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Abstract: Vegetation indices based on satellite images, such as Normalized Difference Vegetation Index 17 
(NDVI), have been used in countries like USA, Canada and Spain for damaged pasture and forage 18 
insurance for the last years. This type of agricultural insurance is called “satellite index-based 19 
insurance” (SIBI). In SIBI, the occurrence of damage is defined through NDVI thresholds mainly based 20 
on statistics derived from Normal distributions. In this work a pasture area at the north of Community 21 
of Madrid (Spain) has been delimited by means of Moderate Resolution Imaging Spectroradiometer 22 
(MODIS) images. A statistical analysis of NDVI histograms was applied to seek for alternative 23 
distributions using maximum likelihood method and χ

2
 test. The results show that the Normal 24 

distribution is not the optimal representation and the General Extreme Value (GEV) distribution 25 
presents a better fit through the year based on a quality estimator. A comparison between Normal and 26 
GEV are showed respect to the probability under a NDVI threshold value along the year. This suggests 27 
that a priori distribution should not be selected and a percentile methodology should be used to define 28 
a NDVI damage threshold rather than the average and standard deviation, typically of Normal 29 
distributions. 30 

Keywords: NDVI, pasture insurance, GEV distribution, MODIS. 31 
 32 

Highlights 33 

 The GEV distribution provides better fit to the NDVI historical observations 34 

than the Normal one. 35 

 Difference between Normal and GEV distributions are higher during spring 36 

and autumn, transition periods in the precipitation regimen. 37 

 NDVI damage threshold shows evident differences using Normal and GEV 38 

distributions covering both the same probability (24.20%).  39 

 NDVI damage threshold values based on percentiles calculation is proposed 40 

as an improvement in the index based insurance in damaged pasture. 41 
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 42 

1. Introduction 43 

Agricultural insurance addresses the reduction of the risk associated with crop 44 

production and animal husbandry. The concept of index-based insurance (IBI) attempts 45 

to achieve settlements based on the value taken by an objective index rather than on a 46 

case-by-case assessment of crop or livestock losses (Gommes and Kayitakier, 2013). 47 

Indeed, the goal of IBI policy remains to develop an affordable tool to all producers, 48 

including smallholders. Specifically, IBI can constitute a safety net against 49 

weather-related risks for all members of the farming community, thereby increasing 50 

food security and reducing the vulnerability of rural populations to weather extremes. 51 

Moreover, IBI can be associated with credits for insured smallholders, due to the fact 52 

that the risk of non-repayment for lenders is reduced, which encourages the use of 53 

agricultural inputs and equipment, leading to increased and more stable crop 54 

production. Over the past decade, the importance of weather index-based insurances 55 

(WIBI) for agriculture has been increasing, mainly in developing countries (Gommes 56 

and Kayitakier, 2013). This interest can be explained by the potential that IBI 57 

constitutes a risk management instrument for small farmers. Indeed, it can be 58 

considered within the context of renewed attention to agricultural development as 59 

one of the milestones of poverty reduction and increased food security, as well as the 60 

accompanying efforts from various stakeholders to develop agricultural risk 61 

management instruments, including agricultural insurance products. 62 

 63 

Farmers need to protect their land and crops specifically from drought in arid and 64 

semi-arid countries, since their production may directly depend mainly on the impacts 65 

of this particular natural hazard. Insurance for drought-damaged lands and crops is 66 

currently the main instrument and tool that farmers can resort in order to deal with 67 

agricultural production losses due to drought. Many of these insurances are using 68 

satellite vegetation indices (Rao, 2010), thus they are also called “satellite index-based 69 

insurances” (SIBI). SIBI have some advantages over WIBI, such as cost-effective 70 

information and acceptable spatial and temporal resolution. They do not, however, 71 

resolve the issue of basis risk, i.e. potential unfairness to insurance takers (Leblois, 72 

2012). Moreover, the very nature of an index-based product creates the chance that 73 

an insured party may not be paid when they suffer loss. For this reason, in some 74 

countries (Spain) they have named this SIBI as “damaged in pasture” to cover not only 75 

drought even this one is the main cause. 76 

 77 

It is highly recognized that shortage of water has many implications to agriculture, 78 

society, economy and ecosystems. Specifically, its impact on water supply, crop 79 

production and rearing of livestock is substantial in agriculture. Knowing the likelihood 80 

of drought is essential for impact prevention (Dalezios, 2013). Drought severity 81 
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assessment can be approached in different ways: through conventional indices based 82 

on meteorological data, such as temperature, rainfall, moisture, etc. (Niemeyer, 2008), 83 

as well as through remote sensing indices based on images usually taken by artificial 84 

satellites (Lovejoy et al., 2008) or drones. In the second group they are found Satellite 85 

Vegetation Indices (SVI), which can quantify “green vegetation”, and soil moisture 86 

through Soil Water Index (Gouveia et al., 2009) combining different spectral 87 

reflectances. Thus, they are one of the main ways to quantitatively assess drought 88 

severity. 89 

 90 

At the present time, several satellites (NOAA, TERRA, DEIMOS, etc.) can provide 91 

this spectral information with different spatial resolution. Some series with a high 92 

temporal frequency are freely available, those from NOAA satellites and Terra. The 93 

most widely known SVI is the Normalized Difference Vegetation Index (NDVI). It 94 

follows the principle that healthy vegetation mainly reflects the near-infrared 95 

frequency band. There are several other important SVI, such as Soil Adjusted 96 

Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI) that incorporate soil 97 

effects and atmospheric impacts, respectively. An important point of SIBI is “when 98 

damage occurs”. To measure this, a SVI threshold value is defined mainly based on 99 

statistics that apply to Normal distributed variables: average and standard deviation. 100 

When current SVI values are bellow this threshold value for a period of time, insurance 101 

recognizes that a damage is occurring, most of the times drought, and then it begins to 102 

pay compensations to farmers. 103 

 104 

Important NDVI-based indices of detecting drought are NDVI anomalies (NDVIA) 105 

and Standardized Vegetation Index (SVI). NDVIA and SVI have been successfully used 106 

to monitor drought conditions over different regions on the world (Nanzad et al., 2019; 107 

