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RESPONSES TO EDITOR: 1 

Thank you very much for all your suggestions and comments. Next, we respond all your questions 2 

in order: 3 

1. All three reviewers question the selection of the GEV distribution and call for additional 4 

statistical metrics to justify this decision. The authors may wish to consider the use of relative 5 

quality estimators as additional statistical metrics to compare the different distribution models 6 

and corroborate the current results. 7 

Answer: The quality estimator is the percentage of intervals that pass the Chi2 test for every PDF 8 

candidate. For example: if we use Chi2 test with 10 classes we obtain: GEV 41.2%, Beta 29.4%, 9 

Normal 23.5% and Gamma 17.6%. Therefore the best is GEV. 10 

We have added the following clarifications. 11 

Page 20, line 557 (in this document): 12 

“The statistical metric used in this study to assess the fit of the observed NDVI values with 13 

respect to the PDF candidates (Normal, Gamma, Beta and GEV) was the Chi square test (χ2 test). 14 

The following steps were carried out: 15 

 16 

1. MLM was applied to model these 46 RV. Parameters were calculated for the four PDF 17 

candidates (see Table 2). 18 

2. To check the goodness of the fit of PDF candidates, Chi square test (χ2 test) was applied 19 

from 7 classes to 14 classes meeting the requirement that each class has at least five 20 

observations. The level of significance ( ) was fixed to 5% for all the candidates.” 21 

 22 

Page 21, line 599: 23 

“Twelve intervals (from 23 to 34) corresponding to months of July, August and September 24 

have been excluded of this analysis since these intervals fall into the dry season in the study area, 25 

normally not cover by any SIBI. Therefore, calculations were carried out over 34 intervals. 26 

 27 

To assess the general goodness of fit, the number of intervals where the χ2 test was accepted (or 28 

failed to reject) was calculated for every PDF candidate. Then, the percentage of accepted 29 

intervals, over the total 34 intervals, was also calculated (the quality estimator). Fig. 8 shows this 30 

percentage of intervals that fit for every PDF candidate. The number of classes used in χ2 test is 31 

represented at X-axis (from 7 to 14 classes).” 32 

Our procedure has been to explore if a PDF could be used for a set of data respect to an interval. 33 

Sometimes all the PDF candidates could be used because all of them passed the Chi2 test, other 34 

times only some of them. The best PDF candidate to be used along the year is the one with the 35 

highest percentage of intervals that passed the Chi2 test (quality estimator). We are open to other 36 



2 
 

quality estimator that the editor suggests. In any case, the aim of this study is not to prove that 37 

GEV is the best possible fit, but to prove there are PDF candidates better than Normal. 38 

 39 

2. Reviewer 3 calls for a literature review in the introduction (with additional references) on NDVI 40 

distribution functions and limitations to the use of the normal distribution. Unfortunately these 41 

issues have not been addressed in the interactive comments, but will definitely help the 42 

formulation of discussion points. 43 

We have added the following clarifications and references. 44 

Page 7, line 213: 45 

“Important NDVI-based indices of detecting drought are NDVI anomalies (NDVIA) and 46 

Standardized Vegetation Index (SVI). NDVIA and SVI have been successfully used to monitor 47 

drought conditions over different regions on the world (Nanzad et al., 2019; Li et al., 2014). NDVIA 48 

is calculated as the difference between the NDVI value for a specific time period (e.g., week, 49 

month) and the long-term mean value for that period. SVI was developed by Peters et al. (2002) 50 

and obtains the probability from normal NDVI distributions over multiple years of data, on a time 51 

period (Anyamba and Tucker, 2012; Bayarjargal et al., 2006). It is defined as: 52 

 53 

     
          ̅̅ ̅̅ ̅̅ ̅̅

     
 
      

     
     (1) 54 

 55 

where     ̅̅ ̅̅ ̅̅ ̅̅  is the long-term mean NDVI in the period i,       is the standard deviation of NDVI 56 

in the period i, and       is the current NDVI value in the time period i. Using only the first and 57 

second statistical moment, average and the square root of variance, assumption of normality is 58 

implicit in this type of drought NDVI indicator.” 59 

If there are other references that we should include we will appreciate that you point out. 60 

 61 

3. The manuscript lacks a separate discussion section: the authors should consider a split between 62 

results and discussion. A separate dedicated section will help formulate strengths and weaknesses 63 

of the study such as temporal, spatial and spectral scales, the representativeness for a wider area 64 

and applicability to another environment. This section is necessary to place the research in a larger 65 

context and relate the findings to other research. 66 

Answer: We have split between results and discussion as it can be seen in the last version of the 67 

manuscript. 68 

 69 
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4. On a more technical level, the following description may be added to address Reviewer 1’s 70 

comments on atmospheric correction. “Each MOD09A1 pixel contains the best possible L2G 71 

observation during an 8-day period as selected on the basis of high observation coverage, low 72 

view angle, the absence of clouds or cloud shadow, and aerosol loading.” However, certain 73 

observations were removed from further analysis, and therefore the question remains on what 74 

basis these observations were removed. 75 

Answer: We have added the description. 76 

Page 11, line 364: 77 

“Each MOD09A1 pixel contains the best possible L2G observation during an 8-day period as 78 

selected on the basis of high observation coverage, low view angle, the absence of clouds or cloud 79 

shadow, and aerosol loading.” 80 

 81 

5. I have serious concerns with respect to the (colour) filtering technique which seems to remove 82 

all NDVI values below 0.2-0.25. This removal needs further explanation (or even exploration) in 83 

view of the proposed extreme value distributions. 84 

Answer: We have clarified the HSL filtering technique. 85 

Page 16, line 490: 86 

“MOD09A1 is a MODIS product that processes data to obtain the best observation in an 8-87 

days period. However, it is possible that the result of this selection still presents some problems 88 

since the best of this selection is relative to the eight observations of the period. For example, if 89 

the eight observations, at one pixel, appear with clouds, shadow clouds or snow, the best 90 

selection still maintains this problem. 91 

 92 

As an example of above, the NDVI series (10 years) of one pixel of the study area is shown in 93 

Fig. 3. On the top graph of Fig. 3 it is noticed that there exit some extremely low NDVI values in 94 

some dates. If these NDVI values are compared to neighbor values (8 days after or before) the high 95 

variation presented in such short period is not believable. This issue tells us that MODIS sensor has 96 

not obtained a proper observation in this 8 days period (interval). 97 

 98 

HSL criterion helps us to eliminate these incorrect NDVI values, since the filter is interpreting 99 

that these pixels still contains clouds or snow, i.e., pixels with low saturation (greyish colours).” 100 

 101 

6. The mean NDVI profile presented in Figure 4 is very informative. However, an indication of 102 

inter-quartile range would be even more informative, for instance in the form of a box plot. The 103 

characterization of this seasonal variation and its explanation in agronomic terms seems crucial for 104 



