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Abstract: Vegetation indices based on satellite images, such as Normalized Difference Vegetation Index
(NDVI), have been used in countries like USA, Canada and Spain for damaged pasture and forage
insurance for the last years. This type of agricultural insurance is called “satellite index-based
insurance” (SIBI). In SIBI, the occurrence of damage is defined through NDVI thresholds mainly based
on statistics derived from Normal distributions. In this work a pasture area at the north of Community
of Madrid (Spain) has been delimited by means of Moderate Resolution Imaging Spectroradiometer
(MODIS) images. A statistical analysis of NDVI histograms was applied to seek for alternative
distributions using maximum likelihood method and xz test. The results show that the Normal
distribution is not the optimal representation and the General Extreme Value (GEV) distribution
presents a better fit through the year based on a quality estimator. A comparison between Normal and
GEV are showed respect to the probability under a NDVI threshold value along the year. This suggests
that a priori distribution should not be selected and a percentile methodology should be used to define
a NDVI damage threshold rather than the average and standard deviation, typically of Normal
distributions.

Keywords: NDVI, pasture insurance, GEV distribution, MODIS.

Highlights

® The GEV distribution provides better fit to the NDVI historical observations
than the Normal one.

e Difference between Normal and GEV distributions are higher during spring
and autumn, transition periods in the precipitation regimen.

e NDVI damage threshold shows evident differences using Normal and GEV
distributions covering both the same probability (24.20%).

e NDVI damage threshold values based on percentiles calculation is proposed
as an improvement in the index based insurance in damaged pasture.
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1. Introduction

Agricultural insurance addresses the reduction of the risk associated with crop
production and animal husbandry. The concept of index-based insurance (IBl) attempts
to achieve settlements based on the value taken by an objective index rather than on a
case-by-case assessment of crop or livestock losses (Gommes and Kayitakier, 2013).
Indeed, the goal of IBI policy remains to develop an affordable tool to all producers,
including smallholders. Specifically, IBI can constitute a safety net against
weather-related risks for all members of the farming community, thereby increasing
food security and reducing the vulnerability of rural populations to weather extremes.
Moreover, IBl can be associated with credits for insured smallholders, due to the fact
that the risk of non-repayment for lenders is reduced, which encourages the use of
agricultural inputs and equipment, leading to increased and more stable crop
production. Over the past decade, the importance of weather index-based insurances
(WIBI) for agriculture has been increasing, mainly in developing countries (Gommes
and Kayitakier, 2013). This interest can be explained by the potential that IBI
constitutes a risk management instrument for small farmers. Indeed, it can be
considered within the context of renewed attention to agricultural development as
one of the milestones of poverty reduction and increased food security, as well as the
accompanying efforts from various stakeholders to develop agricultural risk
management instruments, including agricultural insurance products.

Farmers need to protect their land and crops specifically from drought in arid and
semi-arid countries, since their production may directly depend mainly on the impacts
of this particular natural hazard. Insurance for drought-damaged lands and crops is
currently the main instrument and tool that farmers can resort in order to deal with
agricultural production losses due to drought. Many of these insurances are using
satellite vegetation indices (Rao, 2010), thus they are also called “satellite index-based
insurances” (SIBI). SIBI have some advantages over WIBI, such as cost-effective
information and acceptable spatial and temporal resolution. They do not, however,
resolve the issue of basis risk, i.e. potential unfairness to insurance takers (Leblois,
2012). Moreover, the very nature of an index-based product creates the chance that
an insured party may not be paid when they suffer loss. For this reason, in some
countries (Spain) they have named this SIBI as “damaged in pasture” to cover not only
drought even this one is the main cause.

It is highly recognized that shortage of water has many implications to agriculture,
society, economy and ecosystems. Specifically, its impact on water supply, crop
production and rearing of livestock is substantial in agriculture. Knowing the likelihood
of drought is essential for impact prevention (Dalezios, 2013). Drought severity
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assessment can be approached in different ways: through conventional indices based
on meteorological data, such as temperature, rainfall, moisture, etc. (Niemeyer, 2008),
as well as through remote sensing indices based on images usually taken by artificial
satellites (Lovejoy et al., 2008) or drones. In the second group they are found Satellite
Vegetation Indices (SVI), which can quantify “green vegetation”, and soil moisture
through Soil Water Index (Gouveia et al., 2009) combining different spectral
reflectances. Thus, they are one of the main ways to quantitatively assess drought
severity.

At the present time, several satellites (NOAA, TERRA, DEIMOS, etc.) can provide
this spectral information with different spatial resolution. Some series with a high
temporal frequency are freely available, those from NOAA satellites and Terra. The
most widely known SVI is the Normalized Difference Vegetation Index (NDVI). It
follows the principle that healthy vegetation mainly reflects the near-infrared
frequency band. There are several other important SVI, such as Soil Adjusted
Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI) that incorporate soil
effects and atmospheric impacts, respectively. An important point of SIBIl is “when
damage occurs”. To measure this, a SVI threshold value is defined mainly based on
statistics that apply to Normal distributed variables: average and standard deviation.
When current SVI values are bellow this threshold value for a period of time, insurance
recognizes that a damage is occurring, most of the times drought, and then it begins to
pay compensations to farmers.

