

1 Statistical Analysis for Satellite Index-Based Insurance to 2 define Damaged Pasture Thresholds

4 Juan José Martín-Sotoca^{1*}, Antonio Saa-Requejo^{2,3}, Rubén Moratiel^{2,3}, Nicolas Dalezios⁴, Ioannis
5 Faraslis⁵, and Ana María Tarquis^{2,6}

6 jmartinsotoca@gmail.com, antonio.saa@upm.es, ruben.moratiel@upm.es, dalezios.n.r@gmail.com,
7 faraslisgiannis@yahoo.gr, anamaria.tarquis@upm.es

9 ¹ Data Science Laboratory. European University, Madrid, Spain.

10 ² CEIGRAM, Research Centre for the Management of Agricultural and Environmental Risks, Madrid, Spain.

11 ³ Dpto. Producción Agraria. Universidad Politécnica de Madrid, Spain.

12 ⁴ Department of Civil Engineering. University of Thessaly, Volos, Greece.

13 ⁵ Department of Planning and Regional Development. University of Thessaly, Volos, Greece.

14 ⁶ Grupo de Sistemas Complejos. Universidad Politécnica de Madrid, Spain.

16 * Correspondence to: jmartinsotoca@gmail.com

17 **Abstract:** Vegetation indices based on satellite images, such as Normalized Difference Vegetation Index
18 (NDVI), have been used in countries like USA, Canada and Spain for damaged pasture and forage
19 insurance for the last years. This type of agricultural insurance is called “satellite index-based
20 insurance” (SIBI). In SIBI, the occurrence of damage is defined through NDVI thresholds mainly based
21 on statistics derived from Normal distributions. In this work a pasture area at the north of Community
22 of Madrid (Spain) has been delimited by means of Moderate Resolution Imaging Spectroradiometer
23 (MODIS) images. A statistical analysis of NDVI histograms was applied to seek for alternative
24 distributions using maximum likelihood method and χ^2 test. The results show that the Normal
25 distribution is not the optimal representation and the General Extreme Value (GEV) distribution
26 presents a better fit through the year based on a quality estimator. A comparison between Normal and
27 GEV are showed respect to the probability under a NDVI threshold value along the year. This suggests
28 that a priori distribution should not be selected and a percentile methodology should be used to define
29 a NDVI damage threshold rather than the average and standard deviation, typically of Normal
30 distributions.

31 **Keywords:** NDVI, pasture insurance, GEV distribution, MODIS.

33 Highlights

- 34 • **The GEV distribution provides better fit to the NDVI historical observations
35 than the Normal one.**
- 36 • **Difference between Normal and GEV distributions are higher during spring
37 and autumn, transition periods in the precipitation regimen.**
- 38 • **NDVI damage threshold shows evident differences using Normal and GEV
39 distributions covering both the same probability (24.20%).**
- 40 • **NDVI damage threshold values based on percentiles calculation is proposed
41 as an improvement in the index based insurance in damaged pasture.**

42

43 **1. Introduction**

44 Agricultural insurance addresses the reduction of the risk associated with crop
45 production and animal husbandry. The concept of index-based insurance (IBI) attempts
46 to achieve settlements based on the value taken by an objective index rather than on a
47 case-by-case assessment of crop or livestock losses (Gommes and Kayitakier, 2013).
48 Indeed, the goal of IBI policy remains to develop an affordable tool to all producers,
49 including smallholders. Specifically, IBI can constitute a safety net against
50 weather-related risks for all members of the farming community, thereby increasing
51 food security and reducing the vulnerability of rural populations to weather extremes.
52 Moreover, IBI can be associated with credits for insured smallholders, due to the fact
53 that the risk of non-repayment for lenders is reduced, which encourages the use of
54 agricultural inputs and equipment, leading to increased and more stable crop
55 production. Over the past decade, the importance of weather index-based insurances
56 (WIBI) for agriculture has been increasing, mainly in developing countries (Gommes
57 and Kayitakier, 2013). This interest can be explained by the potential that IBI
58 constitutes a risk management instrument for small farmers. Indeed, it can be
59 considered within the context of renewed attention to agricultural development as
60 one of the milestones of poverty reduction and increased food security, as well as the
61 accompanying efforts from various stakeholders to develop agricultural risk
62 management instruments, including agricultural insurance products.

63

64 Farmers need to protect their land and crops specifically from drought in arid and
65 semi-arid countries, since their production may directly depend mainly on the impacts
66 of this particular natural hazard. Insurance for drought-damaged lands and crops is
67 currently the main instrument and tool that farmers can resort in order to deal with
68 agricultural production losses due to drought. Many of these insurances are using
69 satellite vegetation indices (Rao, 2010), thus they are also called “satellite index-based
70 insurances” (SIBI). SIBI have some advantages over WIBI, such as cost-effective
71 information and acceptable spatial and temporal resolution. They do not, however,
72 resolve the issue of basis risk, i.e. potential unfairness to insurance takers (Leblois,
73 2012). Moreover, the very nature of an index-based product creates the chance that
74 an insured party may not be paid when they suffer loss. For this reason, in some
75 countries (Spain) they have named this SIBI as “damaged in pasture” to cover not only
76 drought even this one is the main cause.

77

78 It is highly recognized that shortage of water has many implications to agriculture,
79 society, economy and ecosystems. Specifically, its impact on water supply, crop
80 production and rearing of livestock is substantial in agriculture. Knowing the likelihood
81 of drought is essential for impact prevention (Dalezios, 2013). Drought severity

82 assessment can be approached in different ways: through conventional indices based
 83 on meteorological data, such as temperature, rainfall, moisture, etc. (Niemeyer, 2008),
 84 as well as through remote sensing indices based on images usually taken by artificial
 85 satellites (Lovejoy et al., 2008) or drones. In the second group they are found Satellite
 86 Vegetation Indices (SVI), which can quantify “green vegetation”, and soil moisture
 87 through Soil Water Index (Gouveia et al., 2009) combining different spectral
 88 reflectances. Thus, they are one of the main ways to quantitatively assess drought
 89 severity.

90

91 At the present time, several satellites (NOAA, TERRA, DEIMOS, etc.) can provide
 92 this spectral information with different spatial resolution. Some series with a high
 93 temporal frequency are freely available, those from NOAA satellites and Terra. The
 94 most widely known SVI is the Normalized Difference Vegetation Index (NDVI). It
 95 follows the principle that healthy vegetation mainly reflects the near-infrared
 96 frequency band. There are several other important SVI, such as Soil Adjusted
 97 Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI) that incorporate soil
 98 effects and atmospheric impacts, respectively. An important point of SIBI is “when
 99 damage occurs”. To measure this, a SVI threshold value is defined mainly based on
 100 statistics that apply to Normal distributed variables: average and standard deviation.
 101 When current SVI values are bellow this threshold value for a period of time, insurance
 102 recognizes that a damage is occurring, most of the times drought, and then it begins to
 103 pay compensations to farmers.

104

105 Important NDVI-based indices of detecting drought are NDVI anomalies (NDVIA)
 106 and Standardized Vegetation Index (SVI). NDVIA and SVI have been successfully used
 107 to monitor drought conditions over different regions on the world (Nanzad et al., 2019;
 108 Li et al., 2014). NDVIA is calculated as the difference between the NDVI value for a
 109 specific time period (e.g., week, month) and the long-term mean value for that period.
 110 SVI was developed by Peters et al. (2002) and obtains the probability from normal
 111 NDVI distributions over multiple years of data, on a time period (Anyamba and Tucker,
 112 2012; Bayarjargal et al., 2006). It is defined as:

113

$$114 \quad SVI_i = \frac{NDVI_i - \bar{NDVI}}{\sigma_{NDVI}} = \frac{NDVIA_i}{\sigma_{NDVI}} \quad (1)$$

115

116 where \bar{NDVI} is the long-term mean NDVI in the period i , σ_{NDVI} is the standard
 117 deviation of NDVI in the period i , and $NDVI_i$ is the current NDVI value in the time
 118 period i . Using only the first and second statistical moment, average and the square
 119 root of variance, assumption of normality is implicit in this type of drought NDVI
 120 indicator.

121

122 WIBI aims to protect farmers against weather-based disasters such as droughts,
 123 frosts and floods. A WIBI policy links possible insurance payouts with the weather
 124 requirements of the crop being insured: the insurer pays an indemnity whenever the
 125 realized value of the weather index meets a specified threshold. Whereas payouts in
 126 traditional insurance programs are related to actual crop damages, a farmer insured
 127 under a WIBI contract may receive a payout. A current difficulty to the wide
 128 implementation of WIBI is the weakness of indices. Indeed, there is certainly a need for
 129 more efficient indices based on the additional experience gained from the
 130 implementation of WIBI products in the developing world. Current trends in index
 131 technology are exciting and they actuate high expectations, especially the
 132 development of yield indices and the use of remote sensing inputs. Risk protection and
 133 insurance illiteracy constitute another difficulty, which has to be addressed by training
 134 and awareness-raising at all levels, from farmers to farmers' associations,
 135 micro-insurance partners, as well as senior decision-makers in insurance, banking, and
 136 politics (Bailey, 2013). It is essential that all stakeholders (especially the insured)
 137 perfectly understand the principles of IBI, as otherwise the insurer, even the whole
 138 concept of insurance, is at risk of reputation loss for years or decades.

139

140 There is currently a lack of technical capacity in the insurance sectors of most
 141 developing countries, which is a constraint to the scaling up and further development
 142 of WIBI (Gommes and Kayitakire, 2012). Specifically, although it is possible to design an
 143 index product and assist in roll-out, marketing, and sales, such assistance is not
 144 possible on a wide scale, simply because there is lack of qualified expertise. Indeed, it
 145 usually requires mathematical modeling, data manipulation, and expertise in crop
 146 simulation to design an index. Nevertheless, it is possible to structure insurance with
 147 multiple indices, but this increases the complexity of the product and makes it difficult
 148 for farmers to comprehend it. 'Basis risk' is also a particular problem for index
 149 products, which is frequently caused by the fact that measurements of a particular
 150 variable, such as rain, may differ at the insurer's measurement site and in the farmer's
 151 field. This also creates problems for insurance providers. Indeed, part of the reason the
 152 scaling up of index products has failed is that both insurers and farmers suffer from
 153 this basis risk.