4 
 

the general understanding of the manuscript. The authors have the data to undertake this 105 

analysis. 106 

Answer: We have added boxplots in Figure 4. 107 

Page 19: 108 

 109 

Figure 4. Box plots of 46 random variables (RV) are shown as well as start and end reference of 110 

every season. Study period from 2002 to 2017. 111 

 112 

  113 
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Abstract: Vegetation indices based on satellite images, such as Normalized Difference Vegetation Index 130 
(NDVI), have been used in countries like USA, Canada and Spain for damaged pasture and forage insurance 131 
for the last years. This type of agricultural insurance is called “satellite index-based insurance” (SIBI). In 132 
SIBI, the occurrence of damage is defined through NDVI thresholds mainly based on statistics derived from 133 
Normal distributions. In this work a pasture area at the north of Community of Madrid (Spain) has been 134 
delimited by means of Moderate Resolution Imaging Spectroradiometer (MODIS) images. A statistical 135 
analysis of NDVI histograms was applied to seek for alternative distributions using maximum likelihood 136 
method and χ

2
 test. The results show that the Normal distribution is not the optimal representation and 137 

the General Extreme Value (GEV) distribution presents a better fit through the year based on a quality 138 
estimator. A comparison between Normal and GEV are showed respect to the probability under a NDVI 139 
threshold value along the year. This suggests that a priori distribution should not be selected and a 140 
percentile methodology should be used to define a NDVI damage threshold rather than the average and 141 
standard deviation, typically of Normal distributions. 142 

Keywords: NDVI, pasture insurance, GEV distribution, MODIS. 143 
 144 

Highlights 145 

 The GEV distribution provides better fit to the NDVI historical observations than 146 

the Normal one. 147 

 Difference between Normal and GEV distributions are higher during spring and 148 

autumn, transition periods in the precipitation regimen. 149 

 NDVI damage threshold shows evident differences using Normal and GEV 150 

distributions covering both the same probability (24.20%).  151 
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 NDVI damage threshold values based on percentiles calculation is proposed as an 152 

improvement in the index based insurance in damaged pasture. 153 

 154 

1. Introduction 155 

Agricultural insurance addresses the reduction of the risk associated with crop 156 

production and animal husbandry. The concept of index-based insurance (IBI) attempts to 157 

achieve settlements based on the value taken by an objective index rather than on a case-158 

by-case assessment of crop or livestock losses (Gommes and Kayitakier, 2013). Indeed, the 159 

goal of IBI policy remains to develop an affordable tool to all producers, including 160 

smallholders. Specifically, IBI can constitute a safety net against weather-related risks for 161 

all members of the farming community, thereby increasing food security and reducing the 162 

vulnerability of rural populations to weather extremes. Moreover, IBI can be associated 163 

with credits for insured smallholders, due to the fact that the risk of non-repayment for 164 

lenders is reduced, which encourages the use of agricultural inputs and equipment, 165 

leading to increased and more stable crop production. Over the past decade, the 166 

importance of weather index-based insurances (WIBI) for agriculture has been increasing, 167 

mainly in developing countries (Gommes and Kayitakier, 2013). This interest can be 168 

explained by the potential that IBI constitutes a risk management instrument for small 169 

farmers. Indeed, it can be considered within the context of renewed attention to 170 

agricultural development as one of the milestones of poverty reduction and increased 171 

food security, as well as the accompanying efforts from various stakeholders to develop 172 

agricultural risk management instruments, including agricultural insurance products. 173 

 174 

Farmers need to protect their land and crops specifically from drought in arid and 175 

semi-arid countries, since their production may directly depend mainly on the impacts of 176 

this particular natural hazard. Insurance for drought-damaged lands and crops is currently 177 

the main instrument and tool that farmers can resort in order to deal with agricultural 178 

production losses due to drought. Many of these insurances are using satellite vegetation 179 

indices (Rao, 2010), thus they are also called “satellite index-based insurances” (SIBI). SIBI 180 

have some advantages over WIBI, such as cost-effective information and acceptable 181 

spatial and temporal resolution. They do not, however, resolve the issue of basis risk, i.e. 182 

potential unfairness to insurance takers (Leblois, 2012). Moreover, the very nature of an 183 

index-based product creates the chance that an insured party may not be paid when they 184 

suffer loss. For this reason, in some countries (Spain) they have named this SIBI as 185 

“damaged in pasture” to cover not only drought even this one is the main cause. 186 

 187 
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It is highly recognized that shortage of water has many implications to agriculture, 188 

society, economy and ecosystems. Specifically, its impact on water supply, crop 189 

production and rearing of livestock is substantial in agriculture. Knowing the likelihood of 190 

drought is essential for impact prevention (Dalezios, 2013). Drought severity assessment 191 

can be approached in different ways: through conventional indices based on 192 

meteorological data, such as temperature, rainfall, moisture, etc. (Niemeyer, 2008), as 193 

well as through remote sensing indices based on images usually taken by artificial 194 

satellites (Lovejoy et al., 2008) or drones. In the second group they are found Satellite 195 

Vegetation Indices (SVI), which can quantify “green vegetation”, and soil moisture through 196 

Soil Water Index (Gouveia et al., 2009) combining different spectral reflectances. Thus, 197 

they are one of the main ways to quantitatively assess drought severity. 198 

 199 

At the present time, several satellites (NOAA, TERRA, DEIMOS, etc.) can provide this 200 

spectral information with different spatial resolution. Some series with a high temporal 201 

frequency are freely available, those from NOAA satellites and Terra. The most widely 202 

known SVI is the Normalized Difference Vegetation Index (NDVI). It follows the principle 203 

that healthy vegetation mainly reflects the near-infrared frequency band. There are 204 

several other important SVI, such as Soil Adjusted Vegetation Index (SAVI) and Enhanced 205 

Vegetation Index (EVI) that incorporate soil effects and atmospheric impacts, respectively. 206 

An important point of SIBI is “when damage occurs”. To measure this, a SVI threshold 207 

value is defined mainly based on statistics that apply to Normal distributed variables: 208 

average and standard deviation. When current SVI values are bellow this threshold value 209 

for a period of time, insurance recognizes that a damage is occurring, most of the times 210 

drought, and then it begins to pay compensations to farmers. 211 

 212 

Important NDVI-based indices of detecting drought are NDVI anomalies (NDVIA) and 213 

Standardized Vegetation Index (SVI). NDVIA and SVI have been successfully used to 214 

monitor drought conditions over different regions on the world (Nanzad et al., 2019; Li et 215 

al., 2014). NDVIA is calculated as the difference between the NDVI value for a specific time 216 

period (e.g., week, month) and the long-term mean value for that period. SVI was 217 

developed by Peters et al. (2002) and obtains the probability from normal NDVI 218 

distributions over multiple years of data, on a time period (Anyamba and Tucker, 2012; 219 