Important NDVI-based indices of detecting drought are NDVI anomalies (NDVIA)
and Standardized Vegetation Index (SVI). NDVIA and SVI have been successfully used
to monitor drought conditions over different regions en the world (Nanzad et al., 2019;
Li et al., 2014). NDVIA is calculated as the difference between the NDVI value for a
specific time period (e.g., week, month) and the long-term mean value for that period.
SVI was developed by Peters et al. (2002) and obtains the probability from normal
NDVI distributions over multiple years of data, on a time period (Anyamba and Tucker,
2012; Bayarjargal et al., 2006). It is defined as:

NDVI;—=NDVI __ NDVIA;

SVI; = (1)

ONDVI ONDVI

where NDVI is the long-term mean NDVI in the period i, oypy; is the standard
deviation of NDVI in the period i, and NDVI; is the current NDVI value in the time
period i. Using only the first and second statistical moment, average and the square
root of variance, assumption of normality is implicit in this type of drought NDVI
indicator,
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WIBI aims to protect farmers against weather-based disasters such as droughts,
frosts and floods. A WIBI policy links possible insurance payouts with the weather
requirements of the crop being insured: the insurer pays an indemnity whenever the
realized value of the weather index meets a specified threshold. Whereas payouts in
traditional insurance programs are related to actual crop damages, a farmer insured
under a WIBI contract may receive a payout. A current difficulty to the wide
implementation of WIBI is the weakness of indices. Indeed, there is certainly a need for
more efficient indices based on the additional experience gained from the
implementation of WIBI products in the developing world. Current trends in index
technology are exciting and they actuate high expectations, especially the
development of yield indices and the use of remote sensing inputs. Risk protection and
insurance illiteracy constitute another difficulty, which has to be addressed by training
and awareness-raising at all levels, from farmers to farmers’ associations,
micro-insurance partners, as well as senior decision-makers in insurance, banking, and
politics (Bailey, 2013). It is essential that all stakeholders (especially the insured)
perfectly understand the principles of IBI, as otherwise the insurer, even the whole
concept of insurance, is at risk of reputation loss for years or decades.

There is currently a lack of technical capacity in the insurance sectors of most
developing countries, which is a constraint to the scaling up and further development
of WIBI (Gommes and Kayitakire, 2012). Specifically, although it is possible to design an
index product and assist in roll-out, marketing, and sales, such assistance is not
possible on a wide scale, simply because there is lack of qualified expertise. Indeed, it
usually requires mathematical modeling, data manipulation, and expertise in crop
simulation to design an index. Nevertheless, it is possible to structure insurance with
multiple indices, but this increases the complexity of the product and makes it difficult
for farmers to comprehend it. ‘Basis risk’ is also a particular problem for index
products, which is frequently caused by the fact that measurements of a particular
variable, such as rain, may differ at the insurer’s measurement site and in the farmer’s
field. This also creates problems for insurance providers. Indeed, part of the reason the
scaling up of index products has failed is that both insurers and farmers suffer from
this basis risk.

Currently, to mitigate impacts of climate-related reduced productivity of French
grasslands, several studies have been developed to design new insurance scheme
bases indemnity payouts to farmers on a forage production index (FPI) (Rumiguié et
al., 2015; 2017). Two examples of SIBIs are presented in two different countries: USA
and Spain. In particular, in USA there are several insurance programs for pasture,
rangeland and forage, which use various indexing systems (rainfall and vegetation
indices), and are promoted by Unites States Department of Agriculture (USDA) (Maples
et al., 2016; USDA, 2018). NDVI is the index chosen in the vegetation index program
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and it is obtained from AVHRR (Advanced Very High Resolution Radiometer) sensor
onboard NOAA satellites. Average, maximum and minimum NDVI values are obtained
from a historical series with the aim of calculating a trigger value. Insurer decides the
quantity of compensation comparing this trigger with current value. On the other
hand, in Spain there exists the “Insurance for Damaged Pasture” from “Spanish System
of Agricultural Insurance” (BOE, 2013). This insurance defines damage event through
NDVI values obtained from MODIS sensor onboard TERRA satellite of NASA. In this
insurance, NDVI threshold values (NDVI,,) are calculated subtracting several times
(k = 0.7 or k = 1.5) standard deviation to average within a homogeneous area:

NDVIy, =pu—k-o (2)

where u,0 are average and standard deviation of NDVI respectively. Average and
standard deviation come of supposing Normal distributions in the historical data
(Goward et al., 1985; Hobbs, 1995; Fuller, 1998; Al-Bakri and Taylor, 2003; Turvey et
al., 2012; De Leeuw et al. 2014).

The aim of this paper is to find a more realistic statistical NDVI distribution without
the “a priori” assumption that variables follow a Normal distribution, typically for
current SIBI methodology. In order to achieve this, the Maximum Likelihood Method
(MLM) is fitted to a historical series of NDVI values in a pasture land area in Spain
(Community of Madrid). Different types of asymmetrical distributions are examined
with the aim to find a better fit than Normal. To eliminate some noise in the historical
series, an original method is applied consisting of using Hue-Saturation-Lightness (HSL)
color model. Finally, Chi-square test (x*> test) has been used to check the goodness of
fit for all considered distributions.

2. Materials and Methods

2.1 Vegetation Index

The differences of the reflectance of green vegetation in parts of the
electromagnetic radiation spectrum, namely, visible and near infrared, provide an
innovative method for monitoring surface vegetation from space. Specifically, the
spectral behavior of vegetation cover in the visible (0.4-0.7mm) and near infrared
(0.74-1.1mm, 1.3-2.5mm) offers the possibility to monitor from space the changes in
the different stages of cultivated and uncultivated plants taking also into account the
corresponding behavior of the surrounding microenvironment (Ortega-Farias et al.,
2016). Indeed, from the visible part of the electromagnetic radiation spectrum it is
possible to draw conclusions about the rate photosynthesis, whereas from near
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infrared inferences are extracted about the chlorophyll density and the amount of
canopy in the plant mass, as well as the water content in the leaves, which is also
linked directly to the rate of transpiration with impacts to physiological process of
photosynthesis. Usually, data from NOAA/AVHRR series of polar orbit meteorological
satellites are used with low spatial resolution (1.1 kmz) and recurrence interval at least
twice daily from the same location. Several algorithms combining channels of red
(RED), near infrared (NIR) and green (GREEN) have been proposed, which provide
indices sensitive to green vegetation.