154

155 Currently, to mitigate impacts of climate-related reduced productivity of French
 156 grasslands, several studies have been developed to design new insurance scheme
 157 bases indemnity payouts to farmers on a forage production index (FPI) (Rumiguié et
 158 al., 2015; 2017). Two examples of SIBIs are presented in two different countries: USA
 159 and Spain. In particular, in USA there are several insurance programs for pasture,
 160 rangeland and forage, which use various indexing systems (rainfall and vegetation
 161 indices), and are promoted by United States Department of Agriculture (USDA) (Maples
 162 et al., 2016; USDA, 2018). NDVI is the index chosen in the vegetation index program

163 and it is obtained from AVHRR (Advanced Very High Resolution Radiometer) sensor
 164 onboard NOAA satellites. Average, maximum and minimum NDVI values are obtained
 165 from a historical series with the aim of calculating a trigger value. Insurer decides the
 166 quantity of compensation comparing this trigger with current value. On the other
 167 hand, in Spain there exists the “Insurance for Damaged Pasture” from “Spanish System
 168 of Agricultural Insurance” (BOE, 2013). This insurance defines damage event through
 169 NDVI values obtained from MODIS sensor onboard TERRA satellite of NASA. In this
 170 insurance, NDVI threshold values ($NDVI_{th}$) are calculated subtracting several times
 171 ($k = 0.7$ or $k = 1.5$) standard deviation to average within a homogeneous area:

172

$$173 \quad NDVI_{th} = \mu - k \cdot \sigma \quad (2)$$

174

175 where μ, σ are average and standard deviation of NDVI respectively. Average and
 176 standard deviation come of supposing Normal distributions in the historical data
 177 (Goward et al., 1985; Hobbs, 1995; Fuller, 1998; Al-Bakri and Taylor, 2003; Turvey et
 178 al., 2012; De Leeuw et al. 2014).

179

180 The aim of this paper is to find a more realistic statistical NDVI distribution without
 181 the “a priori” assumption that variables follow a Normal distribution, typically for
 182 current SIBI methodology. In order to achieve this, the Maximum Likelihood Method
 183 (MLM) is fitted to a historical series of NDVI values in a pasture land area in Spain
 184 (Community of Madrid). Different types of asymmetrical distributions are examined
 185 with the aim to find a better fit than Normal. To eliminate some noise in the historical
 186 series, an original method is applied consisting of using Hue-Saturation-Lightness (HSL)
 187 color model. Finally, Chi-square test (χ^2 test) has been used to check the goodness of
 188 fit for all considered distributions.

189

190

191 2. Materials and Methods

192 2.1 Vegetation Index

193 The differences of the reflectance of green vegetation in parts of the
 194 electromagnetic radiation spectrum, namely, visible and near infrared, provide an
 195 innovative method for monitoring surface vegetation from space. Specifically, the
 196 spectral behavior of vegetation cover in the visible (0.4-0.7mm) and near infrared
 197 (0.74-1.1mm, 1.3-2.5mm) offers the possibility to monitor from space the changes in
 198 the different stages of cultivated and uncultivated plants taking also into account the
 199 corresponding behavior of the surrounding microenvironment (Ortega-Farias et al.,
 200 2016). Indeed, from the visible part of the electromagnetic radiation spectrum it is
 possible to draw conclusions about the rate photosynthesis, whereas from near

202 infrared inferences are extracted about the chlorophyll density and the amount of
 203 canopy in the plant mass, as well as the water content in the leaves, which is also
 204 linked directly to the rate of transpiration with impacts to physiological process of
 205 photosynthesis. Usually, data from NOAA/AVHRR series of polar orbit meteorological
 206 satellites are used with low spatial resolution (1.1 km^2) and recurrence interval at least
 207 twice daily from the same location. Several algorithms combining channels of red
 208 (RED), near infrared (NIR) and green (GREEN) have been proposed, which provide
 209 indices sensitive to green vegetation.

210

211 NDVI uses two frequency bands: red band (660 nm) and near-infrared band (860
 212 nm). Absorption of red band is related to photosynthetic activity and reflectance of
 213 near-infrared band is related to presence of vegetation canopies (Flynn, 2006). In
 214 drought periods, NDVI values can reduce significantly, therefore many researchers
 215 have used this index to measure drought events in recent years (Dalezios et al., 2014).
 216 To calculate NDVI we will use this mathematical formula:

217

$$218 \quad NDVI = \frac{IR-R}{IR+R} \quad (3)$$

219

220 where "IR" and "R" are reflectance values in Near-Infrared band and Red band,
 221 respectively. NDVI values below zero indicate no photosynthetic activity and are
 222 characteristic of areas with large accumulation of water, such as rivers, lakes, or
 223 reservoirs. The higher is the NDVI value, the greater is the photosynthetic activity and
 224 vegetation canopies.

225

226 In this paper, the NDVI is used, which is widely known index with a multitude of
 227 applications over time. The NDVI is suited for monitoring of total vegetation, since it
 228 partly compensates the changes in light conditions, land slope and field of view (Kundu
 229 et al., 2016). In addition, clouds, water and snow show higher reflectance in the visible
 230 than in the near infrared, thus, they have negative NDVI values. Indeed, bare and rocky
 231 terrain show vegetation index values close to zero. Moreover, the NDVI constitutes a
 232 measure of the degree of absorption by chlorophyll in the red band of the
 233 electromagnetic spectrum. In summary, the NDVI is a reliable index of the chlorophyll
 234 density on the leaves, as well as the percentage of the leaf area density over land,
 235 thus, NDVI constitutes a credible measure for the assessment of dry matter (biomass)
 236 in various species vegetation cover (Dalezios, 2013). It is clear from the above that the
 237 NDVI is an index closely related to growth and development of plants, which can
 238 effectively monitor surface vegetation from space.

239

240 The continuous increase of the NDVI value during the growing season reflects the
 241 vegetative and reproductive growth due to intense photosynthetic activity, as well as

242 the satisfactory correlation with the final biomass production at the end of a growing
 243 period. On the other hand, gradual decrease of the NDVI values signifies stress due to
 244 lack of water or extremely high temperatures for the plants, leading to a reduction of
 245 the photosynthetic rate and ultimately a qualitative and quantitative degradation of
 246 plants. NDVI values above zero indicate the existence of green vegetation
 247 (chlorophyll), or bare soil (values around zero), whereas values below zero indicate the
 248 existence of water, snow, ice and clouds.

249

250 **2.2 Database**

251 Scientific research satellite Terra (EOS AM-1) has been chosen to provide
 252 necessary information to calculate NDVI in the study area. This satellite was launched
 253 into orbit by NASA on December 18, 1999. MODIS sensor aboard this satellite collects
 254 information of different reflectance bands. MODIS information is organized by
 255 "products". The product used in this study was MOD09A1 (LP DAAC, 2014). MOD09A1
 256 incorporates seven frequency bands: Band 1 (620-670 nm), band 2 (841-876 nm), band
 257 3 (459-479 nm), band 4 (545-565 nm), 5 band (1230-1250 nm), band 6 (1628-1652 nm)
 258 and band 7 (2105-2155 nm). The bands used to calculate NDVI are: band 1 for red
 259 frequency and band 2 for near-infrared frequency. MOD09A1 provides georeferenced
 260 images with pixel resolution of 500m x 500m. Each MOD09A1 pixel contains the best
 261 possible L2G observation during an 8-day period as selected on the basis of high
 262 observation coverage, low view angle, the absence of clouds or cloud shadow, and
 263 aerosol loading.

264

265 The period of time selected on this study was from 2002 to 2017.

266

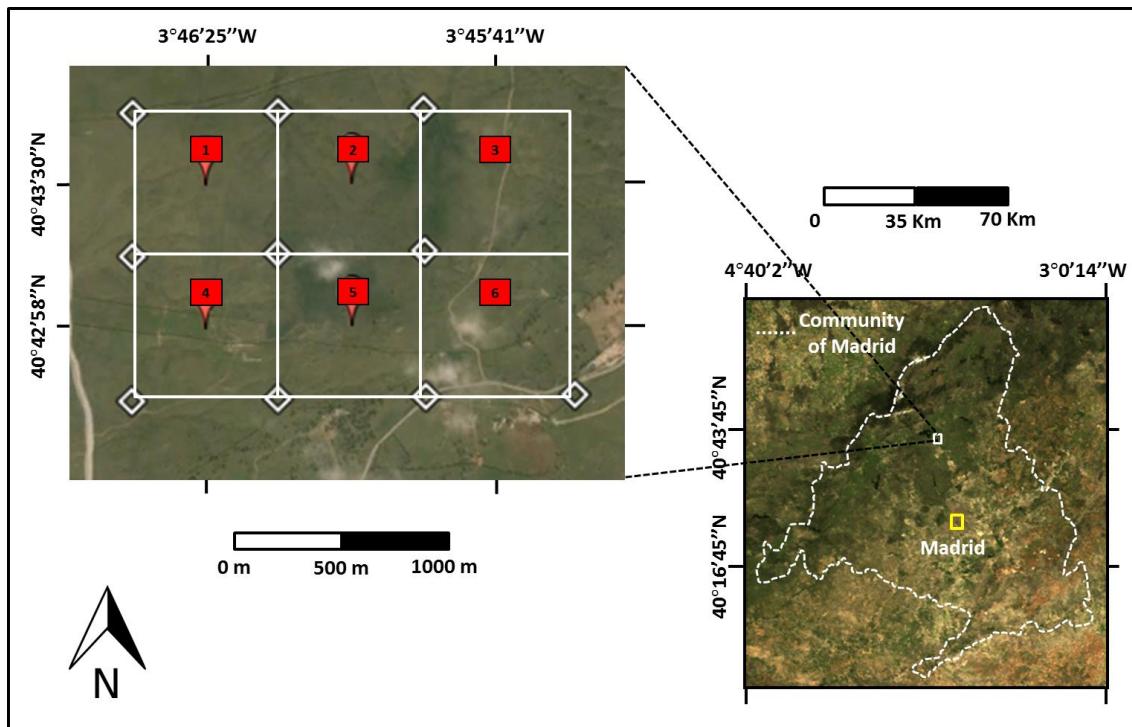
267 Daily data from a principal station of the meteorological network were utilized
 268 during the period studied (2002 – 2017). Meteorological station is located in
 269 40°41'46"N 3°45'54"W (elevation 1004 m a.s.l.), less than 2 km from the study area
 270 (AEMET, 2017).

271

272 **2.3 Site description**

273 Six pixels (500m x 500m) are considered located in a pasture area at the north of
 274 the Community of Madrid (Spain) between the municipalities of "Soto del Real" and
 275 "Colmenar Viejo". The study area is located between meridians 3° 45' 00" and 3° 47'
 276 00" W and parallels 40° 42' 00" and 40° 44' 00" N approximately (see Fig. 1).

277



278

279 **Figure 1.** The study area is in the centre of the Iberian Peninsula (Community of Madrid). RGB
 280 image of six pixels area used for case study is shown (Google Earth's and MODIS images).

