
1 
 

RESPONSES TO EDITOR: 1 

Thank you very much for all your technical corrections and comments. Next, we add the marked 2 

manuscript with all your corrections: 3 

  4 



2 
 

Statistical Analysis for Satellite Index-Based Insurance to 5 

define Damaged Pasture Thresholds  6 

 7 

Juan José Martín-Sotoca
1
*, Antonio Saa-Requejo

2,3
, Rubén Moratiel

2,3
, Nicolas Dalezios

4
, Ioannis Faraslis

5
, 8 

and Ana María Tarquis
2,6 9 

jmartinsotoca@gmail.com, antonio.saa@upm.es, ruben.moratiel@upm.es, dalezios.n.r@gmail.com, 10 
faraslisgiannis@yahoo.gr, anamaria.tarquis@upm.es 11 

 12 
1
 Data Science Laboratory. European University, Madrid, Spain. 13 

2
 CEIGRAM, Research Centre for the Management of Agricultural and Environmental Risks, Madrid, Spain. 14 

3 
Dpto. Producción Agraria. Universidad Politécnica de Madrid, Spain. 15 

4
 Department of Civil Engineering. University of Thessaly, Volos, Greece. 16 

5
 Department of Planning and Regional Development. University of Thessaly, Volos, Greece. 17 

6 
Grupo de Sistemas Complejos. Universidad Politécnica de Madrid, Spain. 18 

 19 
* Correspondence to: jmartinsotoca@gmail.com 20 

Abstract: Vegetation indices based on satellite images, such as Normalized Difference Vegetation Index 21 
(NDVI), have been used in countries like USA, Canada and Spain for damaged pasture and forage insurance 22 
for the last years. This type of agricultural insurance is called “satellite index-based insurance” (SIBI). In 23 
SIBI, the occurrence of damage is defined through NDVI thresholds mainly based on statistics derived from 24 
Normal distributions. In this work a pasture area at the north of Community of Madrid (Spain) has been 25 
delimited by means of Moderate Resolution Imaging Spectroradiometer (MODIS) images. A statistical 26 
analysis of NDVI histograms was applied to seek for alternative distributions using maximum likelihood 27 
method and χ

2
 test. The results show that the Normal distribution is not the optimal representation and 28 

the General Extreme Value (GEV) distribution presents a better fit through the year based on a quality 29 
estimator. A comparison between Normal and GEV are showed respect to the probability under a NDVI 30 
threshold value along the year. This suggests that a priori distribution should not be selected and a 31 
percentile methodology should be used to define a NDVI damage threshold rather than the average and 32 
standard deviation, typically of Normal distributions. 33 

Keywords: NDVI, pasture insurance, GEV distribution, MODIS. 34 
 35 

Highlights 36 

 The GEV distribution provides better fit to the NDVI historical observations than 37 

the Normal one. 38 

 Difference between Normal and GEV distributions are higher during spring and 39 

autumn, transition periods in the precipitation regimen. 40 

 NDVI damage threshold shows evident differences using Normal and GEV 41 

distributions covering both the same probability (24.20%). 42 
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 NDVI damage threshold values based on percentiles calculation is proposed as an 43 

improvement in the index based insurance in damaged pasture. 44 

 45 

1. Introduction 46 

Agricultural insurance addresses the reduction of the risk associated with crop 47 

production and animal husbandry. The concept of index-based insurance (IBI) attempts to 48 

achieve settlements based on the value taken by an objective index rather than on a case-49 

by-case assessment of crop or livestock losses (Gommes and Kayitakier, 2013). Indeed, the 50 

goal of IBI policy remains to develop an affordable tool to all producers, including 51 

smallholders. Specifically, IBI can constitute a safety net against weather-related risks for 52 

all members of the farming community, thereby increasing food security and reducing the 53 

vulnerability of rural populations to weather extremes. Moreover, IBI can be associated 54 

with credits for insured smallholders, due to the fact that the risk of non-repayment for 55 

lenders is reduced, which encourages the use of agricultural inputs and equipment, 56 

leading to increased and more stable crop production. Over the past decade, the 57 

importance of weather index-based insurances (WIBI) for agriculture has been increasing, 58 

mainly in developing countries (Gommes and Kayitakier, 2013). This interest can be 59 

explained by the potential that IBI constitutes a risk management instrument for small 60 

farmers. Indeed, it can be considered within the context of renewed attention to 61 

agricultural development as one of the milestones of poverty reduction and increased 62 

food security, as well as the accompanying efforts from various stakeholders to develop 63 

agricultural risk management instruments, including agricultural insurance products. 64 

 65 

Farmers need to protect their land and crops specifically from drought in arid and 66 

semi-arid countries, since their production may directly depend mainly on the impacts of 67 

this particular natural hazard. Insurance for drought-damaged lands and crops is currently 68 

the main instrument and tool that farmers can resort in order to deal with agricultural 69 

production losses due to drought. Many of these insurances are using satellite vegetation 70 

indices (Rao, 2010), thus they are also called “satellite index-based insurances” (SIBI). SIBI 71 

have some advantages over WIBI, such as cost-effective information and acceptable 72 

spatial and temporal resolution. They do not, however, resolve the issue of basis risk, i.e. 73 

potential unfairness to insurance takers (Leblois, 2012). Moreover, the very nature of an 74 

index-based product creates the chance that an insured party may not be paid when they 75 

suffer loss. For this reason, in some countries (Spain) they have named this SIBI as 76 

“damaged in pasture” to cover not only drought even this one is the main cause. 77 

 78 
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It is highly recognized that shortage of water has many implications to agriculture, 79 

society, economy and ecosystems. Specifically, its impact on water supply, crop 80 

production and rearing of livestock is substantial in agriculture. Knowing the likelihood of 81 

drought is essential for impact prevention (Dalezios, 2013). Drought severity assessment 82 

can be approached in different ways: through conventional indices based on 83 

meteorological data, such as temperature, rainfall, moisture, etc. (Niemeyer, 2008), as 84 

well as through remote sensing indices based on images usually taken by artificial 85 

satellites (Lovejoy et al., 2008) or drones. In the second group they are found Satellite 86 

Vegetation Indices (SVI), which can quantify “green vegetation”, and soil moisture through 87 

