
TO REFEREE #3 1 

Thank you very much for all your suggestions and comments. Next, we respond all your 2 

suggestions in order. 3 

1. The core (as the objective states) of the work is characterizing NDVI distribution 4 

functions; the introduction should also include a review of different works done on 5 

this, no matter for what application this was done, and what functions better 6 

succeed in reproducing the statistical behaviour of this variable on different time 7 

scales. 8 

We present this study as a novelty of NDVI time characterization without Normal 9 

assumption. In the introduction we have explained NDVI characterization when it 10 

is used in the index-based insurance context, and assuming normal distributions. 11 

2. Additionally, the introduction should also refer to what limitations assuming the 12 

normal distribution has for NDVI characterization. 13 

We have dealt with this topic in the result section because limitations assuming 14 

the normal distribution are part of our results and conclusions. Different NDVI 15 

distribution assumptions involve different damaged NDVI thresholds. 16 

3. This being said, I think the objective should be more specific. On what time and 17 

spatial scales NDVI is defined for the work to be done? The variable should be very 18 

precisely defined. 19 

This study uses information of MODIS with some limitations in time and scale. In 20 

the “Material and methods” section we explain that product MOD09A1 has a 21 

spatial resolution of 500m x 500m and a time resolution of 8 days. In future 22 

researches we would like to prove with more spatial and time resolution using 23 

other products. Any case, we think we would obtain the same essential conclusion: 24 

Normal characterization is not the best in some intervals (mainly in spring and 25 

autumn). 26 

4. I wonder how representative the presented study case is for the generalization of 27 

the results and conclusion. Different decisions made to develop this work should 28 

be justified: crop to evaluate, location, number of pixels, sensor… Why only some 29 

pixels and not the whole crop area? 30 

We have analyzed pasture in this study because this kind of crop uses NDVI 31 

characterization to define damage thresholds in the context of satellite index-base 32 

insurances. The selected location is an example of pasture area without trees 33 

dedicated to cattle breeding. You are right, this location is not very large and the 34 

spatial resolution of the MODIS product is low, so we were limited to use not much 35 

pixels. In future studies we want to select other more extensive pasture areas with 36 

more resolution for obtaining more relevant results. 37 



5. The choice of the candidate functions (see Table 3) must also be justified. 38 

We have chosen these candidates because they are very common within 39 

asymmetrical distribution and we have shown in this study that observed NDVI 40 

distributions are essentially asymmetrical in many intervals (mainly in spring and 41 

autumn). We could have used other candidates, but we think the conclusion would 42 

be the same: normal assumption is not the best, and we recommend the use of 43 

quantiles. 44 

6. Lines 441-444. This assertion is highly dependent on how representative the 45 

studied sample is of the case referred to, and to the general problem the paper 46 

wants to address. 47 

We have modified the paragraph eliminating the specific reference and talking 48 

about the Normal assumption methodology in general. Now you can read: 49 

“Therefore, the methodology using the NDVI Normal assumption applied to design 50 

an index-based insurance will not be feasible in many intervals of this study.” 51 

7. From the figures in the Annex it is not so clear that GEV has an overall better 52 

performance than the normal choice. In fact, in different examples both perform 53 

very similarly. 54 

You are right, GEV distributions fit better in spring and autumn intervals due to 55 

distributions are mainly asymmetric in these periods. We have included a new 56 

paragraph explaining this feature: Now you can read: “There is a relationship 57 

between seasons and the number of intervals that fit correctly. We found that GEV 58 

distributions explain better some intervals of spring and autumn since their 59 

observed distributions are very asymmetric. On the other hand, we did not find an 60 

important difference in winter, since its observed distributions are mainly 61 

symmetric”. 62 

8. I was expecting to find in the results more depth regarding the impact that a 63 

different distribution has on the parts (insurance companies and clients). At the 64 

end, even if statistically another function performs better than the normal 65 

assumption, the relevant issue is how much the benefit/loss is changed by this. A 66 

better performance might have only a minor impact on the final result in the 67 

insurance context. At least some estimation should be included. 68 

In this study we have focused in the statistical analysis and how the thresholds 69 

would be affected by the use of GEV assumption instead of the Normal one. We 70 

have also offered some estimation about the probability of being below the NDVI 71 

threshold in both assumptions. The probability obtained by GEV distributions is 72 

mostly lower than the Normal distributions in spring, autumn and winter, that is 73 

the working period of the insurance. In future works we will be able to focus in 74 

more economical aspects and to perform some simulation of the overall process. 75 



9. Additionally, no discussion is done on other works in the results regarding the 76 

insurance context. 77 

In this study we have shown up the differences in using Normal and GEV 78 

distributions in the insurance context. Differences in the probability of being below 79 

the NDVI threshold recommend us the use of quantiles instead of preset 80 

distributions. 81 

10. Please, check that captions of tables and figures are self-explanatory (see for 82 

instance Table1; provide study period). 83 

We have included the study period in the caption of table 1. 84 

11. The weather variables statistics included in Table 1 just presents the local climate. 85 

Is it possible to combine this information with the NDVI monitoring to obtain 86 

better indexes or to validate the NDVI results? 87 

Some studies have dealt with the combination of weather variables and NDVI to 88 

create a better index, however in this study we have focused in the statistical 89 

analysis of NDVI distributions without questioning whether NDVI is the best index 90 

or not. 91 

12. Line 246. “… the completed station of meteorological networks”. What do you 92 

mean by that? 93 

We made a mistake with the translation. A completed station means a main or 94 

principal station with the majority of weather measure equipments. 95 

13. Lines 306-311. What is the purpose of the last sentence? 96 

We have not found the use of this HSL criterion in the context of NDVI remote 97 

sensing images. Therefore it can be considered a novelty method to eliminate 98 

wrong values in a NDVI series. 99 

14. Line 367. Please, define this more precisely. 100 

This entire paragraph has been rewritten to clarify all the definitions presented on 101 

it. 102 

15. Line 371. I think the definition of VR can be more clearly expressed. Additionally, 103 

the use of tables for VR intervals results in too long and repeated content. 104 

This entire paragraph has been rewritten to clarify all the definitions presented on 105 

it, and table 3 has been simplified. 106 

16. Contents in lines 367-376 and 415-432 should be moved to the Methods sections. 107 

We think some of these paragraphs could stay at the result section due to they are 108 