281

282 The annual mean temperature ranges during the study period from 12.7°C to
 283 13.8°C, and annual mean precipitation ranges from 360 mm to 781 mm. The stations
 284 studied were identified semi-arid (annual ratio P/ET₀ between 0.2 and 0.5) according
 285 to the global aridity index developed by the United-Nations Convention to Combat
 286 Desertification (UNEP, 1997). According to the climatic classification of Köppen (Kottek
 287 et al., 2006), this area presents a continental Mediterranean climate temperate with
 288 dry and temperate summer (type Csb). Temperature and precipitation of this site,
 289 based on 20 years, is presented in Table 1.

290

291 Due to high soil moisture conditions, ash is the dominant tree, forming large
 292 agroforestry systems ("dehesas") that are used for pasture. These are ecosystems with
 293 high biodiversity.

294

295 **Table 1.** Monthly average of maximum temperature (Tmax), average temperature (Tavg),
 296 minimum temperature (Tmin) and precipitation (P). Study period from 1997 to 2017.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Tmax (°C)	7.1	9.3	12.7	15.4	19.5	24.6	28.6	28.1	23.7	16.8	11.1	7.4	17.0
Tavg (°C)	3.6	4.8	7.7	10.1	13.7	18.4	22.0	21.7	17.9	12.3	7.1	4.1	12.0
Tmin (°C)	0.0	0.3	2.6	4.8	7.8	12.1	15.4	15.3	12.0	7.8	3.0	0.8	6.8
P (mm)	67.2	50.0	38.5	62.2	62.3	30.2	18.9	16.4	34.2	79.3	86.2	82.6	627.9

297

298 **2.4 HSL model**

299 There is no doubt that NDVI time-series from satellite sensors carry useful
 300 information, which can be used for characterizing seasonal dynamics of vegetation
 301 (Fensholt et al., 2012; Forkel et al., 2013). However, due to unfavorable atmospheric
 302 conditions during the data acquisition, NDVI time-series curve often contains noise
 303 (Motohka et al., 2011; Park, 2013). Although most of the NDVI data products are
 304 temporally composited through maximum value compositing (MVC) method (Holben,
 305 1986) to retain relatively cloud-free data, residual noise still exists in the data, which
 306 will affect the accuracy of the NDVI value.

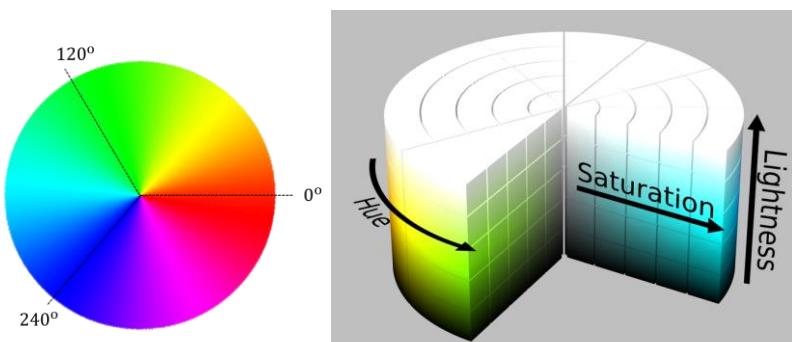
307

308 Therefore, usually it is necessary to reconstruct of NDVI time-series before
 309 extracting information from the noisy data. There are several techniques that have
 310 been applied to reduce noise and reconstruct NDVI series, a summary of these can be
 311 found in Wei et al. (2016). In this study we applied a simple filtering method based on
 312 the Hue-Saturation-Lightness (HSL) color model inspired by the work presented by
 313 Tackenberd (2007).

314

315 HSL color model is a cylindrical representation of RGB (Red-Green-Blue) points.
 316 Their components are Hue (color type), Saturation (level of color purity) and Lightness
 317 (color luminosity). Hue is the angular component and it is more intuitive for humans
 318 since it is directly related to the color wheel (see Fig. 2).

319



320

321 **Figure 2.** Colour wheel of Hue (on the left) and the HSL model (on the right).

322 Saturation is the radial component and near-zero values indicate grey colors.
 323 Lightness is the axial radial versus axial component, zero lightness produces black and
 324 full lightness produces white.

325

326 The NDVI series are filtered using the following HSL criterion: NDVI values are valid
 327 if HSL Saturation is greater than 0.15. In this way, the values of the series that have

328 grey color correlate with pasture covered by clouds or snow are eliminated. This type
 329 of filter based in HSL color space has been used on digital camera images monitoring
 330 vegetation phenology (Tackenberg, 2007; Crimmins and Crimmins, 2008; Graham et
 331 al., 2009). However, we have not found the use of this HSL criterion in the context of
 332 NDVI remote sensing images.

333

334 **2.5 Maximum Likelihood Method**

335 MLM estimates the set of parameters $\{\alpha, \beta, \mu, \sigma, \dots\}$ for a specific statistical
 336 distribution that maximizes the “likelihood function” or the “joint density function”:

337
$$L = f(\mathbf{x}; \boldsymbol{\theta}) = \prod_{i=1}^n f(x_i; \alpha, \beta, \mu, \sigma, \dots) \quad (4)$$

338 where $\mathbf{x} = (x_1, \dots, x_n)$ is the set of data, $\boldsymbol{\theta} = (\alpha, \beta, \mu, \sigma, \dots)$ is the vector of
 339 parameters and $f(x_i; \alpha, \beta, \mu, \sigma, \dots)$ is the density function of the statistical model.

340 When maximization with respect to the vector of parameters is carried out, the
 341 estimated parameters $(\hat{\alpha}, \hat{\beta}, \hat{\mu}, \hat{\sigma}, \dots)$ for the proposed statistical distribution are
 342 obtained (Larson, 1982). Properties of estimated parameters are: invariance,
 343 consistency and asymptotically unbiased.

344 In the case of a Normal model, the estimated statistics μ and σ are defined by
 345 accurate expressions as follows:

346
$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \quad \hat{\sigma} = s = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2} \quad (5)$$

347 where $\hat{\mu}$ is the sample mean and $\hat{\sigma}$ is the sample standard deviation of the data set.

348 In this study we will apply MLM to estimate the parameters for 4 probability
 349 density functions (PDF). In Table 2, a brief description is presented of these PDF
 350 candidates: Normal, Gamma, Beta and GEV. To do so, the following MATLAB functions
 351 have been used: “normfit”, “gamfit”, “betafit” and “gevfit” (respectively).

352

353 **Table 2.** Candidate Probability Density Functions (PDF).

PDF NAME	PDF EXPRESSION	PDF PARAMETERS
Normal	$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$	$\mu \equiv \text{average}$ $\sigma \equiv \text{standard deviation}$
Gamma	$f(x; \alpha, \beta) = \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}}$	$\Gamma(\cdot) \equiv \text{gamma function}$ $\alpha \text{ and } \beta \equiv \text{parameters}$
Beta	$f(x; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$	$\Gamma(\cdot) \equiv \text{gamma function}$ $a \text{ and } b \equiv \text{parameters}$

$$\begin{aligned}
 f(x; \mu, \sigma, \xi) &= \frac{1}{\sigma} t(x)^{\xi+1} e^{-t(x)} \\
 \text{GEV} \quad \text{where } t(x) &= \begin{cases} \left(1 + \left(\frac{x-\mu}{\sigma}\right)\xi\right)^{-1/\xi} & \text{if } \xi \neq 0 \\ e^{-(x-\mu)/\sigma} & \text{if } \xi = 0 \end{cases} \\
 \mu \in \mathbb{R} &\equiv \text{location param.} \\
 \sigma > 0 &\equiv \text{scale parameter} \\
 \xi \in \mathbb{R} &\equiv \text{shape parameter}
 \end{aligned}$$

354

355

356 **2.6 Goodness of fit (Chi square test)**

357 χ^2 test can be used to determine to what extent observed frequencies differ from
 358 frequencies expected for a specific statistical model. The most important points of the
 359 theory are briefly presented in (Cochran, 1952).

360

361 Let $f(x, \theta)$ be a theoretical density function of a random variable x which
 362 depends on parameters $\theta = (\alpha, \beta, \mu, \sigma, \dots)$ and let x_1, \dots, x_n be a sample of x grouped
 363 into k classes with n_i data per class i .

364

365 Firstly, the following hypothesis is set:

366

367 (H_0) observed data fit theoretical distribution $f(x, \theta)$.

368 Then the test statistic χ_c^2 is defined as:

$$369 \quad \chi_c^2 = \sum_{i=0}^k \frac{(n_i - e_i)^2}{e_i} \quad (6)$$

370 where n_i is the number of data or observed frequency and $e_i = n \cdot P(\text{class } i)$ is the
 371 expected frequency for class i . $P(\text{class } i)$ is the theoretical interval probability
 372 defined for class i .

373 A level of significance is also set as:

$$374 \quad \alpha = P(\text{Reject } H_0 / H_0 \text{ is true}) \quad (7)$$

375 Finally, the following decision rule is applied: "reject the theoretical distribution at
 376 significance level α if:

$$377 \quad \chi_c^2 > \chi_{(k-m-1, 1-\alpha)}^2 \quad (8)$$

378 where $\chi_{(k-m-1, 1-\alpha)}^2$ is a χ^2 distribution with $k-m-1$ degrees of freedom (m is the
 379 number of parameters, k is the number of classes).

380

381

382

383

384 **3. Results**385 **3.1 HSL filtering criterion**

386 NDVI series (from 2002 to 2017) were obtained for each pixel of the study area
387 using frequency bands provided by MODIS product named MOD09A1. These series
388 contain some irregular values that can skew NDVI pattern. Therefore, the six series (six
389 pixels) were filtered using the HSL criterion.

390

391 MOD09A1 is a MODIS product that processes data to obtain the best observation
392 in an 8-days period. However, it is possible that the result of this selection still presents
393 some problems since the best of this selection is relative to the eight observations of
394 the period. For example, if the eight observations, at one pixel, appear with clouds,
395 shadow clouds or snow, the best selection still ~~maintains~~ this problem.

