✿✿✿✿✿✿

applied
✿✿✿

for

the WeGen approach.
✿✿✿✿

Thus,
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

application
✿✿

of
✿✿✿

an
✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿✿✿

weather
✿✿✿✿✿✿✿✿

generator
✿✿✿✿

with
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿✿

spatial

✿✿✿✿✿✿✿✿✿

dependence
✿✿✿

or
✿✿✿

tail
✿✿✿✿✿✿✿✿✿✿

distribution,
✿✿✿

the
✿✿✿✿✿✿✿

resulting
✿✿✿✿

risk
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

may
✿✿✿✿✿✿✿

change.
✿✿✿✿

This
✿✿✿✿✿

counts
✿✿✿

as
✿✿✿✿

well
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

application
✿✿

of
✿✿

an
✿✿✿✿✿✿✿✿

different

✿✿✿✿✿✿

rainfall
✿✿✿✿✿

runoff
✿✿✿✿✿✿

model
✿✿

or
✿✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿✿✿✿✿✿✿✿

disaggregation
✿✿✿✿✿✿✿✿

procedure
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Müller-Thomy et al., 2018).
✿✿✿✿✿

Thus,
✿✿✿

the
✿✿✿✿✿

result
✿✿

of
✿✿

a
✿✿✿✿✿

higher
✿✿✿✿

risk15

✿✿✿✿✿✿✿

estimate
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

WeGen
✿✿✿✿✿✿✿✿

approach
✿✿

in
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿

the
✿✿✿

HT
✿✿✿✿✿✿✿✿

approach
✿✿✿

can
✿✿✿

not
✿✿

be
✿✿✿✿✿✿✿✿✿✿

generalized
✿✿

to
✿✿✿✿✿

other
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿

combinations.

Both approaches for synthetic event generation differ substantially in terms of estimated damage from the one assuming a

uniform return period across the whole study area (Figure 6). The flood losses for individual return periods above the 30-year
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threshold under the homogeneous assumption are largely overestimated. This result confirms the necessity to take heteroge-

neous spatial patterns into account. An event where every community in the study area is affected by discharges exceeding the

30-year return period during a single event is rare. Based on total of 30000 years of simulation less then 10% of the commu-

nities experience losses simultaneously in more than 50% of events (Figure 8). It can be expected that with increasing spatial

scale, the likelihood that a large number of communities will experience high return period discharges and losses in a single5

event will decrease
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Metin et al., 2020). Therefore, generation of spatially consistent heterogeneous flood events is particularly

important with increasing spatial scale. On the contrary
✿✿

At
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

time, considering dependence of meteorological and hy-

drological variables at multiple locations with increasing scale and increasing number of dependent locations becomes
✿✿✿✿

more

challenging.

Figure 8. Relative number of flood events exceeding a 30-year flood threshold and corresponding relative number of affected communities.

The results are based on 30000 years of simulation.

A fundamental difference between the two approaches resides in the way of considering the hydrological processes. The10

HT-model takes a purely statistical approach by analysing the dependence of peak discharges above a certain threshold. It

does not explicitly consider hydrological processes which generate extremes. For instance, the non-linearity of catchment re-

sponse is not explicitly taken into account, but only so far it is imprinted in the previously observed peaks used for model

parameterisation. The combination of the weather generator and rainfall-runoff modelling describes the hydrological pro-

cesses in a spatially consistent and time continuous way. Hence, the effect of soil moisture accumulation and pre-event catch-15

ment conditions are explicitly modelled. Furthermore, a
✿✿

By
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

application
✿✿✿

of
✿

a
✿✿✿✿✿

fully
✿✿✿✿✿✿✿✿✿✿

distributed,
✿✿✿✿✿✿✿✿✿

physically
✿✿✿✿✿

based
✿✿✿✿✿✿

model

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿✿

description
✿✿✿✿✿

could
✿✿✿✿✿

even
✿✿

be
✿✿✿✿✿✿✿✿

improved
✿✿✿

for
✿✿✿✿✿✿✿✿

example
✿✿

by
✿✿✿✿✿✿✿

solving
✿✿✿

full
✿✿✿✿✿✿

energy
✿✿✿✿✿✿✿

balance
✿✿✿✿✿✿✿✿

equations
✿✿✿

for
✿✿✿✿✿

snow

✿✿✿✿

melt
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspiration
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Förster et al., 2014, 2018).
✿✿✿✿