Bayarjargal et al., 2006). It is defined as: 220 

 221 

     
          ̅̅ ̅̅ ̅̅ ̅̅

     
 
      

     
      (1) 222 

 223 

where     ̅̅ ̅̅ ̅̅ ̅̅  is the long-term mean NDVI in the period i,       is the standard deviation 224 

of NDVI in the period i, and       is the current NDVI value in the time period i. Using 225 
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only the first and second statistical moment, average and the square root of variance, 226 

assumption of normality is implicit in this type of drought NDVI indicator. 227 

 228 

WIBI aims to protect farmers against weather-based disasters such as droughts, frosts 229 

and floods. A WIBI policy links possible insurance payouts with the weather requirements 230 

of the crop being insured: the insurer pays an indemnity whenever the realized value of 231 

the weather index meets a specified threshold. Whereas payouts in traditional insurance 232 

programs are related to actual crop damages, a farmer insured under a WIBI contract may 233 

receive a payout. A current difficulty to the wide implementation of WIBI is the weakness 234 

of indices. Indeed, there is certainly a need for more efficient indices based on the 235 

additional experience gained from the implementation of WIBI products in the developing 236 

world. Current trends in index technology are exciting and they actuate high expectations, 237 

especially the development of yield indices and the use of remote sensing inputs. Risk 238 

protection and insurance illiteracy constitute another difficulty, which has to be addressed 239 

by training and awareness-raising at all levels, from farmers to farmers’ associations, 240 

micro-insurance partners, as well as senior decision-makers in insurance, banking, and 241 

politics (Bailey, 2013). It is essential that all stakeholders (especially the insured) perfectly 242 

understand the principles of IBI, as otherwise the insurer, even the whole concept of 243 

insurance, is at risk of reputation loss for years or decades. 244 

 245 

There is currently a lack of technical capacity in the insurance sectors of most 246 

developing countries, which is a constraint to the scaling up and further development of 247 

WIBI (Gommes and Kayitakire, 2012). Specifically, although it is possible to design an index 248 

product and assist in roll-out, marketing, and sales, such assistance is not possible on a 249 

wide scale, simply because there is lack of qualified expertise. Indeed, it usually requires 250 

mathematical modeling, data manipulation, and expertise in crop simulation to design an 251 

index. Nevertheless, it is possible to structure insurance with multiple indices, but this 252 

increases the complexity of the product and makes it difficult for farmers to comprehend 253 

it. ‘Basis risk’ is also a particular problem for index products, which is frequently caused by 254 

the fact that measurements of a particular variable, such as rain, may differ at the 255 

insurer’s measurement site and in the farmer’s field. This also creates problems for 256 

insurance providers. Indeed, part of the reason the scaling up of index products has failed 257 

is that both insurers and farmers suffer from this basis risk. 258 

 259 

Currently, to mitigate impacts of climate-related reduced productivity of French 260 

grasslands, several studies have been developed to design new insurance scheme bases 261 

indemnity payouts to farmers on a forage production index (FPI) (Rumiguié et al., 2015; 262 

2017). Two examples of SIBIs are presented in two different countries: USA and Spain. In 263 
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particular, in USA there are several insurance programs for pasture, rangeland and forage, 264 

which use various indexing systems (rainfall and vegetation indices), and are promoted by 265 

Unites States Department of Agriculture (USDA) (Maples et al., 2016; USDA, 2018). NDVI is 266 

the index chosen in the vegetation index program and it is obtained from AVHRR 267 

(Advanced Very High Resolution Radiometer) sensor onboard NOAA satellites. Average, 268 

maximum and minimum NDVI values are obtained from a historical series with the aim of 269 

calculating a trigger value. Insurer decides the quantity of compensation comparing this 270 

trigger with current value. On the other hand, in Spain there exists the “Insurance for 271 

Damaged Pasture” from “Spanish System of Agricultural Insurance” (BOE, 2013). This 272 

insurance defines damage event through NDVI values obtained from MODIS sensor 273 

onboard TERRA satellite of NASA. In this insurance, NDVI threshold values (      ) are 274 

calculated subtracting several times (              ) standard deviation to average 275 

within a homogeneous area: 276 

 277 

                   (2) 278 

 279 

where     are average and standard deviation of NDVI respectively. Average and standard 280 

deviation come of supposing Normal distributions in the historical data (Goward et al., 281 

1985; Hobbs, 1995; Fuller, 1998; Al-Bakri and Taylor, 2003; Turvey et al., 2012; De Leeuw 282 

et al. 2014). 283 

 284 

The aim of this paper is to find a more realistic statistical NDVI distribution without 285 

the “a priori” assumption that variables follow a Normal distribution, typically for current 286 

SIBI methodology. In order to achieve this, the Maximum Likelihood Method (MLM) is 287 

fitted to a historical series of NDVI values in a pasture land area in Spain (Community of 288 

Madrid). Different types of asymmetrical distributions are examined with the aim to find a 289 

better fit than Normal. To eliminate some noise in the historical series, an original method 290 

is applied consisting of using Hue-Saturation-Lightness (HSL) color model. Finally, Chi-291 

square test (   test) has been used to check the goodness of fit for all considered 292 

distributions. 293 

 294 

 295 

2. Materials and Methods  296 

2.1 Vegetation Index 297 

The differences of the reflectance of green vegetation in parts of the electromagnetic 298 

radiation spectrum, namely, visible and near infrared, provide an innovative method for 299 
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monitoring surface vegetation from space. Specifically, the spectral behavior of vegetation 300 

cover in the visible (0.4-0.7mm) and near infrared (0.74-1.1mm, 1.3-2.5mm) offers the 301 

possibility to monitor from space the changes in the different stages of cultivated and 302 

uncultivated plants taking also into account the corresponding behavior of the 303 

surrounding microenvironment (Ortega-Farias et al., 2016). Indeed, from the visible part 304 

of the electromagnetic radiation spectrum it is possible to draw conclusions about the 305 

rate photosynthesis, whereas from near infrared inferences are extracted about the 306 

chlorophyll density and the amount of canopy in the plant mass, as well as the water 307 

content in the leaves, which is also linked directly to the rate of transpiration with impacts 308 

to physiological process of photosynthesis. Usually, data from NOAA/AVHRR series of 309 

polar orbit meteorological satellites are used with low spatial resolution (1.1 km2) and 310 

recurrence interval at least twice daily from the same location. Several algorithms 311 

combining channels of red (RED), near infrared (NIR) and green (GREEN) have been 312 

proposed, which provide indices sensitive to green vegetation. 313 

  314 

NDVI uses two frequency bands: red band (660 nm) and near-infrared band (860 nm). 315 

Absorption of red band is related to photosynthetic activity and reflectance of near-316 

infrared band is related to presence of vegetation canopies (Flynn, 2006). In drought 317 

periods, NDVI values can reduce significantly, therefore many researchers have used this 318 

index to measure drought events in recent years (Dalezios et al., 2014). To calculate NDVI 319 

we will use this mathematical formula: 320 

 321 

     
    