396

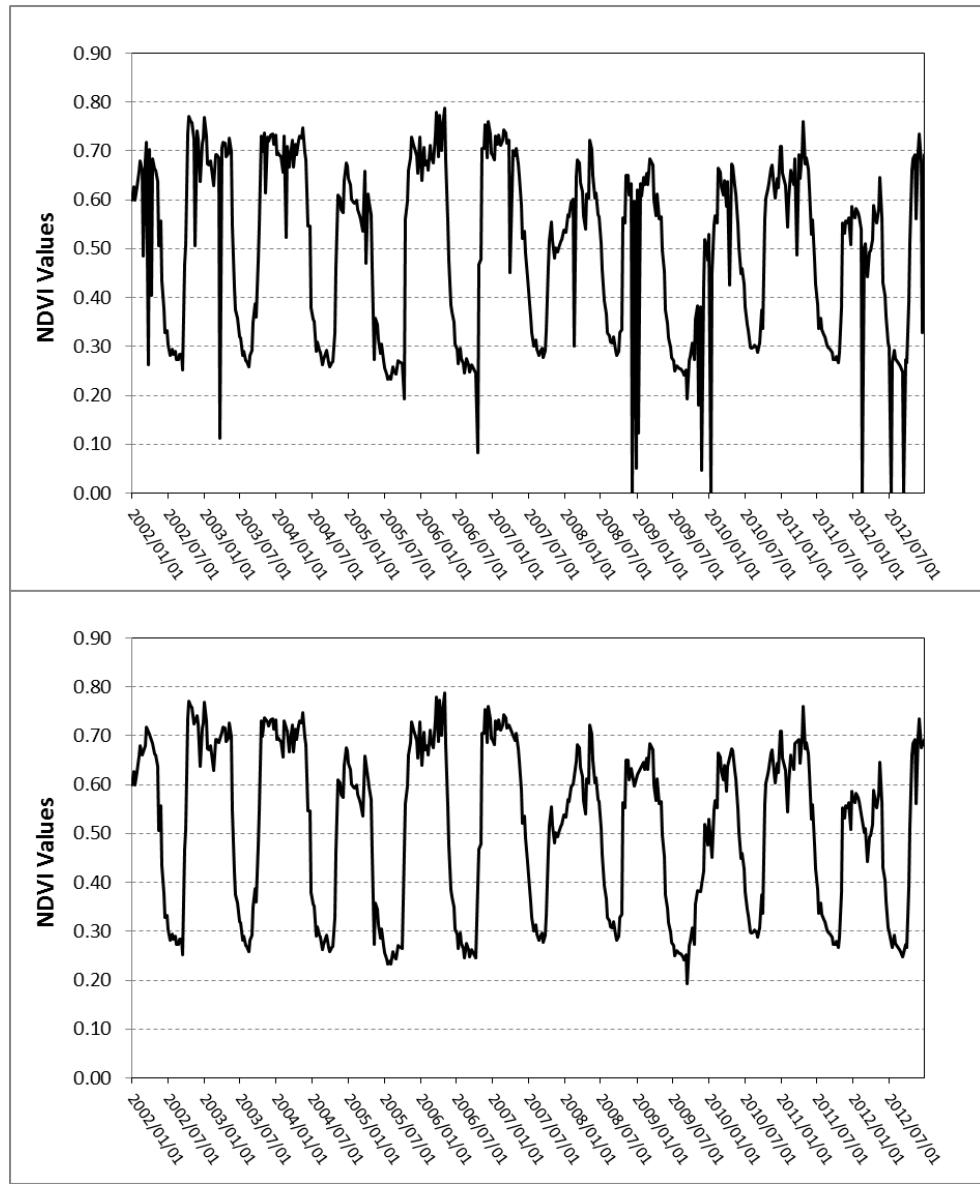
397 As an example of ~~above~~, the NDVI series (10 years) of one pixel of the study area is
398 shown in Fig. 3. On the top graph of Fig. 3 ~~it is noticed that there exit~~ some extremely
399 low NDVI values in some dates. If these NDVI values are compared to neighbor ~~values~~
400 (8 days after or before) the high variation presented in such short period is not
401 ~~believable~~. This issue tells us that ~~MODIS~~ sensor has not obtained a proper observation
402 ~~in~~ this 8 days period (interval).

403

404 ~~HSL~~ criterion helps us to eliminate these incorrect NDVI values, since the filter is
405 interpreting that these pixels still contains clouds or snow, i.e., pixels with low
406 saturation (greyish colours).

407

408



409

410 **Figure 3.** HSL filtering criterion applied to a 10 years NDVI series. Top graph shows the real
 411 NDVI series. Bottom graph shows the HSL filtered NDVI series.

412 Fig. 3 shows that abrupt changes in the NDVI values, mainly observed during
 413 raining seasons such as autumn and winter, are efficiently eliminated. Not to be a high
 414 computational demanding method is one of the main advantages of HSL filtering
 415 method. Therefore, this method will allow us to obtain more robust NDVI values to be
 416 used in the statistical analysis.
 417

418 **3.2 Statistical analysis**

419 NDVI values were obtained consecutively every 8 days from MODIS product
 420 starting at the 1st of January of every year, in such a way that 46 NDVI observations
 421 were extracted for each year. Therefore, it was possible to define 46 Random Variables
 422 (RV) when all the years of this study were taking into account.

423 In Table 3, every RV (named as “Interval”) is shown together with the number of
 424 available NDVI observations. Each RV collects the observations coming from the six
 425 selected pixels; therefore the maximum number of observations per RV could be: 6
 426 pixels x 16 years = 96 observations. The start intervals of each season are: interval 45
 427 (19 December) for winter, interval 11 (22 March) for spring, interval 23 (26 June) for
 428 summer and interval 34 (22 September) for autumn.

429

430

Table 3. Number of observations for every RV (named as Interval).

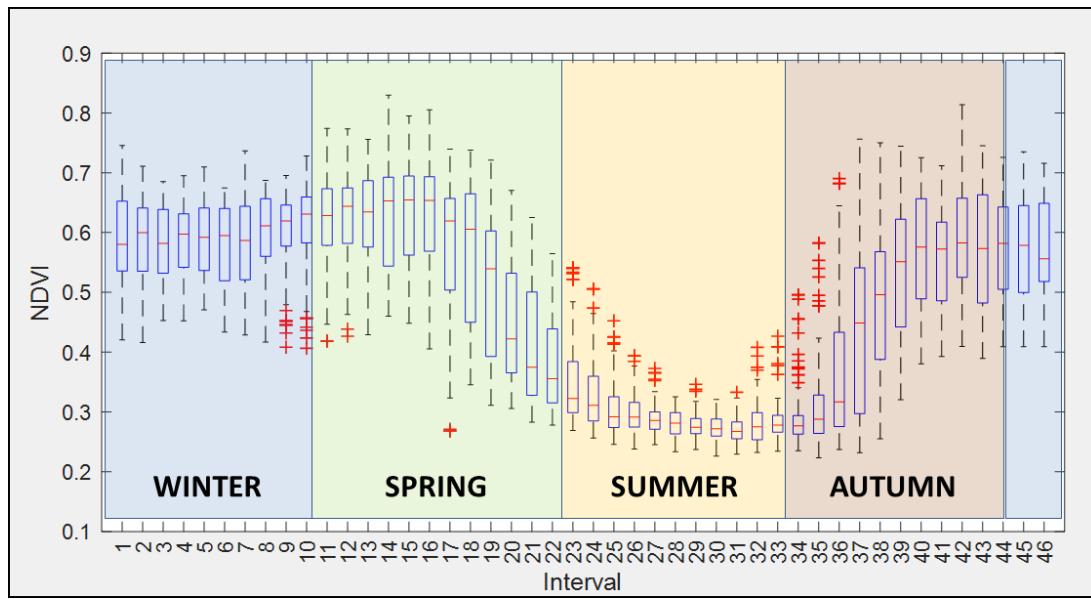
RANDOM VARIABLE	# OBSERVATIONS
Interval 1	85
Interval 2	84
Interval 3	96
Interval 4	96
Interval 5	95
Interval 6	90
Interval 7	86
Interval 8	83
Interval 9	96
Interval 10	96
Interval 11	74
Interval 12	88
Interval 13	88
Interval 14	88
Interval 15	96
Interval 16	92
Interval 17	88
Interval 18	96
Interval 19	95
Interval 20	96
Interval 21	95
Interval 22	96
Interval 23	96
Interval 24	96
Interval 25	96
Interval 26	96
Interval 27	96
Interval 28	96
Interval 29	96
Interval 30	96
Interval 31	96
Interval 32	96
Interval 33	94
Interval 34	96
Interval 35	96
Interval 36	85
Interval 37	90
Interval 38	96
Interval 39	92
Interval 40	90
Interval 41	96
Interval 42	89
Interval 43	95
Interval 44	88
Interval 45	90
Interval 46	90

431

432

433 In Fig. 4, box plots of all RV with a start and end reference of the astronomical
 434 seasons are shown. The typical evolution of the NDVI along a year can be seen
 435 together with the inter-quartile range.

436



437
 438 **Figure 4.** Box plots of 46 random variables (RV) are shown as well as start and end reference
 439 of every season. Study period from 2002 to 2017.

440
 441 The observed evolution of NDVI through the different seasons is typical of the
 442 pasture in this area. The summer presents the lowest mean values which begin to
 443 increase in autumn achieving a maximum mean value of 0.60 or 0.65 during the
 444 beginning of spring. In the middle of the spring NDVI decrease again, approaching the
 445 lowest mean value of 0.28 approximately in summer.

446
 447 Taking into account these values, dense vegetation, in this study pasture, is found
 448 from middle of October (interval 37) till the end of May (interval 19). It is in this period
 449 where the precipitation concentrates (see Table 1). During the summer, the NDVI
 450 mean values are lower than 0.3 corresponding with low precipitation and high
 451 temperatures.

452
 453 Following the work of Escribano-Rodriguez et al. (2014), there is a relationship of
 454 pasture damage and a NDVI value around 0.40. Even if the authors point out that this
 455 value is highly variable depending on the location, we can see that summer season in
 456 this case study is under this value (see Fig. 4). This can explain that “Insurances for
 457 Damaged Pasture” usually do not apply in these dates due to the arid environment
 458 (BOE, 2013).

459
 460 The statistical metric used in this study to assess the fit of the observed NDVI
 461 values with respect to the PDF candidates (Normal, Gamma, Beta and GEV) was the Chi
 462 square test (χ^2 test). The following steps were carried out:

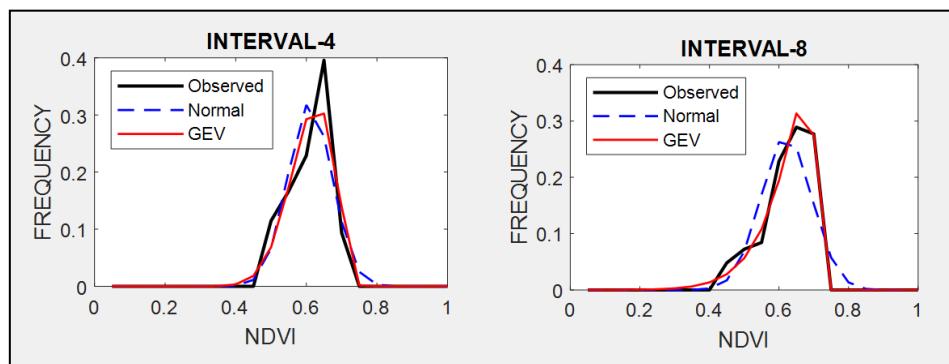
463

464 1. MLM was applied to model these 46 RV. Parameters were calculated for the
 465 four PDF candidates (see Table 2).
 466 2. To check the goodness of the fit of PDF candidates, Chi square test (χ^2 test)
 467 was applied from 7 classes to 14 classes meeting the requirement that each
 468 class has at least five observations. The level of significance (α) was fixed to 5%
 469 for all the candidates.