Soil Water Index (Gouveia et al., 2009) combining different spectral reflectances. Thus, 88 

they are one of the main ways to quantitatively assess drought severity. 89 

 90 

At the present time, several satellites (NOAA, TERRA, DEIMOS, etc.) can provide this 91 

spectral information with different spatial resolution. Some series with a high temporal 92 

frequency are freely available, those from NOAA satellites and Terra. The most widely 93 

known SVI is the Normalized Difference Vegetation Index (NDVI). It follows the principle 94 

that healthy vegetation mainly reflects the near-infrared frequency band. There are 95 

several other important SVI, such as Soil Adjusted Vegetation Index (SAVI) and Enhanced 96 

Vegetation Index (EVI) that incorporate soil effects and atmospheric impacts, respectively. 97 

An important point of SIBI is “when damage occurs”. To measure this, a SVI threshold 98 

value is defined mainly based on statistics that apply to Normal distributed variables: 99 

average and standard deviation. When current SVI values are bellow this threshold value 100 

for a period of time, insurance recognizes that a damage is occurring, most of the times 101 

drought, and then it begins to pay compensations to farmers. 102 

 103 

Important NDVI-based indices for detecting drought are NDVI anomalies (NDVIA) and 104 

Standardized Vegetation Index (SVI). NDVIA and SVI have been successfully used to 105 

monitor drought conditions over different regions in the world (Nanzad et al., 2019; Li et 106 

al., 2014). NDVIA is calculated as the difference between the NDVI value for a specific time 107 

period (e.g., week, month) and the long-term mean value for that period. SVI was 108 

developed by Peters et al. (2002) and obtains the probability from normal NDVI 109 

distributions over multiple years of data, on a time period (Anyamba and Tucker, 2012; 110 

Bayarjargal et al., 2006). It is defined as: 111 

 112 

     
          ̅̅ ̅̅ ̅̅ ̅̅

     
 
      

     
        (1) 113 

 114 

where     ̅̅ ̅̅ ̅̅ ̅̅  is the long-term mean NDVI in the period i,       is the standard deviation 115 

of NDVI in the period i, and       is the current NDVI value in the time period i. Using 116 
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only the first and second statistical moment, average and the square root of variance, the 117 

assumption of normality is implicit in this type of drought NDVI indicator. The normality 118 

assumption is challenged in this study. 119 

 120 

WIBI aims to protect farmers against weather-based disasters such as droughts, frosts 121 

and floods. A WIBI policy links possible insurance payouts with the weather requirements 122 

of the crop being insured: the insurer pays an indemnity whenever the realized value of 123 

the weather index meets a specified threshold. Whereas payouts in traditional insurance 124 

programs are related to actual crop damages, a farmer insured under a WIBI contract may 125 

receive a payout. A current difficulty to the wide implementation of WIBI is the weakness 126 

of indices. Indeed, there is certainly a need for more efficient indices based on the 127 

additional experience gained from the implementation of WIBI products in the developing 128 

world. Current trends in index technology are exciting and they actuate high expectations, 129 

especially the development of yield indices and the use of remote sensing inputs. Risk 130 

protection and insurance illiteracy constitute another difficulty, which has to be addressed 131 

by training and awareness-raising at all levels, from farmers to farmers’ associations, 132 

micro-insurance partners, as well as senior decision-makers in insurance, banking, and 133 

politics (Bailey, 2013). It is essential that all stakeholders (especially the insured) perfectly 134 

understand the principles of IBI, as otherwise the insurer, even the whole concept of 135 

insurance, is at risk of reputation loss for years or decades. 136 

 137 

There is currently a lack of technical capacity in the insurance sectors of most 138 

developing countries, which is a constraint to the scaling up and further development of 139 

WIBI (Gommes and Kayitakire, 2012). Specifically, although it is possible to design an index 140 

product and assist in roll-out, marketing, and sales, such assistance is not possible on a 141 

wide scale, simply because there is lack of qualified expertise. Indeed, it usually requires 142 

mathematical modeling, data manipulation, and expertise in crop simulation to design an 143 

index. Nevertheless, it is possible to structure insurance with multiple indices, but this 144 

increases the complexity of the product and makes it difficult for farmers to comprehend 145 

it. ‘Basis risk’ is also a particular problem for index products, which is frequently caused by 146 

the fact that measurements of a particular variable, such as rain, may differ at the 147 

insurer’s measurement site and in the farmer’s field. This also creates problems for 148 

insurance providers. Indeed, part of the reason the scaling up of index products has failed 149 

is that both insurers and farmers suffer from this basis risk. 150 

 151 

Currently, to mitigate impacts of climate-related reduced productivity of French 152 

grasslands, several studies have been developed to design new insurance scheme bases 153 

indemnity payouts to farmers on a forage production index (FPI) (Rumiguié et al., 2015; 154 
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2017). Two examples of SIBIs are presented in two different countries: USA and Spain. In 155 

particular, in USA there are several insurance programs for pasture, rangeland and forage, 156 

which use various indexing systems (rainfall and vegetation indices), and are promoted by 157 

Unites States Department of Agriculture (USDA) (Maples et al., 2016; USDA, 2018). NDVI is 158 

the index chosen in the vegetation index program and it is obtained from AVHRR 159 

(Advanced Very High Resolution Radiometer) sensor onboard NOAA satellites. Average, 160 

maximum and minimum NDVI values are obtained from a historical series with the aim of 161 

calculating a trigger value. Insurer decides the quantity of compensation comparing this 162 

trigger with current value. On the other hand, in Spain there exists the “Insurance for 163 

Damaged Pasture” from “Spanish System of Agricultural Insurance” (BOE, 2013). This 164 

insurance defines damage event through NDVI values obtained from MODIS sensor 165 

onboard TERRA satellite of NASA. In this insurance, NDVI threshold values (      ) are 166 

calculated subtracting several times (              ) standard deviation to average 167 

within a homogeneous area: 168 

 169 

                     (2) 170 

 171 

where     are average and standard deviation of NDVI respectively. Average and standard 172 

deviation come of supposing Normal distributions in the historical data (Goward et al., 173 