On
✿✿✿

the
✿✿✿✿✿✿✿✿✿

downside,
✿

a
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

complexity
✿✿✿✿✿✿

might
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✿✿✿✿✿✿✿✿✿✿

compromise
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿✿✿✿✿✿

identifiability,
✿✿✿✿✿✿✿

increase
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿

effort
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿

burden
✿✿✿

and
✿✿✿✿✿✿✿

increase
✿✿✿✿✿

input
✿✿✿✿

data

✿✿✿✿✿✿

demand
✿✿✿✿✿✿✿✿✿✿✿✿

(temperature,
✿✿✿✿✿✿✿✿✿✿✿

precipitation,
✿✿✿✿✿✿✿✿

radiation,
✿✿✿✿✿✿✿

humidity
✿✿✿✿

and
✿✿✿✿

wind
✿✿✿✿✿✿✿

speed).

✿✿

In
✿✿✿✿✿✿

general,
✿

continuous hydrological modelling generates full hydrographs at all locations that allows for direct coupling with

hydraulic models as for example applied in Falter et al. (2015) and Falter (2016).
✿✿✿

The
✿✿✿✿✿

direct
✿✿✿✿✿✿✿

coupling
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

WeGen
✿✿✿✿✿✿✿✿

approach

✿✿✿✿

with
✿

a
✿✿✿✿✿✿

1D-2D
✿✿✿✿✿✿✿✿✿✿✿✿✿

hydrodynamic
✿✿✿✿✿

model
✿✿✿✿✿✿

would
✿✿✿✿

also
✿✿✿✿✿

allow
✿✿

to
✿✿✿✿✿✿✿✿

consider
✿✿✿✿✿✿✿✿✿✿✿✿

hydrodynamic
✿✿✿✿✿✿✿✿✿✿

interactions
✿✿

in
✿✿✿

the
✿✿✿✿✿

river
✿✿✿✿✿✿✿

network
✿✿✿

and
✿✿✿✿✿

their5

✿✿✿✿✿✿✿

possible
✿✿✿✿✿

affect
✿✿

on
✿✿✿

the
✿✿✿✿

risk
✿✿✿✿✿✿✿✿

estimates.
✿✿✿✿

This
✿✿✿✿

may
✿✿✿

for
✿✿✿✿✿✿✿✿

example
✿✿

be
✿✿✿

the
✿✿✿✿✿✿✿✿

reduction
✿✿✿

of
✿✿✿

risk
✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿

due
✿✿

to
✿✿✿✿

dike
✿✿✿✿✿✿✿✿✿✿

overtopping
✿✿✿✿

and

✿✿✿✿✿

failure
✿✿✿✿✿✿✿✿✿

upstream. In case of the HT-model, only peak discharge of events is estimated, not the entire hydrograph. Hence, these

results cannot be used directly as a boundary condition for unsteady hydraulic simulations. Assumptions on the shape of a

hydrograph would be required.

In addition, the continuous modelling approach is capable to explicitly model scenarios of changing hydrological boundary10

conditions. For instance, changes in the climate system can be taken into account in the generation of meteorological fields

by conditioning the rainfall and temperature probability distributions (e.g. Hundecha and Merz, 2012). Also possible changes

in land use can be considered by parameterising hydrological models accordingly (Rogger et al., 2017). As the HT-model

approach is based on observed streamflow only, change scenarios may be included in terms of trends. However, they cannot

be modelled explicitly. A continuous simulation approach requires a vast amount of processed data including multiple data15

interfaces between the different modelling steps and results is high computational costs. This is especially true if sub-daily

simulations are applied that require an additional disaggregation scheme. In contrast, the purely statistical HT-model convinces

with its efficient data processing, easily applicable on local computers. A further advantage of the HT-model is the transferabil-

ity of the approach. While each of the modelling steps of the continuous approach, from weather generator to the hydrological

models needs to be implemented, calibrated and validated for every new study area, the HT-model only needs to be fitted20

to new discharge time series which is less complex. Different advantages and disadvantages of both approaches are finally

summarised in Table 1.