Li et al., 2014). NDVIA is calculated as the difference between the NDVI value for a 108 

specific time period (e.g., week, month) and the long-term mean value for that period. 109 

SVI was developed by Peters et al. (2002) and obtains the probability from normal 110 

NDVI distributions over multiple years of data, on a time period (Anyamba and Tucker, 111 

2012; Bayarjargal et al., 2006). It is defined as: 112 

 113 

     
          ̅̅ ̅̅ ̅̅ ̅̅

     
 
      

     
        (1) 114 

 115 

where     ̅̅ ̅̅ ̅̅ ̅̅  is the long-term mean NDVI in the period i,       is the standard 116 

deviation of NDVI in the period i, and       is the current NDVI value in the time 117 

period i. Using only the first and second statistical moment, average and the square 118 

root of variance, assumption of normality is implicit in this type of drought NDVI 119 

indicator. 120 

 121 
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WIBI aims to protect farmers against weather-based disasters such as droughts, 122 

frosts and floods. A WIBI policy links possible insurance payouts with the weather 123 

requirements of the crop being insured: the insurer pays an indemnity whenever the 124 

realized value of the weather index meets a specified threshold. Whereas payouts in 125 

traditional insurance programs are related to actual crop damages, a farmer insured 126 

under a WIBI contract may receive a payout. A current difficulty to the wide 127 

implementation of WIBI is the weakness of indices. Indeed, there is certainly a need for 128 

more efficient indices based on the additional experience gained from the 129 

implementation of WIBI products in the developing world. Current trends in index 130 

technology are exciting and they actuate high expectations, especially the 131 

development of yield indices and the use of remote sensing inputs. Risk protection and 132 

insurance illiteracy constitute another difficulty, which has to be addressed by training 133 

and awareness-raising at all levels, from farmers to farmers’ associations, 134 

micro-insurance partners, as well as senior decision-makers in insurance, banking, and 135 

politics (Bailey, 2013). It is essential that all stakeholders (especially the insured) 136 

perfectly understand the principles of IBI, as otherwise the insurer, even the whole 137 

concept of insurance, is at risk of reputation loss for years or decades. 138 

 139 

There is currently a lack of technical capacity in the insurance sectors of most 140 

developing countries, which is a constraint to the scaling up and further development 141 

of WIBI (Gommes and Kayitakire, 2012). Specifically, although it is possible to design an 142 

index product and assist in roll-out, marketing, and sales, such assistance is not 143 

possible on a wide scale, simply because there is lack of qualified expertise. Indeed, it 144 

usually requires mathematical modeling, data manipulation, and expertise in crop 145 

simulation to design an index. Nevertheless, it is possible to structure insurance with 146 

multiple indices, but this increases the complexity of the product and makes it difficult 147 

for farmers to comprehend it. ‘Basis risk’ is also a particular problem for index 148 

products, which is frequently caused by the fact that measurements of a particular 149 

variable, such as rain, may differ at the insurer’s measurement site and in the farmer’s 150 

field. This also creates problems for insurance providers. Indeed, part of the reason the 151 

scaling up of index products has failed is that both insurers and farmers suffer from 152 

this basis risk. 153 

 154 

Currently, to mitigate impacts of climate-related reduced productivity of French 155 

grasslands, several studies have been developed to design new insurance scheme 156 

bases indemnity payouts to farmers on a forage production index (FPI) (Rumiguié et 157 

al., 2015; 2017). Two examples of SIBIs are presented in two different countries: USA 158 

and Spain. In particular, in USA there are several insurance programs for pasture, 159 

rangeland and forage, which use various indexing systems (rainfall and vegetation 160 

indices), and are promoted by Unites States Department of Agriculture (USDA) (Maples 161 

et al., 2016; USDA, 2018). NDVI is the index chosen in the vegetation index program 162 



5 of 30 

 

 

and it is obtained from AVHRR (Advanced Very High Resolution Radiometer) sensor 163 

onboard NOAA satellites. Average, maximum and minimum NDVI values are obtained 164 

from a historical series with the aim of calculating a trigger value. Insurer decides the 165 

quantity of compensation comparing this trigger with current value. On the other 166 

hand, in Spain there exists the “Insurance for Damaged Pasture” from “Spanish System 167 

of Agricultural Insurance” (BOE, 2013). This insurance defines damage event through 168 

NDVI values obtained from MODIS sensor onboard TERRA satellite of NASA. In this 169 

insurance, NDVI threshold values (      ) are calculated subtracting several times 170 

(              ) standard deviation to average within a homogeneous area: 171 

 172 

                     (2) 173 

 174 

where     are average and standard deviation of NDVI respectively. Average and 175 

standard deviation come of supposing Normal distributions in the historical data 176 

(Goward et al., 1985; Hobbs, 1995; Fuller, 1998; Al-Bakri and Taylor, 2003; Turvey et 177 

al., 2012; De Leeuw et al. 2014). 178 

 179 

The aim of this paper is to find a more realistic statistical NDVI distribution without 180 

the “a priori” assumption that variables follow a Normal distribution, typically for 181 

current SIBI methodology. In order to achieve this, the Maximum Likelihood Method 182 

(MLM) is fitted to a historical series of NDVI values in a pasture land area in Spain 183 

(Community of Madrid). Different types of asymmetrical distributions are examined 184 

with the aim to find a better fit than Normal. To eliminate some noise in the historical 185 

series, an original method is applied consisting of using Hue-Saturation-Lightness (HSL) 186 

color model. Finally, Chi-square test (   test) has been used to check the goodness of 187 

fit for all considered distributions. 188 

 189 

 190 

2. Materials and Methods  191 

2.1 Vegetation Index 192 

The differences of the reflectance of green vegetation in parts of the 193 

electromagnetic radiation spectrum, namely, visible and near infrared, provide an 194 

innovative method for monitoring surface vegetation from space. Specifically, the 195 

spectral behavior of vegetation cover in the visible (0.4-0.7mm) and near infrared 196 