1985; Hobbs, 1995; Fuller, 1998; Al-Bakri and Taylor, 2003; Turvey et al., 2012; De Leeuw 174 

et al. 2014). 175 

 176 

The aim of this paper is to find a more realistic statistical NDVI distribution without 177 

the “a priori” assumption that variables follow a Normal distribution, typically for current 178 

SIBI methodology. In order to achieve this, the Maximum Likelihood Method (MLM) is 179 

fitted to a historical series of NDVI values in a pasture land area in Spain (Community of 180 

Madrid). Different types of asymmetrical distributions are examined with the aim to find a 181 

better fit than Normal. To eliminate some noise in the historical series, an original method 182 

is applied consisting of using Hue-Saturation-Lightness (HSL) color model. Finally, Chi-183 

square test (   test) has been used to check the goodness of fit for all considered 184 

distributions. 185 

 186 

 187 

2. Materials and Methods  188 

2.1 Vegetation Index 189 
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The differences of the reflectance of green vegetation in parts of the electromagnetic 190 

radiation spectrum, namely, visible and near infrared, provide an innovative method for 191 

monitoring surface vegetation from space. Specifically, the spectral behavior of vegetation 192 

cover in the visible (0.4-0.7mm) and near infrared (0.74-1.1mm, 1.3-2.5mm) offers the 193 

possibility to monitor from space the changes in the different stages of cultivated and 194 

uncultivated plants taking also into account the corresponding behavior of the 195 

surrounding microenvironment (Ortega-Farias et al., 2016). Indeed, from the visible part 196 

of the electromagnetic radiation spectrum it is possible to draw conclusions about the 197 

rate photosynthesis, whereas from near infrared inferences are extracted about the 198 

chlorophyll density and the amount of canopy in the plant mass, as well as the water 199 

content in the leaves, which is also linked directly to the rate of transpiration with impacts 200 

to physiological process of photosynthesis. Usually, data from NOAA/AVHRR series of 201 

polar orbit meteorological satellites are used with low spatial resolution (1.1 km2) and 202 

recurrence interval at least twice daily from the same location. Several algorithms 203 

combining channels of red (RED), near infrared (NIR) and green (GREEN) have been 204 

proposed, which provide indices sensitive to green vegetation. 205 

  206 

NDVI uses two frequency bands: red band (660 nm) and near-infrared band (860 nm). 207 

Absorption of red band is related to photosynthetic activity and reflectance of near-208 

infrared band is related to presence of vegetation canopies (Flynn, 2006). In drought 209 

periods, NDVI values can reduce significantly, therefore many researchers have used this 210 

index to measure drought events in recent years (Dalezios et al., 2014). To calculate NDVI 211 

we will use this mathematical formula: 212 

 213 

     
    

    
              (3) 214 

 215 

where “IR” and “R” are reflectance values in Near-Infrared band and Red band, 216 

respectively. NDVI values below zero indicate no photosynthetic activity and are 217 

characteristic of areas with large accumulation of water, such as rivers, lakes, or 218 

reservoirs. The higher is the NDVI value, the greater is the photosynthetic activity and 219 

vegetation canopies. 220 

 221 

In this paper, the NDVI is used, which is widely known index with a multitude of 222 

applications over time. The NDVI is suited for monitoring of total vegetation, since it partly 223 

compensates the changes in light conditions, land slope and field of view (Kundu et al., 224 

2016). In addition, clouds, water and snow show higher reflectance in the visible than in 225 

the near infrared, thus, they have negative NDVI values. Indeed, bare and rocky terrain 226 
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show vegetation index values close to zero. Moreover, the NDVI constitutes a measure of 227 

the degree of absorption by chlorophyll in the red band of the electromagnetic spectrum. 228 

In summary, the NDVI is a reliable index of the chlorophyll density on the leaves, as well as 229 

the percentage of the leaf area density over land, thus, NDVI constitutes a credible 230 

measure for the assessment of dry matter (biomass) in various species vegetation cover 231 

(Dalezios, 2013). It is clear from the above that the NDVI is an index closely related to 232 

growth and development of plants, which can effectively monitor surface vegetation from 233 

space.  234 

 235 

The continuous increase of the NDVI value during the growing season reflects the 236 

vegetative and reproductive growth due to intense photosynthetic activity, as well as the 237 

satisfactory correlation with the final biomass production at the end of a growing period. 238 

On the other hand, gradual decrease of the NDVI values signifies stress due to lack of 239 

water or extremely high temperatures for the plants, leading to a reduction of the 240 

photosynthetic rate and ultimately a qualitative and quantitative degradation of plants. 241 

NDVI values above zero indicate the existence of green vegetation (chlorophyll), or bare 242 

soil (values around zero), whereas values below zero indicate the existence of water, 243 

snow, ice and clouds. 244 

 245 

2.2 Database 246 

Scientific research satellite Terra (EOS AM-1) has been chosen to provide necessary 247 

information to calculate NDVI in the study area. This satellite was launched into orbit by 248 

NASA on December 18, 1999. MODIS sensor aboard this satellite collects information of 249 

different reflectance bands. MODIS information is organized by "products". The product 250 

used in this study was MOD09A1 (LP DAAC, 2014). MOD09A1 incorporates seven 251 

frequency bands: Band 1 (620-670 nm), band 2 (841-876 nm), band 3 (459-479 nm), band 252 

4 (545-565 nm), 5 band (1230-1250 nm), band 6 (1628-1652 nm) and band 7 (2105-2155 253 

nm). The bands used to calculate NDVI are: band 1 for red frequency and band 2 for near-254 

infrared frequency. MOD09A1 provides georeferenced images with pixel resolution of 255 

500m x 500m. Each MOD09A1 pixel contains the best possible L2G observation during an 256 

8-day period as selected on the basis of high observation coverage, low view angle, the 257 

absence of clouds or cloud shadow, and aerosol loading. 258 

 259 

The period of time selected on this study was from 2002 to 2017. 260 

 261 
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Daily data from a principal station of the meteorological network were utilized during 262 

the period studied (2002 – 2017). Meteorological station is located in 40°41'46"N 263 

3°45'54"W (elevation 1004 m a.s.l.), less than 2 km from the study area (AEMET, 2017). 264 

 265 

2.3 Site description 266 

Six pixels (500m x 500m) are considered located in a pasture area at the north of the 267 