applications of the methodology presented in the Method section (MLM and Chi 109 

square test). We attend some of your suggestions and move the paragraph 110 

regarding to PDF candidates to the Method section. 111 

17. Line 451. I would suggest not to use the future tense here. 112 

We have modified from future tense to past tense. 113 



18. Please, check the references’ format meets the Journal’s standards. 114 

We have reviewed the format references. 115 

 116 
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Abstract: Vegetation indices based on satellite images, such as Normalized Difference Vegetation Index 134 
(NDVI), have been used in countries like USA, Canada and Spain for damaged pasture and forage insurance 135 
for the last years. This type of agricultural insurance is called “satellite index-based insurance” (SIBI). In 136 
SIBI, the occurrence of damage is defined through NDVI thresholds mainly based on statistics derived from 137 
Normal distributions. In this work a pasture area at the north of Community of Madrid (Spain) has been 138 
delimited by means of Moderate Resolution Imaging Spectroradiometer (MODIS) images. A statistical 139 
analysis of NDVI histograms was applied to seek for the best statistical distribution using maximum 140 
likelihood method. The results show that the Normal distribution is not the optimal representation and the 141 
General Extreme Value (GEV) distribution presents a better fit through the year. A comparison between 142 
Normal and GEV are showed respect to the probability under a NDVI threshold value along the year. This 143 
suggests that a priori distribution should not be selected and a percentile methodology should be used to 144 
define a NDVI damage threshold rather than the average and standard deviation, typically of Normal 145 
distributions. 146 

Keywords: NDVI, pasture insurance, GEV distribution, MODIS. 147 
 148 

Highlights 149 

 General Extreme Value (GEV) distribution provides the best fit to the NDVI 150 

historical observations. 151 

 Difference between Normal and GEV distributions are higher during spring and 152 

autumn, transition periods in the precipitation regimen. 153 

 NDVI damage threshold shows evident differences using Normal and GEV 154 

distributions covering both the same probability (24.20%).  155 



 NDVI damage threshold values based on percentiles calculation is proposed as an 156 

improvement in the index based insurance in damaged pasture. 157 

 158 

1. Introduction 159 

Agricultural insurance addresses the reduction of the risk associated with crop 160 

production and animal husbandry. The concept of index-based insurance (IBI) attempts to 161 

achieve settlements based on the value taken by an objective index rather than on a case-162 

by-case assessment of crop or livestock losses (Gommes and Kayitakier, 2013). Indeed, the 163 

goal of IBI policy remains to develop an affordable tool to all producers, including 164 

smallholders. Specifically, IBI can constitute a safety net against weather-related risks for 165 

all members of the farming community, thereby increasing food security and reducing the 166 

vulnerability of rural populations to weather extremes. Moreover, IBI can be associated 167 

with credits for insured smallholders, due to the fact that the risk of non-repayment for 168 

lenders is reduced, which encourages the use of agricultural inputs and equipment, 169 

leading to increased and more stable crop production. Over the past decade, the 170 

importance of weather index-based insurances (WIBI) for agriculture has been increasing, 171 

mainly in developing countries (Gommes and Kayitakier, 2013). This interest can be 172 

explained by the potential that IBI constitutes a risk management instrument for small 173 

farmers. Indeed, it can be considered within the context of renewed attention to 174 

agricultural development as one of the milestones of poverty reduction and increased 175 

food security, as well as the accompanying efforts from various stakeholders to develop 176 

agricultural risk management instruments, including agricultural insurance products. 177 

 178 

Farmers need to protect their land and crops specifically from drought in arid and 179 

semi-arid countries, since their production may directly depend mainly on the impacts of 180 

this particular natural hazard. Insurance for drought-damaged lands and crops is currently 181 

the main instrument and tool that farmers can resort in order to deal with agricultural 182 

production losses due to drought. Many of these insurances are using satellite vegetation 183 

indices (Rao, 2010), thus they are also called “satellite index-based insurances” (SIBI). SIBI 184 

have some advantages over WIBI, such as cost-effective information and acceptable 185 

spatial and temporal resolution. They do not, however, resolve the issue of basis risk, i.e. 186 

potential unfairness to insurance takers (Leblois, 2012). Moreover, the very nature of an 187 

index-based product creates the chance that an insured party may not be paid when they 188 

suffer loss. For this reason, in some countries (Spain) they have named this SIBI as 189 

“damaged in pasture” to cover not only drought even this one is the main cause. 190 

 191 



It is highly recognized that shortage of water has many implications to agriculture, 192 

society, economy and ecosystems. Specifically, its impact on water supply, crop 193 

production and rearing of livestock is substantial in agriculture. Knowing the likelihood of 194 

drought is essential for impact prevention (Dalezios, 2013). Drought severity assessment 195 

can be approached in different ways: through conventional indices based on 196 

meteorological data, such as temperature, rainfall, moisture, etc. (Niemeyer, 2008), as 197 

well as through remote sensing indices based on images usually taken by artificial 198 

satellites (Lovejoy et al., 2008) or drones. In the second group they are found Satellite 199 

Vegetation Indices (SVI), which can quantify “green vegetation”, and soil moisture through 200 

Soil Water Index (Gouveia et al., 2009) combining different spectral reflectances. Thus, 201 

they are one of the main ways to quantitatively assess drought severity. 202 

 203 

At the present time, several satellites (NOAA, TERRA, DEIMOS, etc.) can provide this 204 

spectral information with different spatial resolution. Some series with a high temporal 205 

frequency are freely available, those from NOAA satellites and Terra. The most widely 206 

known SVI is the Normalized Difference Vegetation Index (NDVI). It follows the principle 207 

that healthy vegetation mainly reflects the near-infrared frequency band. There are 208 

several other important SVI, such as Soil Adjusted Vegetation Index (SAVI) and Enhanced 209 

Vegetation Index (EVI) that incorporate soil effects and atmospheric impacts, respectively. 210 

An important point of this class of insurance is “when damage occurs”. To measure this, a 211 

SVI threshold value is defined mainly based on statistics that apply to Normal distributed 212 

variables: average and standard deviation. When current SVI values are bellow this 213 

threshold value for a period of time, insurance recognizes that a damage is occurring, 214 

most of the times drought, and then it begins to pay compensations to farmers. 215 