Both presented approaches are subject to different uncertainties. The confidence intervals presented in Figure 6 are for

example based on the random processes generating heterogeneous flood events of each method (repetition ensemble
✿✿✿✿✿✿✿

multiple

✿✿✿✿✿✿✿✿✿

realizations). However, there are other uncertainties which are not explicitly addressed, as for example uncertainties related25

to the topological kriging of the HT-model results or uncertainties related to the hydrological model in the WeGen approach.

Some uncertainties pertain to both methods such as the choice and fitting of the extreme value distributions. A comprehensive

assessment of these uncertainties
✿✿

by
✿✿✿✿✿✿✿✿✿✿

propagating
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿

of
✿✿

all
✿✿✿✿✿✿✿✿✿✿

sub-models
✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

chain
✿

is currently

precluded by computational constraints particularly relevant for the WeGen approach. However, single uncertainty sources can

be evaluated in multiple simulations and visualised in the form of uncertainty bounds (Figure 6)30

✿

A
✿✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿

point,
✿✿✿✿✿✿✿✿

currently
✿✿✿✿

not
✿✿✿✿✿✿✿✿✿

considered
✿✿

in
✿✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿

are
✿✿✿✿

dike
✿✿✿✿✿✿

failure
✿✿✿✿✿✿✿✿

scenarios.
✿✿✿

In
✿✿✿

the
✿✿✿✿✿

study
✿✿✿✿✿

area,
✿✿✿

for

✿✿✿✿✿✿✿

example
✿✿

no
✿✿✿✿✿✿✿✿✿

inundation
✿✿

is
✿✿✿✿✿✿✿✿✿

considered
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

River
✿✿✿✿✿

Rhine
✿✿✿

due
✿✿✿

to
✿✿

its
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿

protection
✿✿✿✿

level.
✿✿✿✿✿✿✿✿✿✿✿

Nonetheless,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

probability
✿✿

of
✿✿

a
✿✿✿✿

dike

✿✿✿✿✿

failure
✿✿

is
✿✿✿✿✿✿✿✿

non-zero
✿✿✿

and
✿✿✿✿✿

could
✿✿✿✿

have
✿✿

a
✿✿✿✿✿✿✿✿✿

devastating
✿✿✿✿✿✿

effect.
✿✿

In
✿✿✿

this
✿✿✿✿✿✿

sense,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

consideration
✿✿

of
✿✿✿✿✿

flood
✿✿✿✿✿✿✿

volumes
✿✿✿✿✿

beside
✿✿✿✿✿

peak
✿✿✿✿✿✿✿✿

estimates

✿✿✿✿

could
✿✿✿

be
✿✿✿✿✿✿

another
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿

extension
✿✿

to
✿✿✿✿✿✿✿

describe
✿✿✿

the
✿✿✿✿✿✿✿

severity
✿✿

of
✿✿✿✿

flood
✿✿✿✿✿✿

events
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Dung et al., 2015; Lamb et al., 2016).

16



Table 1. Summary of advantages and disadvantages of the WeGen and HT-model approach to generate heterogeneous flood events.