Community of Madrid (Spain) between the municipalities of “Soto del Real” and 268 

“Colmenar Viejo”. The study area is located between meridians 3° 45' 00" and 3° 47' 00" 269 

W and parallels 40° 42' 00" and 40° 44' 00" N approximately (see Fig. 1). 270 

 271 

 272 

Figure 1. The study area is in the centre of the Iberian Peninsula (Community of Madrid). RGB 273 

image of six pixels area used for case study is shown (Google Earth´s and MODIS images). 274 

 275 

The annual mean temperature ranges during the study period from 12.7°C to 13.8°C, 276 

and annual mean precipitation ranges from 360 mm to 781 mm.  The stations studied 277 

were identified semi-arid (annual ratio P/ETo between 0.2 and 0.5) according to the global 278 

aridity index developed by the United-Nations Convention to Combat Desertification 279 

(UNEP, 1997). According to the climatic classification of Köppen (Kottek et al., 2006), this 280 

area presents a continental Mediterranean climate temperate with dry and temperate 281 
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summer (type Csb). Temperature and precipitation of this site, based on 20 years, is 282 

presented in Table 1. 283 

 284 

Due to high soil moisture conditions, ash is the dominant tree, forming large 285 

agroforestry systems ("dehesas") that are used for pasture. These are ecosystems with 286 

high biodiversity. 287 

 288 

Table 1. Monthly average of maximum temperature (Tmax), average temperature (Tavg), 289 

minimum temperature (Tmin) and precipitation (P). Study period from 1997 to 2017. 290 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Tmax (ºC) 7.1 9.3 12.7 15.4 19.5 24.6 28.6 28.1 23.7 16.8 11.1 7.4 17.0 

Tavg (ºC) 3.6 4.8 7.7 10.1 13.7 18.4 22.0 21.7 17.9 12.3 7.1 4.1 12.0 

Tmin (ºC) 0.0 0.3 2.6 4.8 7.8 12.1 15.4 15.3 12.0 7.8 3.0 0.8 6.8 

P (mm) 67.2 50.0 38.5 62.2 62.3 30.2 18.9 16.4 34.2 79.3 86.2 82.6 627.9 

 291 

2.4 HSL model 292 

There is no doubt that NDVI time-series from satellite sensors carry useful 293 

information, which can be used for characterizing seasonal dynamics of vegetation 294 

(Fensholt et al., 2012; Forkel et al., 2013). However, due to unfavorable atmospheric 295 

conditions during the data acquisition, NDVI time-series curve often contains noise 296 

(Motohka et al., 2011; Park, 2013). Although most of the NDVI data products are 297 

temporally composited through maximum value compositing (MVC) method (Holben, 298 

1986) to retain relatively cloud-free data, residual noise still exists in the data, which will 299 

affect the accuracy of the NDVI value. 300 

 301 

Therefore, usually it is necessary to reconstruct of NDVI time-series before extracting 302 

information from the noisy data. There are several techniques that have been applied to 303 

reduce noise and reconstruct NDVI series, a summary of these can be found in Wei et al. 304 

(2016). In this study we applied a simple filtering method based on the Hue-Saturation-305 

Lightness (HSL) color model inspired by the work presented by Tackenberd (2007). 306 

 307 

HSL color model is a cylindrical representation of RGB (Red-Green-Blue) points. Their 308 

components are Hue (color type), Saturation (level of color purity) and Lightness (color 309 

luminosity). Hue is the angular component and it is more intuitive for humans since it is 310 

directly related to the color wheel (see Fig. 2). 311 

 312 
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 313 

Figure 2. On the left: colour wheel of Hue. On the right: the HSL model (Creative Commons). 314 

Saturation is the radial component and near-zero values indicate grey colors. 315 

Lightness is the axial radial versus axial component, zero lightness produces black and full 316 

lightness produces white. 317 

 318 

The NDVI series are filtered using the following HSL criterion: NDVI values are valid if 319 

HSL Saturation is greater than 0.15. In this way, the values of the series that have grey 320 

color correlate with pasture covered by clouds or snow are eliminated. This type of filter 321 

based in HSL color space has been used on digital camera images monitoring vegetation 322 

phenology (Tackenberg, 2007; Crimmins and Crimmins, 2008; Graham et al., 2009). 323 

However, we have not found the use of this HSL criterion in the context of NDVI remote 324 

sensing images. 325 

 326 

2.5 Maximum Likelihood Method 327 

MLM estimates the set of parameters {         } for a specific statistical 328 

distribution that maximizes the “likelihood function” or the “joint density function”: 329 

   (   )  ∏  (   
 
            )      (4) 330 

where   (       ) is the set of data,   (         ) is the vector of parameters 331 

and  (            ) is the density function of the statistical model. 332 

When maximization with respect to the vector of parameters is carried out, the 333 

estimated parameters ( ̂  ̂  ̂  ̂  ) for the proposed statistical distribution are obtained 334 

(Larson, 1982). Properties of estimated parameters are: invariance, consistency and 335 

asymptotically unbiased. 336 

In the case of a Normal model, the estimated statistics   and   are defined by 337 

accurate expressions as follows: 338 
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       (5) 339 

where   ̂ is the sample mean and  ̂ is the sample standard deviation of the data set. 340 

In this study we will apply MLM to estimate the parameters for 4 probability density 341 

functions (PDF). In Table 2, a brief description is presented of these PDF candidates: 342 

Normal, Gamma, Beta and GEV. To do so, the following MATLAB functions have been 343 

used: “normfit”, “gamfit”, “betafit” and “gevfit” (respectively). 344 

 345 

Table 2. Candidate Probability Density Functions (PDF). 346 

PDF NAME PDF EXPRESSION PDF PARAMETERS 

Normal  (     )  
 

 √  
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Gamma  (     )  
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 ( )                 
  and              

Beta  (     )  
 (   )

 ( ) ( )
    (   )    

 ( )                 
  and              
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 (       )  
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(  (

   

 
)  )

   ⁄
       

  
(   )

 ⁄                       

 

                    
                    
                    