    
           (3) 322 

 323 

where “IR” and “R” are reflectance values in Near-Infrared band and Red band, 324 

respectively. NDVI values below zero indicate no photosynthetic activity and are 325 

characteristic of areas with large accumulation of water, such as rivers, lakes, or 326 

reservoirs. The higher is the NDVI value, the greater is the photosynthetic activity and 327 

vegetation canopies. 328 

 329 

In this paper, the NDVI is used, which is widely known index with a multitude of 330 

applications over time. The NDVI is suited for monitoring of total vegetation, since it partly 331 

compensates the changes in light conditions, land slope and field of view (Kundu et al., 332 

2016). In addition, clouds, water and snow show higher reflectance in the visible than in 333 

the near infrared, thus, they have negative NDVI values. Indeed, bare and rocky terrain 334 

show vegetation index values close to zero. Moreover, the NDVI constitutes a measure of 335 

the degree of absorption by chlorophyll in the red band of the electromagnetic spectrum. 336 



11 
 

In summary, the NDVI is a reliable index of the chlorophyll density on the leaves, as well as 337 

the percentage of the leaf area density over land, thus, NDVI constitutes a credible 338 

measure for the assessment of dry matter (biomass) in various species vegetation cover 339 

(Dalezios, 2013). It is clear from the above that the NDVI is an index closely related to 340 

growth and development of plants, which can effectively monitor surface vegetation from 341 

space.  342 

 343 

The continuous increase of the NDVI value during the growing season reflects the 344 

vegetative and reproductive growth due to intense photosynthetic activity, as well as the 345 

satisfactory correlation with the final biomass production at the end of a growing period. 346 

On the other hand, gradual decrease of the NDVI values signifies stress due to lack of 347 

water or extremely high temperatures for the plants, leading to a reduction of the 348 

photosynthetic rate and ultimately a qualitative and quantitative degradation of plants. 349 

NDVI values above zero indicate the existence of green vegetation (chlorophyll), or bare 350 

soil (values around zero), whereas values below zero indicate the existence of water, 351 

snow, ice and clouds. 352 

 353 

2.2 Database 354 

Scientific research satellite Terra (EOS AM-1) has been chosen to provide necessary 355 

information to calculate NDVI in the study area. This satellite was launched into orbit by 356 

NASA on December 18, 1999. MODIS sensor aboard this satellite collects information of 357 

different reflectance bands. MODIS information is organized by "products". The product 358 

used in this study was MOD09A1 (LP DAAC, 2014). MOD09A1 incorporates seven 359 

frequency bands: Band 1 (620-670 nm), band 2 (841-876 nm), band 3 (459-479 nm), band 360 

4 (545-565 nm), 5 band (1230-1250 nm), band 6 (1628-1652 nm) and band 7 (2105-2155 361 

nm). The bands used to calculate NDVI are: band 1 for red frequency and band 2 for near-362 

infrared frequency. MOD09A1 provides georeferenced images with pixel resolution of 363 

500m x 500m. Each MOD09A1 pixel contains the best possible L2G observation during an 364 

8-day period as selected on the basis of high observation coverage, low view angle, the 365 

absence of clouds or cloud shadow, and aerosol loading. 366 

 367 

The period of time selected on this study was from 2002 to 2017. 368 

 369 

Daily data from a principal station of the meteorological network were utilized during 370 

the period studied (2002 – 2017). Meteorological station is located in 40°41'46"N 371 

3°45'54"W (elevation 1004 m a.s.l.), less than 2 km from the study area (AEMET, 2017). 372 

 373 
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2.3 Site description 374 

Six pixels (500m x 500m) are considered located in a pasture area at the north of the 375 

Community of Madrid (Spain) between the municipalities of “Soto del Real” and 376 

“Colmenar Viejo”. The study area is located between meridians 3° 45' 00" and 3° 47' 00" 377 

W and parallels 40° 42' 00" and 40° 44' 00" N approximately (see Fig. 1). 378 

 379 

 380 

Figure 1. The study area is in the centre of the Iberian Peninsula (Community of Madrid). RGB 381 

image of six pixels area used for case study is shown (Google Earth´s and MODIS images). 382 

 383 

The annual mean temperature ranges during the study period from 12.7°C to 13.8°C, 384 

and annual mean precipitation ranges from 360 mm to 781 mm.  The stations studied 385 

were identified semi-arid (annual ratio P/ETo between 0.2 and 0.5) according to the global 386 

aridity index developed by the United-Nations Convention to Combat Desertification 387 

(UNEP, 1997). According to the climatic classification of Köppen (Kottek et al., 2006), this 388 

area presents a continental Mediterranean climate temperate with dry and temperate 389 

summer (type Csb). Temperature and precipitation of this site, based on 20 years, is 390 

presented in Table 1. 391 

 392 

Due to high soil moisture conditions, ash is the dominant tree, forming large 393 

agroforestry systems ("dehesas") that are used for pasture. These are ecosystems with 394 

high biodiversity. 395 
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 396 

Table 1. Monthly average of maximum temperature (Tmax), average temperature (Tavg), 397 

minimum temperature (Tmin) and precipitation (P). Study period from 1997 to 2017. 398 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Tmax (ºC) 7.1 9.3 12.7 15.4 19.5 24.6 28.6 28.1 23.7 16.8 11.1 7.4 17.0 

Tavg (ºC) 3.6 4.8 7.7 10.1 13.7 18.4 22.0 21.7 17.9 12.3 7.1 4.1 12.0 

Tmin (ºC) 0.0 0.3 2.6 4.8 7.8 12.1 15.4 15.3 12.0 7.8 3.0 0.8 6.8 

P (mm) 67.2 50.0 38.5 62.2 62.3 30.2 18.9 16.4 34.2 79.3 86.2 82.6 627.9 

 399 

2.4 HSL model 400 

There is no doubt that NDVI time-series from satellite sensors carry useful 401 

information, which can be used for characterizing seasonal dynamics of vegetation 402 

(Fensholt et al., 2012; Forkel et al., 2013). However, due to unfavorable atmospheric 403 

conditions during the data acquisition, NDVI time-series curve often contains noise 404 

(Motohka et al., 2011; Park, 2013). Although most of the NDVI data products are 405 

temporally composited through maximum value compositing (MVC) method (Holben, 406 

1986) to retain relatively cloud-free data, residual noise still exists in the data, which will 407 

affect the accuracy of the NDVI value. 408 

 409 

Therefore, usually it is necessary to reconstruct of NDVI time-series before extracting 410 

information from the noisy data. There are several techniques that have been applied to 411 

reduce noise and reconstruct NDVI series, a summary of these can be found in Wei et al. 412 

(2016). In this study we applied a simple filtering method based on the Hue-Saturation-413 

Lightness (HSL) color model inspired by the work presented by Tackenberd (2007). 414 