470

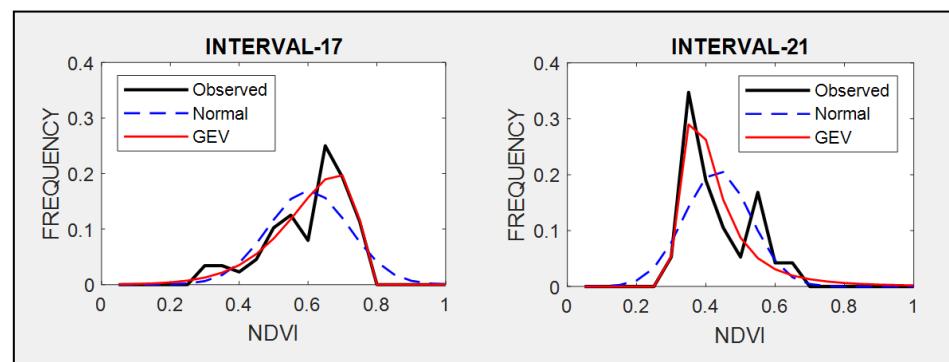
471 3.2.1 Maximum Likelihood Method

472 Table A1 at Appendix A shows the estimated parameters for each PDF and each
 473 interval calculated by the MLM. These parameters were used to compare the
 474 estimated PDF with the NDVI observed values on different times through the seasons.
 475 The following intervals are shown as examples of better GEV fit: interval 4 and 8 (for
 476 winter, see Fig. 5), interval 17 and 21 (for spring, see Fig. 6) and interval 36 and 40 (for
 477 autumn, see Fig. 7). In these plots, observed frequency is compared versus Normal and
 478 GEV density distributions calculated by MLM.

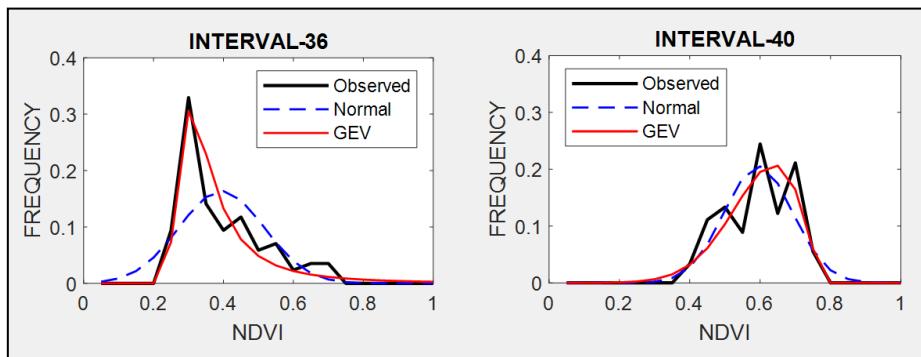


480

481 **Figure 5.** Comparison between observed NDVI frequency, GEV and Normal probability density
 482 functions (PDF) on two different dates. Intervals 4 and 8 are examples for winter.



484 **Figure 6.** Comparison between observed NDVI frequency, GEV and Normal probability density
 485 functions (PDF) on two different dates. Intervals 17 and 21 are examples for spring.



487

488 **Figure 7.** Comparison between observed NDVI frequency, GEV and Normal probability density
 489 functions (PDF) on two different times. Intervals 36 and 41 are examples for autumn.

490

491 During winter (see Fig. 5) the observed NDVI distribution presents negative
 492 skewness. Then, there is a higher frequency of high NDVI values corresponding with
 493 significant precipitation. During spring (see Fig. 6) an evolution in the skewness is
 494 observed passing from negative to positive, and so, the lower NDVI values become the
 495 higher probable. Finally, during autumn (see Fig. 7) precipitation begins and from
 496 positive pass to negative skewness and higher NDVI values are possible. We can
 497 observe that Normal distribution has no flexibility to follow this dynamic in the
 498 distributions on each time. This comparison is done in a sequential order for the whole
 499 of intervals in Figures A1, A2, A3 and A4 at Appendix A.

500

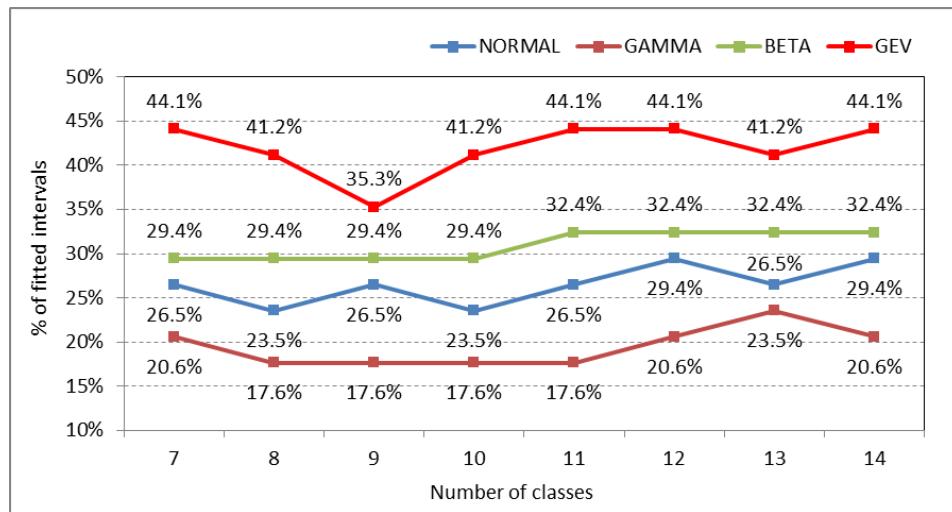
501 3.2.2 Chi square test

502 Twelve intervals (from 23 to 34) corresponding to months of July, August and
 503 September have been excluded of this analysis since these intervals fall into the dry
 504 season in the study area, normally not covered by any SIBI. Therefore, calculations were
 505 carried out over 34 intervals.

506

507 To assess the general goodness of fit, the number of intervals where the χ^2 test
 508 was accepted (or failed to reject) was calculated for every PDF candidate. Then, the
 509 percentage of accepted intervals, over the total 34 intervals, was also calculated (the
 510 quality estimator). Fig. 8 shows this percentage of intervals that fit for every PDF
 511 candidate. The number of classes used in χ^2 test is represented at X-axis (from 7 to 14
 512 classes).

513



514
 515 **Figure 8.** Percentage of fitted intervals (Y axis)
 516 for each PDF candidate (Normal, Gamma, Beta
 517 and GEV distributions) in function of the number of classes (X axis).

518 4. Discussion

519 4.1 Statistical context

520 Fig. 8 indicates that GEV distributions explain more intervals (more than 40% for
 521 the majority of the class analysis) than Normal, Gamma or Beta distributions. An
 522 important difference between the Normal distribution and the ~~rest of the~~ PDF used in
 523 this work is ~~its~~ skewness and kurtosis. Many of the observed NDVI distributions
 524 present a clear asymmetry and long tails in one or both sides that causes Normal
 525 distribution ~~not~~ to be the optimal fit.

526
 527 There is a relationship between seasons and the number of intervals that fit
 528 correctly. We found that GEV distributions explain better intervals of spring and
 529 autumn since their observed distributions are very asymmetric. On the other hand, we
 530 did not find an important difference in winter, since ~~its~~ observed distributions are
 531 mainly symmetric.

532
 533 The more skewness and kurtosis depart from those of the Normal distribution the
 534 larger the errors affecting the insurance designed based on [Turvey et al., 2012](#)). It is
 535 an expected result as pasture ~~scenario~~ is quite different from the development of a
 536 crop, where Normal distributions in the NDVI values are more ~~expected~~. This high
 537 heterogeneity in time and space of NDVI estimated on pasture has been pointed out in
 538 several works ([Martin-Sotoca et al, 2018](#)). At the same time, more different ~~is~~ the
 539 observed NDVI frequency ~~from~~ a Normal distribution ~~less~~ representative is the
 540 average, and so, the median becomes a more representative value.

542 **4.2 Insurance context**

543 The use of NDVI thresholds in damaged pasture context was presented in the
 544 introduction section, being an example of using the "Insurance for Damaged Pasture"
 545 in Spain. We have chosen this last insurance to compare the results between applying
 546 Normal and GEV distribution methodologies. In this particular case the NDVI threshold
 547 ($NDVI_{th}$) was calculated using the expression $NDVI_{th} = \mu - k \cdot \sigma$ (where μ, σ are
 548 average and standard deviation of NDVI distributions respectively, assuming the
 549 Normal hypothesis).

550

551 The probability of being below $NDVI_{th}$ (using $k = 0.7$, first damage level in the
 552 insurance) at every interval has been calculated assuming the Normal hypothesis. As it
 553 was expected, this value is always 24.2% (see third column in Table 4). The probability
 554 of being below $NDVI_{th}$ has also been calculated using GEV distributions obtained in
 555 this study. The probability obtained by GEV distributions is mostly lower than the
 556 Normal distributions in spring, autumn and winter (see Table 4) that is the working
 557 period of the insurance.

558

559 Observing where in time are ~~localized~~ the highest relative error in probabilities
 560 (fifth column in Table 4), intervals corresponding to the end of winter, second middle
 561 of spring and the beginning of autumn present errors higher than 10%. This could
 562 explain why it is in spring and autumn when more disagreements exist between
 563 farmers and insurance company in claims.

564

565 **Table 4 – First column:** time intervals of approximately 8 days along the year. **Second column:**
 566 NDVI thresholds ($NDVI_{th}$) based on a Normal distribution applying $\mu - 0.7 \times \sigma$. **Third column:**
 567 percentages of area below the $NDVI_{th}$ when Normal distributions are applied. **Fourth column:**
 568 percentages of area below the $NDVI_{th}$ when GEV distributions are applied. **Fifth column:** relative
 569 area error of GEV compared to the Normal distribution.