 347 

 348 

2.6 Goodness of fit (Chi square test) 349 

   test can be used to determine to what extent observed frequencies differ from 350 

frequencies expected for a specific statistical model. The most important points of the 351 

theory are briefly presented in (Cochran, 1952). 352 

 353 

Let  (   ) be a theoretical density function of a random variable   which depends on 354 

parameters   (         ) and let         be a sample of   grouped into k classes with    355 

data per class i. 356 

 357 

Firstly, the following hypothesis is set: 358 

 359 

(H0) observed data fit theoretical distribution  (   ). 360 

Then the test statistic   
   is defined as: 361 
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  ∑

(     )
 

  

 
           (6) 362 

where    is the number of data or observed frequency and       (       ) is the 363 

expected frequency for class i.  (       ) is the theoretical interval probability defined for 364 

class i. 365 

A level of significance is also set as: 366 

   (                     )      (7) 367 

Finally, the following decision rule is applied: “reject the theoretical distribution at 368 

significance level   if: 369 

  
   (         )

        (8) 370 

where  (         )
 is a    distribution with k-m-1 degrees of freedom (m is the number of 371 

parameters, k is the number of classes). 372 

 373 

 374 

 375 

 376 

3. Results 377 

3.1  HSL filtering criterion 378 

NDVI series (from 2002 to 2017) were obtained for each pixel of the study area using 379 

frequency bands provided by MODIS product named MOD09A1. These series contain 380 

some irregular values that can skew NDVI pattern. Therefore, the six series (six pixels) 381 

were filtered using the HSL criterion. 382 

 383 

MOD09A1 is a MODIS product that processes data to obtain the best observation in 384 

an 8-days period. However, it is possible that the result of this selection still presents 385 

some problems since the best of this selection is relative to the eight observations of the 386 

period. For example, if the eight observations, at one pixel, appear with clouds, shadow 387 

clouds or snow, the best selection still shows this problem. 388 

 389 

As an example of the above, the NDVI series (10 years) of one pixel of the study area 390 

is shown in Fig. 3. On the top graph of Fig. 3 there are extremely low NDVI values in some 391 

dates. If these NDVI values are compared to neighbouring values (8 days after or before) 392 

the high variation presented in such short period is not plausible. This issue tells us that 393 
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the MODIS sensor has not obtained a proper observation during this 8 days period 394 

(interval). 395 

 396 

The HSL criterion helps us to eliminate these incorrect NDVI values, since the filter is 397 

interpreting that these pixels still contains clouds or snow, i.e., pixels with low saturation 398 

(greyish colours). 399 

 400 

 401 

 402 

Figure 3. HSL filtering criterion applied to a 10 years NDVI series. Top graph shows the real NDVI 403 

series. Bottom graph shows the HSL filtered NDVI series. 404 
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Fig. 3 shows that abrupt changes in the NDVI values, mainly observed during raining 405 

seasons such as autumn and winter, are efficiently eliminated. Not to be a high 406 

computational demanding method is one of the main advantages of HSL filtering method. 407 

Therefore, this method will allow us to obtain more robust NDVI values to be used in the 408 

statistical analysis. 409 

 410 

3.2  Statistical analysis 411 

NDVI values were obtained consecutively every 8 days from MODIS starting at the 1st 412 

of January of every year, in such a way that 46 NDVI observations were extracted for each 413 

year. Therefore, it was possible to define 46 Random Variables (RV) when all the years of 414 

this study were taking into account. 415 

In Table 3, every RV (named as “Interval”) is shown together with the number of 416 

available NDVI observations. Each RV collects the observations coming from the six 417 

selected pixels; therefore the maximum number of observations per RV could be: 6 pixels 418 

x 16 years = 96 observations. The start intervals of each season are: interval 45 (19 419 

December) for winter, interval 11 (22 March) for spring, interval 23 (26 June) for summer 420 

and interval 34 (22 September) for autumn. 421 

 422 

Table 3. Number of observations for every RV (named as Interval). 423 

RANDOM 
VARIABLE 

# 
OBSERVATIONS 

  
RANDOM 
VARIABLE 

# 
OBSERVATIONS 

Interval 1 85   Interval 24 96 

Interval 2 84   Interval 25 96 

Interval 3 96   Interval 26 96 

Interval 4 96   Interval 27 96 

Interval 5 95   Interval 28 96 

Interval 6 90   Interval 29 96 

Interval 7 86   Interval 30 96 

Interval 8 83   Interval 31 96 

Interval 9 96   Interval 32 96 

Interval 10 96   Interval 33 94 

Interval 11 74   Interval 34 96 

Interval 12 88   Interval 35 96 

Interval 13 88   Interval 36 85 

Interval 14 88   Interval 37 90 

Interval 15 96   Interval 38 96 

Interval 16 92   Interval 39 92 

Interval 17 88   Interval 40 90 
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Interval 18 96   Interval 41 96 

Interval 19 95   Interval 42 89 

Interval 20 96   Interval 43 95 

Interval 21 95   Interval 44 88 

Interval 22 96   Interval 45 90 

Interval 23 96   Interval 46 90 

 424 

 425 

In Fig. 4, box plots of all RV with a start and end reference of the astronomical seasons 426 

are shown. The typical evolution of the NDVI along a year can be seen together with the 427 

inter-quartile range. 428 

 429 

 430 

Figure 4. Box plots of 46 random variables (RV) are shown as well as start and end reference of 431 

every season. Study period from 2002 to 2017. 432 

 433 

The observed evolution of NDVI through the different seasons is typical of the pasture 434 

in this area. The summer presents the lowest mean values which begin to increase in 435 

autumn achieving a maximum mean value of 0.60 or 0.65 during the beginning of spring. 436 

In the middle of the spring NDVI decrease again, approaching the lowest mean value of 437 

0.28 approximately in summer. 438 

 439 

Taking into account these values, dense vegetation, in this study pasture, is found 440 

from middle of October (interval 37) till the end of May (interval 19). It is in this period 441 

where the precipitation concentrates (see Table 1). During the summer, the NDVI mean 442 

values are lower than 0.3 corresponding with low precipitation and high temperatures. 443 
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  444 

Following the work of Escribano-Rodriguez et al. (2014), there is a relationship of 445 

pasture damage and a NDVI value around 0.40. Even if the authors point out that this 446 

value is highly variable depending on the location, we can see that summer season in this 447 

case study is under this value (see Fig. 4). This can explain that “Insurances for Damaged 448 