 415 

HSL color model is a cylindrical representation of RGB (Red-Green-Blue) points. Their 416 

components are Hue (color type), Saturation (level of color purity) and Lightness (color 417 

luminosity). Hue is the angular component and it is more intuitive for humans since it is 418 

directly related to the color wheel (see Fig. 2). 419 

 420 
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 421 

Figure 2. Colour wheel of Hue (on the left) and the HSL model (on the right). 422 

Saturation is the radial component and near-zero values indicate grey colors. 423 

Lightness is the axial radial versus axial component, zero lightness produces black and full 424 

lightness produces white. 425 

 426 

The NDVI series are filtered using the following HSL criterion: NDVI values are valid if 427 

HSL Saturation is greater than 0.15. In this way, the values of the series that have grey 428 

color correlate with pasture covered by clouds or snow are eliminated. This type of filter 429 

based in HSL color space has been used on digital camera images monitoring vegetation 430 

phenology (Tackenberg, 2007; Crimmins and Crimmins, 2008; Graham et al., 2009). 431 

However, we have not found the use of this HSL criterion in the context of NDVI remote 432 

sensing images. 433 

 434 

2.5 Maximum Likelihood Method 435 

MLM estimates the set of parameters {         } for a specific statistical 436 

distribution that maximizes the “likelihood function” or the “joint density function”: 437 

   (   )  ∏  (   
 
            )      (4) 438 

where   (       ) is the set of data,   (         ) is the vector of parameters 439 

and  (            ) is the density function of the statistical model. 440 

When maximization with respect to the vector of parameters is carried out, the 441 

estimated parameters ( ̂  ̂  ̂  ̂  ) for the proposed statistical distribution are obtained 442 

(Larson, 1982). Properties of estimated parameters are: invariance, consistency and 443 

asymptotically unbiased. 444 

In the case of a Normal model, the estimated statistics   and   are defined by 445 

accurate expressions as follows: 446 
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where   ̂ is the sample mean and  ̂ is the sample standard deviation of the data set. 448 

In this study we will apply MLM to estimate the parameters for 4 probability density 449 

functions (PDF). In Table 2, a brief description is presented of these PDF candidates: 450 

Normal, Gamma, Beta and GEV. To do so, the following MATLAB functions have been 451 

used: “normfit”, “gamfit”, “betafit” and “gevfit” (respectively). 452 

 453 

Table 2. Candidate Probability Density Functions (PDF). 454 

PDF NAME PDF EXPRESSION PDF PARAMETERS 
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 455 

 456 

2.6 Goodness of fit (Chi square test) 457 

   test can be used to determine to what extent observed frequencies differ from 458 

frequencies expected for a specific statistical model. The most important points of the 459 

theory are briefly presented in (Cochran, 1952). 460 

 461 

Let  (   ) be a theoretical density function of a random variable   which depends on 462 

parameters   (         ) and let         be a sample of   grouped into k classes with    463 

data per class i. 464 

 465 

Firstly, the following hypothesis is set: 466 

 467 

(H0) observed data fit theoretical distribution  (   ). 468 

Then the test statistic   
   is defined as: 469 
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  ∑

(     )
 

  

 
        (6) 470 

where    is the number of data or observed frequency and       (       ) is the 471 

expected frequency for class i.  (       ) is the theoretical interval probability defined for 472 

class i. 473 

A level of significance is also set as: 474 

   (                     )     (7) 475 

Finally, the following decision rule is applied: “reject the theoretical distribution at 476 

significance level   if: 477 

  
   (         )

      (8) 478 

where  (         )
 is a    distribution with k-m-1 degrees of freedom (m is the number of 479 

parameters, k is the number of classes). 480 

 481 

 482 

3. Results 483 

3.1  HSL filtering criterion 484 

NDVI series (from 2002 to 2017) were obtained for each pixel of the study area using 485 

frequency bands provided by MODIS product named MOD09A1. These series contain 486 

some irregular values that can skew NDVI pattern. Therefore, the six series (six pixels) 487 

were filtered using the HSL criterion. 488 

 489 

MOD09A1 is a MODIS product that processes data to obtain the best observation in 490 

an 8-days period. However, it is possible that the result of this selection still presents 491 

some problems since the best of this selection is relative to the eight observations of the 492 

period. For example, if the eight observations, at one pixel, appear with clouds, shadow 493 

clouds or snow, the best selection still maintains this problem. 494 

 495 

As an example of above, the NDVI series (10 years) of one pixel of the study area is 496 

shown in Fig. 3. On the top graph of Fig. 3 it is noticed that there exit some extremely low 497 

NDVI values in some dates. If these NDVI values are compared to neighbor values (8 days 498 

after or before) the high variation presented in such short period is not believable. This 499 

issue tells us that MODIS sensor has not obtained a proper observation in this 8 days 500 

period (interval). 501 
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 502 

HSL criterion helps us to eliminate these incorrect NDVI values, since the filter is 503 

interpreting that these pixels still contains clouds or snow, i.e., pixels with low saturation 504 

(greyish colours). 505 

 506 

 507 

 508 

Figure 3. HSL filtering criterion applied to a 10 years NDVI series. Top graph shows the real NDVI 509 

series. Bottom graph shows the HSL filtered NDVI series. 510 

Fig. 3 shows that abrupt changes in the NDVI values, mainly observed during raining 511 

seasons such as autumn and winter, are efficiently eliminated. Not to be a high 512 

computational demanding method is one of the main advantages of HSL filtering method. 513 
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Therefore, this method will allow us to obtain more robust NDVI values to be used in the 514 

statistical analysis. 515 

 516 

3.2  Statistical analysis 517 

NDVI values were obtained consecutively every 8 days from MODIS product starting 518 

at the 1st of January of every year, in such a way that 46 NDVI observations were extracted 519 

for each year. Therefore, it was possible to define 46 Random Variables (RV) when all the 520 

years of this study were taking into account. 521 

In Table 3, every RV (named as “Interval”) is shown together with the number of 522 

available NDVI observations. Each RV collects the observations coming from the six 523 

selected pixels; therefore the maximum number of observations per RV could be: 6 pixels 524 

x 16 years = 96 observations. The start intervals of each season are: interval 45 (19 525 

December) for winter, interval 11 (22 March) for spring, interval 23 (26 June) for summer 526 

and interval 34 (22 September) for autumn. 527 

 528 

Table 3. Number of observations for every RV (named as Interval). 529 

RANDOM 
VARIABLE 

# 
OBSERVATIONS 

  
RANDOM 
VARIABLE 

# 
OBSERVATIONS 

Interval 1 85   Interval 24 96 

Interval 2 84   Interval 25 96 

Interval 3 96   Interval 26 96 

Interval 4 96   Interval 27 96 

Interval 5 95   Interval 28 96 

Interval 6 90   Interval 29 96 

Interval 7 86   Interval 30 96 

Interval 8 83   Interval 31 96 

Interval 9 96   Interval 32 96 

Interval 10 96   Interval 33 94 

Interval 11 74   Interval 34 96 

Interval 12 88   Interval 35 96 

Interval 13 88   Interval 36 85 

Interval 14 88   Interval 37 90 

Interval 15 96   Interval 38 96 

Interval 16 92   Interval 39 92 

Interval 17 88   Interval 40 90 

Interval 18 96   Interval 41 96 

Interval 19 95   Interval 42 89 

Interval 20 96   Interval 43 95 
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Interval 21 95   Interval 44 88 