(0.74-1.1mm, 1.3-2.5mm) offers the possibility to monitor from space the changes in 197 

the different stages of cultivated and uncultivated plants taking also into account the 198 

corresponding behavior of the surrounding microenvironment (Ortega-Farias et al., 199 

2016). Indeed, from the visible part of the electromagnetic radiation spectrum it is 200 

possible to draw conclusions about the rate photosynthesis, whereas from near 201 
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infrared inferences are extracted about the chlorophyll density and the amount of 202 

canopy in the plant mass, as well as the water content in the leaves, which is also 203 

linked directly to the rate of transpiration with impacts to physiological process of 204 

photosynthesis. Usually, data from NOAA/AVHRR series of polar orbit meteorological 205 

satellites are used with low spatial resolution (1.1 km2) and recurrence interval at least 206 

twice daily from the same location. Several algorithms combining channels of red 207 

(RED), near infrared (NIR) and green (GREEN) have been proposed, which provide 208 

indices sensitive to green vegetation. 209 

  210 

NDVI uses two frequency bands: red band (660 nm) and near-infrared band (860 211 

nm). Absorption of red band is related to photosynthetic activity and reflectance of 212 

near-infrared band is related to presence of vegetation canopies (Flynn, 2006). In 213 

drought periods, NDVI values can reduce significantly, therefore many researchers 214 

have used this index to measure drought events in recent years (Dalezios et al., 2014). 215 

To calculate NDVI we will use this mathematical formula: 216 

 217 

     
    

    
              (3) 218 

 219 

where “IR” and “R” are reflectance values in Near-Infrared band and Red band, 220 

respectively. NDVI values below zero indicate no photosynthetic activity and are 221 

characteristic of areas with large accumulation of water, such as rivers, lakes, or 222 

reservoirs. The higher is the NDVI value, the greater is the photosynthetic activity and 223 

vegetation canopies. 224 

 225 

In this paper, the NDVI is used, which is widely known index with a multitude of 226 

applications over time. The NDVI is suited for monitoring of total vegetation, since it 227 

partly compensates the changes in light conditions, land slope and field of view (Kundu 228 

et al., 2016). In addition, clouds, water and snow show higher reflectance in the visible 229 

than in the near infrared, thus, they have negative NDVI values. Indeed, bare and rocky 230 

terrain show vegetation index values close to zero. Moreover, the NDVI constitutes a 231 

measure of the degree of absorption by chlorophyll in the red band of the 232 

electromagnetic spectrum. In summary, the NDVI is a reliable index of the chlorophyll 233 

density on the leaves, as well as the percentage of the leaf area density over land, 234 

thus, NDVI constitutes a credible measure for the assessment of dry matter (biomass) 235 

in various species vegetation cover (Dalezios, 2013). It is clear from the above that the 236 

NDVI is an index closely related to growth and development of plants, which can 237 

effectively monitor surface vegetation from space.  238 

 239 

The continuous increase of the NDVI value during the growing season reflects the 240 

vegetative and reproductive growth due to intense photosynthetic activity, as well as 241 
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the satisfactory correlation with the final biomass production at the end of a growing 242 

period. On the other hand, gradual decrease of the NDVI values signifies stress due to 243 

lack of water or extremely high temperatures for the plants, leading to a reduction of 244 

the photosynthetic rate and ultimately a qualitative and quantitative degradation of 245 

plants. NDVI values above zero indicate the existence of green vegetation 246 

(chlorophyll), or bare soil (values around zero), whereas values below zero indicate the 247 

existence of water, snow, ice and clouds. 248 

 249 

2.2 Database 250 

Scientific research satellite Terra (EOS AM-1) has been chosen to provide 251 

necessary information to calculate NDVI in the study area. This satellite was launched 252 

into orbit by NASA on December 18, 1999. MODIS sensor aboard this satellite collects 253 

information of different reflectance bands. MODIS information is organized by 254 

"products". The product used in this study was MOD09A1 (LP DAAC, 2014). MOD09A1 255 

incorporates seven frequency bands: Band 1 (620-670 nm), band 2 (841-876 nm), band 256 

3 (459-479 nm), band 4 (545-565 nm), 5 band (1230-1250 nm), band 6 (1628-1652 nm) 257 

and band 7 (2105-2155 nm). The bands used to calculate NDVI are: band 1 for red 258 

frequency and band 2 for near-infrared frequency. MOD09A1 provides georeferenced 259 

images with pixel resolution of 500m x 500m. Each MOD09A1 pixel contains the best 260 

possible L2G observation during an 8-day period as selected on the basis of high 261 

observation coverage, low view angle, the absence of clouds or cloud shadow, and 262 

aerosol loading. 263 

 264 

The period of time selected on this study was from 2002 to 2017. 265 

 266 

Daily data from a principal station of the meteorological network were utilized 267 

during the period studied (2002 – 2017). Meteorological station is located in 268 

40°41'46"N 3°45'54"W (elevation 1004 m a.s.l.), less than 2 km from the study area 269 

(AEMET, 2017). 270 

 271 

2.3 Site description 272 

Six pixels (500m x 500m) are considered located in a pasture area at the north of 273 

the Community of Madrid (Spain) between the municipalities of “Soto del Real” and 274 

“Colmenar Viejo”. The study area is located between meridians 3° 45' 00" and 3° 47' 275 

00" W and parallels 40° 42' 00" and 40° 44' 00" N approximately (see Fig. 1). 276 

 277 
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 278 

Figure 1. The study area is in the centre of the Iberian Peninsula (Community of Madrid). RGB 279 

image of six pixels area used for case study is shown (Google Earth´s and MODIS images). 280 

 281 

The annual mean temperature ranges during the study period from 12.7°C to 282 

13.8°C, and annual mean precipitation ranges from 360 mm to 781 mm.  The stations 283 

studied were identified semi-arid (annual ratio P/ETo between 0.2 and 0.5) according 284 

to the global aridity index developed by the United-Nations Convention to Combat 285 