 216 

WIBI aims to protect farmers against weather-based disasters such as droughts, frosts 217 

and floods. A WIBI policy links possible insurance payouts with the weather requirements 218 

of the crop being insured: the insurer pays an indemnity whenever the realized value of 219 

the weather index meets a specified threshold. Whereas payouts in traditional insurance 220 

programs are related to actual crop damages, a farmer insured under a WIBI contract may 221 

receive a payout. A current difficulty to the wide implementation of WIBI is the weakness 222 

of indices. Indeed, there is certainly a need for more efficient indices based on the 223 

additional experience gained from the implementation of WIBI products in the developing 224 

world. Current trends in index technology are exciting and they actuate high expectations, 225 

especially the development of yield indices and the use of remote sensing inputs. Risk 226 

protection and insurance illiteracy constitute another difficulty, which has to be addressed 227 

by training and awareness-raising at all levels, from farmers to farmers’ associations, 228 

micro-insurance partners, as well as senior decision-makers in insurance, banking, and 229 



politics (Bailey, 2013). It is essential that all stakeholders (especially the insured) perfectly 230 

understand the principles of IBI, as otherwise the insurer, even the whole concept of 231 

insurance, is at risk of reputation loss for years or decades. 232 

 233 

There is currently a lack of technical capacity in the insurance sectors of most 234 

developing countries, which is a constraint to the scaling up and further development of 235 

WIBI (Gommes and Kayitakire, 2012). Specifically, although it is possible to design an index 236 

product and assist in roll-out, marketing, and sales, such assistance is not possible on a 237 

wide scale, simply because there is lack of qualified expertise. Indeed, it usually requires 238 

mathematical modeling, data manipulation, and expertise in crop simulation to design an 239 

index. Nevertheless, it is possible to structure insurance with multiple indices, but this 240 

increases the complexity of the product and makes it difficult for farmers to comprehend 241 

it. ‘Basis risk’ is also a particular problem for index products, which is frequently caused by 242 

the fact that measurements of a particular variable, such as rain, may differ at the 243 

insurer’s measurement site and in the farmer’s field. This also creates problems for 244 

insurance providers. Indeed, part of the reason the scaling up of index products has failed 245 

is that both insurers and farmers suffer from this basis risk. 246 

 247 

Currently, to mitigate impacts of climate-related reduced productivity of French 248 

grasslands, several studies have been developed to design new insurance scheme bases 249 

indemnity payouts to farmers on a forage production index (FPI) (Rumiguié et al., 2015; 250 

2017). Two examples of SIBIs are presented in two different countries: USA and Spain. In 251 

particular, in USA there are several insurance programs for pasture, rangeland and forage, 252 

which use various indexing systems (rainfall and vegetation indices), and are promoted by 253 

Unites States Department of Agriculture (USDA) (Maples et al., 2016; USDA, 2018). NDVI is 254 

the index chosen in the vegetation index program and it is obtained from AVHRR 255 

(Advanced Very High Resolution Radiometer) sensor onboard NOAA satellites. Average, 256 

maximum and minimum NDVI values are obtained from a historical series with the aim of 257 

calculating a trigger value. Insurer decides the quantity of compensation comparing this 258 

trigger with current value. On the other hand, in Spain there exists the “Insurance for 259 

Damaged Pasture” from “Spanish System of Agricultural Insurance” (BOE, 2013). This 260 

insurance defines damage event through NDVI values obtained from MODIS sensor 261 

onboard TERRA satellite of NASA. In this insurance, NDVI threshold values (      ) are 262 

calculated subtracting several times (              ) standard deviation to average 263 

within a homogeneous area: 264 

 265 

                      (1) 266 

 267 



where     are average and standard deviation of NDVI respectively. Average and standard 268 

deviation come of supposing Normal distributions in the historical data (Goward et al., 269 

1985; Hobbs, 1995; Fuller, 1998; Al-Bakri and Taylor, 2003; Turvey et al., 2012; De Leeuw 270 

et al. 2014). 271 

 272 

The aim of this paper is to find a more realistic statistical NDVI distribution without 273 

the “a priori” assumption that variables follow a Normal distribution, typically for current 274 

SIBI methodology. In order to achieve this, the Maximum Likelihood Method (MLM) is 275 

fitted to a historical series of NDVI values in a pasture land area in Spain (Community of 276 

Madrid). Different types of asymmetrical distributions are examined with the aim to find a 277 

better fit than Normal. To eliminate some noise in the historical series, an original method 278 

is applied consisting of using Hue-Saturation-Lightness (HSL) color model. Finally, Chi-279 

square test (   test) has been used to check the goodness of fit for all considered 280 

distributions. 281 

 282 

 283 

2. Materials and Methods  284 

2.1 Vegetation Index 285 

The differences of the reflectance of green vegetation in parts of the electromagnetic 286 

radiation spectrum, namely, visible and near infrared, provide an innovative method for 287 

monitoring surface vegetation from space. Specifically, the spectral behavior of vegetation 288 

cover in the visible (0.4-0.7mm) and near infrared (0.74-1.1mm, 1.3-2.5mm) offers the 289 

possibility to monitor from space the changes in the different stages of cultivated and 290 

uncultivated plants taking also into account the corresponding behavior of the 291 

surrounding microenvironment (Ortega-Farias et al., 2016). Indeed, from the visible part 292 

of the electromagnetic radiation spectrum it is possible to draw conclusions about the 293 

rate photosynthesis, whereas from near infrared inferences are extracted about the 294 

chlorophyll density and the amount of canopy in the plant mass, as well as the water 295 

content in the leaves, which is also linked directly to the rate of transpiration with impacts 296 

to physiological process of photosynthesis. Usually, data from NOAA/AVHRR series of 297 

polar orbit meteorological satellites are used with low spatial resolution (1.1 km2) and 298 

recurrence interval at least twice daily from the same location. Several algorithms 299 

combining channels of red (RED), near infrared (NIR) and green (GREEN) have been 300 

proposed, which provide indices sensitive to green vegetation. 301 

  302 



NDVI uses two frequency bands: red band (660 nm) and near-infrared band (860 nm). 303 

Absorption of red band is related to photosynthetic activity and reflectance of near-304 

infrared band is related to presence of vegetation canopies (Flynn, 2006). In drought 305 

periods, NDVI values can reduce significantly, therefore many researchers have used this 306 

index to measure drought events in recent years (Dalezios et al., 2014). To calculate NDVI 307 

we will use this mathematical formula: 308 

 309 

     
    

    
              (2) 310 

 311 

where IR and R are reflectance values in Near-Infrared band and Red band, respectively. 312 

NDVI values below zero indicate no photosynthetic activity and are characteristic of areas 313 

with large accumulation of water, such as rivers, lakes, or reservoirs. The higher is the 314 