Interval 22 96   Interval 45 90 

Interval 23 96   Interval 46 90 

 530 

 531 

In Fig. 4, box plots of all RV with a start and end reference of the astronomical seasons 532 

are shown. The typical evolution of the NDVI along a year can be seen together with the 533 

inter-quartile range. 534 

 535 

 536 

Figure 4. Box plots of 46 random variables (RV) are shown as well as start and end reference of 537 

every season. Study period from 2002 to 2017. 538 

 539 

The observed evolution of NDVI through the different seasons is typical of the pasture 540 

in this area. The summer presents the lowest mean values which begin to increase in 541 

autumn achieving a maximum mean value of 0.60 or 0.65 during the beginning of spring. 542 

In the middle of the spring NDVI decrease again, approaching the lowest mean value of 543 

0.28 approximately in summer. 544 

 545 

Taking into account these values, dense vegetation, in this study pasture, is found 546 

from middle of October (interval 37) till the end of May (interval 19). It is in this period 547 

where the precipitation concentrates (see Table 1). During the summer, the NDVI mean 548 

values are lower than 0.3 corresponding with low precipitation and high temperatures. 549 

  550 
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Following the work of Escribano-Rodriguez et al. (2014), there is a relationship of 551 

pasture damage and a NDVI value around 0.40. Even if the authors point out that this 552 

value is highly variable depending on the location, we can see that summer season in this 553 

case study is under this value (see Fig. 4). This can explain that “Insurances for Damaged 554 

Pasture” usually do not apply in these dates due to the arid environment (BOE, 2013). 555 

 556 

The statistical metric used in this study to assess the fit of the observed NDVI values 557 

with respect to the PDF candidates (Normal, Gamma, Beta and GEV) was the Chi square 558 

test (χ2 test). The following steps were carried out: 559 

 560 

3. MLM was applied to model these 46 RV. Parameters were calculated for the four 561 

PDF candidates (see Table 2). 562 

4. To check the goodness of the fit of PDF candidates, Chi square test (χ2 test) was 563 

applied from 7 classes to 14 classes meeting the requirement that each class has 564 

at least five observations. The level of significance ( ) was fixed to 5% for all the 565 

candidates. 566 

 567 

3.2.1 Maximum Likelihood Method 568 

Table A1 at Appendix A shows the estimated parameters for each PDF and each 569 

interval calculated by the MLM. These parameters were used to compare the estimated 570 

PDF with the NDVI observed values on different times through the seasons. The following 571 

intervals are shown as examples of better GEV fit: interval 4 and 8 (for winter, see Fig. 5), 572 

interval 17 and 21 (for spring, see Fig. 6) and interval 36 and 40 (for autumn, see Fig. 7). In 573 

these plots, observed frequency is compared versus Normal and GEV density distributions 574 

calculated by MLM. 575 

 576 

 577 

Figure 5. Comparison between observed NDVI frequency, GEV and Normal probability density 578 

functions (PDF) on two different dates. Intervals 4 and 8 are examples for winter. 579 
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 580 

Figure 6. Comparison between observed NDVI frequency, GEV and Normal probability density 581 

functions (PDF) on two different dates. Intervals 17 and 21 are examples for spring. 582 

 583 

 584 

Figure 7. Comparison between observed NDVI frequency, GEV and Normal probability density 585 

functions (PDF) on two different times. Intervals 36 and 41 are examples for autumn. 586 

 587 

During winter (see Fig. 5) the observed NDVI distribution presents negative skewness. 588 

Then, there is a higher frequency of high NDVI values corresponding with significant 589 

precipitation. During spring (see Fig. 6) an evolution in the skewness is observed passing 590 

from negative to positive, and so, the lower NDVI values become the higher probable. 591 

Finally, during autumn (see Fig. 7) precipitation begins and from positive pass to negative 592 

skewness and higher NDVI values are possible. We can observe that Normal distribution 593 

has no flexibility to follow this dynamic in the distributions on each time. This comparison 594 

is done in a sequential order for the whole of intervals in Figures A1, A2, A3 and A4 at 595 

Appendix A. 596 

 597 

3.2.2 Chi square test 598 

Twelve intervals (from 23 to 34) corresponding to months of July, August and 599 

September have been excluded of this analysis since these intervals fall into the dry 600 
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season in the study area, normally not cover by any SIBI. Therefore, calculations were 601 

carried out over 34 intervals. 602 

 603 

To assess the general goodness of fit, the number of intervals where the χ2 test was 604 

accepted (or failed to reject) was calculated for every PDF candidate. Then, the 605 

percentage of accepted intervals, over the total 34 intervals, was also calculated (the 606 

quality estimator). Fig. 8 shows this percentage of intervals that fit for every PDF 607 

candidate. The number of classes used in χ2 test is represented at X-axis (from 7 to 14 608 

classes). 609 

 610 

 611 

Figure 8. Percentage of fitted intervals (Y axis) for each PDF candidate (Normal, Gamma, Beta and 612 

GEV distributions) in function of the number of classes (X axis). 613 

 614 

4. Discussion 615 

4.1 Statistical context 616 

Fig. 8 indicates that GEV distributions explain more intervals (more than 40% for the 617 

majority of the class analysis) than Normal, Gamma or Beta distributions. An important 618 

difference between the Normal distribution and the rest of the PDF used in this work is its 619 

skewness and kurtosis. Many of the observed NDVI distributions present a clear 620 

asymmetry and long tails in one or both sides that causes Normal distribution not to be 621 

the optimal fit. 622 

 623 

There is a relationship between seasons and the number of intervals that fit correctly. 624 

We found that GEV distributions explain better intervals of spring and autumn since their 625 
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observed distributions are very asymmetric. On the other hand, we did not find an 626 

important difference in winter, since its observed distributions are mainly symmetric. 627 

 628 

The more skewness and kurtosis depart from those of the Normal distribution the 629 

larger the errors affecting the insurance designed based on (Turvey et al., 2012). It is an 630 

expected result as pasture scenario is quite different from the development of a crop, 631 

where Normal distributions in the NDVI values are more expected. This high heterogeneity 632 

in time and space of NDVI estimated on pasture has been pointed out in several works 633 