Categories HT-model WeGen

Computational complexity (+) low processing costs (local processing) (-) processing intensive (HPC necessary)

(-) complex data interfaces between differ-

ent models

Output (-) Return periods at all sites for modelled

events only

(+) continuous hydrographs at all modelled

sites

Hydraulic coupling (-) event hydrographs need to be deducted

to drive a hydraulic model

(+) continuous description of hydraulic

boundary conditions allows unsteady

hydraulic modelling

Processes (-) No information about individual hydro-

logical processes

(+) continuous description of hydrological

system and modelled processes

Hydrological changes (-) no explicit modelling of scenarios (e.g.

climate or land use scenarios) possible

(+) scenarios can be modelled explicitly

(e.g. climate or land use scenarios)

(+) runoff trends can be integrated

Transferability (+) model is well transferable to other study

areas

(-) model chain is transferable, however

all components must be setup and cal-

ibrated for new study areas

A traditional validation of the overall risk model in terms of a comparison of observed to simulated data is hardly possible as

comprehensive databases of loss events are often not available (Thieken et al., 2015).
✿✿

In
✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿

study,
✿✿✿✿✿✿✿

damage
✿✿✿✿

data
✿✿✿✿✿

based

✿✿

on
✿

a
✿✿✿✿✿✿✿✿✿

insurance
✿✿✿✿✿✿✿

portfolio
✿✿✿✿✿

were
✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

2005
✿✿✿✿✿

event.
✿✿✿

The
✿✿✿✿

data
✿✿✿✿

are,
✿✿✿✿✿✿✿

however,
✿✿✿✿✿

only
✿

a
✿✿✿✿✿

subset
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿

elements
✿✿

at
✿✿✿✿

risk

✿✿✿

and
✿✿✿

due
✿✿

to
✿✿✿✿✿✿

rather
✿✿✿

low
✿✿✿✿✿✿✿✿

sublimits
✿✿✿✿✿✿✿✿✿

(maximum
✿✿✿✿✿✿✿✿✿

insurance
✿✿✿✿✿✿✿

payout),
✿✿✿

the
✿✿✿

full
✿✿✿✿✿

losses
✿✿✿✿✿✿

remain
✿✿✿✿✿✿✿✿✿

unknown.
✿✿✿✿✿✿

Finally,
✿✿✿✿✿✿✿

without
✿✿

a
✿✿✿✿✿

larger
✿✿✿

set
✿✿

of

✿✿✿

loss
✿✿✿✿✿✿

events
✿

it
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿

possible
✿✿

to
✿✿✿✿✿✿

assign
✿

a
✿✿✿✿✿✿✿✿✿✿

meaningful
✿✿✿✿✿

return
✿✿✿✿✿✿

period
✿✿

to
✿✿✿

the
✿✿✿✿

2005
✿✿✿✿✿

event
✿✿

to
✿✿✿✿✿✿✿

validate
✿✿✿

the
✿✿✿

risk
✿✿✿✿✿✿✿✿

outcome
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿

traditional5

✿✿✿✿

way. Nonetheless, by applying and comparing different methods, the plausibility of the results can be checked (Molinari et al.,

2019). Furthermore, the uncertainties related to the choice of methods to generate heterogeneous flood events seem to be lower

in comparison to other aspects of the probabilistic flood risk model, such as the choice of the applied damage functions (Winter

et al., 2018).

6 Conclusions10

The question whether the choice of method to generate heterogeneous flood events for flood risk modelling matters can be

answered in different ways. Both approaches, the HT-model and continuous WeGen approach, were generally capable of mod-

elling spatially plausible flood events across the study area. By direct comparison to observed spatial patterns, the HT-model
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approach performed better than the WeGen approach in our study area in terms of correctly representing the observed depen-

dence structure. A stronger modelled dependence of extreme precipitation resulted in higher
✿✿✿

high
✿

areal rainfall in the WeGen

approach and higher overall risk compared to the HT-model. The median damage from 30000 years of simulation is about

17.5% larger in the WeGen approach than in the HT-model. The representation of the dependence structure for simulation of

extremes needs to be further improved for the weather generator. Nevertheless, the choice of method to generate heterogeneous5

flood events might have smaller impact than, for example, the choice of the applied damage functions (Winter et al., 2018).

To conclude, both methods are valid approaches to overcome the simplified assumption of uniform return period across a

study area. Accordingly, when designing a flood risk study, the choice of the approach should consider the specific advantages

and disadvantages of the two methods and data availability. If computational efficiency and quick transferability are in focus,

the HT-model approach might be a better choice. In contrast, if unsteady hydraulic modelling is required for the underlying10

✿✿✿✿✿✿

targeted
✿

application, the continuous modelling of generated meteorological fields is more appropriate.