NDVI value, the greater is the photosynthetic activity and vegetation canopies. 315 

 316 

In this paper, the NDVI is used, which is widely known index with a multitude of 317 

applications over time. The NDVI is suited for monitoring of total vegetation, since it partly 318 

compensates the changes in light conditions, land slope and field of view (Kundu et al., 319 

2016). In addition, clouds, water and snow show higher reflectance in the visible than in 320 

the near infrared, thus, they have negative NDVI values. Indeed, bare and rocky terrain 321 

show vegetation index values close to zero. Moreover, the NDVI constitutes a measure of 322 

the degree of absorption by chlorophyll in the red band of the electromagnetic spectrum. 323 

In summary, the NDVI is a reliable index of the chlorophyll density on the leaves, as well as 324 

the percentage of the leaf area density over land, thus, NDVI constitutes a credible 325 

measure for the assessment of dry matter (biomass) in various species vegetation cover 326 

(Dalezios, 2013). It is clear from the above that the NDVI is an index closely related to 327 

growth and development of plants, which can effectively monitor surface vegetation from 328 

space.  329 

 330 

The continuous increase of the NDVI value during the growing season reflects the 331 

vegetative and reproductive growth due to intense photosynthetic activity, as well as the 332 

satisfactory correlation with the final biomass production at the end of a growing period. 333 

On the other hand, gradual decrease of the NDVI values signifies stress due to lack of 334 

water or extremely high temperatures for the plants, leading to a reduction of the 335 

photosynthetic rate and ultimately a qualitative and quantitative degradation of plants. 336 

NDVI values above zero indicate the existence of green vegetation (chlorophyll), or bare 337 

soil (values around zero), whereas values below zero indicate the existence of water, 338 

snow, ice and clouds. 339 



 340 

2.2 Database 341 

Scientific research satellite Terra (EOS AM-1) has been chosen to provide necessary 342 

information to calculate NDVI in the study area. This satellite was launched into orbit by 343 

NASA on December 18, 1999. MODIS sensor aboard this satellite collects information of 344 

different reflectance bands. MODIS information is organized by "products". The product 345 

used in this study was MOD09A1 (LP DAAC, 2014). MOD09A1 incorporates seven 346 

frequency bands: Band 1 (620-670 nm), band 2 (841-876 nm), band 3 (459-479 nm), band 347 

4 (545-565 nm), 5 band (1230-1250 nm), band 6 (1628-1652 nm) and band 7 (2105-2155 348 

nm). The bands used to calculate NDVI are: band 1 for red frequency and band 2 for near-349 

infrared frequency. MOD09A1 provides georeferenced images with pixel resolution of 350 

500m x 500m. This product has a mix of the best reflectance measures of each pixel in an 351 

8-days period. The period of time selected on this study was from 2002 to 2017. 352 

 353 

Daily data from a principal station of the meteorological network were utilized during 354 

the period studied (2002 – 2017). Meteorological station is located in 40°41'46"N 355 

3°45'54"W (elevation 1004 m a.s.l.), less than 2 km from the study area (AEMET, 2017). 356 

 357 

2.3 Site description 358 

Six pixels (500m x 500m) are considered located in a pasture area at the north of the 359 

Community of Madrid (Spain) between the municipalities of “Soto del Real” and 360 

“Colmenar Viejo”. The study area is located between meridians 3° 45' 00" and 3° 47' 00" 361 

W and parallels 40° 42' 00" and 40° 44' 00" N approximately (see Fig. 1). 362 

 363 

 364 



 365 

Figure 1. The study area is in the centre of the Iberian Peninsula (Community of Madrid). RGB 366 

image of six pixels area used for case study is shown (Google Earth´s and MODIS images). 367 

 368 

The annual mean temperature ranges during the study period from 12.7°C to 13.8°C, 369 

and annual mean precipitation ranges from 360 mm to 781 mm.  The stations studied 370 

were identified semi-arid (annual ratio P/ETo between 0.2 and 0.5) according to the global 371 

aridity index developed by the United-Nations Convention to Combat Desertification 372 

(UNEP, 1997). According to the climatic classification of Köppen (Kottek et al., 2006), this 373 

area presents a continental Mediterranean climate temperate with dry and temperate 374 

summer (type Csb). Temperature and precipitation of this site, based on 20 years, is 375 

presented in Table 1. 376 

 377 

Due to high soil moisture conditions, ash is the dominant tree, forming large 378 

agroforestry systems ("dehesas") that are used for pasture. These are ecosystems with 379 

high biodiversity. 380 

 381 

Table 1. Monthly average of maximum temperature (Tmax), average temperature (Tavg), 382 

minimum temperature (Tmin) and precipitation (P). Study period from 1997 to 2017. 383 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Tmax (ºC) 7.1 9.3 12.7 15.4 19.5 24.6 28.6 28.1 23.7 16.8 11.1 7.4 17.0 

Tavg (ºC) 3.6 4.8 7.7 10.1 13.7 18.4 22.0 21.7 17.9 12.3 7.1 4.1 12.0 



Tmin (ºC) 0.0 0.3 2.6 4.8 7.8 12.1 15.4 15.3 12.0 7.8 3.0 0.8 6.8 

P (mm) 67.2 50.0 38.5 62.2 62.3 30.2 18.9 16.4 34.2 79.3 86.2 82.6 627.9 

 384 

2.4 HSL model 385 

There is no doubt that NDVI time-series from satellite sensors carry useful 386 

information, which can be used for characterizing seasonal dynamics of vegetation 387 

(Fensholt et al., 2012; Forkel et al., 2013). However, due to unfavorable atmospheric 388 

conditions during the data acquisition, NDVI time-series curve often contains noise 389 

(Motohka et al., 2011; Park, 2013). Although most of the NDVI data products are 390 

temporally composited through maximum value compositing (MVC) method (Holben, 391 

1986) to retain relatively cloud-free data, residual noise still exists in the data, which will 392 

affect the accuracy of the NDVI value. 393 

 394 

Therefore, usually it is necessary to reconstruct of NDVI time-series before extracting 395 

information from the noisy data. There are several techniques that have been applied to 396 

reduce noise and reconstruct NDVI series, a summary of these can be found in Wei et al. 397 

(2016). In this study we applied a simple filtering method based on the Hue-Saturation-398 

Lightness (HSL) color model inspired by the work presented by Tackenberd (2007). 399 