(Martin-Sotoca et al, 2018). At the same time, more different is the observed NDVI 634 

frequency from a Normal distribution less representative is the average, and so, the 635 

median becomes a more representative value. 636 

 637 

4.2 Insurance context 638 

The use of NDVI thresholds in damaged pasture context was presented in the 639 

introduction section, being an example of using the "Insurance for Damaged Pasture" in 640 

Spain. We have chosen this last insurance to compare the results between applying 641 

Normal and GEV distribution methodologies. In this particular case the NDVI threshold 642 

(      ) was calculated using the expression              (where     are average 643 

and standard deviation of NDVI distributions respectively, assuming the Normal 644 

hypothesis). 645 

 646 

The probability of being below        (using        , first damage level in the 647 

insurance) at every interval has been calculated assuming the Normal hypothesis. As it 648 

was expected, this value is always 24.2% (see third column in Table 4). The probability of 649 

being below        has also been calculated using GEV distributions obtained in this 650 

study. The probability obtained by GEV distributions is mostly lower than the Normal 651 

distributions in spring, autumn and winter (see Table 4) that is the working period of the 652 

insurance. 653 

 654 

Observing where in time are localized the highest relative error in probabilities (fifth 655 

column in Table 4), intervals corresponding to the end of winter, second middle of spring 656 

and the beginning of autumn present errors higher than 10%. This could explain why it is 657 

in spring and autumn when more disagreements exist between farmers and insurance 658 

company in claims.   659 

 660 

Table 4 – First column: time intervals of approximately 8 days along the year. Second column: NDVI 661 

thresholds (NDVIth) based on a Normal distribution applying        . Third column: percentages of 662 
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area below the NDVIth when Normal distributions are applied. Fourth column: percentages of area 663 

below the NDVIth when GEV distributions are applied. Fifth column: relative area error of GEV 664 

compared to the Normal distribution. 665 

 666 

RANDOM 
VARIABLE 

NORMAL GEV 

NDVIth Prob. Prob. Error (%) 

Interval 1 0.535 24.20% 24.37% 0.70% 

Interval 2 0.541 24.20% 23.18% -4.21% 

Interval 3 0.541 24.20% 23.27% -3.84% 

Interval 4 0.543 24.20% 23.27% -3.84% 

Interval 5 0.545 24.20% 24.17% -0.12% 

Interval 6 0.534 24.20% 21.48% -11.24% 

Interval 7 0.528 24.20% 24.01% -0.79% 

Interval 8 0.546 24.20% 20.70% -14.46% 

Interval 9 0.555 24.20% 21.30% -11.98% 

Interval 10 0.561 24.20% 22.28% -7.93% 

Interval 11 0.567 24.20% 23.49% -2.93% 

Interval 12 0.572 24.20% 23.75% -1.86% 

Interval 13 0.571 24.20% 23.20% -4.13% 

Interval 14 0.570 24.20% 24.29% 0.37% 

Interval 15 0.571 24.20% 23.47% -3.02% 

Interval 16 0.560 24.20% 23.26% -3.88% 

Interval 17 0.495 24.20% 21.29% -12.02% 

Interval 18 0.484 24.20% 21.58% -10.83% 

Interval 19 0.442 24.20% 23.06% -4.71% 

Interval 20 0.381 24.20% 27.20% 12.40% 

Interval 21 0.342 24.20% 29.46% 21.74% 

Interval 22 0.323 24.20% 28.84% 19.17% 

Interval 35 0.257 24.20% 18.98% -21.57% 

Interval 36 0.285 24.20% 28.57% 18.06% 

Interval 37 0.333 24.20% 25.90% 7.02% 

Interval 38 0.398 24.20% 24.27% 0.29% 

Interval 39 0.454 24.20% 23.79% -1.69% 

Interval 40 0.503 24.20% 22.81% -5.74% 

Interval 41 0.491 24.20% 23.23% -4.01% 

Interval 42 0.517 24.20% 24.66% 1.90% 

Interval 43 0.507 24.20% 23.13% -4.42% 
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Interval 44 0.514 24.20% 23.49% -2.93% 

Interval 45 0.515 24.20% 23.70% -2.07% 

Interval 46 0.509 24.20% 23.33% -3.60% 

 667 

An alternative calculation can be the use of Normal probability (24.2%) to calculate new 668 

       based on GEV (see Table 5). It can be seen that new        obtained by GEV 669 

distributions are mostly upper than thresholds using Normal distributions in spring, 670 

autumn and winter. Considering these results we find that damage thresholds calculated 671 

by GEV methodology are mostly above that one’s calculated by Normal methodology. 672 

Again, intervals corresponding to the end of winter, second middle of spring and the 673 

beginning of autumn present        relative errors higher than 1% in absolute values 674 

(fourth column in Table 5). 675 

 676 

Table 5 - First column: time intervals of approximately 8 days along the year. Second column: NDVI 677 

thresholds (NDVITh) based on a Normal distribution (Normal) applying        . Third column: 678 

NDVITh based on a GEV distribution (GEV) using 24.2% as the area below the NDVITh. Fourth column: 679 

relative NDVITh error of GEV compared to the Normal distribution. 680 

 681 

RANDOM 
VARIABLE 

NDVITh  

Normal GEV Error (%) 

Interval 1 0.535 0.534 -0,19% 

Interval 2 0.541 0.543 0,37% 

Interval 3 0.541 0.543 0,37% 

Interval 4 0.543 0.545 0,37% 

Interval 5 0.545 0.545 0,00% 

Interval 6 0.534 0.543 1,69% 

Interval 7 0.528 0.528 0,00% 

Interval 8 0.546 0.558 2,20% 

Interval 9 0.555 0.563 1,44% 

Interval 10 0.561 0.567 1,07% 

Interval 11 0.567 0.569 0,35% 

Interval 12 0.572 0.574 0,35% 

Interval 13 0.571 0.574 0,53% 

Interval 14 0.570 0.569 -0,18% 

Interval 15 0.571 0.573 0,35% 

Interval 16 0.560 0.563 0,54% 
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Interval 17 0.495 0.510 3,03% 