NDVI uses two frequency bands: red band (660 nm) and near-infrared band (860
nm). Absorption of red band is related to photosynthetic activity and reflectance of
near-infrared band is related to presence of vegetation canopies (Flynn, 2006). In
drought periods, NDVI values can reduce significantly, therefore many researchers
have used this index to measure drought events in recent years (Dalezios et al., 2014).
To calculate NDVI we will use this mathematical formula:

IR-R
IR+R

NDVI =

(3)

where “IR” and “R” are reflectance values in Near-Infrared band and Red band,
respectively. NDVI values below zero indicate no photosynthetic activity and are
characteristic of areas with large accumulation of water, such as rivers, lakes, or
reservoirs. The higher is the NDVI value, the greater is the photosynthetic activity and
vegetation canopies.

In this paper, the NDVI is used, which is widely known index with a multitude of
applications over time. The NDVI is suited for monitoring of total vegetation, since it
partly compensates the changes in light conditions, land slope and field of view (Kundu
et al., 2016). In addition, clouds, water and snow show higher reflectance in the visible
than in the near infrared, thus, they have negative NDVI values. Indeed, bare and rocky
terrain show vegetation index values close to zero. Moreover, the NDVI constitutes a
measure of the degree of absorption by chlorophyll in the red band of the
electromagnetic spectrum. In summary, the NDVI is a reliable index of the chlorophyll
density on the leaves, as well as the percentage of the leaf area density over land,
thus, NDVI constitutes a credible measure for the assessment of dry matter (biomass)
in various species vegetation cover (Dalezios, 2013). It is clear from the above that the
NDVI is an index closely related to growth and development of plants, which can
effectively monitor surface vegetation from space.

The continuous increase of the NDVI value during the growing season reflects the
vegetative and reproductive growth due to intense photosynthetic activity, as well as
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the satisfactory correlation with the final biomass production at the end of a growing
period. On the other hand, gradual decrease of the NDVI values signifies stress due to
lack of water or extremely high temperatures for the plants, leading to a reduction of
the photosynthetic rate and ultimately a qualitative and quantitative degradation of
plants. NDVI values above zero indicate the existence of green vegetation
(chlorophyll), or bare soil (values around zero), whereas values below zero indicate the
existence of water, snow, ice and clouds.

2.2 Database

Scientific research satellite Terra (EOS AM-1) has been chosen to provide
necessary information to calculate NDVI in the study area. This satellite was launched
into orbit by NASA on December 18, 1999. MODIS sensor aboard this satellite collects
information of different reflectance bands. MODIS information is organized by
"products". The product used in this study was MOD09A1 (LP DAAC, 2014). MODO09A1
incorporates seven frequency bands: Band 1 (620-670 nm), band 2 (841-876 nm), band
3 (459-479 nm), band 4 (545-565 nm), 5 band (1230-1250 nm), band 6 (1628-1652 nm)
and band 7 (2105-2155 nm). The bands used to calculate NDVI are: band 1 for red
frequency and band 2 for near-infrared frequency. MODO9A1 provides georeferenced
images with pixel resolution of 500m x 500m. Each MODO09A1 pixel contains the best
possible L2G observation during an 8-day period as selected on the basis of high
observation coverage, low view angle, the absence of clouds or cloud shadow, and
aerosol loading.

The period of time selected on this study was from 2002 to 2017.

Daily data from a principal station of the meteorological network were utilized
during the period studied (2002 - 2017). Meteorological station is located in
40°41'46"N 3°45'54"W (elevation 1004 m a.s.l.), less than 2 km from the study area
(AEMET, 2017).

2.3 Site description

Six pixels (500m x 500m) are considered located in a pasture area at the north of
the Community of Madrid (Spain) between the municipalities of “Soto del Real” and
“Colmenar Viejo”. The study area is located between meridians 3° 45' 00" and 3° 47"
00" W and parallels 40° 42' 00" and 40° 44' 00" N approximately (see Fig. 1).
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Figure 1. The study area is in the centre of the Iberian Peninsula (Community of Madrid). RGB
image of six pixels area used for case study is shown (Google Earth’s and MODIS images).

The annual mean temperature ranges during the study period from 12.7°C to
13.8°C, and annual mean precipitation ranges from 360 mm to 781 mm. The stations
studied were identified semi-arid (annual ratio P/ETo between 0.2 and 0.5) according
to the global aridity index developed by the United-Nations Convention to Combat
Desertification (UNEP, 1997). According to the climatic classification of Koppen (Kottek
et al., 2006), this area presents a continental Mediterranean climate temperate with
dry and temperate summer (type Csb). Temperature and precipitation of this site,
based on 20 years, is presented in Table 1.

Due to high soil moisture conditions, ash is the dominant tree, forming large
agroforestry systems ("dehesas") that are used for pasture. These are ecosystems with
high biodiversity.

Table 1. Monthly average of maximum temperature (Tmax), average temperature (Tavg),
minimum temperature (Tmin) and precipitation (P). Study period from 1997 to 2017.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Tmax(eC) 7.1 93 127 154 195 246 286 281 237 168 111 74 17.0

Tavg(®C) 36 48 7.7 101 137 184 220 217 179 123 7.1 41 12.0

Tmin(¢C) 0.0 03 26 48 7.8 121 154 153 120 7.8 3.0 038 6.8
P(mm) 67.2 500 385 622 623 302 189 164 342 793 86.2 826 6279




297

298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

320
321

322
323
324
325
326
327

9 of 30

2.4 HSL model

There is no doubt that NDVI time-series from satellite sensors carry useful
information, which can be used for characterizing seasonal dynamics of vegetation
(Fensholt et al., 2012; Forkel et al., 2013). However, due to unfavorable atmospheric
conditions during the data acquisition, NDVI time-series curve often contains noise
(Motohka et al., 2011; Park, 2013). Although most of the NDVI data products are
temporally composited through maximum value compositing (MVC) method (Holben,
1986) to retain relatively cloud-free data, residual noise still exists in the data, which
will affect the accuracy of the NDVI value.