570

RANDOM VARIABLE	NORMAL		GEV	
	$NDVI_{th}$	Prob.	Prob.	Error (%)
Interval 1	0.535	24.20%	24.37%	0.70%
Interval 2	0.541	24.20%	23.18%	-4.21%
Interval 3	0.541	24.20%	23.27%	-3.84%
Interval 4	0.543	24.20%	23.27%	-3.84%
Interval 5	0.545	24.20%	24.17%	-0.12%
Interval 6	0.534	24.20%	21.48%	-11.24%
Interval 7	0.528	24.20%	24.01%	-0.79%
Interval 8	0.546	24.20%	20.70%	-14.46%

Interval 9	0.555	24.20%	21.30%	-11.98%
Interval 10	0.561	24.20%	22.28%	-7.93%
Interval 11	0.567	24.20%	23.49%	-2.93%
Interval 12	0.572	24.20%	23.75%	-1.86%
Interval 13	0.571	24.20%	23.20%	-4.13%
Interval 14	0.570	24.20%	24.29%	0.37%
Interval 15	0.571	24.20%	23.47%	-3.02%
Interval 16	0.560	24.20%	23.26%	-3.88%
Interval 17	0.495	24.20%	21.29%	-12.02%
Interval 18	0.484	24.20%	21.58%	-10.83%
Interval 19	0.442	24.20%	23.06%	-4.71%
Interval 20	0.381	24.20%	27.20%	12.40%
Interval 21	0.342	24.20%	29.46%	21.74%
Interval 22	0.323	24.20%	28.84%	19.17%
Interval 35	0.257	24.20%	18.98%	-21.57%
Interval 36	0.285	24.20%	28.57%	18.06%
Interval 37	0.333	24.20%	25.90%	7.02%
Interval 38	0.398	24.20%	24.27%	0.29%
Interval 39	0.454	24.20%	23.79%	-1.69%
Interval 40	0.503	24.20%	22.81%	-5.74%
Interval 41	0.491	24.20%	23.23%	-4.01%
Interval 42	0.517	24.20%	24.66%	1.90%
Interval 43	0.507	24.20%	23.13%	-4.42%
Interval 44	0.514	24.20%	23.49%	-2.93%
Interval 45	0.515	24.20%	23.70%	-2.07%
Interval 46	0.509	24.20%	23.33%	-3.60%

571

572 An alternative calculation can be the use of Normal probability (24.2%) to calculate
 573 new $NDVI_{th}$ based on GEV (see Table 5). It can be seen that new $NDVI_{th}$ obtained
 574 by GEV distributions are mostly ~~upper~~ than thresholds using Normal distributions in
 575 spring, autumn and winter. Considering these results we find that damage thresholds
 576 calculated by GEV ~~methodology~~ are mostly above ~~that~~ one's calculated by Normal
 577 ~~methodology~~.

578 Again, intervals corresponding to the end of winter, second middle of spring and the
 579 beginning of autumn present $NDVI_{th}$ relative errors higher than 1% in absolute
 580 values (fourth column in Table 5).

581

582 **Table 5 - First column:** time intervals of approximately 8 days along the year. **Second column:** NDVI
 583 thresholds ($NDVI_{Th}$) based on a Normal distribution (Normal) applying $\mu - 0.7 \times \sigma$. **Third column:**
 584 $NDVI_{Th}$ based on a GEV distribution (GEV) using 24.2% as the area below the $NDVI_{Th}$. **Fourth**
 585 **column:** relative $NDVI_{Th}$ error of GEV compared to the Normal distribution.

586

RANDOM VARIABLE	NDVI _{Th}		Error (%)
	Normal	GEV	
Interval 1	0.535	0.534	-0,19%
Interval 2	0.541	0.543	0,37%
Interval 3	0.541	0.543	0,37%
Interval 4	0.543	0.545	0,37%
Interval 5	0.545	0.545	0,00%
Interval 6	0.534	0.543	1,69%
Interval 7	0.528	0.528	0,00%
Interval 8	0.546	0.558	2,20%
Interval 9	0.555	0.563	1,44%
Interval 10	0.561	0.567	1,07%
Interval 11	0.567	0.569	0,35%
Interval 12	0.572	0.574	0,35%
Interval 13	0.571	0.574	0,53%
Interval 14	0.570	0.569	-0,18%
Interval 15	0.571	0.573	0,35%
Interval 16	0.560	0.563	0,54%
Interval 17	0.495	0.510	3,03%
Interval 18	0.484	0.498	2,89%
Interval 19	0.442	0.447	1,13%
Interval 20	0.381	0.374	-1,84%
Interval 21	0.342	0.334	-2,34%
Interval 22	0.323	0.318	-1,55%
Interval 35	0.257	0.262	1,95%
Interval 36	0.285	0.278	-2,46%
Interval 37	0.333	0.327	-1,80%
Interval 38	0.398	0.398	0,00%
Interval 39	0.454	0.455	0,22%
Interval 40	0.503	0.508	0,99%
Interval 41	0.491	0.494	0,61%
Interval 42	0.517	0.516	-0,19%
Interval 43	0.507	0.510	0,59%
Interval 44	0.514	0.516	0,39%
Interval 45	0.515	0.516	0,19%
Interval 46	0.509	0.511	0,39%

587

588

589 **5. Conclusions**

590 According to the results obtained in the study area using MLM and χ^2 test, it can
591 be concluded that Normal distributions are not a good fit to the NDVI observations,
592 and GEV distributions provide a better approximation.

593

594 The difference between Normal and GEV assumption is more evident in the
595 transition from winter to summer (spring), where NDVI values decrease, and then from
596 summer to winter (autumn) presenting the opposite behavior of increasing NDVI
597 values. In both periods asymmetrical distributions were found, negative skewness for
598 the spring transition and positive skewness for the autumn transition. During both
599 periods the variability in precipitation and temperatures were higher in this location.

600

601 We have found differences if GEV assumption is selected instead of the Normal
602 one when defining damaged pasture thresholds ($NDVI_{th}$). The use of these different
603 assumptions should be taken into account in future insurance implementations due to
604 the important consequences of supposing a damage event or not. We propose the use
605 of quantiles in observed NDVI distributions instead of average and standard deviation,
606 typically of Normal distributions, to calculate new $NDVI_{th}$.

607

608

609

610 **Acknowledgements**

611 This research has been partially supported by funding from MINECO under contract
612 No. MTM2015-63914-P and CICYT PCIN-2014-080.

613

614 **Appendix A**

615

616

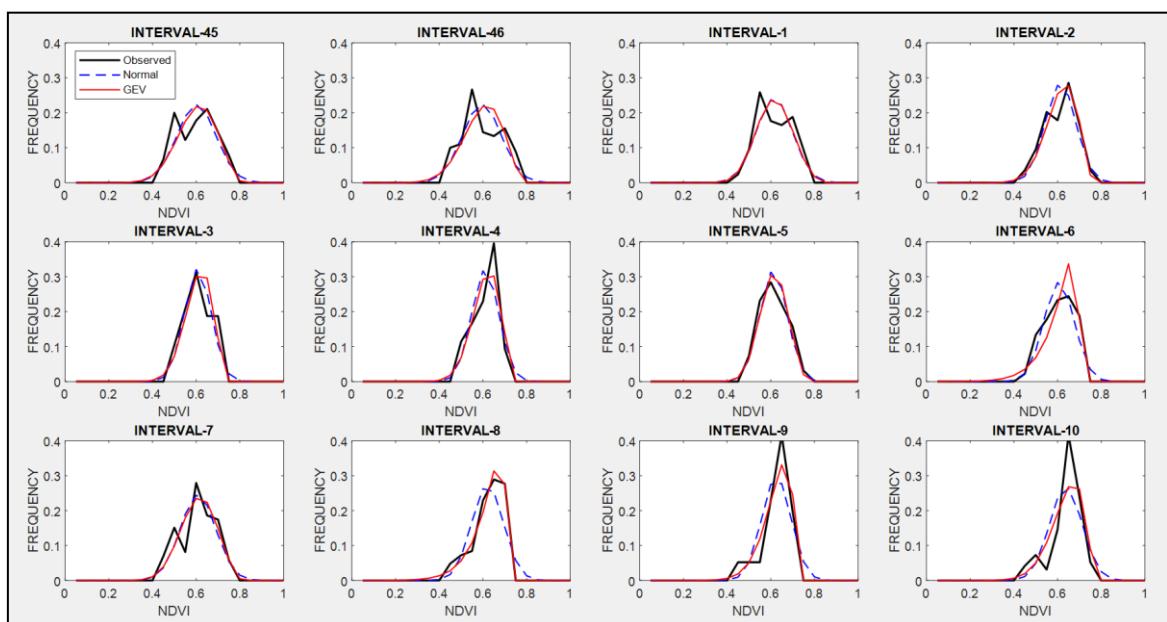
Table A1 - Maximum Likelihood parameters calculated for 4 PDF.

RANDOM VARIABLE	NORMAL		GAMMA		BETA		GEV		
	μ	σ	α	β	a	b	μ	σ	ξ
Interval 1	0.591	0.081	53.31	0.011	21.45	14.82	0.563	0.080	-0.297
Interval 2	0.589	0.069	71.14	0.008	30.62	21.40	0.571	0.073	-0.477
Interval 3	0.583	0.060	94.15	0.006	39.56	28.34	0.567	0.063	-0.457
Interval 4	0.585	0.060	91.88	0.006	39.58	28.05	0.570	0.064	-0.468
Interval 5	0.588	0.061	93.92	0.006	38.83	27.25	0.568	0.061	-0.340
Interval 6	0.582	0.068	70.28	0.008	30.67	22.05	0.577	0.083	-0.846
Interval 7	0.584	0.080	52.52	0.011	22.16	15.82	0.559	0.082	-0.366
Interval 8	0.596	0.071	65.37	0.009	28.89	19.59	0.591	0.081	-0.833
Interval 9	0.601	0.066	76.02	0.008	34.31	22.84	0.590	0.070	-0.652
Interval 10	0.613	0.073	63.83	0.010	27.80	17.62	0.598	0.079	-0.572
Interval 11	0.621	0.078	58.72	0.011	24.33	14.86	0.600	0.083	-0.451
Interval 12	0.624	0.073	68.33	0.009	28.01	16.94	0.603	0.078	-0.431
Interval 13	0.624	0.075	66.22	0.009	26.23	15.85	0.604	0.080	-0.476
Interval 14	0.631	0.088	50.23	0.013	18.71	10.92	0.603	0.090	-0.342
Interval 15	0.630	0.084	53.60	0.012	21.17	12.45	0.607	0.089	-0.448
Interval 16	0.627	0.096	38.75	0.016	16.08	9.59	0.602	0.103	-0.474
Interval 17	0.577	0.117	20.47	0.028	10.24	7.58	0.560	0.127	-0.692
Interval 18	0.568	0.120	20.52	0.028	9.71	7.42	0.552	0.136	-0.718
Interval 19	0.523	0.116	19.46	0.027	9.52	8.68	0.495	0.125	-0.493
Interval 20	0.452	0.101	20.99	0.022	10.98	13.31	0.401	0.077	0.078
Interval 21	0.409	0.095	19.94	0.021	11.18	16.13	0.354	0.060	0.325
Interval 22	0.379	0.080	24.66	0.015	14.41	23.52	0.333	0.046	0.385
Interval 23	0.353	0.073	26.54	0.013	15.85	29.01	0.311	0.036	0.456
Interval 24	0.328	0.056	38.36	0.009	24.22	49.65	0.298	0.033	0.287
Interval 25	0.305	0.044	53.52	0.006	35.62	81.20	0.282	0.028	0.210
Interval 26	0.298	0.034	78.93	0.004	54.47	128.55	0.283	0.029	-0.064
Interval 27	0.289	0.026	126.85	0.002	88.33	217.15	0.278	0.021	-0.030
Interval 28	0.282	0.022	166.17	0.002	119.50	305.03	0.274	0.022	-0.322
Interval 29	0.278	0.021	179.09	0.002	127.93	332.63	0.269	0.018	-0.085
Interval 30	0.273	0.019	203.11	0.001	147.67	393.21	0.266	0.019	-0.247
Interval 31	0.272	0.022	166.83	0.002	120.11	321.95	0.262	0.018	-0.059
Interval 32	0.280	0.034	75.63	0.004	52.36	134.30	0.264	0.023	0.118
Interval 33	0.285	0.034	82.05	0.004	54.90	137.68	0.270	0.020	0.122
Interval 34	0.295	0.057	33.26	0.009	21.15	50.37	0.268	0.024	0.363
Interval 35	0.312	0.079	19.70	0.016	11.83	25.94	0.275	0.038	0.300
Interval 36	0.369	0.121	10.81	0.034	6.11	10.33	0.298	0.063	0.480
Interval 37	0.432	0.141	9.45	0.046	5.21	6.81	0.370	0.120	-0.080