Desertification (UNEP, 1997). According to the climatic classification of Köppen (Kottek 286 

et al., 2006), this area presents a continental Mediterranean climate temperate with 287 

dry and temperate summer (type Csb). Temperature and precipitation of this site, 288 

based on 20 years, is presented in Table 1. 289 

 290 

Due to high soil moisture conditions, ash is the dominant tree, forming large 291 

agroforestry systems ("dehesas") that are used for pasture. These are ecosystems with 292 

high biodiversity. 293 

 294 

Table 1. Monthly average of maximum temperature (Tmax), average temperature (Tavg), 295 

minimum temperature (Tmin) and precipitation (P). Study period from 1997 to 2017. 296 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Tmax (ºC) 7.1 9.3 12.7 15.4 19.5 24.6 28.6 28.1 23.7 16.8 11.1 7.4 17.0 

Tavg (ºC) 3.6 4.8 7.7 10.1 13.7 18.4 22.0 21.7 17.9 12.3 7.1 4.1 12.0 

Tmin (ºC) 0.0 0.3 2.6 4.8 7.8 12.1 15.4 15.3 12.0 7.8 3.0 0.8 6.8 

P (mm) 67.2 50.0 38.5 62.2 62.3 30.2 18.9 16.4 34.2 79.3 86.2 82.6 627.9 
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 297 

2.4 HSL model 298 

There is no doubt that NDVI time-series from satellite sensors carry useful 299 

information, which can be used for characterizing seasonal dynamics of vegetation 300 

(Fensholt et al., 2012; Forkel et al., 2013). However, due to unfavorable atmospheric 301 

conditions during the data acquisition, NDVI time-series curve often contains noise 302 

(Motohka et al., 2011; Park, 2013). Although most of the NDVI data products are 303 

temporally composited through maximum value compositing (MVC) method (Holben, 304 

1986) to retain relatively cloud-free data, residual noise still exists in the data, which 305 

will affect the accuracy of the NDVI value. 306 

 307 

Therefore, usually it is necessary to reconstruct of NDVI time-series before 308 

extracting information from the noisy data. There are several techniques that have 309 

been applied to reduce noise and reconstruct NDVI series, a summary of these can be 310 

found in Wei et al. (2016). In this study we applied a simple filtering method based on 311 

the Hue-Saturation-Lightness (HSL) color model inspired by the work presented by 312 

Tackenberd (2007). 313 

 314 

HSL color model is a cylindrical representation of RGB (Red-Green-Blue) points. 315 

Their components are Hue (color type), Saturation (level of color purity) and Lightness 316 

(color luminosity). Hue is the angular component and it is more intuitive for humans 317 

since it is directly related to the color wheel (see Fig. 2). 318 

 319 

 320 

Figure 2. Colour wheel of Hue (on the left) and the HSL model (on the right). 321 

Saturation is the radial component and near-zero values indicate grey colors. 322 

Lightness is the axial radial versus axial component, zero lightness produces black and 323 

full lightness produces white. 324 

 325 

The NDVI series are filtered using the following HSL criterion: NDVI values are valid 326 

if HSL Saturation is greater than 0.15. In this way, the values of the series that have 327 
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grey color correlate with pasture covered by clouds or snow are eliminated. This type 328 

of filter based in HSL color space has been used on digital camera images monitoring 329 

vegetation phenology (Tackenberg, 2007; Crimmins and Crimmins, 2008; Graham et 330 

al., 2009). However, we have not found the use of this HSL criterion in the context of 331 

NDVI remote sensing images. 332 

 333 

2.5 Maximum Likelihood Method 334 

MLM estimates the set of parameters {         } for a specific statistical 335 

distribution that maximizes the “likelihood function” or the “joint density function”: 336 

   (   )  ∏  (   
 
            )      (4) 337 

where   (       )  is the set of data,   (         )  is the vector of 338 

parameters and  (            ) is the density function of the statistical model. 339 

When maximization with respect to the vector of parameters is carried out, the 340 

estimated parameters ( ̂  ̂  ̂  ̂  ) for the proposed statistical distribution are 341 

obtained (Larson, 1982). Properties of estimated parameters are: invariance, 342 

consistency and asymptotically unbiased. 343 

In the case of a Normal model, the estimated statistics   and   are defined by 344 

accurate expressions as follows: 345 

 ̂   ̅  
 

 
∑   
 
     ̂    √

 

 
∑ (    ̅) 
 
       (5) 346 

where   ̂ is the sample mean and  ̂ is the sample standard deviation of the data set. 347 

In this study we will apply MLM to estimate the parameters for 4 probability 348 

density functions (PDF). In Table 2, a brief description is presented of these PDF 349 

candidates: Normal, Gamma, Beta and GEV. To do so, the following MATLAB functions 350 

have been used: “normfit”, “gamfit”, “betafit” and “gevfit” (respectively). 351 

 352 

Table 2. Candidate Probability Density Functions (PDF). 353 

PDF NAME PDF EXPRESSION PDF PARAMETERS 

Normal  (     )  
 

 √  
  

 
 
(
   
 
)
 

 
          

                     

Gamma  (     )  
 

   ( )
     

 
 
  

 ( )                 
  and              

Beta  (     )  
 (   )

 ( ) ( )
    (   )    

 ( )                 
  and              
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GEV 

 (       )  
 

 
 ( )      ( ) 

where  ( )  {
(  (

   

 
)  )

   ⁄
       

  
(   )

 ⁄                       

 

                    
                    
                    

 354 

 355 

2.6 Goodness of fit (Chi square test) 356 

   test can be used to determine to what extent observed frequencies differ from 357 

frequencies expected for a specific statistical model. The most important points of the 358 

theory are briefly presented in (Cochran, 1952). 359 

 360 

Let  (   )  be a theoretical density function of a random variable   which 361 

depends on parameters   (         ) and let         be a sample of   grouped 362 

into k classes with    data per class i. 363 

 364 

Firstly, the following hypothesis is set: 365 

 366 

(H0) observed data fit theoretical distribution  (   ). 367 

Then the test statistic   
   is defined as: 368 

  
  ∑

(     )
 

  