Pasture” usually do not apply in these dates due to the arid environment (BOE, 2013). 449 

 450 

The statistical metric used in this study to assess the fit of the observed NDVI values 451 

with respect to the PDF candidates (Normal, Gamma, Beta and GEV) was the Chi square 452 

test (χ2 test). The following steps were carried out: 453 

 454 

1. MLM was applied to model these 46 RV. Parameters were calculated for the four 455 

PDF candidates (see Table 2). 456 

2. To check the goodness of the fit of PDF candidates, a Chi square test (χ2 test) was 457 

applied from 7 classes to 14 classes meeting the requirement that each class had 458 

at least five observations. The level of significance ( ) was fixed to 5% for all the 459 

candidates. 460 

 461 

3.2.1 Maximum Likelihood Method 462 

Table A1 at Appendix A shows the estimated parameters for each PDF and each 463 

interval calculated by the MLM. These parameters were used to compare the estimated 464 

PDF with the NDVI observed values on different times through the seasons. The following 465 

intervals are shown as examples of better GEV fit: interval 4 and 8 (for winter, see Fig. 5), 466 

interval 17 and 21 (for spring, see Fig. 6) and interval 36 and 40 (for autumn, see Fig. 7). In 467 

these plots, observed frequency is compared versus Normal and GEV density distributions 468 

calculated by MLM. 469 

 470 

 471 

Figure 5. Comparison between observed NDVI frequency, GEV and Normal probability density 472 

functions (PDF) on two different dates. Intervals 4 and 8 are examples for winter. 473 
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 474 

Figure 6. Comparison between observed NDVI frequency, GEV and Normal probability density 475 

functions (PDF) on two different dates. Intervals 17 and 21 are examples for spring. 476 

 477 

 478 

Figure 7. Comparison between observed NDVI frequency, GEV and Normal probability density 479 

functions (PDF) on two different times. Intervals 36 and 41 are examples for autumn. 480 

 481 

During winter (see Fig. 5) the observed NDVI distribution presents negative skewness. 482 

Then, there is a higher frequency of high NDVI values corresponding with significant 483 

precipitation. During spring (see Fig. 6) an evolution in the skewness is observed passing 484 

from negative to positive, and so, the lower NDVI values become the higher probable. 485 

Finally, during autumn (see Fig. 7) precipitation begins and from positive pass to negative 486 

skewness and higher NDVI values are possible. We can observe that Normal distribution 487 

has no flexibility to follow this dynamic in the distributions on each time. This comparison 488 

is done in a sequential order for the whole of intervals in Figures A1, A2, A3 and A4 at 489 

Appendix A. 490 

 491 

3.2.2 Chi square test 492 

Twelve intervals (from 23 to 34) corresponding to the months of July, August and 493 

September have been excluded of this analysis since these intervals fall into the dry 494 
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season in the study area, normally not covered by any SIBI. Therefore, calculations were 495 

carried out over 34 intervals. 496 

 497 

To assess the general goodness of fit, the number of intervals where the χ2 test was 498 

accepted (or failed to reject), were calculated for every PDF candidate. Then, the 499 

percentage of accepted intervals, over the total 34 intervals, was also calculated. Fig. 8 500 

shows this percentage of intervals that fit for every PDF candidate. The number of classes 501 

used in χ2 test is represented at the X-axis (from 7 to 14 classes). 502 

 503 

 504 

Figure 8. Percentage of fitted intervals (Y axis) for each PDF candidate (Normal, Gamma, Beta and 505 

GEV distributions) in function of the number of classes (X axis). 506 

 507 

4. Discussion 508 

4.1 Statistical context 509 

Fig. 8 indicates that GEV distributions explain more intervals (more than 40% for the 510 

majority of the class analysis) than the Normal, Gamma or Beta distributions. An 511 

important difference between the Normal distribution and the PDFs used in this work is 512 

their skewness and kurtosis. Many of the observed NDVI distributions present a clear 513 

asymmetry and long tails in one or both sides that causes Normal distributions not to be 514 

the optimal fit. 515 

 516 

There is a relationship between seasons and the number of intervals that fit correctly. 517 

We found that GEV distributions explain better intervals of spring and autumn since their 518 
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observed distributions are very asymmetric. On the other hand, we did not find an 519 

important difference in winter, since the observed distributions are mainly symmetric. 520 

 521 

The more skewness and kurtosis depart from those of the Normal distribution the 522 

larger the errors affecting the insurance designed based on Normal distributions (Turvey 523 

et al., 2012). It is an expected result as pasture cultivation is quite different from the 524 

development of arable crops, where Normal distributions in the NDVI values are more 525 

common. This high heterogeneity in time and space of NDVI estimated on pasture has 526 

been pointed out in several works (Martin-Sotoca et al, 2018). At the same time, the more 527 

different the observed NDVI frequency is from a Normal distribution, the less 528 

representative is the average, and so, the median becomes a more representative value. 529 

 530 

4.2 Insurance context 531 

The use of NDVI thresholds in damaged pasture context was presented in the 532 

introduction section, being an example of using the "Insurance for Damaged Pasture" in 533 

Spain (BOE, 2013). We have chosen this last insurance to compare the results between 534 

applying Normal and GEV distribution methodologies. In this particular case the NDVI 535 

threshold (      ) was calculated using the expression              (where     are 536 

average and standard deviation of NDVI distributions respectively, assuming the Normal 537 

hypothesis). 538 

 539 

The probability of being below        (using        , first damage level in the 540 

insurance) at every interval has been calculated assuming the Normal hypothesis. As it 541 

was expected, this value is always 24.2% (see third column in Table 4). The probability of 542 

being below        has also been calculated using GEV distributions obtained in this 543 

study. The probability obtained by GEV distributions is mostly lower than the Normal 544 

distributions in spring, autumn and winter (see Table 4) that is the working period of the 545 

insurance. 546 

 547 

Observing where in time are the highest relative errors in probabilities (fifth column in 548 