 400 

HSL color model is a cylindrical representation of RGB (Red-Green-Blue) points. Their 401 

components are Hue (color type), Saturation (level of color purity) and Lightness (color 402 

luminosity). Hue is the angular component and it is more intuitive for humans since it is 403 

directly related to the color wheel (see Fig. 2). 404 

 405 

 406 

Figure 2. Colour wheel of Hue (on the left) and the HSL model (on the right). 407 

Saturation is the radial component and near-zero values indicate grey colors. 408 

Lightness is the axial radial versus axial component, zero lightness produces black and full 409 

lightness produces white. 410 



 411 

The NDVI series are filtered using the following HSL criterion: NDVI values are valid if 412 

HSL Saturation is greater than 0.15. In this way, the values of the series that have grey 413 

color correlate with pasture covered by clouds or snow are eliminated. This type of filter 414 

based in HSL color space has been used on digital camera images monitoring vegetation 415 

phenology (Tackenberg, 2007; Crimmins and Crimmins, 2008; Graham et al., 2009). 416 

However, we have not found the use of this HSL criterion in the context of NDVI remote 417 

sensing images. 418 

 419 

2.5 Maximum Likelihood Method (MLM) 420 

MLM estimates the set of parameters {         } for a specific statistical 421 

distribution that maximizes the “likelihood function” or the “joint density function”: 422 

   (   )  ∏  (   
 
            )      (3) 423 

where   (       ) is the set of data,   (         ) is the vector of parameters 424 

and  (            ) is the density function of the statistical model. 425 

When maximization with respect to the vector of parameters is carried out, the 426 

estimated parameters ( ̂  ̂  ̂  ̂  ) for the proposed statistical distribution are obtained 427 

(Larson, 1982). Properties of estimated parameters are: invariance, consistency and 428 

asymptotically unbiased. 429 

In the case of a Gaussian model, the estimated statistics   and   are defined by 430 

accurate expressions as follows: 431 
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where   ̂ is the sample mean and  ̂ is the sample standard deviation of the data set. 433 

In this study we will apply MLM to estimate the parameters for 4 probability density 434 

functions (PDF). In Table 2, a brief description is presented of these PDF candidates: 435 

Normal, Gamma, Beta and GEV. To do so, the following MATLAB functions have been 436 

used: “normfit”, “gamfit”, “betafit” and “gevfit” (respectively). 437 

 438 

Table 2. Candidate Probability Density Functions (PDF). 439 

PDF NAME PDF EXPRESSION PDF PARAMETERS 
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 441 

2.6 Goodness of fit (Chi-square test) 442 

   test can be used to determine to what extent observed frequencies differ from 443 

frequencies expected for a specific statistical model. The most important points of the 444 

theory are briefly presented in (Cochran, 1952). 445 

Let  (   ) be a theoretical density function of a random variable   which depends on 446 

parameters   (         ) and let         be a sample of   grouped into k classes with    447 

data per class i. 448 

Firstly, the following hypothesis is set: 449 

(H0) observed data fit theoretical distribution  (   ). 450 

Then the test statistic   
   is defined as: 451 

  
  ∑

(     )
 

  

 
           (5) 452 

where    is the number of data or observed frequency and       (       ) is the 453 

expected frequency for class i.  (       ) is the theoretical interval probability defined for 454 

class i. 455 

A level of significance is also set as: 456 

   (                     )      (6) 457 

Finally, the following decision rule is applied: “reject the theoretical distribution at 458 

significance level   if: 459 

  
   (         )

       (7) 460 



where  (         )
 is a    distribution with k-m-1 degrees of freedom (m is the number of 461 

parameters, k is the number of classes). 462 

 463 

 464 

3. Results and Discussion 465 

3.1 HSL filtering criterion 466 

NDVI series (from 2002 to 2017) were obtained for each pixel of the study area using 467 

frequency bands provided by MODIS product named MOD09A1. These series contain 468 

some irregular values that can skew NDVI pattern. Therefore, the six series (six pixels) 469 

were filtered using the HSL criterion. In Fig. 3 is shown an example of how HSL filtering 470 

criterion works with a 10 years NDVI series (from 2002 to 2012). 471 



 472 

Figure 3. HSL filtering criterion applied to a 10 years NDVI series. Top graph shows the real NDVI 473 

series. Bottom graph shows the HSL filtered NDVI series. 474 

The abrupt changes in the NDVI values, mainly observed during raining seasons such 475 

as autumn and winter, are efficiently eliminated. Not to be a high computational 476 

demanding method is one of the main advantages of HSL filtering method. Therefore, this 477 

method will allow us to obtain more robust NDVI values to be used in the statistical 478 

analysis. 479 

 480 

3.2 Maximum Likelihood Method (MLM) and Chi square test 481 



NDVI values were obtained consecutively every 8 days from MODIS product starting 482 

at 1st of January of every year, in such a way that 46 NDVI observations were considered 483 

for each year. Therefore, 46 Random Variables (RV) were defined when taking into 484 

account all the years of this study. 485 

In Table 3, every RV (named as “Interval”) can be seen together with the number of 486 

available NDVI observations. Each RV collects the observations coming from the six 487 

selected pixels. The start intervals of each season are: interval 45 for winter, interval 11 488 

for spring, interval 23 for summer and interval 34 for autumn. 489 

 490 

Table 3. Number of observations for every RV (named as Interval). 491 

RANDOM 
VARIABLE 

# 
OBSERVATIONS 

  
RANDOM 
VARIABLE 

# 
OBSERVATIONS 

Interval 1 85   Interval 24 96 

Interval 2 84   Interval 25 96 

Interval 3 96   Interval 26 96 

Interval 4 96   Interval 27 96 

Interval 5 95   Interval 28 96 

Interval 6 90   Interval 29 96 

Interval 7 86   Interval 30 96 

Interval 8 83   Interval 31 96 

Interval 9 96   Interval 32 96 

Interval 10 96   Interval 33 94 

Interval 11 74   Interval 34 96 

Interval 12 88   Interval 35 96 

Interval 13 88   Interval 36 85 

Interval 14 88   Interval 37 90 

Interval 15 96   Interval 38 96 

Interval 16 92   Interval 39 92 

Interval 17 88   Interval 40 90 

Interval 18 96   Interval 41 96 

Interval 19 95   Interval 42 89 

Interval 20 96   Interval 43 95 

Interval 21 95   Interval 44 88 

Interval 22 96   Interval 45 90 

Interval 23 96   Interval 46 90 

 492 

 493 



In Fig. 4, a plot with NDVI sample means of all RV with a start and end reference of 494 