 
           (6) 369 

where    is the number of data or observed frequency and       (       ) is the 370 

expected frequency for class i.  (       )  is the theoretical interval probability 371 

defined for class i. 372 

A level of significance is also set as: 373 

   (                     )      (7) 374 

Finally, the following decision rule is applied: “reject the theoretical distribution at 375 

significance level   if: 376 

  
   (         )

        (8) 377 

where  (         )
 is a    distribution with k-m-1 degrees of freedom (m is the 378 

number of parameters, k is the number of classes). 379 

 380 

 381 

 382 

 383 
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3. Results 384 

3.1  HSL filtering criterion 385 

NDVI series (from 2002 to 2017) were obtained for each pixel of the study area 386 

using frequency bands provided by MODIS product named MOD09A1. These series 387 

contain some irregular values that can skew NDVI pattern. Therefore, the six series (six 388 

pixels) were filtered using the HSL criterion. 389 

 390 

MOD09A1 is a MODIS product that processes data to obtain the best observation 391 

in an 8-days period. However, it is possible that the result of this selection still presents 392 

some problems since the best of this selection is relative to the eight observations of 393 

the period. For example, if the eight observations, at one pixel, appear with clouds, 394 

shadow clouds or snow, the best selection still maintains this problem. 395 

 396 

As an example of above, the NDVI series (10 years) of one pixel of the study area is 397 

shown in Fig. 3. On the top graph of Fig. 3 it is noticed that there exit some extremely 398 

low NDVI values in some dates. If these NDVI values are compared to neighbor values 399 

(8 days after or before) the high variation presented in such short period is not 400 

believable. This issue tells us that MODIS sensor has not obtained a proper observation 401 

in this 8 days period (interval). 402 

 403 

HSL criterion helps us to eliminate these incorrect NDVI values, since the filter is 404 

interpreting that these pixels still contains clouds or snow, i.e., pixels with low 405 

saturation (greyish colours). 406 

 407 

 408 
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 409 

Figure 3. HSL filtering criterion applied to a 10 years NDVI series. Top graph shows the real 410 

NDVI series. Bottom graph shows the HSL filtered NDVI series. 411 

Fig. 3 shows that abrupt changes in the NDVI values, mainly observed during 412 

raining seasons such as autumn and winter, are efficiently eliminated. Not to be a high 413 

computational demanding method is one of the main advantages of HSL filtering 414 

method. Therefore, this method will allow us to obtain more robust NDVI values to be 415 

used in the statistical analysis. 416 

 417 

3.2  Statistical analysis 418 

NDVI values were obtained consecutively every 8 days from MODIS product 419 

starting at the 1st of January of every year, in such a way that 46 NDVI observations 420 

were extracted for each year. Therefore, it was possible to define 46 Random Variables 421 

(RV) when all the years of this study were taking into account. 422 

GOBINA
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In Table 3, every RV (named as “Interval”) is shown together with the number of 423 

available NDVI observations. Each RV collects the observations coming from the six 424 

selected pixels; therefore the maximum number of observations per RV could be: 6 425 

pixels x 16 years = 96 observations. The start intervals of each season are: interval 45 426 

(19 December) for winter, interval 11 (22 March) for spring, interval 23 (26 June) for 427 

summer and interval 34 (22 September) for autumn. 428 

 429 

Table 3. Number of observations for every RV (named as Interval). 430 

RANDOM 
VARIABLE 

# 
OBSERVATIONS 

  
RANDOM 
VARIABLE 

# 
OBSERVATIONS 

Interval 1 85   Interval 24 96 

Interval 2 84   Interval 25 96 

Interval 3 96   Interval 26 96 

Interval 4 96   Interval 27 96 

Interval 5 95   Interval 28 96 

Interval 6 90   Interval 29 96 

Interval 7 86   Interval 30 96 

Interval 8 83   Interval 31 96 

Interval 9 96   Interval 32 96 

Interval 10 96   Interval 33 94 

Interval 11 74   Interval 34 96 

Interval 12 88   Interval 35 96 

Interval 13 88   Interval 36 85 

Interval 14 88   Interval 37 90 

Interval 15 96   Interval 38 96 

Interval 16 92   Interval 39 92 

Interval 17 88   Interval 40 90 

Interval 18 96   Interval 41 96 

Interval 19 95   Interval 42 89 

Interval 20 96   Interval 43 95 

Interval 21 95   Interval 44 88 

Interval 22 96   Interval 45 90 

Interval 23 96   Interval 46 90 

 431 

 432 

In Fig. 4, box plots of all RV with a start and end reference of the astronomical 433 

seasons are shown. The typical evolution of the NDVI along a year can be seen 434 

together with the inter-quartile range. 435 

 436 
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 437 

Figure 4. Box plots of 46 random variables (RV) are shown as well as start and end reference 438 

of every season. Study period from 2002 to 2017. 439 

 440 

The observed evolution of NDVI through the different seasons is typical of the 441 

pasture in this area. The summer presents the lowest mean values which begin to 442 

increase in autumn achieving a maximum mean value of 0.60 or 0.65 during the 443 

beginning of spring. In the middle of the spring NDVI decrease again, approaching the 444 

lowest mean value of 0.28 approximately in summer. 445 

 446 

Taking into account these values, dense vegetation, in this study pasture, is found 447 

from middle of October (interval 37) till the end of May (interval 19). It is in this period 448 

where the precipitation concentrates (see Table 1). During the summer, the NDVI 449 

mean values are lower than 0.3 corresponding with low precipitation and high 450 

temperatures. 451 

  452 

Following the work of Escribano-Rodriguez et al. (2014), there is a relationship of 453 

pasture damage and a NDVI value around 0.40. Even if the authors point out that this 454 

value is highly variable depending on the location, we can see that summer season in 455 

this case study is under this value (see Fig. 4). This can explain that “Insurances for 456 

Damaged Pasture” usually do not apply in these dates due to the arid environment 457 