Therefore, usually it is necessary to reconstruct of NDVI time-series before
extracting information from the noisy data. There are several techniques that have
been applied to reduce noise and reconstruct NDVI series, a summary of these can be
found in Wei et al. (2016). In this study we applied a simple filtering method based on
the Hue-Saturation-Lightness (HSL) color model inspired by the work presented by
Tackenberd (2007).

HSL color model is a cylindrical representation of RGB (Red-Green-Blue) points.
Their components are Hue (color type), Saturation (level of color purity) and Lightness
(color luminosity). Hue is the angular component and it is more intuitive for humans
since it is directly related to the color wheel (see Fig. 2).

120°

Ssauyy 7

Figure 2. Colour wheel of Hue (on the left) and the HSL model (on the right).

Saturation is the radial component and near-zero values indicate grey colors.
Lightness is the axial radial versus axial component, zero lightness produces black and
full lightness produces white.

The NDVI series are filtered using the following HSL criterion: NDVI values are valid
if HSL Saturation is greater than 0.15. In this way, the values of the series that have
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grey color correlate with pasture covered by clouds or snow are eliminated. This type
of filter based in HSL color space has been used on digital camera images monitoring
vegetation phenology (Tackenberg, 2007; Crimmins and Crimmins, 2008; Graham et
al., 2009). However, we have not found the use of this HSL criterion in the context of
NDVI remote sensing images.

2.5 Maximum Likelihood Method

MLM estimates the set of parameters {a,fB,u,0,..}for a specific statistical
distribution that maximizes the “likelihood function” or the “joint density function”:

L= f(x: 0) = ?=1f(xi; alﬁ'ﬂ' g, ) (4)

where x = (xy,...,x,) is the set of data, @ = (a,B,u,0,..) is the vector of
parameters and f(x;; a, B, 4, 0, ...) is the density function of the statistical model.

When maximization with respect to the vector of parameters is carried out, the
estimated parameters (&,,5’,,12,6,...) for the proposed statistical distribution are
obtained (Larson, 1982). Properties of estimated parameters are: invariance,
consistency and asymptotically unbiased.

In the case of a Normal model, the estimated statistics ¢ and o are defined by
accurate expressions as follows:

A _ 1 A 1 —
p=r=13mix 9=s= Il (-7 5)

where [T is the sample mean and & is the sample standard deviation of the data set.

In this study we will apply MLM to estimate the parameters for 4 probability
density functions (PDF). In Table 2, a brief description is presented of these PDF
candidates: Normal, Gamma, Beta and GEV. To do so, the following MATLAB functions

n u

have been used: “normfit”, “gamfit”, “betafit” and “gevfit” (respectively).

Table 2. Candidate Probability Density Functions (PDF).

PDF NAME PDF EXPRESSION PDF PARAMETERS
_Lxomy? = average
Normal f(x; 1, 0) o\/ﬁe ’ o = standard deviation
=X r() = gamma function
. — a-1 B
Gamma f(x; o, B) BT () X a and B = parameters
Beta fcab) = I(a+b) x*1(1 — x)b-1 I'(.) = gamma function

a and b = parameters

r(a)r(a)
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1
f(x; p, 0,8 = —t(x)*1tet™ .
c ” n € R = location param.
14 (% 5) Zife<o0 o > 0 = scale parameter
( ( )E) irg § € R = shape parameter

GEV
where t(x) =
ifE=0

2.6 Goodness of fit (Chi square test)

x? test can be used to determine to what extent observed frequencies differ from
frequencies expected for a specific statistical model. The most important points of the
theory are briefly presented in (Cochran, 1952).

Let f(x,8) be a theoretical density function of a random variable X which
depends on parameters 6 = (a,5,4,0,...) and let x,,..,x,, be a sample of X grouped
into k classes with n; data per classi.

Firstly, the following hypothesis is set:

(Ho) observed data fit theoretical distribution f(x, 8).
Then the test statistic x2 is defined as:

(ni—ep)?
X¢ = Eico— (6)

where n; is the number of data or observed frequency and e; = n- P(class i) is the
expected frequency for class i. P(classi) is the theoretical interval probability
defined for class i.

A level of significance is also set as:
a = P(RejectH, / Hyis true) (7)

Finally, the following decision rule is applied: “reject the theoretical distribution at
significance level a if:

Xg > X%k—m—l,l—a) (8)

where X%k—m—l,l—o()is a y? distribution with k-m-1 degrees of freedom (m is the

number of parameters, k is the number of classes).
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3. Results

3.1 HSL filtering criterion

NDVI series (from 2002 to 2017) were obtained for each pixel of the study area
using frequency bands provided by MODIS product named MODO09A1. These series
contain some irregular values that can skew NDVI pattern. Therefore, the six series (six
pixels) were filtered using the HSL criterion.

MODOQ9A1 is a MODIS product that processes data to obtain the best observation
in an 8-days period. However, it is possible that the result of this selection still presents
some problems since the best of this selection is relative to the eight observations of
the period. For example, if the eight observations, at one pixel, appear with clouds,
shadow clouds or snow, the best selection still maintains this problem.

As an example of gbove, the NDVI series (10 years) of one pixel of the study area is
shown in Fig. 3. On the top graph of Fig. 3 itis-neoticed-that there exit some extremely
low NDVI values in some dates. If these NDVI values are compared to neighbor, values
(8 days after or before) the high variation presented in such short period is not
believable, This issue tells us that MODIS sensor has not obtained a proper observation
in this 8 days period (interval).