the astronomical seasons is shown. The typical evolution of the NDVI along a year can be 495 

seen. 496 

 497 

 498 

Figure 4. NDVI sample means of 46 random variables (RV) are shown as well as start and end 499 

reference of every season. Study period from 2002 to 2017. 500 

 501 

The observed evolution of NDVI through the different seasons is typical of the pasture 502 

in this area. The summer presents the lowest mean values which begin to increase in 503 

autumn achieving a maximum mean value of 0.60 or 0.65 during winter. In the middle of 504 

the spring NDVI decrease again, approaching the lowest mean value of 0.28 505 

approximately. 506 

 507 

Taking into account these values, dense vegetation, in this study pasture, is found 508 

from middle of October (interval 37) till the end of May (interval 19). It is in this period 509 

where the precipitation concentrates (see Table 1). During the summer, the NDVI mean 510 

values are lower than 0.3 corresponding with low precipitation and high temperatures. 511 

  512 

Following the work of Escribano-Rodriguez et al. (2014), there is a relationship of 513 

pasture damage and a NDVI value around 0.40. Even if the authors point out that this 514 

value is highly variable depending on the location, we can see that summer season in this 515 

case study is under this value (see Fig. 4). This can explain that “Insurances for Damaged 516 

Pasture” usually do not apply in these dates due to the arid environment (BOE, 2013). 517 

 518 

MLM has been applied to model these 46 RV. Parameters have been calculated for 4 519 

PDF (see Table 2) which are the candidates to be the best fit. To check the goodness of the 520 



fit of PDF candidates, Chi square test (χ2 test) has been used from 7 classes to 14 classes 521 

meeting the requirement that each class has at least five observations. The level of 522 

significance ( ) was fixed to 5% for all the candidates. 523 

 524 

Twelve intervals (from 23 to 34) corresponding to months of July, August and 525 

September have been excluded of this analysis since these intervals fall into the dry 526 

season in the study area, normally not cover by any SIBI. Therefore, calculations were 527 

carried out over 34 intervals. Fig. 5 shows the percentage of intervals that fit for every PDF 528 

candidate. The number of classes used in χ2 test is represented at X-axis (from 7 to 14 529 

classes). 530 

 531 

Figure 5. Percentage of fitted intervals (Y axis) for each PDF candidate (Normal, Gamma, Beta and 532 

GEV distributions) in function of the number of classes (X axis). 533 

 534 

Fig. 5 indicates that GEV distributions explain more intervals (more than 40% for the 535 

majority of the class analysis) than Normal, Gamma or Beta distributions. An important 536 

difference between the Normal distribution and the rest of the PDF used in this work is its 537 

symmetry and kurtosis. Many of the observed NDVI distributions present a clear 538 

asymmetry and long tails in one or both sides that causes Normal distribution not to be 539 

the optimal fit. 540 

 541 

There is a relationship between seasons and the number of intervals that fit correctly. 542 

We found that GEV distributions explain better some intervals of spring and autumn since 543 

their observed distributions are very asymmetric. On the other hand, we did not find an 544 

important difference in winter, since its observed distributions are mainly symmetric. 545 



Therefore, the methodology using the NDVI Normal assumption applied to design an 546 

index-based insurance will not be feasible in many intervals of this study. 547 

  548 

Table A1 at Appendix A shows the estimated parameters for each PDF and each 549 

interval calculated by the MLM. These parameters were used to compare the estimated 550 

PDF with the NDVI observed values on different times through the seasons. The following 551 

intervals are shown as examples of better GEV fit: interval 4 and 8 (for winter, see Fig. 6), 552 

interval 17 and 21 (for spring, see Fig. 7) and interval 36 and 40 (for autumn, see Fig. 8). In 553 

these plots, observed frequency is compared versus Normal and GEV density distributions 554 

calculated by MLM. 555 

 556 

 557 

Figure 6. Comparison between observed NDVI frequency, GEV and Normal probability density 558 

functions (PDF) on two different dates. Intervals 4 and 8 are examples for winter. 559 

 560 

Figure 7. Comparison between observed NDVI frequency, GEV and Normal probability density 561 

functions (PDF) on two different dates. Intervals 17 and 21 are examples for spring. 562 

 563 



 564 

Figure 8. Comparison between observed NDVI frequency, GEV and Normal probability density 565 

functions (PDF) on two different times. Intervals 36 and 41 are examples for autumn. 566 

During winter (see Fig. 6) the observed NDVI distribution presents negative skewness. 567 

Then, there is a higher frequency of high NDVI values corresponding with significant 568 

precipitation. During spring an evolution in the skewness is observed passing from 569 

negative to positive, and so, the lower NDVI values become the higher probable. Finally, 570 

during autumn precipitation begins and from positive pass to negative skewness and 571 

higher NDVI values are possible. We can observe that Normal distribution has no flexibility 572 

to follow this dynamic in the distributions on each time. This comparison is done in a 573 

sequential order for the whole of intervals in Figures A1, A2, A3 and A4 at Appendix A. 574 

 575 

The more skewness and kurtosis depart from those of the Normal distribution the 576 

larger the errors affecting the insurance designed based on (Turvey et al., 2012). It is an 577 

expected result as pasture scenario is quite different from the development of a crop, 578 

where Normal distributions in the NDVI values are more expected. This high heterogeneity 579 

in time and space of NDVI estimated on pasture has been pointed out in several works 580 

(Martin-Sotoca et al, 2018). At the same time, more different is the observed NDVI 581 

frequency from a Normal distribution less representative is the average, and so, the 582 

median becomes a more representative value. 583 

 584 

3.3 Insurance context 585 

The use of NDVI thresholds in damaged pasture context was presented in the 586 

introduction section, being an example of using the "Insurance for Damaged Pasture" in 587 

Spain. We have chosen this last insurance to compare the results between applying 588 

Normal and GEV distribution methodologies. In this particular case the NDVI threshold 589 

(      ) was calculated using the expression              (where     are average and 590 

standard deviation of NDVI distributions respectively, assuming the Normal hypothesis). 591 