Table 4), intervals corresponding to the end of winter, second middle of spring and the 549 

beginning of autumn present errors higher than 10%. This could explain why it is in spring 550 

and autumn when more disagreements exist between farmers and insurance company in 551 

claims.   552 

 553 

Table 4 – First column: time intervals of approximately 8 days along the year. Second column: NDVI 554 

thresholds (NDVIth) based on a Normal distribution applying        . Third column: percentages of 555 
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area below the NDVIth when Normal distributions are applied. Fourth column: percentages of area 556 

below the NDVIth when GEV distributions are applied. Fifth column: relative area error of GEV 557 

compared to the Normal distribution. 558 

 559 

RANDOM 
VARIABLE 

NORMAL GEV 

NDVIth Prob. Prob. Error (%) 

Interval 1 0.535 24.20% 24.37% 0.70% 

Interval 2 0.541 24.20% 23.18% -4.21% 

Interval 3 0.541 24.20% 23.27% -3.84% 

Interval 4 0.543 24.20% 23.27% -3.84% 

Interval 5 0.545 24.20% 24.17% -0.12% 

Interval 6 0.534 24.20% 21.48% -11.24% 

Interval 7 0.528 24.20% 24.01% -0.79% 

Interval 8 0.546 24.20% 20.70% -14.46% 

Interval 9 0.555 24.20% 21.30% -11.98% 

Interval 10 0.561 24.20% 22.28% -7.93% 

Interval 11 0.567 24.20% 23.49% -2.93% 

Interval 12 0.572 24.20% 23.75% -1.86% 

Interval 13 0.571 24.20% 23.20% -4.13% 

Interval 14 0.570 24.20% 24.29% 0.37% 

Interval 15 0.571 24.20% 23.47% -3.02% 

Interval 16 0.560 24.20% 23.26% -3.88% 

Interval 17 0.495 24.20% 21.29% -12.02% 

Interval 18 0.484 24.20% 21.58% -10.83% 

Interval 19 0.442 24.20% 23.06% -4.71% 

Interval 20 0.381 24.20% 27.20% 12.40% 

Interval 21 0.342 24.20% 29.46% 21.74% 

Interval 22 0.323 24.20% 28.84% 19.17% 

Interval 35 0.257 24.20% 18.98% -21.57% 

Interval 36 0.285 24.20% 28.57% 18.06% 

Interval 37 0.333 24.20% 25.90% 7.02% 

Interval 38 0.398 24.20% 24.27% 0.29% 

Interval 39 0.454 24.20% 23.79% -1.69% 

Interval 40 0.503 24.20% 22.81% -5.74% 

Interval 41 0.491 24.20% 23.23% -4.01% 

Interval 42 0.517 24.20% 24.66% 1.90% 

Interval 43 0.507 24.20% 23.13% -4.42% 
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Interval 44 0.514 24.20% 23.49% -2.93% 

Interval 45 0.515 24.20% 23.70% -2.07% 

Interval 46 0.509 24.20% 23.33% -3.60% 

 560 

An alternative calculation can be the use of Normal probability (24.2%) to calculate new 561 

       based on GEV (see Table 5). It can be seen that new        obtained by GEV 562 

distributions are mostly higher than thresholds using Normal distributions in spring, 563 

autumn and winter. Considering these results we find that damage thresholds calculated 564 

by GEV distributions are mostly above the ones calculated by Normal distributions. 565 

Again, intervals corresponding to the end of winter, second middle of spring and the 566 

beginning of autumn present        relative errors higher than 1% in absolute values 567 

(fourth column in Table 5). 568 

 569 

Table 5 - First column: time intervals of approximately 8 days along the year. Second column: NDVI 570 

thresholds (NDVITh) based on a Normal distribution (Normal) applying        . Third column: 571 

NDVITh based on a GEV distribution (GEV) using 24.2% as the area below the NDVITh. Fourth column: 572 

relative NDVITh error of GEV compared to the Normal distribution. 573 

 574 

RANDOM 
VARIABLE 

NDVITh  

Normal GEV Error (%) 

Interval 1 0.535 0.534 -0,19% 

Interval 2 0.541 0.543 0,37% 

Interval 3 0.541 0.543 0,37% 

Interval 4 0.543 0.545 0,37% 

Interval 5 0.545 0.545 0,00% 

Interval 6 0.534 0.543 1,69% 

Interval 7 0.528 0.528 0,00% 

Interval 8 0.546 0.558 2,20% 

Interval 9 0.555 0.563 1,44% 

Interval 10 0.561 0.567 1,07% 

Interval 11 0.567 0.569 0,35% 

Interval 12 0.572 0.574 0,35% 

Interval 13 0.571 0.574 0,53% 

Interval 14 0.570 0.569 -0,18% 

Interval 15 0.571 0.573 0,35% 

Interval 16 0.560 0.563 0,54% 
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Interval 17 0.495 0.510 3,03% 

Interval 18 0.484 0.498 2,89% 

Interval 19 0.442 0.447 1,13% 

Interval 20 0.381 0.374 -1,84% 

Interval 21 0.342 0.334 -2,34% 

Interval 22 0.323 0.318 -1,55% 

Interval 35 0.257 0.262 1,95% 

Interval 36 0.285 0.278 -2,46% 

Interval 37 0.333 0.327 -1,80% 

Interval 38 0.398 0.398 0,00% 

Interval 39 0.454 0.455 0,22% 

Interval 40 0.503 0.508 0,99% 

Interval 41 0.491 0.494 0,61% 

Interval 42 0.517 0.516 -0,19% 

Interval 43 0.507 0.510 0,59% 

Interval 44 0.514 0.516 0,39% 

Interval 45 0.515 0.516 0,19% 

Interval 46 0.509 0.511 0,39% 

 575 

 576 

5. Conclusions 577 

According to the results obtained in the study area using MLM and    test, it can be 578 

concluded that Normal distributions are not a good fit to the NDVI observations, and GEV 579 

distributions provide a better approximation. 580 

 581 

The difference between Normal and GEV assumption is more evident in the transition 582 

from winter to summer (spring), where NDVI values decrease, and then from summer to 583 

winter (autumn) presenting the opposite behavior of increasing NDVI values. In both 584 

periods asymmetrical distributions were found, negative skewness for the spring 585 

transition and positive skewness for the autumn transition. During both periods the 586 

variability in precipitation and temperatures were higher in this location. 587 

 588 

We have found differences if GEV assumption is selected instead of the Normal one 589 