Code and data availability. For Austria, daily meteorological and river gauging data are available at https://ehyd.gv.at. The applied mete-

orological data for the DWD stations are freely available at https://opendata.dwd.de. Underlying loss data are not publicly available. The
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Kundzewicz, Z. W., Pińskwar, I., and Brakenridge, G. R.: Large floods in Europe, 1985–2009, Hydrological Sciences Journal, 58, 1–7,

https://doi.org/10.1080/02626667.2012.745082, 2013.

Laaha, G., Skøien, J. O., and Blöschl, G.: Spatial prediction on river networks: Comparison of top-kriging with regional regression, Hydro-

logical Processes, 28, 315–324, https://doi.org/10.1002/hyp.9578, 2014.

Lamb, R., Keef, C., Tawn, J., Laeger, S., Meadowcroft, I., Surendran, S., Dunning, P., and Batstone, C.: A new method to assess the risk25

of local and widespread flooding on rivers and coasts, Journal of Flood Risk Management, 3, 323–336, https://doi.org/10.1111/j.1753-

318X.2010.01081.x, 2010.

Lamb, R., Faulkner, D., Wass, P., and Cameron, D.: Have applications of continuous rainfall-runoff simulation realized the vision for process-

based flood frequency analysis?, Hydrological Processes, 30, 2463–2481, https://doi.org/10.1002/hyp.10882, 2016.

Merz, B., Kreibich, H., and Apel, H.: Flood risk analysis: uncertainties and validation, Österreichische Wasser- und Abfallwirtschaft, 60,30

89–94, https://doi.org/10.1007/s00506-008-0001-4, http://dx.doi.org/10.1007/s00506-008-0001-4, 2008.

Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Assessment of economic flood damage, Natural Hazards and Earth System Science,

10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.

Merz, B., Kreibich, H., and Lall, U.: Multi-variate flood damage assessment: a tree-based data-mining approach, Natural Hazards and Earth

System Science, 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, 2013.35

Metin, A. D., Dung, N. V., Schröter, K., Vorogushyn, S., Guse, B., Kreibich, H., and Merz, B.: The role of spatial dependence for large-scale

flood risk estimation, Natural Hazards and Earth System Science, 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, 2020.

21

https://doi.org/10.1038/NCLIMATE2124
https://doi.org/10.1111/j.1467-9876.2009.00672.x
https://doi.org/10.1002/env.2190
https://doi.org/10.1080/02626668609491024
https://doi.org/10.1007/s11027-015-9663-y
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1111/j.1753-318X.2010.01064.x
https://doi.org/10.1111/j.1753-318X.2010.01064.x
https://doi.org/10.1111/j.1753-318X.2010.01064.x
https://doi.org/10.1080/02626667.2012.745082
https://doi.org/10.1002/hyp.9578
https://doi.org/10.1111/j.1753-318X.2010.01081.x
https://doi.org/10.1111/j.1753-318X.2010.01081.x
https://doi.org/10.1111/j.1753-318X.2010.01081.x
https://doi.org/10.1002/hyp.10882
https://doi.org/10.1007/s00506-008-0001-4
http://dx.doi.org/10.1007/s00506-008-0001-4
https://doi.org/10.5194/nhess-10-1697-2010
https://doi.org/10.5194/nhess-13-53-2013
https://doi.org/10.5194/nhess-20-967-2020


Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E.,

Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H.,

and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Natural Hazards and Earth

System Science, 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.

Molinari, D., de Bruijn, K. M., Castillo-Rodríguez, J. T., Aronica, G. T., and Bouwer, L. M.: Validation of flood risk models: Current practice5

and possible improvements, International Journal of Disaster Risk Reduction, 33, 441–448, https://doi.org/10.1016/j.ijdrr.2018.10.022,

2019.