HSL criterion helps us to eliminate these incorrect NDVI values, since the filter is
interpreting that these pixels still contains clouds or snow, i.e., pixels with low
saturation (greyish colours).
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Figure 3. HSL filtering criterion applied to a 10 years NDVI series. Top graph shows the real
NDVI series. Bottom graph shows the HSL filtered NDVI series.

Fig. 3 shows that abrupt changes in the NDVI values, mainly observed during
raining seasons such as autumn and winter, are efficiently eliminated. Not to be a high
computational demanding method is one of the main advantages of HSL filtering
method. Therefore, this method will allow us to obtain more robust NDVI values to be
used in the statistical analysis.

3.2 Statistical analysis

NDVI values were obtained consecutively every 8 days from MODIS product
starting at the 1°' of January of every year, in such a way that 46 NDVI observations
were extracted for each year. Therefore, it was possible to define 46 Random Variables
(RV) when all the years of this study were taking into account.
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423 In Table 3, every RV (named as “Interval”) is shown together with the number of
424  available NDVI observations. Each RV collects the observations coming from the six
425  selected pixels; therefore the maximum number of observations per RV could be: 6
426  pixels x 16 years = 96 observations. The start intervals of each season are: interval 45
427 (19 December) for winter, interval 11 (22 March) for spring, interval 23 (26 June) for
428  summer and interval 34 (22 September) for autumn.

429

430 Table 3. Number of observations for every RV (named as Interval).
RANDOM # RANDOM #
VARIABLE OBSERVATIONS VARIABLE OBSERVATIONS
Interval 1 85 Interval 24 96
Interval 2 84 Interval 25 96
Interval 3 96 Interval 26 96
Interval 4 96 Interval 27 96
Interval 5 95 Interval 28 96
Interval 6 90 Interval 29 96
Interval 7 86 Interval 30 96
Interval 8 83 Interval 31 96
Interval 9 96 Interval 32 96
Interval 10 96 Interval 33 94
Interval 11 74 Interval 34 96
Interval 12 88 Interval 35 96
Interval 13 88 Interval 36 85
Interval 14 88 Interval 37 90
Interval 15 96 Interval 38 96
Interval 16 92 Interval 39 92
Interval 17 88 Interval 40 90
Interval 18 96 Interval 41 96
Interval 19 95 Interval 42 89
Interval 20 96 Interval 43 95
Interval 21 95 Interval 44 88
Interval 22 96 Interval 45 90
Interval 23 96 Interval 46 90

431

432

433 In Fig. 4, box plots of all RV with a start and end reference of the astronomical

434  seasons are shown. The typical evolution of the NDVI along a year can be seen
435  together with the inter-quartile range.
436
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Figure 4. Box plots of 46 random variables (RV) are shown as well as start and end reference
of every season. Study period from 2002 to 2017.

The observed evolution of NDVI through the different seasons is typical of the
pasture in this area. The summer presents the lowest mean values which begin to
increase in autumn achieving a maximum mean value of 0.60 or 0.65 during the
beginning of spring. In the middle of the spring NDVI decrease again, approaching the
lowest mean value of 0.28 approximately in summer.

Taking into account these values, dense vegetation, in this study pasture, is found
from middle of October (interval 37) till the end of May (interval 19). It is in this period
where the precipitation concentrates (see Table 1). During the summer, the NDVI
mean values are lower than 0.3 corresponding with low precipitation and high
temperatures.

Following the work of Escribano-Rodriguez et al. (2014), there is a relationship of
pasture damage and a NDVI value around 0.40. Even if the authors point out that this
value is highly variable depending on the location, we can see that summer season in
this case study is under this value (see Fig. 4). This can explain that “Insurances for
Damaged Pasture” usually do not apply in these dates due to the arid environment
(BOE, 2013).

The statistical metric used in this study to assess the fit of the observed NDVI
values with respect to the PDF candidates (Normal, Gamma, Beta and GEV) was the Chi
square test (x2 test). The following steps were carried out:
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1. MLM was applied to model these 46 RV. Parameters were calculated for the
four PDF candidates (see Table 2).

2. To check the goodness of the fit of PDF candidates, Chi square test (x* test)
was applied from 7 classes to 14 classes meeting the requirement that each
class has at least five observations. The level of significance (a) was fixed to 5%
for all the candidates.

3.2.1 Maximum Likelihood Method

Table Al at Appendix A shows the estimated parameters for each PDF and each
interval calculated by the MLM. These parameters were used to compare the
estimated PDF with the NDVI observed values on different times through the seasons.
The following intervals are shown as examples of better GEV fit: interval 4 and 8 (for
winter, see Fig. 5), interval 17 and 21 (for spring, see Fig. 6) and interval 36 and 40 (for
autumn, see Fig. 7). In these plots, observed frequency is compared versus Normal and
GEV density distributions calculated by MLM.
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Figure 5. Comparison between observed NDVI frequency, GEV and Normal probability density
functions (PDF) on two different dates. Intervals 4 and 8 are examples for winter.

INTERVAL-17 INTERVAL-21

(=]
i
o
A~

Observed
— — —Normal
GEV

Observed

— — —Normal
GEV

o
w
o
w

FREQUENCY
o
[

o
FREQUENCY
o
N

o
-

o
o

0 02 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
NDVI NDVI

Figure 6. Comparison between observed NDVI frequency, GEV and Normal probability density
functions (PDF) on two different dates. Intervals 17 and 21 are examples for spring.
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Figure 7. Comparison between observed NDVI frequency, GEV and Normal probability density
functions (PDF) on two different times. Intervals 36 and 41 are examples for autumn.