(BOE, 2013). 458 

 459 

The statistical metric used in this study to assess the fit of the observed NDVI 460 

values with respect to the PDF candidates (Normal, Gamma, Beta and GEV) was the Chi 461 

square test (χ2 test). The following steps were carried out: 462 

 463 
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1. MLM was applied to model these 46 RV. Parameters were calculated for the 464 

four PDF candidates (see Table 2). 465 

2. To check the goodness of the fit of PDF candidates, Chi square test (χ2 test) 466 

was applied from 7 classes to 14 classes meeting the requirement that each 467 

class has at least five observations. The level of significance ( ) was fixed to 5% 468 

for all the candidates. 469 

 470 

3.2.1 Maximum Likelihood Method 471 

Table A1 at Appendix A shows the estimated parameters for each PDF and each 472 

interval calculated by the MLM. These parameters were used to compare the 473 

estimated PDF with the NDVI observed values on different times through the seasons. 474 

The following intervals are shown as examples of better GEV fit: interval 4 and 8 (for 475 

winter, see Fig. 5), interval 17 and 21 (for spring, see Fig. 6) and interval 36 and 40 (for 476 

autumn, see Fig. 7). In these plots, observed frequency is compared versus Normal and 477 

GEV density distributions calculated by MLM. 478 

 479 

 480 

Figure 5. Comparison between observed NDVI frequency, GEV and Normal probability density 481 

functions (PDF) on two different dates. Intervals 4 and 8 are examples for winter. 482 

 483 

Figure 6. Comparison between observed NDVI frequency, GEV and Normal probability density 484 

functions (PDF) on two different dates. Intervals 17 and 21 are examples for spring. 485 

 486 
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 487 

Figure 7. Comparison between observed NDVI frequency, GEV and Normal probability density 488 

functions (PDF) on two different times. Intervals 36 and 41 are examples for autumn. 489 

 490 

During winter (see Fig. 5) the observed NDVI distribution presents negative 491 

skewness. Then, there is a higher frequency of high NDVI values corresponding with 492 

significant precipitation. During spring (see Fig. 6) an evolution in the skewness is 493 

observed passing from negative to positive, and so, the lower NDVI values become the 494 

higher probable. Finally, during autumn (see Fig. 7) precipitation begins and from 495 

positive pass to negative skewness and higher NDVI values are possible. We can 496 

observe that Normal distribution has no flexibility to follow this dynamic in the 497 

distributions on each time. This comparison is done in a sequential order for the whole 498 

of intervals in Figures A1, A2, A3 and A4 at Appendix A. 499 

 500 

3.2.2 Chi square test 501 

Twelve intervals (from 23 to 34) corresponding to months of July, August and 502 

September have been excluded of this analysis since these intervals fall into the dry 503 

season in the study area, normally not cover by any SIBI. Therefore, calculations were 504 

carried out over 34 intervals. 505 

 506 

To assess the general goodness of fit, the number of intervals where the χ2 test 507 

was accepted (or failed to reject) was calculated for every PDF candidate. Then, the 508 

percentage of accepted intervals, over the total 34 intervals, was also calculated (the 509 

quality estimator). Fig. 8 shows this percentage of intervals that fit for every PDF 510 

candidate. The number of classes used in χ2 test is represented at X-axis (from 7 to 14 511 

classes). 512 

 513 
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 514 

Figure 8. Percentage of fitted intervals (Y axis) for each PDF candidate (Normal, Gamma, Beta 515 

and GEV distributions) in function of the number of classes (X axis). 516 

 517 

4. Discussion 518 

4.1 Statistical context 519 

Fig. 8 indicates that GEV distributions explain more intervals (more than 40% for 520 

the majority of the class analysis) than Normal, Gamma or Beta distributions. An 521 

important difference between the Normal distribution and the rest of the PDF used in 522 

this work is its skewness and kurtosis. Many of the observed NDVI distributions 523 

present a clear asymmetry and long tails in one or both sides that causes Normal 524 

distribution not to be the optimal fit. 525 

 526 

There is a relationship between seasons and the number of intervals that fit 527 

correctly. We found that GEV distributions explain better intervals of spring and 528 

autumn since their observed distributions are very asymmetric. On the other hand, we 529 

did not find an important difference in winter, since its observed distributions are 530 

mainly symmetric. 531 

 532 

The more skewness and kurtosis depart from those of the Normal distribution the 533 

larger the errors affecting the insurance designed based on (Turvey et al., 2012). It is 534 

an expected result as pasture scenario is quite different from the development of a 535 

crop, where Normal distributions in the NDVI values are more expected. This high 536 

heterogeneity in time and space of NDVI estimated on pasture has been pointed out in 537 

several works (Martin-Sotoca et al, 2018). At the same time, more different is the 538 

observed NDVI frequency from a Normal distribution less representative is the 539 

average, and so, the median becomes a more representative value. 540 
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4.2 Insurance context 542 

The use of NDVI thresholds in damaged pasture context was presented in the 543 

introduction section, being an example of using the "Insurance for Damaged Pasture" 544 

in Spain. We have chosen this last insurance to compare the results between applying 545 

Normal and GEV distribution methodologies. In this particular case the NDVI threshold 546 

(      ) was calculated using the expression              (where     are 547 

average and standard deviation of NDVI distributions respectively, assuming the 548 

Normal hypothesis). 549 

 550 

The probability of being below        (using        , first damage level in the 551 

insurance) at every interval has been calculated assuming the Normal hypothesis. As it 552 

was expected, this value is always 24.2% (see third column in Table 4). The probability 553 

of being below        has also been calculated using GEV distributions obtained in 554 

this study. The probability obtained by GEV distributions is mostly lower than the 555 

Normal distributions in spring, autumn and winter (see Table 4) that is the working 556 

period of the insurance. 557 

 558 

Observing where in time are localized the highest relative error in probabilities 559 

(fifth column in Table 4), intervals corresponding to the end of winter, second middle 560 

of spring and the beginning of autumn present errors higher than 10%. This could 561 

explain why it is in spring and autumn when more disagreements exist between 562 

farmers and insurance company in claims.   563 

 564 

Table 4 – First column: time intervals of approximately 8 days along the year. Second column: 565 