Müller-Thomy, H., Wallner, M., and Förster, K.: Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?,

Hydrology and Earth System Sciences, 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018, 2018.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A discussion of principles, Journal of Hydrology,10

10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Peleg, N., Fatichi, S., Paschalis, A., Molnar, P., and Burlando, P.: An advanced stochastic weather generator for simulating 2-D high-resolution

climate variables, Journal of Advances in Modeling Earth Systems, 9, 1595–1627, https://doi.org/10.1002/2016MS000854, 2017.

Plouffe, C. C., Robertson, C., and Chandrapala, L.: Comparing interpolation techniques for monthly rainfall mapping using multi-

ple evaluation criteria and auxiliary data sources: A case study of Sri Lanka, Environmental Modelling & Software, 67, 57–71,15

https://doi.org/10.1016/j.envsoft.2015.01.011, 2015.

Raynaud, D., Hingray, B., Evin, G., Favre, A.-C., and Chardon, J.: Assessment of meteorological extremes using a synoptic weather generator

and a downscaling model based on analogs, https://doi.org/10.5194/hess-2019-557, 2019.

Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., Chaplot, V., Gallart, F., Glatzel, G., Hall, J., Holden, J.,

Holko, L., Horn, R., Kiss, A., Kohnová, S., Leitinger, G., Lennartz, B., Parajka, J., Perdigão, R., Peth, S., Plavcová, L., Quinton, J. N.,20

Robinson, M., Salinas, J. L., Santoro, A., Szolgay, J., Tron, S., van den Akker, J. J. H., Viglione, A., and Blöschl, G.: Land use change

impacts on floods at the catchment scale: Challenges and opportunities for future research, Water resources research, 53, 5209–5219,

https://doi.org/10.1002/2017WR020723, 2017.

Sauter, I., Kienast, F., Bolliger, J., Winter, B., and Pazur R.: Changes in demand and supply of ecosystem services under scenarios of future

land use in Vorarlberg, Austria, Journal of Mountain Science, 12, 2793–2809, https://doi.org/10.1007/s11629-018-5124-x, 2019.25

Schneeberger, K. and Steinberger, T.: Generation of Spatially Heterogeneous Flood Events in an Alpine Region—Adaptation and Application

of a Multivariate Modelling Procedure, Hydrology, 5, 5, https://doi.org/10.3390/hydrology5010005, 2018.

Schneeberger, K., Huttenlau, M., Winter, B., Steinberger, T., Achleitner, S., and Stötter, J.: A Probabilistic Framework for Risk Analysis of

Widespread Flood Events: A Proof-of-Concept Study, Risk Analysis, 39, 125–139, https://doi.org/10.1111/risa.12863, 2019.

Senfter, S., Leonhardt, G., Oberparleiter, C., Asztalos, J., Kirnbauer, R., Schöberl, F., and Schönlaub, H.: Flood Forecasting for the River30

Inn, in: Sustainable Natural Hazard Management in Alpine Environments, edited by Veulliet, E., Johann, S., and Weck-Hannemann, H.,

pp. 35–67, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-03229-5_2, 2009.

Serinaldi, F. and Kilsby, C. G.: A Blueprint for Full Collective Flood Risk Estimation: Demonstration for European River Flooding, Risk

analysis : an official publication of the Society for Risk Analysis, 37, 1958–1976, https://doi.org/10.1111/risa.12747, 2017.

Skøien, J. O., Merz, R., and Blöschl, G.: Top-kriging – geostatistics on stream networks, Hydrology and Earth System Sciences, pp. 277–287,35

2006.

Speight, L. J., Hall, J. W., and Kilsby, C. G.: A multi-scale framework for flood risk analysis at spatially distributed locations, Journal of

Flood Risk Management, pp. 124–137, https://doi.org/10.1111/jfr3.12175, 2017.