During winter (see Fig. 5) the observed NDVI distribution presents negative
skewness. Then, there is a higher frequency of high NDVI values corresponding with
significant precipitation. During spring (see Fig. 6) an evolution in the skewness is
observed passing from negative to positive, and so, the lower NDVI values become the
higher probable. Finally, during autumn (see Fig. 7) precipitation begins and from
positive pass to negative skewness and higher NDVI values are possible. We can
observe that Normal distribution has no flexibility to follow this dynamic in the
distributions on each time. This comparison is done in a sequential order for the whole
of intervals in Figures A1, A2, A3 and A4 at Appendix A.

3.2.2 Chisquare test

Twelve intervals (from 23 to 34) corresponding to months of July, August and
September have been excluded of this analysis since these intervals fall into the dry
season in the study area, normally not cover, by any SIBI. Therefore, calculations were
carried out over 34 intervals.

To assess the general goodness of fit, the number of intervals where the )(2 test
was accepted (or failed to reject) was calculated for every PDF candidate. Then, the
percentage of accepted intervals, over the total 34 intervals, was also calculated {the
qualityestimator). Fig. 8 shows this percentage of intervals that fit for every PDF
candidate. The number of classes used in x° test is represented at X-axis (from 7 to 14
classes).
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Figure 8. Percentage of fitted intervals (Y axis) for each PDF candidate (Normal, Gamma, Beta
and GEV distributions) in function of the number of classes (X axis).

4. Discussion

4.1 Statistical context

Fig. 8 indicates that GEV distributions explain more intervals (more than 40% for
the majority of the class analysis) than Normal, Gamma or Beta distributions. An
important difference between the Normal distribution and the rest-of the PDF used in
this work is its skewness and kurtosis. Many of the observed NDVI distributions
present a clear asymmetry and long tails in one or both sides that causes Normal
distribution not to be the optimal fit.

There is a relationship between seasons and the number of intervals that fit
correctly. We found that GEV distributions explain better intervals of spring and
autumn since their observed distributions are very asymmetric. On the other hand, we
did not find an important difference in winter, since its observed distributions are
mainly symmetric.

The more skewness and kurtosis depart from those of the Normal distribution the
larger the errors affecting the insurance designed based on@rvey et al,, 2012). It is
an expected result as pasture seenarig is quite different from the development of g
crop, where Normal distributions in the NDVI values are more expected; This high
heterogeneity in time and space of NDVI estimated on pasture has been pointed out in
several works (Martin-Sotoca et al, 2018). At the same time, more different is the
observed NDVI frequency from a Normal distribution less representative is the
average, and so, the median becomes a more representative value.


GOBINA
Inserted Text
the 

GOBINA
Cross-Out

GOBINA
Inserted Text
s

GOBINA
Cross-Out

GOBINA
Inserted Text
their

GOBINA
Inserted Text
s

GOBINA
Cross-Out

GOBINA
Inserted Text
the

GOBINA
Sticky Note
normal distributions

GOBINA
Cross-Out

GOBINA
Inserted Text
cultivation

GOBINA
Cross-Out

GOBINA
Inserted Text
arable

GOBINA
Inserted Text
s

GOBINA
Cross-Out

GOBINA
Inserted Text
common

GOBINA
Inserted Text
the 

GOBINA
Cross-Out

GOBINA
Inserted Text
is 

GOBINA
Inserted Text
, the


542

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

565
566
567
568
569

570

19 of 30

4.2 Insurance context

The use of NDVI thresholds in damaged pasture context was presented in the
introdu.ijw section, being an example of using the "Insurance for Damaged Pasture"

in SpainXZe have chosen this last insurance to compare the results between applying
Normal and GEV distribution methodologies. In this particular case the NDVI threshold
(NDVI,,) was calculated using the expression NDVI;, = u—k-o (where pu,o are
average and standard deviation of NDVI distributions respectively, assuming the

Normal hypothesis).

The probability of being below NDVI,, (using k = 0.7, first damage level in the
insurance) at every interval has been calculated assuming the Normal hypothesis. As it
was expected, this value is always 24.2% (see third column in Table 4). The probability
of being below NDVI,, has also been calculated using GEV distributions obtained in
this study. The probability obtained by GEV distributions is mostly lower than the
Normal distributions in spring, autumn and winter (see Table 4) that is the working
period of the insurance.

Observing where in time are localized the highest relative error_in probabilities
(fifth column in Table 4), intervals corresponding to the end of winter, second middle
of spring and the beginning of autumn present errors higher than 10%. This could
explain why it is in spring and autumn when more disagreements exist between
farmers and insurance company in claims.

Table 4 - First column: time intervals of approximately 8 days along the year. Second column:
NDVI thresholds (NDVI,) based on a Normal distribution applying p— 0.7 X ¢. Third column:
percentages of area below the NDVI, when Normal distributions are applied. Fourth column:
percentages of area below the NDVI,;, when GEV distributions are applied. Fifth column: relative
area error of GEV compared to the Normal distribution.