NDVI thresholds (NDVIth) based on a Normal distribution applying        . Third column: 566 

percentages of area below the NDVIth when Normal distributions are applied. Fourth column: 567 

percentages of area below the NDVIth when GEV distributions are applied. Fifth column: relative 568 

area error of GEV compared to the Normal distribution. 569 

 570 

RANDOM 
VARIABLE 

NORMAL GEV 

NDVIth Prob. Prob. Error (%) 

Interval 1 0.535 24.20% 24.37% 0.70% 

Interval 2 0.541 24.20% 23.18% -4.21% 

Interval 3 0.541 24.20% 23.27% -3.84% 

Interval 4 0.543 24.20% 23.27% -3.84% 

Interval 5 0.545 24.20% 24.17% -0.12% 

Interval 6 0.534 24.20% 21.48% -11.24% 

Interval 7 0.528 24.20% 24.01% -0.79% 

Interval 8 0.546 24.20% 20.70% -14.46% 
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Interval 9 0.555 24.20% 21.30% -11.98% 

Interval 10 0.561 24.20% 22.28% -7.93% 

Interval 11 0.567 24.20% 23.49% -2.93% 

Interval 12 0.572 24.20% 23.75% -1.86% 

Interval 13 0.571 24.20% 23.20% -4.13% 

Interval 14 0.570 24.20% 24.29% 0.37% 

Interval 15 0.571 24.20% 23.47% -3.02% 

Interval 16 0.560 24.20% 23.26% -3.88% 

Interval 17 0.495 24.20% 21.29% -12.02% 

Interval 18 0.484 24.20% 21.58% -10.83% 

Interval 19 0.442 24.20% 23.06% -4.71% 

Interval 20 0.381 24.20% 27.20% 12.40% 

Interval 21 0.342 24.20% 29.46% 21.74% 

Interval 22 0.323 24.20% 28.84% 19.17% 

Interval 35 0.257 24.20% 18.98% -21.57% 

Interval 36 0.285 24.20% 28.57% 18.06% 

Interval 37 0.333 24.20% 25.90% 7.02% 

Interval 38 0.398 24.20% 24.27% 0.29% 

Interval 39 0.454 24.20% 23.79% -1.69% 

Interval 40 0.503 24.20% 22.81% -5.74% 

Interval 41 0.491 24.20% 23.23% -4.01% 

Interval 42 0.517 24.20% 24.66% 1.90% 

Interval 43 0.507 24.20% 23.13% -4.42% 

Interval 44 0.514 24.20% 23.49% -2.93% 

Interval 45 0.515 24.20% 23.70% -2.07% 

Interval 46 0.509 24.20% 23.33% -3.60% 

 571 

An alternative calculation can be the use of Normal probability (24.2%) to calculate 572 

new        based on GEV (see Table 5). It can be seen that new        obtained 573 

by GEV distributions are mostly upper than thresholds using Normal distributions in 574 

spring, autumn and winter. Considering these results we find that damage thresholds 575 

calculated by GEV methodology are mostly above that one’s calculated by Normal 576 

methodology. 577 

Again, intervals corresponding to the end of winter, second middle of spring and the 578 

beginning of autumn present        relative errors higher than 1% in absolute 579 

values (fourth column in Table 5). 580 

 581 
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Table 5 - First column: time intervals of approximately 8 days along the year. Second column: NDVI 582 

thresholds (NDVITh) based on a Normal distribution (Normal) applying        . Third column: 583 

NDVITh based on a GEV distribution (GEV) using 24.2% as the area below the NDVITh. Fourth 584 

column: relative NDVITh error of GEV compared to the Normal distribution. 585 

 586 

RANDOM 
VARIABLE 

NDVITh  

Normal GEV Error (%) 

Interval 1 0.535 0.534 -0,19% 

Interval 2 0.541 0.543 0,37% 

Interval 3 0.541 0.543 0,37% 

Interval 4 0.543 0.545 0,37% 

Interval 5 0.545 0.545 0,00% 

Interval 6 0.534 0.543 1,69% 

Interval 7 0.528 0.528 0,00% 

Interval 8 0.546 0.558 2,20% 

Interval 9 0.555 0.563 1,44% 

Interval 10 0.561 0.567 1,07% 

Interval 11 0.567 0.569 0,35% 

Interval 12 0.572 0.574 0,35% 

Interval 13 0.571 0.574 0,53% 

Interval 14 0.570 0.569 -0,18% 

Interval 15 0.571 0.573 0,35% 

Interval 16 0.560 0.563 0,54% 

Interval 17 0.495 0.510 3,03% 

Interval 18 0.484 0.498 2,89% 

Interval 19 0.442 0.447 1,13% 

Interval 20 0.381 0.374 -1,84% 

Interval 21 0.342 0.334 -2,34% 

Interval 22 0.323 0.318 -1,55% 

Interval 35 0.257 0.262 1,95% 

Interval 36 0.285 0.278 -2,46% 

Interval 37 0.333 0.327 -1,80% 

Interval 38 0.398 0.398 0,00% 

Interval 39 0.454 0.455 0,22% 

Interval 40 0.503 0.508 0,99% 

Interval 41 0.491 0.494 0,61% 

Interval 42 0.517 0.516 -0,19% 

Interval 43 0.507 0.510 0,59% 

Interval 44 0.514 0.516 0,39% 

Interval 45 0.515 0.516 0,19% 

Interval 46 0.509 0.511 0,39% 

 587 
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 588 

5. Conclusions 589 

According to the results obtained in the study area using MLM and    test, it can 590 

be concluded that Normal distributions are not a good fit to the NDVI observations, 591 

and GEV distributions provide a better approximation. 592 

 593 

The difference between Normal and GEV assumption is more evident in the 594 

transition from winter to summer (spring), where NDVI values decrease, and then from 595 

summer to winter (autumn) presenting the opposite behavior of increasing NDVI 596 

values. In both periods asymmetrical distributions were found, negative skewness for 597 

the spring transition and positive skewness for the autumn transition. During both 598 

periods the variability in precipitation and temperatures were higher in this location. 599 