 592 



The probability of being below        (using        , first damage level in the 593 

insurance) at every interval has been calculated assuming the Normal hypothesis. As it 594 

was expected, this value is always 24.2% (see third column in Table 4). The probability of 595 

being below        has also been calculated using GEV distributions obtained in this 596 

study. The probability obtained by GEV distributions is mostly lower than the Normal 597 

distributions in spring, autumn and winter (see Table 4) that is the working period of the 598 

insurance. 599 

 600 

Observing where in time are localized the highest relative error in probabilities (fifth 601 

column in Table 4), in absolute values, intervals corresponding to the end of winter, 602 

second middle of spring and the beginning of autumn present errors higher than 10%. This 603 

could explain why it is in spring and autumn when more disagreements exist between 604 

farmers and insurance company in claims.   605 

 606 

Table 4 – First column: time intervals of approximately 8 days along the year. Second column: NDVI 607 

thresholds (NDVIth) based on a Normal distribution applying        . Third column: percentages of 608 

area below the NDVIth when Normal distributions are applied. Fourth column: percentages of area 609 

below the NDVIth when GEV distributions are applied. Fifth column: relative area error of GEV 610 

compared to the Normal distribution. 611 

 612 

RANDOM 
VARIABLE 

NORMAL GEV 

NDVIth Prob. Prob. Error (%) 

Interval 1 0.535 24.20% 24.37% 0.70% 

Interval 2 0.541 24.20% 23.18% -4.21% 

Interval 3 0.541 24.20% 23.27% -3.84% 

Interval 4 0.543 24.20% 23.27% -3.84% 

Interval 5 0.545 24.20% 24.17% -0.12% 

Interval 6 0.534 24.20% 21.48% -11.24% 

Interval 7 0.528 24.20% 24.01% -0.79% 

Interval 8 0.546 24.20% 20.70% -14.46% 

Interval 9 0.555 24.20% 21.30% -11.98% 

Interval 10 0.561 24.20% 22.28% -7.93% 

Interval 11 0.567 24.20% 23.49% -2.93% 

Interval 12 0.572 24.20% 23.75% -1.86% 

Interval 13 0.571 24.20% 23.20% -4.13% 

Interval 14 0.570 24.20% 24.29% 0.37% 

Interval 15 0.571 24.20% 23.47% -3.02% 



Interval 16 0.560 24.20% 23.26% -3.88% 

Interval 17 0.495 24.20% 21.29% -12.02% 

Interval 18 0.484 24.20% 21.58% -10.83% 

Interval 19 0.442 24.20% 23.06% -4.71% 

Interval 20 0.381 24.20% 27.20% 12.40% 

Interval 21 0.342 24.20% 29.46% 21.74% 

Interval 22 0.323 24.20% 28.84% 19.17% 

Interval 35 0.257 24.20% 18.98% -21.57% 

Interval 36 0.285 24.20% 28.57% 18.06% 

Interval 37 0.333 24.20% 25.90% 7.02% 

Interval 38 0.398 24.20% 24.27% 0.29% 

Interval 39 0.454 24.20% 23.79% -1.69% 

Interval 40 0.503 24.20% 22.81% -5.74% 

Interval 41 0.491 24.20% 23.23% -4.01% 

Interval 42 0.517 24.20% 24.66% 1.90% 

Interval 43 0.507 24.20% 23.13% -4.42% 

Interval 44 0.514 24.20% 23.49% -2.93% 

Interval 45 0.515 24.20% 23.70% -2.07% 

Interval 46 0.509 24.20% 23.33% -3.60% 

 613 

In Table 4, Normal        have been used to calculate the probability in GEV distributions. 614 

An alternative calculation can be the use of Normal probability (24.2%) to calculate new 615 

       based on GEV (see Table 5). It can be seen that new        obtained by GEV 616 

distributions are mostly upper than thresholds using Normal distributions in spring, 617 

autumn and winter. Considering these results we find that damage thresholds calculated 618 

by GEV methodology are mostly above that one’s calculated by Normal methodology. 619 

Again, intervals corresponding to the end of winter, second middle of spring and the 620 

beginning of autumn present        relative errors higher than 1% in absolute values 621 

(fourth column in Table 5). 622 

 623 

Table 5 - First column: time intervals of approximately 8 days along the year. Second column: NDVI 624 

thresholds (NDVITh) based on a Normal distribution (Normal) applying        . Third column: 625 

NDVITh based on a GEV distribution (GEV) using 24.2% as the area below the NDVITh. Fourth column: 626 

relative NDVITh error of GEV compared to the Normal distribution. 627 

 628 



RANDOM 
VARIABLE 

NDVITh  

Normal GEV Error (%) 

Interval 1 0.535 0.534 -0,19% 

Interval 2 0.541 0.543 0,37% 

Interval 3 0.541 0.543 0,37% 

Interval 4 0.543 0.545 0,37% 

Interval 5 0.545 0.545 0,00% 

Interval 6 0.534 0.543 1,69% 

Interval 7 0.528 0.528 0,00% 

Interval 8 0.546 0.558 2,20% 

Interval 9 0.555 0.563 1,44% 

Interval 10 0.561 0.567 1,07% 

Interval 11 0.567 0.569 0,35% 

Interval 12 0.572 0.574 0,35% 

Interval 13 0.571 0.574 0,53% 

Interval 14 0.570 0.569 -0,18% 

Interval 15 0.571 0.573 0,35% 

Interval 16 0.560 0.563 0,54% 

Interval 17 0.495 0.510 3,03% 

Interval 18 0.484 0.498 2,89% 

Interval 19 0.442 0.447 1,13% 

Interval 20 0.381 0.374 -1,84% 

Interval 21 0.342 0.334 -2,34% 

Interval 22 0.323 0.318 -1,55% 

Interval 35 0.257 0.262 1,95% 

Interval 36 0.285 0.278 -2,46% 

Interval 37 0.333 0.327 -1,80% 

Interval 38 0.398 0.398 0,00% 

Interval 39 0.454 0.455 0,22% 

Interval 40 0.503 0.508 0,99% 

Interval 41 0.491 0.494 0,61% 

Interval 42 0.517 0.516 -0,19% 

Interval 43 0.507 0.510 0,59% 

Interval 44 0.514 0.516 0,39% 

Interval 45 0.515 0.516 0,19% 

Interval 46 0.509 0.511 0,39% 

 629 

 630 

4. Conclusions 631 



According to the results obtained in the study area using MLM and    test, it can be 632 

concluded that Normal distributions are not the best fit to the NDVI observations, and 633 