Interval 18 0.484 0.498 2,89% 

Interval 19 0.442 0.447 1,13% 

Interval 20 0.381 0.374 -1,84% 

Interval 21 0.342 0.334 -2,34% 

Interval 22 0.323 0.318 -1,55% 

Interval 35 0.257 0.262 1,95% 

Interval 36 0.285 0.278 -2,46% 

Interval 37 0.333 0.327 -1,80% 

Interval 38 0.398 0.398 0,00% 

Interval 39 0.454 0.455 0,22% 

Interval 40 0.503 0.508 0,99% 

Interval 41 0.491 0.494 0,61% 

Interval 42 0.517 0.516 -0,19% 

Interval 43 0.507 0.510 0,59% 

Interval 44 0.514 0.516 0,39% 

Interval 45 0.515 0.516 0,19% 

Interval 46 0.509 0.511 0,39% 

 682 

 683 

5. Conclusions 684 

According to the results obtained in the study area using MLM and    test, it can be 685 

concluded that Normal distributions are not a good fit to the NDVI observations, and GEV 686 

distributions provide a better approximation. 687 

 688 

The difference between Normal and GEV assumption is more evident in the transition 689 

from winter to summer (spring), where NDVI values decrease, and then from summer to 690 

winter (autumn) presenting the opposite behavior of increasing NDVI values. In both 691 

periods asymmetrical distributions were found, negative skewness for the spring 692 

transition and positive skewness for the autumn transition. During both periods the 693 

variability in precipitation and temperatures were higher in this location. 694 

 695 

We have found differences if GEV assumption is selected instead of the Normal one 696 

when defining damaged pasture thresholds (      ). The use of these different 697 

assumptions should be taken into account in future insurance implementations due to the 698 

important consequences of supposing a damage event or not. We propose the use of 699 
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quantiles in observed NDVI distributions instead of average and standard deviation, 700 

typically of Normal distributions, to calculate new       . 701 

 702 
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Appendix A 709 

 710 

Table A1 - Maximum Likelihood parameters calculated for 4 PDF. 711 

RANDOM 
VARIABLE 

NORMAL GAMMA BETA GEV 

    a b   

Interval 1 0.591 0.081 53.31 0.011 21.45 14.82 0.563 0.080 -0.297 

Interval 2 0.589 0.069 71.14 0.008 30.62 21.40 0.571 0.073 -0.477 

Interval 3 0.583 0.060 94.15 0.006 39.56 28.34 0.567 0.063 -0.457 

Interval 4 0.585 0.060 91.88 0.006 39.58 28.05 0.570 0.064 -0.468 

Interval 5 0.588 0.061 93.92 0.006 38.83 27.25 0.568 0.061 -0.340 

Interval 6 0.582 0.068 70.28 0.008 30.67 22.05 0.577 0.083 -0.846 

Interval 7 0.584 0.080 52.52 0.011 22.16 15.82 0.559 0.082 -0.366 

Interval 8 0.596 0.071 65.37 0.009 28.89 19.59 0.591 0.081 -0.833 

Interval 9 0.601 0.066 76.02 0.008 34.31 22.84 0.590 0.070 -0.652 

Interval 10 0.613 0.073 63.83 0.010 27.80 17.62 0.598 0.079 -0.572 

Interval 11 0.621 0.078 58.72 0.011 24.33 14.86 0.600 0.083 -0.451 

Interval 12 0.624 0.073 68.33 0.009 28.01 16.94 0.603 0.078 -0.431 

Interval 13 0.624 0.075 66.22 0.009 26.23 15.85 0.604 0.080 -0.476 

Interval 14 0.631 0.088 50.23 0.013 18.71 10.92 0.603 0.090 -0.342 

Interval 15 0.630 0.084 53.60 0.012 21.17 12.45 0.607 0.089 -0.448 

Interval 16 0.627 0.096 38.75 0.016 16.08 9.59 0.602 0.103 -0.474 

Interval 17 0.577 0.117 20.47 0.028 10.24 7.58 0.560 0.127 -0.692 

Interval 18 0.568 0.120 20.52 0.028 9.71 7.42 0.552 0.136 -0.718 

Interval 19 0.523 0.116 19.46 0.027 9.52 8.68 0.495 0.125 -0.493 

Interval 20 0.452 0.101 20.99 0.022 10.98 13.31 0.401 0.077 0.078 

Interval 21 0.409 0.095 19.94 0.021 11.18 16.13 0.354 0.060 0.325 

Interval 22 0.379 0.080 24.66 0.015 14.41 23.52 0.333 0.046 0.385 

Interval 23 0.353 0.073 26.54 0.013 15.85 29.01 0.311 0.036 0.456 

Interval 24 0.328 0.056 38.36 0.009 24.22 49.65 0.298 0.033 0.287 

Interval 25 0.305 0.044 53.52 0.006 35.62 81.20 0.282 0.028 0.210 

Interval 26 0.298 0.034 78.93 0.004 54.47 128.55 0.283 0.029 -0.064 

Interval 27 0.289 0.026 126.85 0.002 88.33 217.15 0.278 0.021 -0.030 

Interval 28 0.282 0.022 166.17 0.002 119.50 305.03 0.274 0.022 -0.322 

Interval 29 0.278 0.021 179.09 0.002 127.93 332.63 0.269 0.018 -0.085 

Interval 30 0.273 0.019 203.11 0.001 147.67 393.21 0.266 0.019 -0.247 

Interval 31 0.272 0.022 166.83 0.002 120.11 321.95 0.262 0.018 -0.059 

Interval 32 0.280 0.034 75.63 0.004 52.36 134.30 0.264 0.023 0.118 

Interval 33 0.285 0.034 82.05 0.004 54.90 137.68 0.270 0.020 0.122 

Interval 34 0.295 0.057 33.26 0.009 21.15 50.37 0.268 0.024 0.363 
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Interval 35 0.312 0.079 19.70 0.016 11.83 25.94 0.275 0.038 0.300 

Interval 36 0.369 0.121 10.81 0.034 6.11 10.33 0.298 0.063 0.480 

Interval 37 0.432 0.141 9.45 0.046 5.21 6.81 0.370 0.120 -0.080 

Interval 38 0.487 0.128 13.88 0.035 7.25 7.63 0.445 0.127 -0.321 

Interval 39 0.529 0.107 23.56 0.022 11.39 10.16 0.497 0.110 -0.390 

Interval 40 0.570 0.096 34.02 0.017 15.10 11.40 0.548 0.105 -0.533 

Interval 41 0.554 0.090 36.42 0.015 16.90 13.64 0.531 0.096 -0.471 

Interval 42 0.583 0.095 37.29 0.016 15.56 11.11 0.551 0.094 -0.295 

Interval 43 0.574 0.097 34.27 0.017 14.93 11.07 0.550 0.103 -0.482 

Interval 44 0.572 0.083 47.13 0.012 20.40 15.26 0.549 0.086 -0.425 

Interval 45 0.576 0.088 42.59 0.014 18.17 13.36 0.550 0.090 -0.396 

Interval 46 0.570 0.088 41.98 0.014 18.11 13.66 0.546 0.092 -0.445 

 712 

 713 

 714 

Figure A1. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 45 to 715 
interval 10 (from 19 December to 21 March) representing winter. 716 

 717 
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 718 

Figure A2. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 11 to 719 
interval 22 (from 22 March to 25 June) representing spring. 720 

 721 

 722 

Figure A3. Observed NDVI, GEV and Normal probability density functions (PDFs) from interval 23 723 
to interval 33 (from 26 June to 21 September) representing summer. 724 

 725 
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 726 

Figure A4. Observed NDVI, GEV and Normal PDFs from interval 34 to interval 44 (from 22 727 

September to 18 December) representing autumn. 728 

729 
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