 600 

We have found differences if GEV assumption is selected instead of the Normal 601 

one when defining damaged pasture thresholds (      ). The use of these different 602 

assumptions should be taken into account in future insurance implementations due to 603 

the important consequences of supposing a damage event or not. We propose the use 604 

of quantiles in observed NDVI distributions instead of average and standard deviation, 605 

typically of Normal distributions, to calculate new       . 606 

 607 

 608 
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Appendix A 614 

 615 

Table A1 - Maximum Likelihood parameters calculated for 4 PDF. 616 

RANDOM 
VARIABLE 

NORMAL GAMMA BETA GEV 

    a b   

Interval 1 0.591 0.081 53.31 0.011 21.45 14.82 0.563 0.080 -0.297 

Interval 2 0.589 0.069 71.14 0.008 30.62 21.40 0.571 0.073 -0.477 

Interval 3 0.583 0.060 94.15 0.006 39.56 28.34 0.567 0.063 -0.457 

Interval 4 0.585 0.060 91.88 0.006 39.58 28.05 0.570 0.064 -0.468 

Interval 5 0.588 0.061 93.92 0.006 38.83 27.25 0.568 0.061 -0.340 

Interval 6 0.582 0.068 70.28 0.008 30.67 22.05 0.577 0.083 -0.846 

Interval 7 0.584 0.080 52.52 0.011 22.16 15.82 0.559 0.082 -0.366 

Interval 8 0.596 0.071 65.37 0.009 28.89 19.59 0.591 0.081 -0.833 

Interval 9 0.601 0.066 76.02 0.008 34.31 22.84 0.590 0.070 -0.652 

Interval 10 0.613 0.073 63.83 0.010 27.80 17.62 0.598 0.079 -0.572 

Interval 11 0.621 0.078 58.72 0.011 24.33 14.86 0.600 0.083 -0.451 

Interval 12 0.624 0.073 68.33 0.009 28.01 16.94 0.603 0.078 -0.431 

Interval 13 0.624 0.075 66.22 0.009 26.23 15.85 0.604 0.080 -0.476 

Interval 14 0.631 0.088 50.23 0.013 18.71 10.92 0.603 0.090 -0.342 

Interval 15 0.630 0.084 53.60 0.012 21.17 12.45 0.607 0.089 -0.448 

Interval 16 0.627 0.096 38.75 0.016 16.08 9.59 0.602 0.103 -0.474 

Interval 17 0.577 0.117 20.47 0.028 10.24 7.58 0.560 0.127 -0.692 

Interval 18 0.568 0.120 20.52 0.028 9.71 7.42 0.552 0.136 -0.718 

Interval 19 0.523 0.116 19.46 0.027 9.52 8.68 0.495 0.125 -0.493 

Interval 20 0.452 0.101 20.99 0.022 10.98 13.31 0.401 0.077 0.078 

Interval 21 0.409 0.095 19.94 0.021 11.18 16.13 0.354 0.060 0.325 

Interval 22 0.379 0.080 24.66 0.015 14.41 23.52 0.333 0.046 0.385 

Interval 23 0.353 0.073 26.54 0.013 15.85 29.01 0.311 0.036 0.456 

Interval 24 0.328 0.056 38.36 0.009 24.22 49.65 0.298 0.033 0.287 

Interval 25 0.305 0.044 53.52 0.006 35.62 81.20 0.282 0.028 0.210 

Interval 26 0.298 0.034 78.93 0.004 54.47 128.55 0.283 0.029 -0.064 

Interval 27 0.289 0.026 126.85 0.002 88.33 217.15 0.278 0.021 -0.030 

Interval 28 0.282 0.022 166.17 0.002 119.50 305.03 0.274 0.022 -0.322 

Interval 29 0.278 0.021 179.09 0.002 127.93 332.63 0.269 0.018 -0.085 

Interval 30 0.273 0.019 203.11 0.001 147.67 393.21 0.266 0.019 -0.247 

Interval 31 0.272 0.022 166.83 0.002 120.11 321.95 0.262 0.018 -0.059 

Interval 32 0.280 0.034 75.63 0.004 52.36 134.30 0.264 0.023 0.118 

Interval 33 0.285 0.034 82.05 0.004 54.90 137.68 0.270 0.020 0.122 

Interval 34 0.295 0.057 33.26 0.009 21.15 50.37 0.268 0.024 0.363 

Interval 35 0.312 0.079 19.70 0.016 11.83 25.94 0.275 0.038 0.300 

Interval 36 0.369 0.121 10.81 0.034 6.11 10.33 0.298 0.063 0.480 

Interval 37 0.432 0.141 9.45 0.046 5.21 6.81 0.370 0.120 -0.080 
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Interval 38 0.487 0.128 13.88 0.035 7.25 7.63 0.445 0.127 -0.321 

Interval 39 0.529 0.107 23.56 0.022 11.39 10.16 0.497 0.110 -0.390 

Interval 40 0.570 0.096 34.02 0.017 15.10 11.40 0.548 0.105 -0.533 

Interval 41 0.554 0.090 36.42 0.015 16.90 13.64 0.531 0.096 -0.471 

Interval 42 0.583 0.095 37.29 0.016 15.56 11.11 0.551 0.094 -0.295 

Interval 43 0.574 0.097 34.27 0.017 14.93 11.07 0.550 0.103 -0.482 

Interval 44 0.572 0.083 47.13 0.012 20.40 15.26 0.549 0.086 -0.425 

Interval 45 0.576 0.088 42.59 0.014 18.17 13.36 0.550 0.090 -0.396 

Interval 46 0.570 0.088 41.98 0.014 18.11 13.66 0.546 0.092 -0.445 

 617 

 618 

 619 

Figure A1. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 620 
45 to interval 10 (from 19 December to 21 March) representing winter. 621 

 622 
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 623 

Figure A2. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 624 
11 to interval 22 (from 22 March to 25 June) representing spring. 625 

 626 

 627 

Figure A3. Observed NDVI, GEV and Normal probability density functions (PDFs) from interval 628 
23 to interval 33 (from 26 June to 21 September) representing summer. 629 

 630 
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 631 

Figure A4. Observed NDVI, GEV and Normal PDFs from interval 34 to interval 44 (from 22 632 

September to 18 December) representing autumn. 633 

634 
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