when defining damaged pasture thresholds (      ). The use of these different 590 

assumptions should be taken into account in future insurance implementations due to the 591 

important consequences of supposing a damage event or not. We propose the use of 592 
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quantiles in observed NDVI distributions instead of average and standard deviation, 593 

typically of Normal distributions, to calculate new       . 594 

 595 
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Appendix A 602 

 603 

Table A1 - Maximum Likelihood parameters calculated for 4 PDF. 604 

RANDOM 
VARIABLE 

NORMAL GAMMA BETA GEV 

    a b   

Interval 1 0.591 0.081 53.31 0.011 21.45 14.82 0.563 0.080 -0.297 

Interval 2 0.589 0.069 71.14 0.008 30.62 21.40 0.571 0.073 -0.477 

Interval 3 0.583 0.060 94.15 0.006 39.56 28.34 0.567 0.063 -0.457 

Interval 4 0.585 0.060 91.88 0.006 39.58 28.05 0.570 0.064 -0.468 

Interval 5 0.588 0.061 93.92 0.006 38.83 27.25 0.568 0.061 -0.340 

Interval 6 0.582 0.068 70.28 0.008 30.67 22.05 0.577 0.083 -0.846 

Interval 7 0.584 0.080 52.52 0.011 22.16 15.82 0.559 0.082 -0.366 

Interval 8 0.596 0.071 65.37 0.009 28.89 19.59 0.591 0.081 -0.833 

Interval 9 0.601 0.066 76.02 0.008 34.31 22.84 0.590 0.070 -0.652 

Interval 10 0.613 0.073 63.83 0.010 27.80 17.62 0.598 0.079 -0.572 

Interval 11 0.621 0.078 58.72 0.011 24.33 14.86 0.600 0.083 -0.451 

Interval 12 0.624 0.073 68.33 0.009 28.01 16.94 0.603 0.078 -0.431 

Interval 13 0.624 0.075 66.22 0.009 26.23 15.85 0.604 0.080 -0.476 

Interval 14 0.631 0.088 50.23 0.013 18.71 10.92 0.603 0.090 -0.342 

Interval 15 0.630 0.084 53.60 0.012 21.17 12.45 0.607 0.089 -0.448 

Interval 16 0.627 0.096 38.75 0.016 16.08 9.59 0.602 0.103 -0.474 

Interval 17 0.577 0.117 20.47 0.028 10.24 7.58 0.560 0.127 -0.692 

Interval 18 0.568 0.120 20.52 0.028 9.71 7.42 0.552 0.136 -0.718 

Interval 19 0.523 0.116 19.46 0.027 9.52 8.68 0.495 0.125 -0.493 

Interval 20 0.452 0.101 20.99 0.022 10.98 13.31 0.401 0.077 0.078 

Interval 21 0.409 0.095 19.94 0.021 11.18 16.13 0.354 0.060 0.325 

Interval 22 0.379 0.080 24.66 0.015 14.41 23.52 0.333 0.046 0.385 

Interval 23 0.353 0.073 26.54 0.013 15.85 29.01 0.311 0.036 0.456 

Interval 24 0.328 0.056 38.36 0.009 24.22 49.65 0.298 0.033 0.287 

Interval 25 0.305 0.044 53.52 0.006 35.62 81.20 0.282 0.028 0.210 

Interval 26 0.298 0.034 78.93 0.004 54.47 128.55 0.283 0.029 -0.064 

Interval 27 0.289 0.026 126.85 0.002 88.33 217.15 0.278 0.021 -0.030 

Interval 28 0.282 0.022 166.17 0.002 119.50 305.03 0.274 0.022 -0.322 

Interval 29 0.278 0.021 179.09 0.002 127.93 332.63 0.269 0.018 -0.085 

Interval 30 0.273 0.019 203.11 0.001 147.67 393.21 0.266 0.019 -0.247 

Interval 31 0.272 0.022 166.83 0.002 120.11 321.95 0.262 0.018 -0.059 

Interval 32 0.280 0.034 75.63 0.004 52.36 134.30 0.264 0.023 0.118 

Interval 33 0.285 0.034 82.05 0.004 54.90 137.68 0.270 0.020 0.122 

Interval 34 0.295 0.057 33.26 0.009 21.15 50.37 0.268 0.024 0.363 
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Interval 35 0.312 0.079 19.70 0.016 11.83 25.94 0.275 0.038 0.300 

Interval 36 0.369 0.121 10.81 0.034 6.11 10.33 0.298 0.063 0.480 

Interval 37 0.432 0.141 9.45 0.046 5.21 6.81 0.370 0.120 -0.080 

Interval 38 0.487 0.128 13.88 0.035 7.25 7.63 0.445 0.127 -0.321 

Interval 39 0.529 0.107 23.56 0.022 11.39 10.16 0.497 0.110 -0.390 

Interval 40 0.570 0.096 34.02 0.017 15.10 11.40 0.548 0.105 -0.533 

Interval 41 0.554 0.090 36.42 0.015 16.90 13.64 0.531 0.096 -0.471 

Interval 42 0.583 0.095 37.29 0.016 15.56 11.11 0.551 0.094 -0.295 

Interval 43 0.574 0.097 34.27 0.017 14.93 11.07 0.550 0.103 -0.482 

Interval 44 0.572 0.083 47.13 0.012 20.40 15.26 0.549 0.086 -0.425 

Interval 45 0.576 0.088 42.59 0.014 18.17 13.36 0.550 0.090 -0.396 

Interval 46 0.570 0.088 41.98 0.014 18.11 13.66 0.546 0.092 -0.445 

 605 

 606 

 607 

Figure A1. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 45 to 608 
interval 10 (from 19 December to 21 March) representing winter. 609 

 610 
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 611 

Figure A2. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 11 to 612 
interval 22 (from 22 March to 25 June) representing spring. 613 

 614 

 615 

Figure A3. Observed NDVI, GEV and Normal probability density functions (PDFs) from interval 23 616 
to interval 33 (from 26 June to 21 September) representing summer. 617 

 618 



28 
 

 619 

Figure A4. Observed NDVI, GEV and Normal PDFs from interval 34 to interval 44 (from 22 620 

September to 18 December) representing autumn. 621 

622 
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