GEV distributions provide a better approximation. 634 

 635 

The difference between Normal and GEV assumption is more evident in the transition 636 

from winter to summer (spring), where NDVI values decrease, and then from summer to 637 

winter (autumn) presenting the opposite behavior of increasing NDVI values. In both 638 

periods asymmetrical distributions were found, negative skewness for the spring 639 

transition and positive skewness for the autumn transition. During both periods the 640 

variability in precipitation and temperatures were higher in this location. 641 

 642 

We have found differences if GEV assumption is selected instead of the Normal one 643 

when defining damaged pasture thresholds (      ). The use of these different 644 

assumptions should be taken into account in future insurance implementations due to the 645 

important consequences of supposing a damage event or not. We propose the use of 646 

quantiles in observed NDVI distributions instead of average and standard deviation, 647 

typically of Normal distributions, to calculate new       . 648 

 649 

 650 
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Appendix A 657 

 658 

Table A1 - Maximum Likelihood parameters calculated for 4 PDF. 659 

RANDOM 
VARIABLE 

NORMAL GAMMA BETA GEV 

    a b   

Interval 1 0.591 0.081 53.31 0.011 21.45 14.82 0.563 0.080 -0.297 

Interval 2 0.589 0.069 71.14 0.008 30.62 21.40 0.571 0.073 -0.477 

Interval 3 0.583 0.060 94.15 0.006 39.56 28.34 0.567 0.063 -0.457 

Interval 4 0.585 0.060 91.88 0.006 39.58 28.05 0.570 0.064 -0.468 

Interval 5 0.588 0.061 93.92 0.006 38.83 27.25 0.568 0.061 -0.340 

Interval 6 0.582 0.068 70.28 0.008 30.67 22.05 0.577 0.083 -0.846 

Interval 7 0.584 0.080 52.52 0.011 22.16 15.82 0.559 0.082 -0.366 

Interval 8 0.596 0.071 65.37 0.009 28.89 19.59 0.591 0.081 -0.833 

Interval 9 0.601 0.066 76.02 0.008 34.31 22.84 0.590 0.070 -0.652 

Interval 10 0.613 0.073 63.83 0.010 27.80 17.62 0.598 0.079 -0.572 

Interval 11 0.621 0.078 58.72 0.011 24.33 14.86 0.600 0.083 -0.451 

Interval 12 0.624 0.073 68.33 0.009 28.01 16.94 0.603 0.078 -0.431 

Interval 13 0.624 0.075 66.22 0.009 26.23 15.85 0.604 0.080 -0.476 

Interval 14 0.631 0.088 50.23 0.013 18.71 10.92 0.603 0.090 -0.342 

Interval 15 0.630 0.084 53.60 0.012 21.17 12.45 0.607 0.089 -0.448 

Interval 16 0.627 0.096 38.75 0.016 16.08 9.59 0.602 0.103 -0.474 

Interval 17 0.577 0.117 20.47 0.028 10.24 7.58 0.560 0.127 -0.692 

Interval 18 0.568 0.120 20.52 0.028 9.71 7.42 0.552 0.136 -0.718 

Interval 19 0.523 0.116 19.46 0.027 9.52 8.68 0.495 0.125 -0.493 

Interval 20 0.452 0.101 20.99 0.022 10.98 13.31 0.401 0.077 0.078 

Interval 21 0.409 0.095 19.94 0.021 11.18 16.13 0.354 0.060 0.325 

Interval 22 0.379 0.080 24.66 0.015 14.41 23.52 0.333 0.046 0.385 

Interval 23 0.353 0.073 26.54 0.013 15.85 29.01 0.311 0.036 0.456 

Interval 24 0.328 0.056 38.36 0.009 24.22 49.65 0.298 0.033 0.287 

Interval 25 0.305 0.044 53.52 0.006 35.62 81.20 0.282 0.028 0.210 

Interval 26 0.298 0.034 78.93 0.004 54.47 128.55 0.283 0.029 -0.064 

Interval 27 0.289 0.026 126.85 0.002 88.33 217.15 0.278 0.021 -0.030 

Interval 28 0.282 0.022 166.17 0.002 119.50 305.03 0.274 0.022 -0.322 

Interval 29 0.278 0.021 179.09 0.002 127.93 332.63 0.269 0.018 -0.085 

Interval 30 0.273 0.019 203.11 0.001 147.67 393.21 0.266 0.019 -0.247 

Interval 31 0.272 0.022 166.83 0.002 120.11 321.95 0.262 0.018 -0.059 

Interval 32 0.280 0.034 75.63 0.004 52.36 134.30 0.264 0.023 0.118 

Interval 33 0.285 0.034 82.05 0.004 54.90 137.68 0.270 0.020 0.122 

Interval 34 0.295 0.057 33.26 0.009 21.15 50.37 0.268 0.024 0.363 



Interval 35 0.312 0.079 19.70 0.016 11.83 25.94 0.275 0.038 0.300 

Interval 36 0.369 0.121 10.81 0.034 6.11 10.33 0.298 0.063 0.480 

Interval 37 0.432 0.141 9.45 0.046 5.21 6.81 0.370 0.120 -0.080 

Interval 38 0.487 0.128 13.88 0.035 7.25 7.63 0.445 0.127 -0.321 

Interval 39 0.529 0.107 23.56 0.022 11.39 10.16 0.497 0.110 -0.390 

Interval 40 0.570 0.096 34.02 0.017 15.10 11.40 0.548 0.105 -0.533 

Interval 41 0.554 0.090 36.42 0.015 16.90 13.64 0.531 0.096 -0.471 

Interval 42 0.583 0.095 37.29 0.016 15.56 11.11 0.551 0.094 -0.295 

Interval 43 0.574 0.097 34.27 0.017 14.93 11.07 0.550 0.103 -0.482 

Interval 44 0.572 0.083 47.13 0.012 20.40 15.26 0.549 0.086 -0.425 

Interval 45 0.576 0.088 42.59 0.014 18.17 13.36 0.550 0.090 -0.396 

Interval 46 0.570 0.088 41.98 0.014 18.11 13.66 0.546 0.092 -0.445 

 660 

 661 

 662 

Figure A1. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 45 to 663 
interval 10 (from 19 December to 21 March) representing winter. 664 

 665 



 666 

Figure A2. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 11 to 667 
interval 22 (from 22 March to 25 June) representing spring. 668 

 669 

 670 

Figure A3. Observed NDVI, GEV and Normal probability density functions (PDFs) from interval 23 671 
to interval 33 (from 26 June to 21 September) representing summer. 672 

 673 



 674 

Figure A4. Observed NDVI, GEV and Normal PDFs from interval 34 to interval 44 (from 22 675 

September to 18 December) representing autumn. 676 

677 
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