RANDOM NORMAL GEV
VARIABLE NDVI,, Prob. Prob. Error (%)
Interval 1 0.535 24.20% 24.37% 0.70%
Interval 2 0.541 24.20% 23.18% 4.21%
Interval 3 0.541 24.20% 23.27% -3.84%
Interval 4 0.543 24.20% 23.27% -3.84%
Interval 5 0.545 24.20% 24.17% -0.12%
Interval 6 0.534 24.20% 21.48% -11.24%
Interval 7 0.528 24.20% 24.01% -0.79%
Interval 8 0.546 24.20% 20.70% -14.46%
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Interval 9 0.555 24.20% 21.30% -11.98%
Interval 10 0.561 24.20% 22.28% -7.93%
Interval 11 0.567 24.20% 23.49% -2.93%
Interval 12 0.572 24.20% 23.75% -1.86%
Interval 13 0.571 24.20% 23.20% -4.13%
Interval 14 0.570 24.20% 24.29% 0.37%
Interval 15 0.571 24.20% 23.47% -3.02%
Interval 16 0.560 24.20% 23.26% -3.88%
Interval 17 0.495 24.20% 21.29% -12.02%
Interval 18 0.484 24.20% 21.58% -10.83%
Interval 19 0.442 24.20% 23.06% -4.71%
Interval 20 0.381 24.20% 27.20% 12.40%
Interval 21 0.342 24.20% 29.46% 21.74%
Interval 22 0.323 24.20% 28.84% 19.17%
Interval 35 0.257 24.20% 18.98% -21.57%
Interval 36 0.285 24.20% 28.57% 18.06%
Interval 37 0.333 24.20% 25.90% 7.02%
Interval 38 0.398 24.20% 24.27% 0.29%
Interval 39 0.454 24.20% 23.79% -1.69%
Interval 40 0.503 24.20% 22.81% -5.74%
Interval 41 0.491 24.20% 23.23% -4.01%
Interval 42 0.517 24.20% 24.66% 1.90%
Interval 43 0.507 24.20% 23.13% -4.42%
Interval 44 0.514 24.20% 23.49% -2.93%
Interval 45 0.515 24.20% 23.70% -2.07%
Interval 46 0.509 24.20% 23.33% -3.60%

20 of 30

An alternative calculation can be the use of Normal probability (24.2%) to calculate
new NDVI,, based on GEV (see Table 5). It can be seen that new NDVI,, obtained
by GEV distributions are mostly upper than thresholds using Normal distributions in

spring, autumn and winter. Considering these results we find that damage thresholds
calculated by GEV methodology are mostly above that one’s calculated by Normal

methedelogy.

Again, intervals corresponding to the end of winter, second middle of spring and the

beginning of autumn present NDVI,, relative errors higher than 1% in absolute

values (fourth column in Table 5).
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582 Table 5 - First column: time intervals of approximately 8 days along the year. Second column: NDVI
583 thresholds (NDVIy;) based on a Normal distribution (Normal) applying p — 0.7 X o. Third column:
584 NDVIy, based on a GEV distribution (GEV) using 24.2% as the area below the NDVIy,. Fourth
585  column: relative NDVIy, error of GEV compared to the Normal distribution.

586
RANDOM NDViy;,
VARIABLE Normal GEV Error (%)
Interval 1 0.535 0.534 -0,19%
Interval 2 0.541 0.543 0,37%
Interval 3 0.541 0.543 0,37%
Interval 4 0.543 0.545 0,37%
Interval 5 0.545 0.545 0,00%
Interval 6 0.534 0.543 1,69%
Interval 7 0.528 0.528 0,00%
Interval 8 0.546 0.558 2,20%
Interval 9 0.555 0.563 1,44%
Interval 10 0.561 0.567 1,07%
Interval 11 0.567 0.569 0,35%
Interval 12 0.572 0.574 0,35%
Interval 13 0.571 0.574 0,53%
Interval 14 0.570 0.569 -0,18%
Interval 15 0.571 0.573 0,35%
Interval 16 0.560 0.563 0,54%
Interval 17 0.495 0.510 3,03%
Interval 18 0.484 0.498 2,89%
Interval 19 0.442 0.447 1,13%
Interval 20 0.381 0.374 -1,84%
Interval 21 0.342 0.334 -2,34%
Interval 22 0.323 0.318 -1,55%
Interval 35 0.257 0.262 1,95%
Interval 36 0.285 0.278 -2,46%
Interval 37 0.333 0.327 -1,80%
Interval 38 0.398 0.398 0,00%
Interval 39 0.454 0.455 0,22%
Interval 40 0.503 0.508 0,99%
Interval 41 0.491 0.494 0,61%
Interval 42 0.517 0.516 -0,19%
Interval 43 0.507 0.510 0,59%
Interval 44 0.514 0.516 0,39%
Interval 45 0.515 0.516 0,19%
Interval 46 0.509 0.511 0,39%

587
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5. Conclusions

According to the results obtained in the study area using MLM and »? test, it can
be concluded that Normal distributions are not a good fit to the NDVI observations,
and GEV distributions provide a better approximation.

The difference between Normal and GEV assumption is more evident in the
transition from winter to summer (spring), where NDVI values decrease, and then from
summer to winter (autumn) presenting the opposite behavior of increasing NDVI
values. In both periods asymmetrical distributions were found, negative skewness for
the spring transition and positive skewness for the autumn transition. During both
periods the variability in precipitation and temperatures were higher in this location.

We have found differences if GEV assumption is selected instead of the Normal
one when defining damaged pasture thresholds (NDVI,,). The use of these different
assumptions should be taken into account in future insurance implementations due to
the important consequences of supposing a damage event or not. We propose the use
of quantiles in observed NDVI distributions instead of average and standard deviation,
typically of Normal distributions, to calculate new NDVI,,.
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Appendix A

Table Al - Maximum Likelihood parameters calculated for 4 PDF.
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RANDOM NORMAL GAMMA BETA GEV
VARIABLE . . N B ; b " - :