Interval 38	0.487	0.128	13.88	0.035	7.25	7.63	0.445	0.127	-0.321
Interval 39	0.529	0.107	23.56	0.022	11.39	10.16	0.497	0.110	-0.390
Interval 40	0.570	0.096	34.02	0.017	15.10	11.40	0.548	0.105	-0.533
Interval 41	0.554	0.090	36.42	0.015	16.90	13.64	0.531	0.096	-0.471
Interval 42	0.583	0.095	37.29	0.016	15.56	11.11	0.551	0.094	-0.295
Interval 43	0.574	0.097	34.27	0.017	14.93	11.07	0.550	0.103	-0.482
Interval 44	0.572	0.083	47.13	0.012	20.40	15.26	0.549	0.086	-0.425
Interval 45	0.576	0.088	42.59	0.014	18.17	13.36	0.550	0.090	-0.396
Interval 46	0.570	0.088	41.98	0.014	18.11	13.66	0.546	0.092	-0.445

617

618

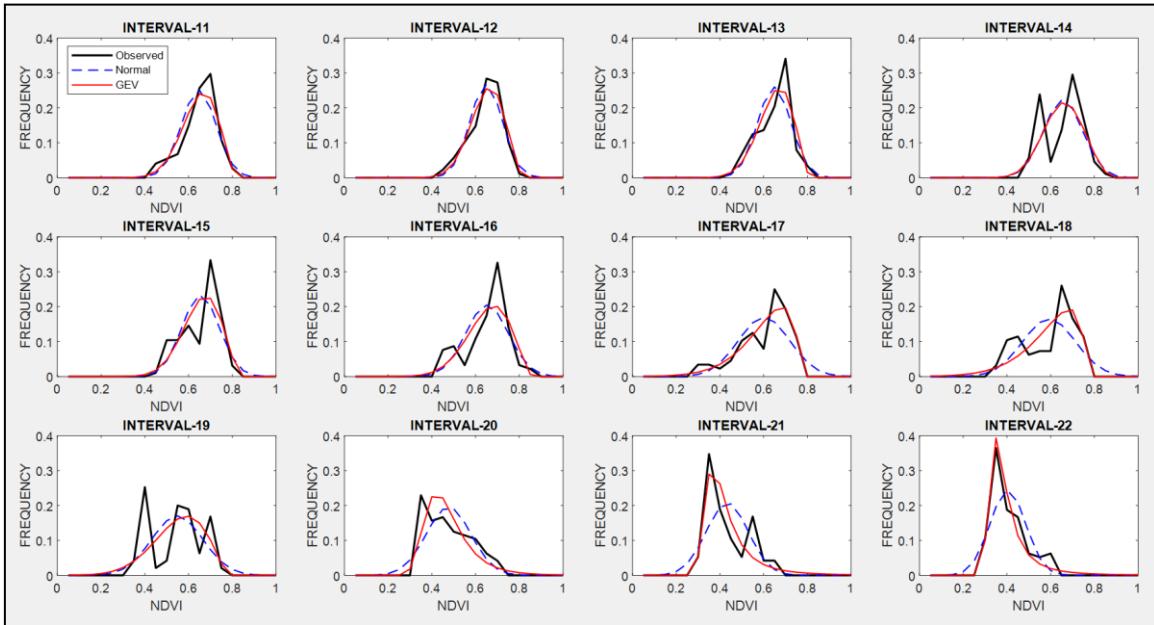


619

620
621

Figure A1. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 45 to interval 10 (from 19 December to 21 March) representing winter.

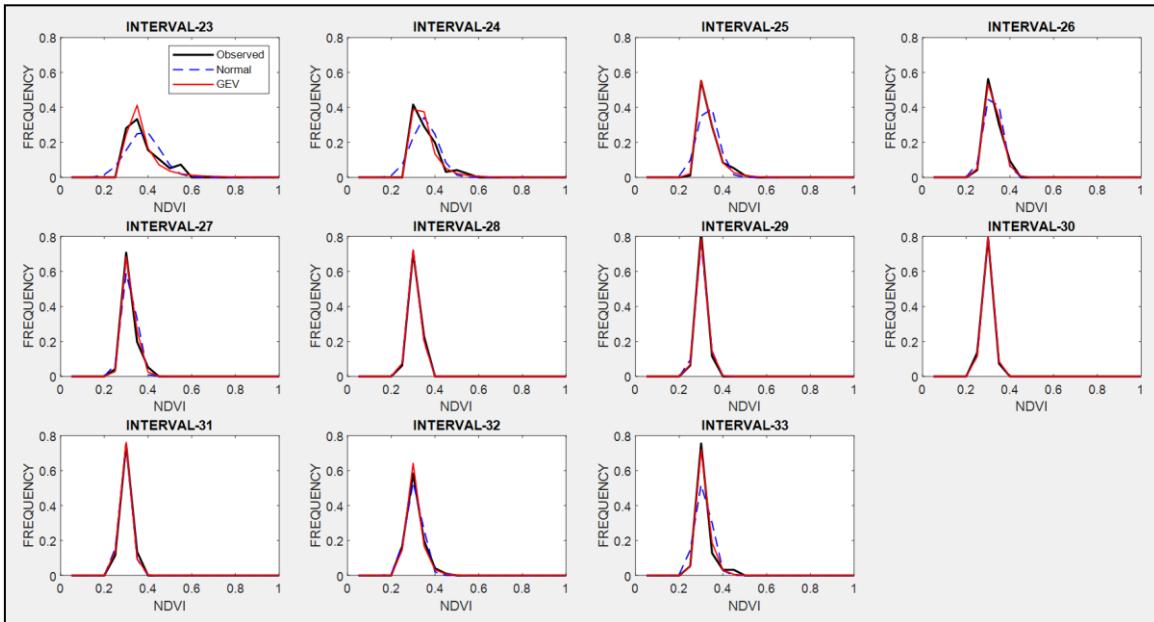
622



623

624 **Figure A2.** Observed NDVI, GEV and Normal probability density functions (PDF) from interval
 625 11 to interval 22 (from 22 March to 25 June) representing spring.

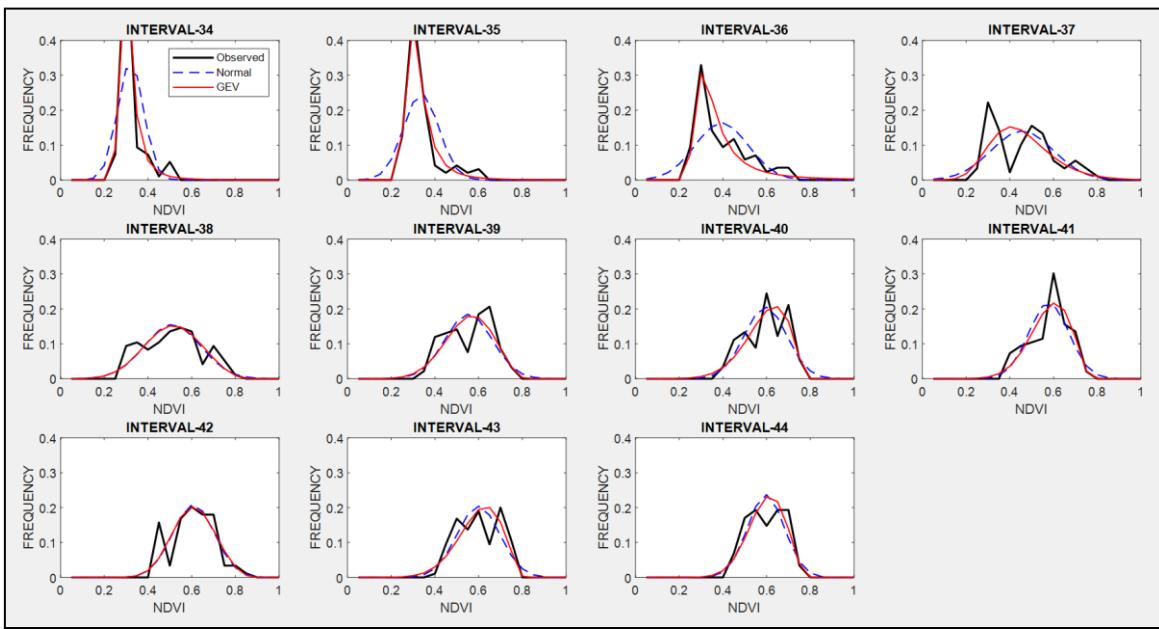
626



627

628 **Figure A3.** Observed NDVI, GEV and Normal probability density functions (PDFs) from interval
 629 23 to interval 33 (from 26 June to 21 September) representing summer.

630



631

632 **Figure A4.** Observed NDVI, GEV and Normal PDFs from interval 34 to interval 44 (from 22
 633 September to 18 December) representing autumn.