22

https://doi.org/10.5194/nhess-13-1351-2013
https://doi.org/10.1016/j.ijdrr.2018.10.022
https://doi.org/10.5194/hess-22-5259-2018
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1002/2016MS000854
https://doi.org/10.1016/j.envsoft.2015.01.011
https://doi.org/10.5194/hess-2019-557
https://doi.org/10.1002/2017WR020723
https://doi.org/10.1007/s11629-018-5124-x
https://doi.org/10.3390/hydrology5010005
https://doi.org/10.1111/risa.12863
https://doi.org/10.1007/978-3-642-03229-5{\T1\textunderscore }2
https://doi.org/10.1111/risa.12747
https://doi.org/10.1111/jfr3.12175


Statistik Austria: Baupreisindex, https://www.statistik.at/web_de/statistiken/wirtschaft/produktion_und_bauwesen/konjunkturdaten/

baupreisindex/index.html, 2019.

Teng, J., Jakeman, A. J., Vaze, J., Croke, B., Dutta, D., and Kim, S.: Flood inundation modelling: A review of methods, recent advances and

uncertainty analysis, Environmental Modelling & Software, 90, 201–216, https://doi.org/10.1016/j.envsoft.2017.01.006, 2017.

Thieken, A. H., Apel, H., and Merz, B.: Assessing the probability of large-scale flood loss events: a case study for the river Rhine, Germany,5

Journal of Flood Risk Management, pp. 247–262, https://doi.org/10.1111/jfr3.12091, 2015.

Ullrich, S., Hegnauer, M., Dung, N. V., de Bruijn, K., Merz, B., Kwadijk, J., and Vorogushyn, S.: Comparative evaluation of two types of

stochastic weather generators coupled to hydrological models for flood estimation: (Oral), 2019.

Vorogushyn, S., Bates, P. D., de Bruijn, K., Castellarin, A., Kreibich, H., Priest, S., Schröter, K., Bagli, S., Blöschl, G., Domeneghetti,

A., Gouldby, B., Klijn, F., Lammersen, R., Neal, J. C., Ridder, N., Terink, W., Viavattene, C., Viglione, A., Zanardo, S.,10

and Merz, B.: Evolutionary leap in large-scale flood risk assessment needed, Wiley Interdisciplinary Reviews: Water, 5, 1–7,

https://doi.org/10.1002/wat2.1266, 2018.

Vrac, M. and Naveau, P.: Stochastic downscaling of precipitation: From dry events to heavy rainfalls, Water Resources Research, 43,

https://doi.org/10.1029/2006WR005308, 2007.

Wagenaar, D. J., de Bruijn, K. M., Bouwer, L. M., and de Moel, H.: Uncertainty in flood damage estimates and its potential effect on15

investment decisions, Natural Hazards and Earth System Sciences, 16, 1–14, https://doi.org/10.5194/nhessd-3-607-2015, 2016.

Winter, B., Schneeberger, K., Huttenlau, M., and Stötter, J.: Sources of uncertainty in a probabilistic flood risk model, Natural Hazards, pp.

431–446, https://doi.org/10.1007/s11069-017-3135-5, 2018.

Winter, B., Schneeberger, K., Dung, N. V., Huttenlau, M., Achleitner, S., Stötter, J., Merz, B., and Vorogushyn, S.: A con-

tinuous modelling approach for design flood estimation on sub-daily time scale, Hydrological Sciences Journal, 88, 1–16,20

https://doi.org/10.1080/02626667.2019.1593419, 2019.

23

https://www.statistik.at/web_de/statistiken/wirtschaft/produktion_und_bauwesen/konjunkturdaten/baupreisindex/index.html
https://www.statistik.at/web_de/statistiken/wirtschaft/produktion_und_bauwesen/konjunkturdaten/baupreisindex/index.html
https://www.statistik.at/web_de/statistiken/wirtschaft/produktion_und_bauwesen/konjunkturdaten/baupreisindex/index.html
https://doi.org/10.1016/j.envsoft.2017.01.006
https://doi.org/10.1111/jfr3.12091
https://doi.org/10.1002/wat2.1266
https://doi.org/10.1029/2006WR005308
https://doi.org/10.5194/nhessd-3-607-2015
https://doi.org/10.1007/s11069-017-3135-5
https://doi.org/10.1080/02626667.2019.1593419