Interval1 | 0591 | 0081 | 5331 | 0011 | 2145 | 1482 | 0563 | 0.080 | -0.297
Interval2 | 0589 | 0069 | 7114 | 0008 | 3062 | 2140 | 0571 | 0073 | -0.477
Interval3 | 0583 | 0060 | 9415 | 0006 | 3956 | 2834 | 0567 | 0063 | -0.457
Interval4 | 0585 | 0060 | 91.88 | 0006 | 3958 | 2805 | 0570 | 0.064 | -0.468
Interval 5 | 0588 | 0061 | 9392 | 0006 | 3883 | 2725 | 0568 | 0061 | -0.340
Interval6 | 0582 | 0068 | 70.28 | 0008 | 3067 | 2205 | 0577 | 0083 | -0.846
Interval 7 | 0584 | 0080 | 5252 | 0011 | 2216 | 1582 | 0559 | 0082 | -0.366
Interval 8 | 059 | 0071 | 6537 | 0009 | 2889 | 1959 | 0591 | 0081 | -0.833
Interval9 | 0601 | 0066 | 76.02 | 0008 | 3431 | 2284 | 0590 | 0.070 | -0.652
Interval 10 | 0613 | 0073 | 6383 | 0010 | 2780 | 1762 | 0598 | 0079 | -0.572
Interval11 | 0621 | 0078 | 5872 | 0011 | 2433 | 148 | 0600 | 0083 | -0.451
Interval 12 | 0624 | 0073 | 6833 | 0009 | 2801 | 1694 | 0603 | 0078 | -0.431
Interval 13 | 0624 | 0075 | 6622 | 0009 | 2623 | 1585 | 0604 | 0080 | -0.476
Interval 14 | 0631 | 0088 | 5023 | 0013 | 1871 | 1092 | 0603 | 0.090 | -0.342
Interval 15 | 0.630 | 0084 | 5360 | 0012 | 2117 | 1245 | 0607 | 0089 | -0.448
Interval 16 | 0.627 | 0096 | 3875 | 0.016 | 16.08 9.59 0.602 | 0.103 | -0.474
Interval 17 | 0577 | 0.117 | 2047 | 0028 | 1024 7.58 0560 | 0.127 | -0.692
Interval 18 | 0568 | 0.120 | 2052 | 0.028 9.71 7.42 0552 | 0.136 | -0.718
Interval 19 | 0523 | 0.116 | 1946 | 0.027 9.52 8.68 0495 | 0125 | -0.493
Interval 20 | 0.452 | 0.101 | 2099 | 0022 | 1098 | 1331 | 0401 | 0077 | 0.078
Interval21 | 0.409 | 0.095 | 19.94 | 0021 | 1118 | 1613 | 0354 | 0.060 | 0.325
Interval22 | 0379 | 0080 | 2466 | 0015 | 1441 | 2352 | 0333 | 0046 | 0385
Interval23 | 0353 | 0073 | 2654 | 0013 | 1585 | 29.01 | 0311 | 0036 | 0.456
Interval24 | 0328 | 0056 | 3836 | 0009 | 2422 | 4965 | 0298 | 0033 | 0.287
Interval 25 | 0305 | 0044 | 5352 | 0006 | 3562 | 8120 | 0282 | 0.028 | 0.210
Interval 26 | 0.298 | 0.034 | 78.93 | 0004 | 5447 | 12855 | 0283 | 0029 | -0.064
Interval 27 | 0289 | 0026 | 126.85 | 0002 | 8833 | 217.15 | 0278 | 0021 | -0.030
Interval 28 | 0282 | 0.022 | 166.17 | 0002 | 119.50 | 305.03 | 0274 | 0.022 | -0.322
Interval29 | 0278 | 0.021 | 179.09 | 0002 | 127.93 | 33263 | 0269 | 0018 | -0.085
Interval 30 | 0273 | 0019 | 203.11 | 0001 | 147.67 | 39321 | 0266 | 0019 | -0.247
Interval31 | 0272 | 0022 | 166.83 | 0002 | 120.11 | 321.95 | 0262 | 0.018 | -0.059
Interval32 | 0280 | 0034 | 7563 | 0004 | 5236 | 13430 | 0264 | 0023 | 0.118
Interval33 | 0285 | 0034 | 8205 | 0004 | 5490 | 13768 | 0270 | 0.020 | 0.122
Interval34 | 0295 | 0057 | 3326 | 0009 | 2115 | 5037 | 0268 | 0024 | 0363
Interval35 | 0312 | 0079 | 1970 | 0016 | 11.83 | 2594 | 0275 | 0.038 | 0.300
Interval36 | 0369 | 0.121 | 1081 | 0.034 6.11 1033 | 0298 | 0063 | 0.480
Interval 37 | 0.432 | 0.141 9.45 0.046 5.21 6.81 0370 | 0120 | -0.080
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Interval 38 0.487 0.128 13.88 0.035 7.25 7.63 0.445 0.127 -0.321
Interval 39 0.529 0.107 23.56 0.022 11.39 10.16 0.497 0.110 -0.390
Interval 40 0.570 0.096 34.02 0.017 15.10 11.40 0.548 0.105 -0.533
Interval 41 0.554 0.090 36.42 0.015 16.90 13.64 0.531 0.096 -0.471
Interval 42 0.583 0.095 37.29 0.016 15.56 11.11 0.551 0.094 -0.295
Interval 43 0.574 0.097 34.27 0.017 14.93 11.07 0.550 0.103 -0.482
Interval 44 0.572 0.083 47.13 0.012 20.40 15.26 0.549 0.086 -0.425
Interval 45 0.576 0.088 42.59 0.014 18.17 13.36 0.550 0.090 -0.396
Interval 46 0.570 0.088 41.98 0.014 18.11 13.66 0.546 0.092 -0.445
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Figure Al. Observed NDVI, GEV and Normal probability density functions (PDF) from interval
45 to interval 10 (from 19 December to 21 March) representing winter.
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624 Figure A2. Observed NDVI, GEV and Normal probability density functions (PDF) from interval
625 11 to interval 22 (from 22 March to 25 June) representing spring.
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628 Figure A3. Observed NDVI, GEV and Normal probability density functions (PDFs) from interval
629 23 to interval 33 (from 26 June to 21 September) representing summer.
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632 Figure A4. Observed NDVI, GEV and Normal PDFs from interval 34 to interval 44 (from 22
633 September to 18 December) representing autumn.
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