634

635 **References**

636

637 Agencia Estatal de Meteorología (AEMET). Available at: www.aemet.es, 2017.

638 Al-Bakri, J. T., and Taylor, J. C.: Application of NOAA AVHRR for monitoring vegetation
639 conditions and biomass in Jordan, *J. Arid Environ.*, 54, 579–593, 2003.

640 Anyamba, A., and Tucker, C.J.: Historical perspective of AVHRR NDVI and vegetation
641 drought monitoring. In: *Remote Sensing of Drought: Innovative Monit Approaches*,
642 pp. 23, 2012.

643 Bailey, S.: *The Impact of Cash Transfers on Food Consumption in Humanitarian Settings: A review of evidence*, Study for the Canadian Foodgrains Bank, May 2013.

644

645 Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C., and Tucker,
646 C.J.: A comparative study of NOAA-AVHRR derived drought indices using change
647 vector analysis, *Remote Sens. Environ.* 105 (1), 9–22, 2006.

648 Boletín Oficial del Estado (BOE, 6638 - Orden AAA/1129/2013. № 145, III, p-46077,
649 2013.

650 Cochran, William G.: The Chi-square Test of Goodness of Fit, *Annals of Mathematical
651 Statistics*. 23: 315–345, 1952.

652 Crimmins, M. A., and Crimmins T. M.: Monitoring plant phenology using digital repeat
653 photography, *Environ. Manage.* 41, 949–958, 2008.

654 Dalezios, N. R., Blanta, A., Spyropoulos, N. V., and Tarquis A. M.: Risk identification of
655 agricultural drought for sustainable Agroecosystems, *Nat. Hazards Earth Syst. Sci.*,
656 14, 2435–2448, 2014.

657 Dalezios, N. R.: The Role of Remotely Sensed Vegetation Indices in Contemporary
658 Agrometeorology. Invited paper in Honorary Special Volume in memory of late
659 Prof. A. Flokas. Publisher: Hellenic Meteorological Association, 33-44, 2013.

660 De Leeuw, J., Vrieling, A., Shee, A., Atzberger, C., Hadgu, K. M., Biradar, C. M.,
661 Humphrey Keah, H., and Turvey, C.: The Potential and Uptake of Remote Sensing in
662 Insurance: A Review, *Remote Sens.*, 6(11), 10888-10912, 2014.

663 Escribano Rodríguez, J. Agustín, Díaz-Ambrona, Carlos Gregorio H., and Tarquis Alfonso,
664 Ana María: Selection of vegetation indices to estimate pasture production in
665 Dehesas, *PASTOS*, 44(2), 6-18, 2014.

666 Fensholt, R., and Proud, S. R.: Evaluation of earth observation based global long term
667 vegetation trends - comparing GIMMS and MODIS global NDVI time series, *Remote
668 Sens. Environ.*, 119, 131–147, 2012.

669 Flynn E. S.: Using NDVI as a pasture management tool. Master Thesis, University of
670 Kentucky, 2006.

671 Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M.D., Neigh, C. S., and Reichstein,
672 M.: Trend change detection in NDVI time series: effects of inter-annual variability
673 and methodology, *Remote Sens.*, 5, pp, 2113–2144, 2013.

674 Fuller, D.O.: Trends in NDVI time series and their relation to rangeland and crop
675 production in Senegal, 1987–1993, *Int. J. Remote Sens.*, 19, 2013–2018, 1998.

676 Gommes, R., and Kayitakire, F.: The challenges of index-based insurance for food
 677 security in developing countries. Proceedings, Technical Workshop, JRC, Ispra, 2-3
 678 May 2012. Publisher: JRC-EC, p. 276, 2013.

679 Gouveia, C., Trigo, R. M., and Da Camara, C. C.: Drought and vegetation stress
 680 monitoring in Portugal using satellite data, *Nat. Hazards Earth Syst. Sci.*, 9, 185-195,
 681 2009.

682 Goward, S. N., Tucker, C. J., and Dye, D.G.: North-American vegetation patterns
 683 observed with the NOAA-7 advanced very high-resolution radiometer. *Vegetation*,
 684 64, 3-14, 1985.

685 Graham, E. A., Yuen, E. M., Robertson, G. F., Kaiser, W. J., Hamilton, M. P., and Rundel,
 686 P. W.: Budburst and leaf area expansion measured with a novel mobile camera
 687 system and simple color thresholding, *Environ. Exp. Bot.*, 65, 238-244, 2009.

688 Hobbs, T. J.: The use of NOAA-AVHRR NDVI data to assess herbage production in the
 689 arid rangelands of central Australia, *Int. J. Remote Sens.*, 16, 1289-1302, 1995.

690 Holben, B. N.: Characteristics of maximum-value composite images from temporal
 691 AVHRR data, *Int. J. Remote Sens.*, 7, 1417-1434, 1986.

692 Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the
 693 Köppen-Geiger climate classification updated, *Meteorologische Zeitschrift*, 15,
 694 259-263, 2006.

695 Kundu, A., Dwivedi, S., and Dutta, D.: Monitoring the vegetation health over India
 696 during contrasting monsoon years using satellite remote sensing indices, *Arab J
 697 Geosci.*, 9, 144, 2016.

698 Land Processes Distributed Active Archive Center (LP DAAC): Surface Reflectance 8-Day
 699 L3 Global 500m. NASA and USGS. Available at:
 700 https://lpdaac.usgs.gov/products/modis_products_Table/mod09a1.2014.

701 Larson, H. J.: *Introduction to Probability Theory and Statistical Inference* (3rd edition).
 702 New York, John Wiley and Sons, 1982.

703 Leblois, A.: Weather index-based insurance in a cash crop regulated sector: ex ante
 704 evaluation for cotton producers in Cameroon. Paper presented at the JRC/IRI
 705 workshop on The Challenges of Index-Based Insurance for Food Security in
 706 Developing Countries, Ispra, 2-3, May, 2012.

707 Lovejoy, S., Tarquis, A. M., Gaonac'h, H., and Schertzer, D.: Single and Multiscale
 708 remote sensing techniques, multifractals and MODIS derived vegetation and soil
 709 moisture. *Vadose Zone J.*, 7, 533-546, 2008.

710 Li, R., Tsunekawa, A., and Tsubo, M.: Index-based assessment of agricultural drought in
 711 a semi-arid region of Inner Mongolia, China, *J. Arid Land* 6 (1), 3-15, 2014.

712 Maples, J. G., Brorsen, B. W., and Biermaches, J. T.: The rainfall Index Annual Forage
 713 pilot program as a risk management tool for cool-season forage. *J. Agr. Appl Econ*,
 714 48(1), 29-51, 2016.

715 Martin-Sotoca, J. J., Saa-Requejo, A., Orondo J. B., and Tarquis, A. M.: Singularity maps
 716 applied to a vegetation index, *Bio. Eng.* 168, 42-53, 2018.

717 Motohka, T., Nasahara, K. N., Murakami, K., and Nagai, S.: Evaluation of sub-pixel cloud
 718 noises on MODIS daily spectral indices based on in situ measurements, *Remote*
 719 *Sens.*, 3, 1644–1662, 2011.

720 Nanzad, L., Zhang, J., Tuvdendorj, B., Nabil, M., Zhang, S., and Bai, Y.: NDVI anomaly for
 721 drought monitoring and its correlation with climate factors over Mongolia from
 722 2000 to 2016, *Journal of Arid Environments* Volume 164, Pages 69-77, 2019.

723 Niemeyer, S.: New drought indices, *First Int. Conf. on Drought Management: Scientific*
 724 *and Technological Innovations*, Zaragoza, Spain. Joint Research Centre of the
 725 European Commission, Available online at
 726 <http://www.iamz.ciheam.org/medroplan/zaragoza2008/Sequia2008/Session3/S.Niemeyer.pdf>, 2008.

727 Ortega-Farias, S., Ortega-Salazar, S., Poblete, T., Kilic, A., Allen, R., Poblete-Echeverría,
 728 C., Ahumada-Orellana, L., Zuñiga, M., and Sepúlveda, D.: Estimation of Energy
 729 Balance Components over a Drip-Irrigated Olive Orchard Using Thermal and
 730 Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle
 731 (UAV), *Remote Sens.*, 8, 638, pp 18, 2016.

732 Park, S.: Cloud and cloud shadow effects on the MODIS vegetation index composites of
 733 the Korean Peninsula, *Int. J. Remote Sens.*, 34, 1234–1247, 2013.

734 Peters, A. J., E. A. Walter-Shea, L. Ji, A. Vina, M. Hayes, and M.D. Svoboda: Drought
 735 monitoring with NDVI-Based Standardized Vegetation Index, *Photogrammetric*
 736 *Engineering and Remote Sensing* S 68:71–75, 2002.

737 Rao, K. N.: Index based Crop Insurance, *Agric. Agric. Sci. Proc.*, 1, 193–203, 2010.

738 Roumiguié, A., Sigel, G., Poilv  , H., Bouchard, B., Vrieling, A., and Jacquin, A.: Insuring
 739 forage through satellites: testing alternative indices against grassland production
 740 estimates for France, *Int. J. Remote Sens.*, 38, 1912-1939, 2017.

741 Roumigui  , A., Jacquin, A., Sigel, G., Poilv  , H., Lepoivre, B., and Hagolle, O.:
 742 Development of an index-based insurance product: validation of a forage
 743 production index derived from medium spatial resolution fCover time series,
 744 *GIScience Remote Sens.*, 52, 94-113, 2015.

745 Tackenberg, Oliver: A New Method for Non-destructive Measurement of Biomass,
 746 Growth Rates, Vertical Biomass Distribution and Dry Matter Content Based on
 747 Digital Image Analysis, *Annals of Botany*, 99(4), 777–783, 2007.

748 Turvey, C. G., and Mcaurin, M. K.: Applicability of the Normalized Difference Vegetation
 749 Index (NDVI) in Index-Based Crop Insurance Design, *Am. Meorol. Soc.*, 4, 271-284,
 750 2012.

751 UNEP Word Atlas of Desertification: Second Ed. United Nations Environment Programme,
 752 Nairobi, 1997.

753 USDA. U.S. Department of Agriculture, Federal Crop Insurance Corporation, Risk
 754 Management Agency: Rainfall Index Plan Annual Forage Crop Provisions. 16- RI-AF.
 755 <http://www.rma.usda.gov/policies/ri-vi/2015/16riaf.pdf> 2013 (Accessed March 1,
 756 2018).

757

758 Wei, W., Wu, W., Li, Z., Yang, P., and Qingbo Zhou, Q.: Selecting the Optimal NDVI
759 Time-Series Reconstruction Technique for Crop Phenology Detection, Intell. Autom.
760 Soft. Co. 22, 237-247, 2016.
761
762
763